1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Jana Saout <jana@saout.de> 4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. 6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> 7 * 8 * This file is released under the GPL. 9 */ 10 11 #include <linux/completion.h> 12 #include <linux/err.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/key.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-integrity.h> 20 #include <linux/crc32.h> 21 #include <linux/mempool.h> 22 #include <linux/slab.h> 23 #include <linux/crypto.h> 24 #include <linux/workqueue.h> 25 #include <linux/kthread.h> 26 #include <linux/backing-dev.h> 27 #include <linux/atomic.h> 28 #include <linux/scatterlist.h> 29 #include <linux/rbtree.h> 30 #include <linux/ctype.h> 31 #include <asm/page.h> 32 #include <linux/unaligned.h> 33 #include <crypto/hash.h> 34 #include <crypto/md5.h> 35 #include <crypto/skcipher.h> 36 #include <crypto/aead.h> 37 #include <crypto/authenc.h> 38 #include <crypto/utils.h> 39 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ 40 #include <linux/key-type.h> 41 #include <keys/user-type.h> 42 #include <keys/encrypted-type.h> 43 #include <keys/trusted-type.h> 44 45 #include <linux/device-mapper.h> 46 47 #include "dm-audit.h" 48 49 #define DM_MSG_PREFIX "crypt" 50 51 static DEFINE_IDA(workqueue_ida); 52 53 /* 54 * context holding the current state of a multi-part conversion 55 */ 56 struct convert_context { 57 struct completion restart; 58 struct bio *bio_in; 59 struct bvec_iter iter_in; 60 struct bio *bio_out; 61 struct bvec_iter iter_out; 62 atomic_t cc_pending; 63 unsigned int tag_offset; 64 u64 cc_sector; 65 union { 66 struct skcipher_request *req; 67 struct aead_request *req_aead; 68 } r; 69 bool aead_recheck; 70 bool aead_failed; 71 72 }; 73 74 /* 75 * per bio private data 76 */ 77 struct dm_crypt_io { 78 struct crypt_config *cc; 79 struct bio *base_bio; 80 u8 *integrity_metadata; 81 bool integrity_metadata_from_pool:1; 82 83 struct work_struct work; 84 85 struct convert_context ctx; 86 87 atomic_t io_pending; 88 blk_status_t error; 89 sector_t sector; 90 91 struct bvec_iter saved_bi_iter; 92 93 struct rb_node rb_node; 94 } CRYPTO_MINALIGN_ATTR; 95 96 struct dm_crypt_request { 97 struct convert_context *ctx; 98 struct scatterlist sg_in[4]; 99 struct scatterlist sg_out[4]; 100 u64 iv_sector; 101 }; 102 103 struct crypt_config; 104 105 struct crypt_iv_operations { 106 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 107 const char *opts); 108 void (*dtr)(struct crypt_config *cc); 109 int (*init)(struct crypt_config *cc); 110 int (*wipe)(struct crypt_config *cc); 111 int (*generator)(struct crypt_config *cc, u8 *iv, 112 struct dm_crypt_request *dmreq); 113 int (*post)(struct crypt_config *cc, u8 *iv, 114 struct dm_crypt_request *dmreq); 115 }; 116 117 struct iv_benbi_private { 118 int shift; 119 }; 120 121 #define LMK_SEED_SIZE 64 /* hash + 0 */ 122 struct iv_lmk_private { 123 struct crypto_shash *hash_tfm; 124 u8 *seed; 125 }; 126 127 #define TCW_WHITENING_SIZE 16 128 struct iv_tcw_private { 129 u8 *iv_seed; 130 u8 *whitening; 131 }; 132 133 #define ELEPHANT_MAX_KEY_SIZE 32 134 struct iv_elephant_private { 135 struct crypto_skcipher *tfm; 136 }; 137 138 /* 139 * Crypt: maps a linear range of a block device 140 * and encrypts / decrypts at the same time. 141 */ 142 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 143 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY, 144 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE, 145 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE }; 146 147 enum cipher_flags { 148 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */ 149 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */ 150 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */ 151 CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */ 152 }; 153 154 /* 155 * The fields in here must be read only after initialization. 156 */ 157 struct crypt_config { 158 struct dm_dev *dev; 159 sector_t start; 160 161 struct percpu_counter n_allocated_pages; 162 163 struct workqueue_struct *io_queue; 164 struct workqueue_struct *crypt_queue; 165 166 spinlock_t write_thread_lock; 167 struct task_struct *write_thread; 168 struct rb_root write_tree; 169 170 char *cipher_string; 171 char *cipher_auth; 172 char *key_string; 173 174 const struct crypt_iv_operations *iv_gen_ops; 175 union { 176 struct iv_benbi_private benbi; 177 struct iv_lmk_private lmk; 178 struct iv_tcw_private tcw; 179 struct iv_elephant_private elephant; 180 } iv_gen_private; 181 u64 iv_offset; 182 unsigned int iv_size; 183 unsigned short sector_size; 184 unsigned char sector_shift; 185 186 union { 187 struct crypto_skcipher **tfms; 188 struct crypto_aead **tfms_aead; 189 } cipher_tfm; 190 unsigned int tfms_count; 191 int workqueue_id; 192 unsigned long cipher_flags; 193 194 /* 195 * Layout of each crypto request: 196 * 197 * struct skcipher_request 198 * context 199 * padding 200 * struct dm_crypt_request 201 * padding 202 * IV 203 * 204 * The padding is added so that dm_crypt_request and the IV are 205 * correctly aligned. 206 */ 207 unsigned int dmreq_start; 208 209 unsigned int per_bio_data_size; 210 211 unsigned long flags; 212 unsigned int key_size; 213 unsigned int key_parts; /* independent parts in key buffer */ 214 unsigned int key_extra_size; /* additional keys length */ 215 unsigned int key_mac_size; /* MAC key size for authenc(...) */ 216 217 unsigned int integrity_tag_size; 218 unsigned int integrity_iv_size; 219 unsigned int used_tag_size; 220 unsigned int tuple_size; 221 222 /* 223 * pool for per bio private data, crypto requests, 224 * encryption requeusts/buffer pages and integrity tags 225 */ 226 unsigned int tag_pool_max_sectors; 227 mempool_t tag_pool; 228 mempool_t req_pool; 229 mempool_t page_pool; 230 231 struct bio_set bs; 232 struct mutex bio_alloc_lock; 233 234 u8 *authenc_key; /* space for keys in authenc() format (if used) */ 235 u8 key[] __counted_by(key_size); 236 }; 237 238 #define MIN_IOS 64 239 #define MAX_TAG_SIZE 480 240 #define POOL_ENTRY_SIZE 512 241 242 static DEFINE_SPINLOCK(dm_crypt_clients_lock); 243 static unsigned int dm_crypt_clients_n; 244 static volatile unsigned long dm_crypt_pages_per_client; 245 #define DM_CRYPT_MEMORY_PERCENT 2 246 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16) 247 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072 248 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072 249 250 static unsigned int max_read_size = 0; 251 module_param(max_read_size, uint, 0644); 252 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request"); 253 static unsigned int max_write_size = 0; 254 module_param(max_write_size, uint, 0644); 255 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request"); 256 static unsigned get_max_request_size(struct crypt_config *cc, bool wrt) 257 { 258 unsigned val, sector_align; 259 val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size); 260 if (likely(!val)) 261 val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE; 262 if (wrt || cc->used_tag_size) { 263 if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT)) 264 val = BIO_MAX_VECS << PAGE_SHIFT; 265 } 266 sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size); 267 val = round_down(val, sector_align); 268 if (unlikely(!val)) 269 val = sector_align; 270 return val >> SECTOR_SHIFT; 271 } 272 273 static void crypt_endio(struct bio *clone); 274 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 275 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 276 struct scatterlist *sg); 277 278 static bool crypt_integrity_aead(struct crypt_config *cc); 279 280 /* 281 * Use this to access cipher attributes that are independent of the key. 282 */ 283 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 284 { 285 return cc->cipher_tfm.tfms[0]; 286 } 287 288 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) 289 { 290 return cc->cipher_tfm.tfms_aead[0]; 291 } 292 293 /* 294 * Different IV generation algorithms: 295 * 296 * plain: the initial vector is the 32-bit little-endian version of the sector 297 * number, padded with zeros if necessary. 298 * 299 * plain64: the initial vector is the 64-bit little-endian version of the sector 300 * number, padded with zeros if necessary. 301 * 302 * plain64be: the initial vector is the 64-bit big-endian version of the sector 303 * number, padded with zeros if necessary. 304 * 305 * essiv: "encrypted sector|salt initial vector", the sector number is 306 * encrypted with the bulk cipher using a salt as key. The salt 307 * should be derived from the bulk cipher's key via hashing. 308 * 309 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 310 * (needed for LRW-32-AES and possible other narrow block modes) 311 * 312 * null: the initial vector is always zero. Provides compatibility with 313 * obsolete loop_fish2 devices. Do not use for new devices. 314 * 315 * lmk: Compatible implementation of the block chaining mode used 316 * by the Loop-AES block device encryption system 317 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 318 * It operates on full 512 byte sectors and uses CBC 319 * with an IV derived from the sector number, the data and 320 * optionally extra IV seed. 321 * This means that after decryption the first block 322 * of sector must be tweaked according to decrypted data. 323 * Loop-AES can use three encryption schemes: 324 * version 1: is plain aes-cbc mode 325 * version 2: uses 64 multikey scheme with lmk IV generator 326 * version 3: the same as version 2 with additional IV seed 327 * (it uses 65 keys, last key is used as IV seed) 328 * 329 * tcw: Compatible implementation of the block chaining mode used 330 * by the TrueCrypt device encryption system (prior to version 4.1). 331 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 332 * It operates on full 512 byte sectors and uses CBC 333 * with an IV derived from initial key and the sector number. 334 * In addition, whitening value is applied on every sector, whitening 335 * is calculated from initial key, sector number and mixed using CRC32. 336 * Note that this encryption scheme is vulnerable to watermarking attacks 337 * and should be used for old compatible containers access only. 338 * 339 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) 340 * The IV is encrypted little-endian byte-offset (with the same key 341 * and cipher as the volume). 342 * 343 * elephant: The extended version of eboiv with additional Elephant diffuser 344 * used with Bitlocker CBC mode. 345 * This mode was used in older Windows systems 346 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf 347 */ 348 349 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 350 struct dm_crypt_request *dmreq) 351 { 352 memset(iv, 0, cc->iv_size); 353 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 354 355 return 0; 356 } 357 358 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 359 struct dm_crypt_request *dmreq) 360 { 361 memset(iv, 0, cc->iv_size); 362 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 363 364 return 0; 365 } 366 367 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, 368 struct dm_crypt_request *dmreq) 369 { 370 memset(iv, 0, cc->iv_size); 371 /* iv_size is at least of size u64; usually it is 16 bytes */ 372 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); 373 374 return 0; 375 } 376 377 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 378 struct dm_crypt_request *dmreq) 379 { 380 /* 381 * ESSIV encryption of the IV is now handled by the crypto API, 382 * so just pass the plain sector number here. 383 */ 384 memset(iv, 0, cc->iv_size); 385 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 386 387 return 0; 388 } 389 390 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 391 const char *opts) 392 { 393 unsigned int bs; 394 int log; 395 396 if (crypt_integrity_aead(cc)) 397 bs = crypto_aead_blocksize(any_tfm_aead(cc)); 398 else 399 bs = crypto_skcipher_blocksize(any_tfm(cc)); 400 log = ilog2(bs); 401 402 /* 403 * We need to calculate how far we must shift the sector count 404 * to get the cipher block count, we use this shift in _gen. 405 */ 406 if (1 << log != bs) { 407 ti->error = "cypher blocksize is not a power of 2"; 408 return -EINVAL; 409 } 410 411 if (log > 9) { 412 ti->error = "cypher blocksize is > 512"; 413 return -EINVAL; 414 } 415 416 cc->iv_gen_private.benbi.shift = 9 - log; 417 418 return 0; 419 } 420 421 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 422 { 423 } 424 425 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 426 struct dm_crypt_request *dmreq) 427 { 428 __be64 val; 429 430 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 431 432 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 433 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 434 435 return 0; 436 } 437 438 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 439 struct dm_crypt_request *dmreq) 440 { 441 memset(iv, 0, cc->iv_size); 442 443 return 0; 444 } 445 446 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 447 { 448 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 449 450 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 451 crypto_free_shash(lmk->hash_tfm); 452 lmk->hash_tfm = NULL; 453 454 kfree_sensitive(lmk->seed); 455 lmk->seed = NULL; 456 } 457 458 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 459 const char *opts) 460 { 461 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 462 463 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 464 ti->error = "Unsupported sector size for LMK"; 465 return -EINVAL; 466 } 467 468 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 469 CRYPTO_ALG_ALLOCATES_MEMORY); 470 if (IS_ERR(lmk->hash_tfm)) { 471 ti->error = "Error initializing LMK hash"; 472 return PTR_ERR(lmk->hash_tfm); 473 } 474 475 /* No seed in LMK version 2 */ 476 if (cc->key_parts == cc->tfms_count) { 477 lmk->seed = NULL; 478 return 0; 479 } 480 481 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 482 if (!lmk->seed) { 483 crypt_iv_lmk_dtr(cc); 484 ti->error = "Error kmallocing seed storage in LMK"; 485 return -ENOMEM; 486 } 487 488 return 0; 489 } 490 491 static int crypt_iv_lmk_init(struct crypt_config *cc) 492 { 493 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 494 int subkey_size = cc->key_size / cc->key_parts; 495 496 /* LMK seed is on the position of LMK_KEYS + 1 key */ 497 if (lmk->seed) 498 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 499 crypto_shash_digestsize(lmk->hash_tfm)); 500 501 return 0; 502 } 503 504 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 505 { 506 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 507 508 if (lmk->seed) 509 memset(lmk->seed, 0, LMK_SEED_SIZE); 510 511 return 0; 512 } 513 514 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 515 struct dm_crypt_request *dmreq, 516 u8 *data) 517 { 518 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 519 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); 520 struct md5_state md5state; 521 __le32 buf[4]; 522 int i, r; 523 524 desc->tfm = lmk->hash_tfm; 525 526 r = crypto_shash_init(desc); 527 if (r) 528 return r; 529 530 if (lmk->seed) { 531 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); 532 if (r) 533 return r; 534 } 535 536 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 537 r = crypto_shash_update(desc, data + 16, 16 * 31); 538 if (r) 539 return r; 540 541 /* Sector is cropped to 56 bits here */ 542 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 543 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 544 buf[2] = cpu_to_le32(4024); 545 buf[3] = 0; 546 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); 547 if (r) 548 return r; 549 550 /* No MD5 padding here */ 551 r = crypto_shash_export(desc, &md5state); 552 if (r) 553 return r; 554 555 for (i = 0; i < MD5_HASH_WORDS; i++) 556 __cpu_to_le32s(&md5state.hash[i]); 557 memcpy(iv, &md5state.hash, cc->iv_size); 558 559 return 0; 560 } 561 562 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 563 struct dm_crypt_request *dmreq) 564 { 565 struct scatterlist *sg; 566 u8 *src; 567 int r = 0; 568 569 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 570 sg = crypt_get_sg_data(cc, dmreq->sg_in); 571 src = kmap_local_page(sg_page(sg)); 572 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); 573 kunmap_local(src); 574 } else 575 memset(iv, 0, cc->iv_size); 576 577 return r; 578 } 579 580 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 581 struct dm_crypt_request *dmreq) 582 { 583 struct scatterlist *sg; 584 u8 *dst; 585 int r; 586 587 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 588 return 0; 589 590 sg = crypt_get_sg_data(cc, dmreq->sg_out); 591 dst = kmap_local_page(sg_page(sg)); 592 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); 593 594 /* Tweak the first block of plaintext sector */ 595 if (!r) 596 crypto_xor(dst + sg->offset, iv, cc->iv_size); 597 598 kunmap_local(dst); 599 return r; 600 } 601 602 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 603 { 604 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 605 606 kfree_sensitive(tcw->iv_seed); 607 tcw->iv_seed = NULL; 608 kfree_sensitive(tcw->whitening); 609 tcw->whitening = NULL; 610 } 611 612 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 613 const char *opts) 614 { 615 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 616 617 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 618 ti->error = "Unsupported sector size for TCW"; 619 return -EINVAL; 620 } 621 622 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 623 ti->error = "Wrong key size for TCW"; 624 return -EINVAL; 625 } 626 627 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 628 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 629 if (!tcw->iv_seed || !tcw->whitening) { 630 crypt_iv_tcw_dtr(cc); 631 ti->error = "Error allocating seed storage in TCW"; 632 return -ENOMEM; 633 } 634 635 return 0; 636 } 637 638 static int crypt_iv_tcw_init(struct crypt_config *cc) 639 { 640 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 641 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 642 643 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 644 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 645 TCW_WHITENING_SIZE); 646 647 return 0; 648 } 649 650 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 651 { 652 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 653 654 memset(tcw->iv_seed, 0, cc->iv_size); 655 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 656 657 return 0; 658 } 659 660 static void crypt_iv_tcw_whitening(struct crypt_config *cc, 661 struct dm_crypt_request *dmreq, u8 *data) 662 { 663 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 664 __le64 sector = cpu_to_le64(dmreq->iv_sector); 665 u8 buf[TCW_WHITENING_SIZE]; 666 int i; 667 668 /* xor whitening with sector number */ 669 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); 670 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); 671 672 /* calculate crc32 for every 32bit part and xor it */ 673 for (i = 0; i < 4; i++) 674 put_unaligned_le32(crc32(0, &buf[i * 4], 4), &buf[i * 4]); 675 crypto_xor(&buf[0], &buf[12], 4); 676 crypto_xor(&buf[4], &buf[8], 4); 677 678 /* apply whitening (8 bytes) to whole sector */ 679 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 680 crypto_xor(data + i * 8, buf, 8); 681 memzero_explicit(buf, sizeof(buf)); 682 } 683 684 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 685 struct dm_crypt_request *dmreq) 686 { 687 struct scatterlist *sg; 688 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 689 __le64 sector = cpu_to_le64(dmreq->iv_sector); 690 u8 *src; 691 692 /* Remove whitening from ciphertext */ 693 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 694 sg = crypt_get_sg_data(cc, dmreq->sg_in); 695 src = kmap_local_page(sg_page(sg)); 696 crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); 697 kunmap_local(src); 698 } 699 700 /* Calculate IV */ 701 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); 702 if (cc->iv_size > 8) 703 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, 704 cc->iv_size - 8); 705 706 return 0; 707 } 708 709 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 710 struct dm_crypt_request *dmreq) 711 { 712 struct scatterlist *sg; 713 u8 *dst; 714 715 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 716 return 0; 717 718 /* Apply whitening on ciphertext */ 719 sg = crypt_get_sg_data(cc, dmreq->sg_out); 720 dst = kmap_local_page(sg_page(sg)); 721 crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); 722 kunmap_local(dst); 723 724 return 0; 725 } 726 727 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, 728 struct dm_crypt_request *dmreq) 729 { 730 /* Used only for writes, there must be an additional space to store IV */ 731 get_random_bytes(iv, cc->iv_size); 732 return 0; 733 } 734 735 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, 736 const char *opts) 737 { 738 if (crypt_integrity_aead(cc)) { 739 ti->error = "AEAD transforms not supported for EBOIV"; 740 return -EINVAL; 741 } 742 743 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) { 744 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher"; 745 return -EINVAL; 746 } 747 748 return 0; 749 } 750 751 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, 752 struct dm_crypt_request *dmreq) 753 { 754 struct crypto_skcipher *tfm = any_tfm(cc); 755 struct skcipher_request *req; 756 struct scatterlist src, dst; 757 DECLARE_CRYPTO_WAIT(wait); 758 unsigned int reqsize; 759 int err; 760 u8 *buf; 761 762 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm); 763 reqsize = ALIGN(reqsize, __alignof__(__le64)); 764 765 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO); 766 if (!req) 767 return -ENOMEM; 768 769 skcipher_request_set_tfm(req, tfm); 770 771 buf = (u8 *)req + reqsize; 772 memset(buf, 0, cc->iv_size); 773 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 774 775 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); 776 sg_init_one(&dst, iv, cc->iv_size); 777 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf); 778 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 779 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 780 kfree_sensitive(req); 781 782 return err; 783 } 784 785 static void crypt_iv_elephant_dtr(struct crypt_config *cc) 786 { 787 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 788 789 crypto_free_skcipher(elephant->tfm); 790 elephant->tfm = NULL; 791 } 792 793 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, 794 const char *opts) 795 { 796 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 797 int r; 798 799 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 800 CRYPTO_ALG_ALLOCATES_MEMORY); 801 if (IS_ERR(elephant->tfm)) { 802 r = PTR_ERR(elephant->tfm); 803 elephant->tfm = NULL; 804 return r; 805 } 806 807 r = crypt_iv_eboiv_ctr(cc, ti, NULL); 808 if (r) 809 crypt_iv_elephant_dtr(cc); 810 return r; 811 } 812 813 static void diffuser_disk_to_cpu(u32 *d, size_t n) 814 { 815 #ifndef __LITTLE_ENDIAN 816 int i; 817 818 for (i = 0; i < n; i++) 819 d[i] = le32_to_cpu((__le32)d[i]); 820 #endif 821 } 822 823 static void diffuser_cpu_to_disk(__le32 *d, size_t n) 824 { 825 #ifndef __LITTLE_ENDIAN 826 int i; 827 828 for (i = 0; i < n; i++) 829 d[i] = cpu_to_le32((u32)d[i]); 830 #endif 831 } 832 833 static void diffuser_a_decrypt(u32 *d, size_t n) 834 { 835 int i, i1, i2, i3; 836 837 for (i = 0; i < 5; i++) { 838 i1 = 0; 839 i2 = n - 2; 840 i3 = n - 5; 841 842 while (i1 < (n - 1)) { 843 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 844 i1++; i2++; i3++; 845 846 if (i3 >= n) 847 i3 -= n; 848 849 d[i1] += d[i2] ^ d[i3]; 850 i1++; i2++; i3++; 851 852 if (i2 >= n) 853 i2 -= n; 854 855 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 856 i1++; i2++; i3++; 857 858 d[i1] += d[i2] ^ d[i3]; 859 i1++; i2++; i3++; 860 } 861 } 862 } 863 864 static void diffuser_a_encrypt(u32 *d, size_t n) 865 { 866 int i, i1, i2, i3; 867 868 for (i = 0; i < 5; i++) { 869 i1 = n - 1; 870 i2 = n - 2 - 1; 871 i3 = n - 5 - 1; 872 873 while (i1 > 0) { 874 d[i1] -= d[i2] ^ d[i3]; 875 i1--; i2--; i3--; 876 877 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 878 i1--; i2--; i3--; 879 880 if (i2 < 0) 881 i2 += n; 882 883 d[i1] -= d[i2] ^ d[i3]; 884 i1--; i2--; i3--; 885 886 if (i3 < 0) 887 i3 += n; 888 889 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 890 i1--; i2--; i3--; 891 } 892 } 893 } 894 895 static void diffuser_b_decrypt(u32 *d, size_t n) 896 { 897 int i, i1, i2, i3; 898 899 for (i = 0; i < 3; i++) { 900 i1 = 0; 901 i2 = 2; 902 i3 = 5; 903 904 while (i1 < (n - 1)) { 905 d[i1] += d[i2] ^ d[i3]; 906 i1++; i2++; i3++; 907 908 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 909 i1++; i2++; i3++; 910 911 if (i2 >= n) 912 i2 -= n; 913 914 d[i1] += d[i2] ^ d[i3]; 915 i1++; i2++; i3++; 916 917 if (i3 >= n) 918 i3 -= n; 919 920 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 921 i1++; i2++; i3++; 922 } 923 } 924 } 925 926 static void diffuser_b_encrypt(u32 *d, size_t n) 927 { 928 int i, i1, i2, i3; 929 930 for (i = 0; i < 3; i++) { 931 i1 = n - 1; 932 i2 = 2 - 1; 933 i3 = 5 - 1; 934 935 while (i1 > 0) { 936 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 937 i1--; i2--; i3--; 938 939 if (i3 < 0) 940 i3 += n; 941 942 d[i1] -= d[i2] ^ d[i3]; 943 i1--; i2--; i3--; 944 945 if (i2 < 0) 946 i2 += n; 947 948 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 949 i1--; i2--; i3--; 950 951 d[i1] -= d[i2] ^ d[i3]; 952 i1--; i2--; i3--; 953 } 954 } 955 } 956 957 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) 958 { 959 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 960 u8 *es, *ks, *data, *data2, *data_offset; 961 struct skcipher_request *req; 962 struct scatterlist *sg, *sg2, src, dst; 963 DECLARE_CRYPTO_WAIT(wait); 964 int i, r; 965 966 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); 967 es = kzalloc(16, GFP_NOIO); /* Key for AES */ 968 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ 969 970 if (!req || !es || !ks) { 971 r = -ENOMEM; 972 goto out; 973 } 974 975 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 976 977 /* E(Ks, e(s)) */ 978 sg_init_one(&src, es, 16); 979 sg_init_one(&dst, ks, 16); 980 skcipher_request_set_crypt(req, &src, &dst, 16, NULL); 981 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 982 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 983 if (r) 984 goto out; 985 986 /* E(Ks, e'(s)) */ 987 es[15] = 0x80; 988 sg_init_one(&dst, &ks[16], 16); 989 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 990 if (r) 991 goto out; 992 993 sg = crypt_get_sg_data(cc, dmreq->sg_out); 994 data = kmap_local_page(sg_page(sg)); 995 data_offset = data + sg->offset; 996 997 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */ 998 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 999 sg2 = crypt_get_sg_data(cc, dmreq->sg_in); 1000 data2 = kmap_local_page(sg_page(sg2)); 1001 memcpy(data_offset, data2 + sg2->offset, cc->sector_size); 1002 kunmap_local(data2); 1003 } 1004 1005 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 1006 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1007 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1008 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1009 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1010 } 1011 1012 for (i = 0; i < (cc->sector_size / 32); i++) 1013 crypto_xor(data_offset + i * 32, ks, 32); 1014 1015 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1016 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1017 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1018 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1019 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1020 } 1021 1022 kunmap_local(data); 1023 out: 1024 kfree_sensitive(ks); 1025 kfree_sensitive(es); 1026 skcipher_request_free(req); 1027 return r; 1028 } 1029 1030 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, 1031 struct dm_crypt_request *dmreq) 1032 { 1033 int r; 1034 1035 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1036 r = crypt_iv_elephant(cc, dmreq); 1037 if (r) 1038 return r; 1039 } 1040 1041 return crypt_iv_eboiv_gen(cc, iv, dmreq); 1042 } 1043 1044 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, 1045 struct dm_crypt_request *dmreq) 1046 { 1047 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 1048 return crypt_iv_elephant(cc, dmreq); 1049 1050 return 0; 1051 } 1052 1053 static int crypt_iv_elephant_init(struct crypt_config *cc) 1054 { 1055 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1056 int key_offset = cc->key_size - cc->key_extra_size; 1057 1058 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size); 1059 } 1060 1061 static int crypt_iv_elephant_wipe(struct crypt_config *cc) 1062 { 1063 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1064 u8 key[ELEPHANT_MAX_KEY_SIZE]; 1065 1066 memset(key, 0, cc->key_extra_size); 1067 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size); 1068 } 1069 1070 static const struct crypt_iv_operations crypt_iv_plain_ops = { 1071 .generator = crypt_iv_plain_gen 1072 }; 1073 1074 static const struct crypt_iv_operations crypt_iv_plain64_ops = { 1075 .generator = crypt_iv_plain64_gen 1076 }; 1077 1078 static const struct crypt_iv_operations crypt_iv_plain64be_ops = { 1079 .generator = crypt_iv_plain64be_gen 1080 }; 1081 1082 static const struct crypt_iv_operations crypt_iv_essiv_ops = { 1083 .generator = crypt_iv_essiv_gen 1084 }; 1085 1086 static const struct crypt_iv_operations crypt_iv_benbi_ops = { 1087 .ctr = crypt_iv_benbi_ctr, 1088 .dtr = crypt_iv_benbi_dtr, 1089 .generator = crypt_iv_benbi_gen 1090 }; 1091 1092 static const struct crypt_iv_operations crypt_iv_null_ops = { 1093 .generator = crypt_iv_null_gen 1094 }; 1095 1096 static const struct crypt_iv_operations crypt_iv_lmk_ops = { 1097 .ctr = crypt_iv_lmk_ctr, 1098 .dtr = crypt_iv_lmk_dtr, 1099 .init = crypt_iv_lmk_init, 1100 .wipe = crypt_iv_lmk_wipe, 1101 .generator = crypt_iv_lmk_gen, 1102 .post = crypt_iv_lmk_post 1103 }; 1104 1105 static const struct crypt_iv_operations crypt_iv_tcw_ops = { 1106 .ctr = crypt_iv_tcw_ctr, 1107 .dtr = crypt_iv_tcw_dtr, 1108 .init = crypt_iv_tcw_init, 1109 .wipe = crypt_iv_tcw_wipe, 1110 .generator = crypt_iv_tcw_gen, 1111 .post = crypt_iv_tcw_post 1112 }; 1113 1114 static const struct crypt_iv_operations crypt_iv_random_ops = { 1115 .generator = crypt_iv_random_gen 1116 }; 1117 1118 static const struct crypt_iv_operations crypt_iv_eboiv_ops = { 1119 .ctr = crypt_iv_eboiv_ctr, 1120 .generator = crypt_iv_eboiv_gen 1121 }; 1122 1123 static const struct crypt_iv_operations crypt_iv_elephant_ops = { 1124 .ctr = crypt_iv_elephant_ctr, 1125 .dtr = crypt_iv_elephant_dtr, 1126 .init = crypt_iv_elephant_init, 1127 .wipe = crypt_iv_elephant_wipe, 1128 .generator = crypt_iv_elephant_gen, 1129 .post = crypt_iv_elephant_post 1130 }; 1131 1132 /* 1133 * Integrity extensions 1134 */ 1135 static bool crypt_integrity_aead(struct crypt_config *cc) 1136 { 1137 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 1138 } 1139 1140 static bool crypt_integrity_hmac(struct crypt_config *cc) 1141 { 1142 return crypt_integrity_aead(cc) && cc->key_mac_size; 1143 } 1144 1145 /* Get sg containing data */ 1146 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 1147 struct scatterlist *sg) 1148 { 1149 if (unlikely(crypt_integrity_aead(cc))) 1150 return &sg[2]; 1151 1152 return sg; 1153 } 1154 1155 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) 1156 { 1157 struct bio_integrity_payload *bip; 1158 unsigned int tag_len; 1159 int ret; 1160 1161 if (!bio_sectors(bio) || !io->cc->tuple_size) 1162 return 0; 1163 1164 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 1165 if (IS_ERR(bip)) 1166 return PTR_ERR(bip); 1167 1168 tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift); 1169 1170 bip->bip_iter.bi_sector = bio->bi_iter.bi_sector; 1171 1172 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), 1173 tag_len, offset_in_page(io->integrity_metadata)); 1174 if (unlikely(ret != tag_len)) 1175 return -ENOMEM; 1176 1177 return 0; 1178 } 1179 1180 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) 1181 { 1182 #ifdef CONFIG_BLK_DEV_INTEGRITY 1183 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); 1184 struct mapped_device *md = dm_table_get_md(ti->table); 1185 1186 /* We require an underlying device with non-PI metadata */ 1187 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { 1188 ti->error = "Integrity profile not supported."; 1189 return -EINVAL; 1190 } 1191 1192 if (bi->tuple_size < cc->used_tag_size) { 1193 ti->error = "Integrity profile tag size mismatch."; 1194 return -EINVAL; 1195 } 1196 cc->tuple_size = bi->tuple_size; 1197 if (1 << bi->interval_exp != cc->sector_size) { 1198 ti->error = "Integrity profile sector size mismatch."; 1199 return -EINVAL; 1200 } 1201 1202 if (crypt_integrity_aead(cc)) { 1203 cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size; 1204 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md), 1205 cc->integrity_tag_size, cc->integrity_iv_size); 1206 1207 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { 1208 ti->error = "Integrity AEAD auth tag size is not supported."; 1209 return -EINVAL; 1210 } 1211 } else if (cc->integrity_iv_size) 1212 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md), 1213 cc->integrity_iv_size); 1214 1215 if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) { 1216 ti->error = "Not enough space for integrity tag in the profile."; 1217 return -EINVAL; 1218 } 1219 1220 return 0; 1221 #else 1222 ti->error = "Integrity profile not supported."; 1223 return -EINVAL; 1224 #endif 1225 } 1226 1227 static void crypt_convert_init(struct crypt_config *cc, 1228 struct convert_context *ctx, 1229 struct bio *bio_out, struct bio *bio_in, 1230 sector_t sector) 1231 { 1232 ctx->bio_in = bio_in; 1233 ctx->bio_out = bio_out; 1234 if (bio_in) 1235 ctx->iter_in = bio_in->bi_iter; 1236 if (bio_out) 1237 ctx->iter_out = bio_out->bi_iter; 1238 ctx->cc_sector = sector + cc->iv_offset; 1239 ctx->tag_offset = 0; 1240 init_completion(&ctx->restart); 1241 } 1242 1243 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 1244 void *req) 1245 { 1246 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 1247 } 1248 1249 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) 1250 { 1251 return (void *)((char *)dmreq - cc->dmreq_start); 1252 } 1253 1254 static u8 *iv_of_dmreq(struct crypt_config *cc, 1255 struct dm_crypt_request *dmreq) 1256 { 1257 if (crypt_integrity_aead(cc)) 1258 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1259 crypto_aead_alignmask(any_tfm_aead(cc)) + 1); 1260 else 1261 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1262 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 1263 } 1264 1265 static u8 *org_iv_of_dmreq(struct crypt_config *cc, 1266 struct dm_crypt_request *dmreq) 1267 { 1268 return iv_of_dmreq(cc, dmreq) + cc->iv_size; 1269 } 1270 1271 static __le64 *org_sector_of_dmreq(struct crypt_config *cc, 1272 struct dm_crypt_request *dmreq) 1273 { 1274 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; 1275 1276 return (__le64 *) ptr; 1277 } 1278 1279 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, 1280 struct dm_crypt_request *dmreq) 1281 { 1282 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + 1283 cc->iv_size + sizeof(uint64_t); 1284 1285 return (unsigned int *)ptr; 1286 } 1287 1288 static void *tag_from_dmreq(struct crypt_config *cc, 1289 struct dm_crypt_request *dmreq) 1290 { 1291 struct convert_context *ctx = dmreq->ctx; 1292 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1293 1294 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * 1295 cc->tuple_size]; 1296 } 1297 1298 static void *iv_tag_from_dmreq(struct crypt_config *cc, 1299 struct dm_crypt_request *dmreq) 1300 { 1301 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; 1302 } 1303 1304 static int crypt_convert_block_aead(struct crypt_config *cc, 1305 struct convert_context *ctx, 1306 struct aead_request *req, 1307 unsigned int tag_offset) 1308 { 1309 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1310 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1311 struct dm_crypt_request *dmreq; 1312 u8 *iv, *org_iv, *tag_iv, *tag; 1313 __le64 *sector; 1314 int r = 0; 1315 1316 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); 1317 1318 /* Reject unexpected unaligned bio. */ 1319 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1320 return -EIO; 1321 1322 dmreq = dmreq_of_req(cc, req); 1323 dmreq->iv_sector = ctx->cc_sector; 1324 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1325 dmreq->iv_sector >>= cc->sector_shift; 1326 dmreq->ctx = ctx; 1327 1328 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1329 1330 sector = org_sector_of_dmreq(cc, dmreq); 1331 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1332 1333 iv = iv_of_dmreq(cc, dmreq); 1334 org_iv = org_iv_of_dmreq(cc, dmreq); 1335 tag = tag_from_dmreq(cc, dmreq); 1336 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1337 1338 /* AEAD request: 1339 * |----- AAD -------|------ DATA -------|-- AUTH TAG --| 1340 * | (authenticated) | (auth+encryption) | | 1341 * | sector_LE | IV | sector in/out | tag in/out | 1342 */ 1343 sg_init_table(dmreq->sg_in, 4); 1344 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); 1345 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); 1346 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1347 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); 1348 1349 sg_init_table(dmreq->sg_out, 4); 1350 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); 1351 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); 1352 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1353 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); 1354 1355 if (cc->iv_gen_ops) { 1356 /* For READs use IV stored in integrity metadata */ 1357 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1358 memcpy(org_iv, tag_iv, cc->iv_size); 1359 } else { 1360 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1361 if (r < 0) 1362 return r; 1363 /* Store generated IV in integrity metadata */ 1364 if (cc->integrity_iv_size) 1365 memcpy(tag_iv, org_iv, cc->iv_size); 1366 } 1367 /* Working copy of IV, to be modified in crypto API */ 1368 memcpy(iv, org_iv, cc->iv_size); 1369 } 1370 1371 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); 1372 if (bio_data_dir(ctx->bio_in) == WRITE) { 1373 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1374 cc->sector_size, iv); 1375 r = crypto_aead_encrypt(req); 1376 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size) 1377 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, 1378 cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size)); 1379 } else { 1380 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1381 cc->sector_size + cc->integrity_tag_size, iv); 1382 r = crypto_aead_decrypt(req); 1383 } 1384 1385 if (r == -EBADMSG) { 1386 sector_t s = le64_to_cpu(*sector); 1387 1388 ctx->aead_failed = true; 1389 if (ctx->aead_recheck) { 1390 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 1391 ctx->bio_in->bi_bdev, s); 1392 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 1393 ctx->bio_in, s, 0); 1394 } 1395 } 1396 1397 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1398 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1399 1400 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1401 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1402 1403 return r; 1404 } 1405 1406 static int crypt_convert_block_skcipher(struct crypt_config *cc, 1407 struct convert_context *ctx, 1408 struct skcipher_request *req, 1409 unsigned int tag_offset) 1410 { 1411 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1412 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1413 struct scatterlist *sg_in, *sg_out; 1414 struct dm_crypt_request *dmreq; 1415 u8 *iv, *org_iv, *tag_iv; 1416 __le64 *sector; 1417 int r = 0; 1418 1419 /* Reject unexpected unaligned bio. */ 1420 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1421 return -EIO; 1422 1423 dmreq = dmreq_of_req(cc, req); 1424 dmreq->iv_sector = ctx->cc_sector; 1425 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1426 dmreq->iv_sector >>= cc->sector_shift; 1427 dmreq->ctx = ctx; 1428 1429 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1430 1431 iv = iv_of_dmreq(cc, dmreq); 1432 org_iv = org_iv_of_dmreq(cc, dmreq); 1433 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1434 1435 sector = org_sector_of_dmreq(cc, dmreq); 1436 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1437 1438 /* For skcipher we use only the first sg item */ 1439 sg_in = &dmreq->sg_in[0]; 1440 sg_out = &dmreq->sg_out[0]; 1441 1442 sg_init_table(sg_in, 1); 1443 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1444 1445 sg_init_table(sg_out, 1); 1446 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1447 1448 if (cc->iv_gen_ops) { 1449 /* For READs use IV stored in integrity metadata */ 1450 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1451 memcpy(org_iv, tag_iv, cc->integrity_iv_size); 1452 } else { 1453 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1454 if (r < 0) 1455 return r; 1456 /* Data can be already preprocessed in generator */ 1457 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) 1458 sg_in = sg_out; 1459 /* Store generated IV in integrity metadata */ 1460 if (cc->integrity_iv_size) 1461 memcpy(tag_iv, org_iv, cc->integrity_iv_size); 1462 } 1463 /* Working copy of IV, to be modified in crypto API */ 1464 memcpy(iv, org_iv, cc->iv_size); 1465 } 1466 1467 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); 1468 1469 if (bio_data_dir(ctx->bio_in) == WRITE) 1470 r = crypto_skcipher_encrypt(req); 1471 else 1472 r = crypto_skcipher_decrypt(req); 1473 1474 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1475 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1476 1477 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1478 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1479 1480 return r; 1481 } 1482 1483 static void kcryptd_async_done(void *async_req, int error); 1484 1485 static int crypt_alloc_req_skcipher(struct crypt_config *cc, 1486 struct convert_context *ctx) 1487 { 1488 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); 1489 1490 if (!ctx->r.req) { 1491 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1492 if (!ctx->r.req) 1493 return -ENOMEM; 1494 } 1495 1496 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); 1497 1498 /* 1499 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1500 * requests if driver request queue is full. 1501 */ 1502 skcipher_request_set_callback(ctx->r.req, 1503 CRYPTO_TFM_REQ_MAY_BACKLOG, 1504 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); 1505 1506 return 0; 1507 } 1508 1509 static int crypt_alloc_req_aead(struct crypt_config *cc, 1510 struct convert_context *ctx) 1511 { 1512 if (!ctx->r.req_aead) { 1513 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1514 if (!ctx->r.req_aead) 1515 return -ENOMEM; 1516 } 1517 1518 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); 1519 1520 /* 1521 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1522 * requests if driver request queue is full. 1523 */ 1524 aead_request_set_callback(ctx->r.req_aead, 1525 CRYPTO_TFM_REQ_MAY_BACKLOG, 1526 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); 1527 1528 return 0; 1529 } 1530 1531 static int crypt_alloc_req(struct crypt_config *cc, 1532 struct convert_context *ctx) 1533 { 1534 if (crypt_integrity_aead(cc)) 1535 return crypt_alloc_req_aead(cc, ctx); 1536 else 1537 return crypt_alloc_req_skcipher(cc, ctx); 1538 } 1539 1540 static void crypt_free_req_skcipher(struct crypt_config *cc, 1541 struct skcipher_request *req, struct bio *base_bio) 1542 { 1543 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1544 1545 if ((struct skcipher_request *)(io + 1) != req) 1546 mempool_free(req, &cc->req_pool); 1547 } 1548 1549 static void crypt_free_req_aead(struct crypt_config *cc, 1550 struct aead_request *req, struct bio *base_bio) 1551 { 1552 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1553 1554 if ((struct aead_request *)(io + 1) != req) 1555 mempool_free(req, &cc->req_pool); 1556 } 1557 1558 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) 1559 { 1560 if (crypt_integrity_aead(cc)) 1561 crypt_free_req_aead(cc, req, base_bio); 1562 else 1563 crypt_free_req_skcipher(cc, req, base_bio); 1564 } 1565 1566 /* 1567 * Encrypt / decrypt data from one bio to another one (can be the same one) 1568 */ 1569 static blk_status_t crypt_convert(struct crypt_config *cc, 1570 struct convert_context *ctx, bool atomic, bool reset_pending) 1571 { 1572 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; 1573 int r; 1574 1575 /* 1576 * if reset_pending is set we are dealing with the bio for the first time, 1577 * else we're continuing to work on the previous bio, so don't mess with 1578 * the cc_pending counter 1579 */ 1580 if (reset_pending) 1581 atomic_set(&ctx->cc_pending, 1); 1582 1583 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 1584 1585 r = crypt_alloc_req(cc, ctx); 1586 if (r) { 1587 complete(&ctx->restart); 1588 return BLK_STS_DEV_RESOURCE; 1589 } 1590 1591 atomic_inc(&ctx->cc_pending); 1592 1593 if (crypt_integrity_aead(cc)) 1594 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset); 1595 else 1596 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset); 1597 1598 switch (r) { 1599 /* 1600 * The request was queued by a crypto driver 1601 * but the driver request queue is full, let's wait. 1602 */ 1603 case -EBUSY: 1604 if (in_interrupt()) { 1605 if (try_wait_for_completion(&ctx->restart)) { 1606 /* 1607 * we don't have to block to wait for completion, 1608 * so proceed 1609 */ 1610 } else { 1611 /* 1612 * we can't wait for completion without blocking 1613 * exit and continue processing in a workqueue 1614 */ 1615 ctx->r.req = NULL; 1616 ctx->tag_offset++; 1617 ctx->cc_sector += sector_step; 1618 return BLK_STS_DEV_RESOURCE; 1619 } 1620 } else { 1621 wait_for_completion(&ctx->restart); 1622 } 1623 reinit_completion(&ctx->restart); 1624 fallthrough; 1625 /* 1626 * The request is queued and processed asynchronously, 1627 * completion function kcryptd_async_done() will be called. 1628 */ 1629 case -EINPROGRESS: 1630 ctx->r.req = NULL; 1631 ctx->tag_offset++; 1632 ctx->cc_sector += sector_step; 1633 continue; 1634 /* 1635 * The request was already processed (synchronously). 1636 */ 1637 case 0: 1638 atomic_dec(&ctx->cc_pending); 1639 ctx->cc_sector += sector_step; 1640 ctx->tag_offset++; 1641 if (!atomic) 1642 cond_resched(); 1643 continue; 1644 /* 1645 * There was a data integrity error. 1646 */ 1647 case -EBADMSG: 1648 atomic_dec(&ctx->cc_pending); 1649 return BLK_STS_PROTECTION; 1650 /* 1651 * There was an error while processing the request. 1652 */ 1653 default: 1654 atomic_dec(&ctx->cc_pending); 1655 return BLK_STS_IOERR; 1656 } 1657 } 1658 1659 return 0; 1660 } 1661 1662 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 1663 1664 /* 1665 * Generate a new unfragmented bio with the given size 1666 * This should never violate the device limitations (but if it did then block 1667 * core should split the bio as needed). 1668 * 1669 * This function may be called concurrently. If we allocate from the mempool 1670 * concurrently, there is a possibility of deadlock. For example, if we have 1671 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 1672 * the mempool concurrently, it may deadlock in a situation where both processes 1673 * have allocated 128 pages and the mempool is exhausted. 1674 * 1675 * In order to avoid this scenario we allocate the pages under a mutex. 1676 * 1677 * In order to not degrade performance with excessive locking, we try 1678 * non-blocking allocations without a mutex first but on failure we fallback 1679 * to blocking allocations with a mutex. 1680 * 1681 * In order to reduce allocation overhead, we try to allocate compound pages in 1682 * the first pass. If they are not available, we fall back to the mempool. 1683 */ 1684 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) 1685 { 1686 struct crypt_config *cc = io->cc; 1687 struct bio *clone; 1688 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1689 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 1690 unsigned int remaining_size; 1691 unsigned int order = MAX_PAGE_ORDER; 1692 1693 retry: 1694 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1695 mutex_lock(&cc->bio_alloc_lock); 1696 1697 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf, 1698 GFP_NOIO, &cc->bs); 1699 clone->bi_private = io; 1700 clone->bi_end_io = crypt_endio; 1701 clone->bi_ioprio = io->base_bio->bi_ioprio; 1702 clone->bi_iter.bi_sector = cc->start + io->sector; 1703 1704 remaining_size = size; 1705 1706 while (remaining_size) { 1707 struct page *pages; 1708 unsigned size_to_add; 1709 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT); 1710 order = min(order, remaining_order); 1711 1712 while (order > 0) { 1713 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) + 1714 (1 << order) > dm_crypt_pages_per_client)) 1715 goto decrease_order; 1716 pages = alloc_pages(gfp_mask 1717 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP, 1718 order); 1719 if (likely(pages != NULL)) { 1720 percpu_counter_add(&cc->n_allocated_pages, 1 << order); 1721 goto have_pages; 1722 } 1723 decrease_order: 1724 order--; 1725 } 1726 1727 pages = mempool_alloc(&cc->page_pool, gfp_mask); 1728 if (!pages) { 1729 crypt_free_buffer_pages(cc, clone); 1730 bio_put(clone); 1731 gfp_mask |= __GFP_DIRECT_RECLAIM; 1732 order = 0; 1733 goto retry; 1734 } 1735 1736 have_pages: 1737 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size); 1738 __bio_add_page(clone, pages, size_to_add, 0); 1739 remaining_size -= size_to_add; 1740 } 1741 1742 /* Allocate space for integrity tags */ 1743 if (dm_crypt_integrity_io_alloc(io, clone)) { 1744 crypt_free_buffer_pages(cc, clone); 1745 bio_put(clone); 1746 clone = NULL; 1747 } 1748 1749 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1750 mutex_unlock(&cc->bio_alloc_lock); 1751 1752 return clone; 1753 } 1754 1755 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1756 { 1757 struct folio_iter fi; 1758 1759 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */ 1760 bio_for_each_folio_all(fi, clone) { 1761 if (folio_test_large(fi.folio)) { 1762 percpu_counter_sub(&cc->n_allocated_pages, 1763 1 << folio_order(fi.folio)); 1764 folio_put(fi.folio); 1765 } else { 1766 mempool_free(&fi.folio->page, &cc->page_pool); 1767 } 1768 } 1769 } 1770 } 1771 1772 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1773 struct bio *bio, sector_t sector) 1774 { 1775 io->cc = cc; 1776 io->base_bio = bio; 1777 io->sector = sector; 1778 io->error = 0; 1779 io->ctx.aead_recheck = false; 1780 io->ctx.aead_failed = false; 1781 io->ctx.r.req = NULL; 1782 io->integrity_metadata = NULL; 1783 io->integrity_metadata_from_pool = false; 1784 atomic_set(&io->io_pending, 0); 1785 } 1786 1787 static void crypt_inc_pending(struct dm_crypt_io *io) 1788 { 1789 atomic_inc(&io->io_pending); 1790 } 1791 1792 static void kcryptd_queue_read(struct dm_crypt_io *io); 1793 1794 /* 1795 * One of the bios was finished. Check for completion of 1796 * the whole request and correctly clean up the buffer. 1797 */ 1798 static void crypt_dec_pending(struct dm_crypt_io *io) 1799 { 1800 struct crypt_config *cc = io->cc; 1801 struct bio *base_bio = io->base_bio; 1802 blk_status_t error = io->error; 1803 1804 if (!atomic_dec_and_test(&io->io_pending)) 1805 return; 1806 1807 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && 1808 cc->used_tag_size && bio_data_dir(base_bio) == READ) { 1809 io->ctx.aead_recheck = true; 1810 io->ctx.aead_failed = false; 1811 io->error = 0; 1812 kcryptd_queue_read(io); 1813 return; 1814 } 1815 1816 if (io->ctx.r.req) 1817 crypt_free_req(cc, io->ctx.r.req, base_bio); 1818 1819 if (unlikely(io->integrity_metadata_from_pool)) 1820 mempool_free(io->integrity_metadata, &io->cc->tag_pool); 1821 else 1822 kfree(io->integrity_metadata); 1823 1824 base_bio->bi_status = error; 1825 1826 bio_endio(base_bio); 1827 } 1828 1829 /* 1830 * kcryptd/kcryptd_io: 1831 * 1832 * Needed because it would be very unwise to do decryption in an 1833 * interrupt context. 1834 * 1835 * kcryptd performs the actual encryption or decryption. 1836 * 1837 * kcryptd_io performs the IO submission. 1838 * 1839 * They must be separated as otherwise the final stages could be 1840 * starved by new requests which can block in the first stages due 1841 * to memory allocation. 1842 * 1843 * The work is done per CPU global for all dm-crypt instances. 1844 * They should not depend on each other and do not block. 1845 */ 1846 static void crypt_endio(struct bio *clone) 1847 { 1848 struct dm_crypt_io *io = clone->bi_private; 1849 struct crypt_config *cc = io->cc; 1850 unsigned int rw = bio_data_dir(clone); 1851 blk_status_t error = clone->bi_status; 1852 1853 if (io->ctx.aead_recheck && !error) { 1854 kcryptd_queue_crypt(io); 1855 return; 1856 } 1857 1858 /* 1859 * free the processed pages 1860 */ 1861 if (rw == WRITE || io->ctx.aead_recheck) 1862 crypt_free_buffer_pages(cc, clone); 1863 1864 bio_put(clone); 1865 1866 if (rw == READ && !error) { 1867 kcryptd_queue_crypt(io); 1868 return; 1869 } 1870 1871 if (unlikely(error)) 1872 io->error = error; 1873 1874 crypt_dec_pending(io); 1875 } 1876 1877 #define CRYPT_MAP_READ_GFP GFP_NOWAIT 1878 1879 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1880 { 1881 struct crypt_config *cc = io->cc; 1882 struct bio *clone; 1883 1884 if (io->ctx.aead_recheck) { 1885 if (!(gfp & __GFP_DIRECT_RECLAIM)) 1886 return 1; 1887 crypt_inc_pending(io); 1888 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1889 if (unlikely(!clone)) { 1890 crypt_dec_pending(io); 1891 return 1; 1892 } 1893 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector); 1894 io->saved_bi_iter = clone->bi_iter; 1895 dm_submit_bio_remap(io->base_bio, clone); 1896 return 0; 1897 } 1898 1899 /* 1900 * We need the original biovec array in order to decrypt the whole bio 1901 * data *afterwards* -- thanks to immutable biovecs we don't need to 1902 * worry about the block layer modifying the biovec array; so leverage 1903 * bio_alloc_clone(). 1904 */ 1905 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs); 1906 if (!clone) 1907 return 1; 1908 1909 clone->bi_iter.bi_sector = cc->start + io->sector; 1910 clone->bi_private = io; 1911 clone->bi_end_io = crypt_endio; 1912 1913 crypt_inc_pending(io); 1914 1915 if (dm_crypt_integrity_io_alloc(io, clone)) { 1916 crypt_dec_pending(io); 1917 bio_put(clone); 1918 return 1; 1919 } 1920 1921 dm_submit_bio_remap(io->base_bio, clone); 1922 return 0; 1923 } 1924 1925 static void kcryptd_io_read_work(struct work_struct *work) 1926 { 1927 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1928 1929 crypt_inc_pending(io); 1930 if (kcryptd_io_read(io, GFP_NOIO)) 1931 io->error = BLK_STS_RESOURCE; 1932 crypt_dec_pending(io); 1933 } 1934 1935 static void kcryptd_queue_read(struct dm_crypt_io *io) 1936 { 1937 struct crypt_config *cc = io->cc; 1938 1939 INIT_WORK(&io->work, kcryptd_io_read_work); 1940 queue_work(cc->io_queue, &io->work); 1941 } 1942 1943 static void kcryptd_io_write(struct dm_crypt_io *io) 1944 { 1945 struct bio *clone = io->ctx.bio_out; 1946 1947 dm_submit_bio_remap(io->base_bio, clone); 1948 } 1949 1950 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1951 1952 static int dmcrypt_write(void *data) 1953 { 1954 struct crypt_config *cc = data; 1955 struct dm_crypt_io *io; 1956 1957 while (1) { 1958 struct rb_root write_tree; 1959 struct blk_plug plug; 1960 1961 spin_lock_irq(&cc->write_thread_lock); 1962 continue_locked: 1963 1964 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1965 goto pop_from_list; 1966 1967 set_current_state(TASK_INTERRUPTIBLE); 1968 1969 spin_unlock_irq(&cc->write_thread_lock); 1970 1971 if (unlikely(kthread_should_stop())) { 1972 set_current_state(TASK_RUNNING); 1973 break; 1974 } 1975 1976 schedule(); 1977 1978 spin_lock_irq(&cc->write_thread_lock); 1979 goto continue_locked; 1980 1981 pop_from_list: 1982 write_tree = cc->write_tree; 1983 cc->write_tree = RB_ROOT; 1984 spin_unlock_irq(&cc->write_thread_lock); 1985 1986 BUG_ON(rb_parent(write_tree.rb_node)); 1987 1988 /* 1989 * Note: we cannot walk the tree here with rb_next because 1990 * the structures may be freed when kcryptd_io_write is called. 1991 */ 1992 blk_start_plug(&plug); 1993 do { 1994 io = crypt_io_from_node(rb_first(&write_tree)); 1995 rb_erase(&io->rb_node, &write_tree); 1996 kcryptd_io_write(io); 1997 cond_resched(); 1998 } while (!RB_EMPTY_ROOT(&write_tree)); 1999 blk_finish_plug(&plug); 2000 } 2001 return 0; 2002 } 2003 2004 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 2005 { 2006 struct bio *clone = io->ctx.bio_out; 2007 struct crypt_config *cc = io->cc; 2008 unsigned long flags; 2009 sector_t sector; 2010 struct rb_node **rbp, *parent; 2011 2012 if (unlikely(io->error)) { 2013 crypt_free_buffer_pages(cc, clone); 2014 bio_put(clone); 2015 crypt_dec_pending(io); 2016 return; 2017 } 2018 2019 /* crypt_convert should have filled the clone bio */ 2020 BUG_ON(io->ctx.iter_out.bi_size); 2021 2022 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || 2023 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { 2024 dm_submit_bio_remap(io->base_bio, clone); 2025 return; 2026 } 2027 2028 spin_lock_irqsave(&cc->write_thread_lock, flags); 2029 if (RB_EMPTY_ROOT(&cc->write_tree)) 2030 wake_up_process(cc->write_thread); 2031 rbp = &cc->write_tree.rb_node; 2032 parent = NULL; 2033 sector = io->sector; 2034 while (*rbp) { 2035 parent = *rbp; 2036 if (sector < crypt_io_from_node(parent)->sector) 2037 rbp = &(*rbp)->rb_left; 2038 else 2039 rbp = &(*rbp)->rb_right; 2040 } 2041 rb_link_node(&io->rb_node, parent, rbp); 2042 rb_insert_color(&io->rb_node, &cc->write_tree); 2043 spin_unlock_irqrestore(&cc->write_thread_lock, flags); 2044 } 2045 2046 static bool kcryptd_crypt_write_inline(struct crypt_config *cc, 2047 struct convert_context *ctx) 2048 2049 { 2050 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) 2051 return false; 2052 2053 /* 2054 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering 2055 * constraints so they do not need to be issued inline by 2056 * kcryptd_crypt_write_convert(). 2057 */ 2058 switch (bio_op(ctx->bio_in)) { 2059 case REQ_OP_WRITE: 2060 case REQ_OP_WRITE_ZEROES: 2061 return true; 2062 default: 2063 return false; 2064 } 2065 } 2066 2067 static void kcryptd_crypt_write_continue(struct work_struct *work) 2068 { 2069 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2070 struct crypt_config *cc = io->cc; 2071 struct convert_context *ctx = &io->ctx; 2072 int crypt_finished; 2073 blk_status_t r; 2074 2075 wait_for_completion(&ctx->restart); 2076 reinit_completion(&ctx->restart); 2077 2078 r = crypt_convert(cc, &io->ctx, false, false); 2079 if (r) 2080 io->error = r; 2081 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2082 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2083 /* Wait for completion signaled by kcryptd_async_done() */ 2084 wait_for_completion(&ctx->restart); 2085 crypt_finished = 1; 2086 } 2087 2088 /* Encryption was already finished, submit io now */ 2089 if (crypt_finished) 2090 kcryptd_crypt_write_io_submit(io, 0); 2091 2092 crypt_dec_pending(io); 2093 } 2094 2095 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 2096 { 2097 struct crypt_config *cc = io->cc; 2098 struct convert_context *ctx = &io->ctx; 2099 struct bio *clone; 2100 int crypt_finished; 2101 blk_status_t r; 2102 2103 /* 2104 * Prevent io from disappearing until this function completes. 2105 */ 2106 crypt_inc_pending(io); 2107 crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector); 2108 2109 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 2110 if (unlikely(!clone)) { 2111 io->error = BLK_STS_IOERR; 2112 goto dec; 2113 } 2114 2115 io->ctx.bio_out = clone; 2116 io->ctx.iter_out = clone->bi_iter; 2117 2118 if (crypt_integrity_aead(cc)) { 2119 bio_copy_data(clone, io->base_bio); 2120 io->ctx.bio_in = clone; 2121 io->ctx.iter_in = clone->bi_iter; 2122 } 2123 2124 crypt_inc_pending(io); 2125 r = crypt_convert(cc, ctx, 2126 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true); 2127 /* 2128 * Crypto API backlogged the request, because its queue was full 2129 * and we're in softirq context, so continue from a workqueue 2130 * (TODO: is it actually possible to be in softirq in the write path?) 2131 */ 2132 if (r == BLK_STS_DEV_RESOURCE) { 2133 INIT_WORK(&io->work, kcryptd_crypt_write_continue); 2134 queue_work(cc->crypt_queue, &io->work); 2135 return; 2136 } 2137 if (r) 2138 io->error = r; 2139 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2140 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2141 /* Wait for completion signaled by kcryptd_async_done() */ 2142 wait_for_completion(&ctx->restart); 2143 crypt_finished = 1; 2144 } 2145 2146 /* Encryption was already finished, submit io now */ 2147 if (crypt_finished) 2148 kcryptd_crypt_write_io_submit(io, 0); 2149 2150 dec: 2151 crypt_dec_pending(io); 2152 } 2153 2154 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 2155 { 2156 if (io->ctx.aead_recheck) { 2157 if (!io->error) { 2158 io->ctx.bio_in->bi_iter = io->saved_bi_iter; 2159 bio_copy_data(io->base_bio, io->ctx.bio_in); 2160 } 2161 crypt_free_buffer_pages(io->cc, io->ctx.bio_in); 2162 bio_put(io->ctx.bio_in); 2163 } 2164 crypt_dec_pending(io); 2165 } 2166 2167 static void kcryptd_crypt_read_continue(struct work_struct *work) 2168 { 2169 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2170 struct crypt_config *cc = io->cc; 2171 blk_status_t r; 2172 2173 wait_for_completion(&io->ctx.restart); 2174 reinit_completion(&io->ctx.restart); 2175 2176 r = crypt_convert(cc, &io->ctx, false, false); 2177 if (r) 2178 io->error = r; 2179 2180 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2181 kcryptd_crypt_read_done(io); 2182 2183 crypt_dec_pending(io); 2184 } 2185 2186 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 2187 { 2188 struct crypt_config *cc = io->cc; 2189 blk_status_t r; 2190 2191 crypt_inc_pending(io); 2192 2193 if (io->ctx.aead_recheck) { 2194 r = crypt_convert(cc, &io->ctx, 2195 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2196 } else { 2197 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 2198 io->sector); 2199 2200 r = crypt_convert(cc, &io->ctx, 2201 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2202 } 2203 /* 2204 * Crypto API backlogged the request, because its queue was full 2205 * and we're in softirq context, so continue from a workqueue 2206 */ 2207 if (r == BLK_STS_DEV_RESOURCE) { 2208 INIT_WORK(&io->work, kcryptd_crypt_read_continue); 2209 queue_work(cc->crypt_queue, &io->work); 2210 return; 2211 } 2212 if (r) 2213 io->error = r; 2214 2215 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2216 kcryptd_crypt_read_done(io); 2217 2218 crypt_dec_pending(io); 2219 } 2220 2221 static void kcryptd_async_done(void *data, int error) 2222 { 2223 struct dm_crypt_request *dmreq = data; 2224 struct convert_context *ctx = dmreq->ctx; 2225 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 2226 struct crypt_config *cc = io->cc; 2227 2228 /* 2229 * A request from crypto driver backlog is going to be processed now, 2230 * finish the completion and continue in crypt_convert(). 2231 * (Callback will be called for the second time for this request.) 2232 */ 2233 if (error == -EINPROGRESS) { 2234 complete(&ctx->restart); 2235 return; 2236 } 2237 2238 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 2239 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); 2240 2241 if (error == -EBADMSG) { 2242 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); 2243 2244 ctx->aead_failed = true; 2245 if (ctx->aead_recheck) { 2246 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 2247 ctx->bio_in->bi_bdev, s); 2248 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 2249 ctx->bio_in, s, 0); 2250 } 2251 io->error = BLK_STS_PROTECTION; 2252 } else if (error < 0) 2253 io->error = BLK_STS_IOERR; 2254 2255 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 2256 2257 if (!atomic_dec_and_test(&ctx->cc_pending)) 2258 return; 2259 2260 /* 2261 * The request is fully completed: for inline writes, let 2262 * kcryptd_crypt_write_convert() do the IO submission. 2263 */ 2264 if (bio_data_dir(io->base_bio) == READ) { 2265 kcryptd_crypt_read_done(io); 2266 return; 2267 } 2268 2269 if (kcryptd_crypt_write_inline(cc, ctx)) { 2270 complete(&ctx->restart); 2271 return; 2272 } 2273 2274 kcryptd_crypt_write_io_submit(io, 1); 2275 } 2276 2277 static void kcryptd_crypt(struct work_struct *work) 2278 { 2279 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2280 2281 if (bio_data_dir(io->base_bio) == READ) 2282 kcryptd_crypt_read_convert(io); 2283 else 2284 kcryptd_crypt_write_convert(io); 2285 } 2286 2287 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 2288 { 2289 struct crypt_config *cc = io->cc; 2290 2291 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || 2292 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { 2293 /* 2294 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. 2295 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but 2296 * it is being executed with irqs disabled. 2297 */ 2298 if (in_hardirq() || irqs_disabled()) { 2299 INIT_WORK(&io->work, kcryptd_crypt); 2300 queue_work(system_bh_wq, &io->work); 2301 return; 2302 } else { 2303 kcryptd_crypt(&io->work); 2304 return; 2305 } 2306 } 2307 2308 INIT_WORK(&io->work, kcryptd_crypt); 2309 queue_work(cc->crypt_queue, &io->work); 2310 } 2311 2312 static void crypt_free_tfms_aead(struct crypt_config *cc) 2313 { 2314 if (!cc->cipher_tfm.tfms_aead) 2315 return; 2316 2317 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2318 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); 2319 cc->cipher_tfm.tfms_aead[0] = NULL; 2320 } 2321 2322 kfree(cc->cipher_tfm.tfms_aead); 2323 cc->cipher_tfm.tfms_aead = NULL; 2324 } 2325 2326 static void crypt_free_tfms_skcipher(struct crypt_config *cc) 2327 { 2328 unsigned int i; 2329 2330 if (!cc->cipher_tfm.tfms) 2331 return; 2332 2333 for (i = 0; i < cc->tfms_count; i++) 2334 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { 2335 crypto_free_skcipher(cc->cipher_tfm.tfms[i]); 2336 cc->cipher_tfm.tfms[i] = NULL; 2337 } 2338 2339 kfree(cc->cipher_tfm.tfms); 2340 cc->cipher_tfm.tfms = NULL; 2341 } 2342 2343 static void crypt_free_tfms(struct crypt_config *cc) 2344 { 2345 if (crypt_integrity_aead(cc)) 2346 crypt_free_tfms_aead(cc); 2347 else 2348 crypt_free_tfms_skcipher(cc); 2349 } 2350 2351 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) 2352 { 2353 unsigned int i; 2354 int err; 2355 2356 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, 2357 sizeof(struct crypto_skcipher *), 2358 GFP_KERNEL); 2359 if (!cc->cipher_tfm.tfms) 2360 return -ENOMEM; 2361 2362 for (i = 0; i < cc->tfms_count; i++) { 2363 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 2364 CRYPTO_ALG_ALLOCATES_MEMORY); 2365 if (IS_ERR(cc->cipher_tfm.tfms[i])) { 2366 err = PTR_ERR(cc->cipher_tfm.tfms[i]); 2367 crypt_free_tfms(cc); 2368 return err; 2369 } 2370 } 2371 2372 /* 2373 * dm-crypt performance can vary greatly depending on which crypto 2374 * algorithm implementation is used. Help people debug performance 2375 * problems by logging the ->cra_driver_name. 2376 */ 2377 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2378 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); 2379 return 0; 2380 } 2381 2382 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) 2383 { 2384 int err; 2385 2386 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); 2387 if (!cc->cipher_tfm.tfms) 2388 return -ENOMEM; 2389 2390 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 2391 CRYPTO_ALG_ALLOCATES_MEMORY); 2392 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2393 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); 2394 crypt_free_tfms(cc); 2395 return err; 2396 } 2397 2398 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2399 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); 2400 return 0; 2401 } 2402 2403 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 2404 { 2405 if (crypt_integrity_aead(cc)) 2406 return crypt_alloc_tfms_aead(cc, ciphermode); 2407 else 2408 return crypt_alloc_tfms_skcipher(cc, ciphermode); 2409 } 2410 2411 static unsigned int crypt_subkey_size(struct crypt_config *cc) 2412 { 2413 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 2414 } 2415 2416 static unsigned int crypt_authenckey_size(struct crypt_config *cc) 2417 { 2418 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); 2419 } 2420 2421 /* 2422 * If AEAD is composed like authenc(hmac(sha256),xts(aes)), 2423 * the key must be for some reason in special format. 2424 * This funcion converts cc->key to this special format. 2425 */ 2426 static void crypt_copy_authenckey(char *p, const void *key, 2427 unsigned int enckeylen, unsigned int authkeylen) 2428 { 2429 struct crypto_authenc_key_param *param; 2430 struct rtattr *rta; 2431 2432 rta = (struct rtattr *)p; 2433 param = RTA_DATA(rta); 2434 param->enckeylen = cpu_to_be32(enckeylen); 2435 rta->rta_len = RTA_LENGTH(sizeof(*param)); 2436 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; 2437 p += RTA_SPACE(sizeof(*param)); 2438 memcpy(p, key + enckeylen, authkeylen); 2439 p += authkeylen; 2440 memcpy(p, key, enckeylen); 2441 } 2442 2443 static int crypt_setkey(struct crypt_config *cc) 2444 { 2445 unsigned int subkey_size; 2446 int err = 0, i, r; 2447 2448 /* Ignore extra keys (which are used for IV etc) */ 2449 subkey_size = crypt_subkey_size(cc); 2450 2451 if (crypt_integrity_hmac(cc)) { 2452 if (subkey_size < cc->key_mac_size) 2453 return -EINVAL; 2454 2455 crypt_copy_authenckey(cc->authenc_key, cc->key, 2456 subkey_size - cc->key_mac_size, 2457 cc->key_mac_size); 2458 } 2459 2460 for (i = 0; i < cc->tfms_count; i++) { 2461 if (crypt_integrity_hmac(cc)) 2462 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2463 cc->authenc_key, crypt_authenckey_size(cc)); 2464 else if (crypt_integrity_aead(cc)) 2465 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2466 cc->key + (i * subkey_size), 2467 subkey_size); 2468 else 2469 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], 2470 cc->key + (i * subkey_size), 2471 subkey_size); 2472 if (r) 2473 err = r; 2474 } 2475 2476 if (crypt_integrity_hmac(cc)) 2477 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); 2478 2479 return err; 2480 } 2481 2482 #ifdef CONFIG_KEYS 2483 2484 static bool contains_whitespace(const char *str) 2485 { 2486 while (*str) 2487 if (isspace(*str++)) 2488 return true; 2489 return false; 2490 } 2491 2492 static int set_key_user(struct crypt_config *cc, struct key *key) 2493 { 2494 const struct user_key_payload *ukp; 2495 2496 ukp = user_key_payload_locked(key); 2497 if (!ukp) 2498 return -EKEYREVOKED; 2499 2500 if (cc->key_size != ukp->datalen) 2501 return -EINVAL; 2502 2503 memcpy(cc->key, ukp->data, cc->key_size); 2504 2505 return 0; 2506 } 2507 2508 static int set_key_encrypted(struct crypt_config *cc, struct key *key) 2509 { 2510 const struct encrypted_key_payload *ekp; 2511 2512 ekp = key->payload.data[0]; 2513 if (!ekp) 2514 return -EKEYREVOKED; 2515 2516 if (cc->key_size != ekp->decrypted_datalen) 2517 return -EINVAL; 2518 2519 memcpy(cc->key, ekp->decrypted_data, cc->key_size); 2520 2521 return 0; 2522 } 2523 2524 static int set_key_trusted(struct crypt_config *cc, struct key *key) 2525 { 2526 const struct trusted_key_payload *tkp; 2527 2528 tkp = key->payload.data[0]; 2529 if (!tkp) 2530 return -EKEYREVOKED; 2531 2532 if (cc->key_size != tkp->key_len) 2533 return -EINVAL; 2534 2535 memcpy(cc->key, tkp->key, cc->key_size); 2536 2537 return 0; 2538 } 2539 2540 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2541 { 2542 char *new_key_string, *key_desc; 2543 int ret; 2544 struct key_type *type; 2545 struct key *key; 2546 int (*set_key)(struct crypt_config *cc, struct key *key); 2547 2548 /* 2549 * Reject key_string with whitespace. dm core currently lacks code for 2550 * proper whitespace escaping in arguments on DM_TABLE_STATUS path. 2551 */ 2552 if (contains_whitespace(key_string)) { 2553 DMERR("whitespace chars not allowed in key string"); 2554 return -EINVAL; 2555 } 2556 2557 /* look for next ':' separating key_type from key_description */ 2558 key_desc = strchr(key_string, ':'); 2559 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) 2560 return -EINVAL; 2561 2562 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) { 2563 type = &key_type_logon; 2564 set_key = set_key_user; 2565 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) { 2566 type = &key_type_user; 2567 set_key = set_key_user; 2568 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && 2569 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) { 2570 type = &key_type_encrypted; 2571 set_key = set_key_encrypted; 2572 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && 2573 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) { 2574 type = &key_type_trusted; 2575 set_key = set_key_trusted; 2576 } else { 2577 return -EINVAL; 2578 } 2579 2580 new_key_string = kstrdup(key_string, GFP_KERNEL); 2581 if (!new_key_string) 2582 return -ENOMEM; 2583 2584 key = request_key(type, key_desc + 1, NULL); 2585 if (IS_ERR(key)) { 2586 ret = PTR_ERR(key); 2587 goto free_new_key_string; 2588 } 2589 2590 down_read(&key->sem); 2591 ret = set_key(cc, key); 2592 up_read(&key->sem); 2593 key_put(key); 2594 if (ret < 0) 2595 goto free_new_key_string; 2596 2597 /* clear the flag since following operations may invalidate previously valid key */ 2598 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2599 2600 ret = crypt_setkey(cc); 2601 if (ret) 2602 goto free_new_key_string; 2603 2604 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2605 kfree_sensitive(cc->key_string); 2606 cc->key_string = new_key_string; 2607 return 0; 2608 2609 free_new_key_string: 2610 kfree_sensitive(new_key_string); 2611 return ret; 2612 } 2613 2614 static int get_key_size(char **key_string) 2615 { 2616 char *colon, dummy; 2617 int ret; 2618 2619 if (*key_string[0] != ':') 2620 return strlen(*key_string) >> 1; 2621 2622 /* look for next ':' in key string */ 2623 colon = strpbrk(*key_string + 1, ":"); 2624 if (!colon) 2625 return -EINVAL; 2626 2627 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') 2628 return -EINVAL; 2629 2630 *key_string = colon; 2631 2632 /* remaining key string should be :<logon|user>:<key_desc> */ 2633 2634 return ret; 2635 } 2636 2637 #else 2638 2639 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2640 { 2641 return -EINVAL; 2642 } 2643 2644 static int get_key_size(char **key_string) 2645 { 2646 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); 2647 } 2648 2649 #endif /* CONFIG_KEYS */ 2650 2651 static int crypt_set_key(struct crypt_config *cc, char *key) 2652 { 2653 int r = -EINVAL; 2654 int key_string_len = strlen(key); 2655 2656 /* Hyphen (which gives a key_size of zero) means there is no key. */ 2657 if (!cc->key_size && strcmp(key, "-")) 2658 goto out; 2659 2660 /* ':' means the key is in kernel keyring, short-circuit normal key processing */ 2661 if (key[0] == ':') { 2662 r = crypt_set_keyring_key(cc, key + 1); 2663 goto out; 2664 } 2665 2666 /* clear the flag since following operations may invalidate previously valid key */ 2667 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2668 2669 /* wipe references to any kernel keyring key */ 2670 kfree_sensitive(cc->key_string); 2671 cc->key_string = NULL; 2672 2673 /* Decode key from its hex representation. */ 2674 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) 2675 goto out; 2676 2677 r = crypt_setkey(cc); 2678 if (!r) 2679 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2680 2681 out: 2682 /* Hex key string not needed after here, so wipe it. */ 2683 memset(key, '0', key_string_len); 2684 2685 return r; 2686 } 2687 2688 static int crypt_wipe_key(struct crypt_config *cc) 2689 { 2690 int r; 2691 2692 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2693 get_random_bytes(&cc->key, cc->key_size); 2694 2695 /* Wipe IV private keys */ 2696 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2697 r = cc->iv_gen_ops->wipe(cc); 2698 if (r) 2699 return r; 2700 } 2701 2702 kfree_sensitive(cc->key_string); 2703 cc->key_string = NULL; 2704 r = crypt_setkey(cc); 2705 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 2706 2707 return r; 2708 } 2709 2710 static void crypt_calculate_pages_per_client(void) 2711 { 2712 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; 2713 2714 if (!dm_crypt_clients_n) 2715 return; 2716 2717 pages /= dm_crypt_clients_n; 2718 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) 2719 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; 2720 dm_crypt_pages_per_client = pages; 2721 } 2722 2723 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) 2724 { 2725 struct crypt_config *cc = pool_data; 2726 struct page *page; 2727 2728 /* 2729 * Note, percpu_counter_read_positive() may over (and under) estimate 2730 * the current usage by at most (batch - 1) * num_online_cpus() pages, 2731 * but avoids potential spinlock contention of an exact result. 2732 */ 2733 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && 2734 likely(gfp_mask & __GFP_NORETRY)) 2735 return NULL; 2736 2737 page = alloc_page(gfp_mask); 2738 if (likely(page != NULL)) 2739 percpu_counter_add(&cc->n_allocated_pages, 1); 2740 2741 return page; 2742 } 2743 2744 static void crypt_page_free(void *page, void *pool_data) 2745 { 2746 struct crypt_config *cc = pool_data; 2747 2748 __free_page(page); 2749 percpu_counter_sub(&cc->n_allocated_pages, 1); 2750 } 2751 2752 static void crypt_dtr(struct dm_target *ti) 2753 { 2754 struct crypt_config *cc = ti->private; 2755 2756 ti->private = NULL; 2757 2758 if (!cc) 2759 return; 2760 2761 if (cc->write_thread) 2762 kthread_stop(cc->write_thread); 2763 2764 if (cc->io_queue) 2765 destroy_workqueue(cc->io_queue); 2766 if (cc->crypt_queue) 2767 destroy_workqueue(cc->crypt_queue); 2768 2769 if (cc->workqueue_id) 2770 ida_free(&workqueue_ida, cc->workqueue_id); 2771 2772 crypt_free_tfms(cc); 2773 2774 bioset_exit(&cc->bs); 2775 2776 mempool_exit(&cc->page_pool); 2777 mempool_exit(&cc->req_pool); 2778 mempool_exit(&cc->tag_pool); 2779 2780 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); 2781 percpu_counter_destroy(&cc->n_allocated_pages); 2782 2783 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 2784 cc->iv_gen_ops->dtr(cc); 2785 2786 if (cc->dev) 2787 dm_put_device(ti, cc->dev); 2788 2789 kfree_sensitive(cc->cipher_string); 2790 kfree_sensitive(cc->key_string); 2791 kfree_sensitive(cc->cipher_auth); 2792 kfree_sensitive(cc->authenc_key); 2793 2794 mutex_destroy(&cc->bio_alloc_lock); 2795 2796 /* Must zero key material before freeing */ 2797 kfree_sensitive(cc); 2798 2799 spin_lock(&dm_crypt_clients_lock); 2800 WARN_ON(!dm_crypt_clients_n); 2801 dm_crypt_clients_n--; 2802 crypt_calculate_pages_per_client(); 2803 spin_unlock(&dm_crypt_clients_lock); 2804 2805 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 2806 } 2807 2808 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) 2809 { 2810 struct crypt_config *cc = ti->private; 2811 2812 if (crypt_integrity_aead(cc)) 2813 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2814 else 2815 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2816 2817 if (cc->iv_size) 2818 /* at least a 64 bit sector number should fit in our buffer */ 2819 cc->iv_size = max(cc->iv_size, 2820 (unsigned int)(sizeof(u64) / sizeof(u8))); 2821 else if (ivmode) { 2822 DMWARN("Selected cipher does not support IVs"); 2823 ivmode = NULL; 2824 } 2825 2826 /* Choose ivmode, see comments at iv code. */ 2827 if (ivmode == NULL) 2828 cc->iv_gen_ops = NULL; 2829 else if (strcmp(ivmode, "plain") == 0) 2830 cc->iv_gen_ops = &crypt_iv_plain_ops; 2831 else if (strcmp(ivmode, "plain64") == 0) 2832 cc->iv_gen_ops = &crypt_iv_plain64_ops; 2833 else if (strcmp(ivmode, "plain64be") == 0) 2834 cc->iv_gen_ops = &crypt_iv_plain64be_ops; 2835 else if (strcmp(ivmode, "essiv") == 0) 2836 cc->iv_gen_ops = &crypt_iv_essiv_ops; 2837 else if (strcmp(ivmode, "benbi") == 0) 2838 cc->iv_gen_ops = &crypt_iv_benbi_ops; 2839 else if (strcmp(ivmode, "null") == 0) 2840 cc->iv_gen_ops = &crypt_iv_null_ops; 2841 else if (strcmp(ivmode, "eboiv") == 0) 2842 cc->iv_gen_ops = &crypt_iv_eboiv_ops; 2843 else if (strcmp(ivmode, "elephant") == 0) { 2844 cc->iv_gen_ops = &crypt_iv_elephant_ops; 2845 cc->key_parts = 2; 2846 cc->key_extra_size = cc->key_size / 2; 2847 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) 2848 return -EINVAL; 2849 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags); 2850 } else if (strcmp(ivmode, "lmk") == 0) { 2851 cc->iv_gen_ops = &crypt_iv_lmk_ops; 2852 /* 2853 * Version 2 and 3 is recognised according 2854 * to length of provided multi-key string. 2855 * If present (version 3), last key is used as IV seed. 2856 * All keys (including IV seed) are always the same size. 2857 */ 2858 if (cc->key_size % cc->key_parts) { 2859 cc->key_parts++; 2860 cc->key_extra_size = cc->key_size / cc->key_parts; 2861 } 2862 } else if (strcmp(ivmode, "tcw") == 0) { 2863 cc->iv_gen_ops = &crypt_iv_tcw_ops; 2864 cc->key_parts += 2; /* IV + whitening */ 2865 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 2866 } else if (strcmp(ivmode, "random") == 0) { 2867 cc->iv_gen_ops = &crypt_iv_random_ops; 2868 /* Need storage space in integrity fields. */ 2869 cc->integrity_iv_size = cc->iv_size; 2870 } else { 2871 ti->error = "Invalid IV mode"; 2872 return -EINVAL; 2873 } 2874 2875 return 0; 2876 } 2877 2878 /* 2879 * Workaround to parse HMAC algorithm from AEAD crypto API spec. 2880 * The HMAC is needed to calculate tag size (HMAC digest size). 2881 * This should be probably done by crypto-api calls (once available...) 2882 */ 2883 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) 2884 { 2885 char *start, *end, *mac_alg = NULL; 2886 struct crypto_ahash *mac; 2887 2888 if (!strstarts(cipher_api, "authenc(")) 2889 return 0; 2890 2891 start = strchr(cipher_api, '('); 2892 end = strchr(cipher_api, ','); 2893 if (!start || !end || ++start > end) 2894 return -EINVAL; 2895 2896 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL); 2897 if (!mac_alg) 2898 return -ENOMEM; 2899 2900 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 2901 kfree(mac_alg); 2902 2903 if (IS_ERR(mac)) 2904 return PTR_ERR(mac); 2905 2906 if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 2907 cc->key_mac_size = crypto_ahash_digestsize(mac); 2908 crypto_free_ahash(mac); 2909 2910 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); 2911 if (!cc->authenc_key) 2912 return -ENOMEM; 2913 2914 return 0; 2915 } 2916 2917 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, 2918 char **ivmode, char **ivopts) 2919 { 2920 struct crypt_config *cc = ti->private; 2921 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; 2922 int ret = -EINVAL; 2923 2924 cc->tfms_count = 1; 2925 2926 /* 2927 * New format (capi: prefix) 2928 * capi:cipher_api_spec-iv:ivopts 2929 */ 2930 tmp = &cipher_in[strlen("capi:")]; 2931 2932 /* Separate IV options if present, it can contain another '-' in hash name */ 2933 *ivopts = strrchr(tmp, ':'); 2934 if (*ivopts) { 2935 **ivopts = '\0'; 2936 (*ivopts)++; 2937 } 2938 /* Parse IV mode */ 2939 *ivmode = strrchr(tmp, '-'); 2940 if (*ivmode) { 2941 **ivmode = '\0'; 2942 (*ivmode)++; 2943 } 2944 /* The rest is crypto API spec */ 2945 cipher_api = tmp; 2946 2947 /* Alloc AEAD, can be used only in new format. */ 2948 if (crypt_integrity_aead(cc)) { 2949 ret = crypt_ctr_auth_cipher(cc, cipher_api); 2950 if (ret < 0) { 2951 ti->error = "Invalid AEAD cipher spec"; 2952 return ret; 2953 } 2954 } 2955 2956 if (*ivmode && !strcmp(*ivmode, "lmk")) 2957 cc->tfms_count = 64; 2958 2959 if (*ivmode && !strcmp(*ivmode, "essiv")) { 2960 if (!*ivopts) { 2961 ti->error = "Digest algorithm missing for ESSIV mode"; 2962 return -EINVAL; 2963 } 2964 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", 2965 cipher_api, *ivopts); 2966 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 2967 ti->error = "Cannot allocate cipher string"; 2968 return -ENOMEM; 2969 } 2970 cipher_api = buf; 2971 } 2972 2973 cc->key_parts = cc->tfms_count; 2974 2975 /* Allocate cipher */ 2976 ret = crypt_alloc_tfms(cc, cipher_api); 2977 if (ret < 0) { 2978 ti->error = "Error allocating crypto tfm"; 2979 return ret; 2980 } 2981 2982 if (crypt_integrity_aead(cc)) 2983 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2984 else 2985 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2986 2987 return 0; 2988 } 2989 2990 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, 2991 char **ivmode, char **ivopts) 2992 { 2993 struct crypt_config *cc = ti->private; 2994 char *tmp, *cipher, *chainmode, *keycount; 2995 char *cipher_api = NULL; 2996 int ret = -EINVAL; 2997 char dummy; 2998 2999 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { 3000 ti->error = "Bad cipher specification"; 3001 return -EINVAL; 3002 } 3003 3004 /* 3005 * Legacy dm-crypt cipher specification 3006 * cipher[:keycount]-mode-iv:ivopts 3007 */ 3008 tmp = cipher_in; 3009 keycount = strsep(&tmp, "-"); 3010 cipher = strsep(&keycount, ":"); 3011 3012 if (!keycount) 3013 cc->tfms_count = 1; 3014 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 3015 !is_power_of_2(cc->tfms_count)) { 3016 ti->error = "Bad cipher key count specification"; 3017 return -EINVAL; 3018 } 3019 cc->key_parts = cc->tfms_count; 3020 3021 chainmode = strsep(&tmp, "-"); 3022 *ivmode = strsep(&tmp, ":"); 3023 *ivopts = tmp; 3024 3025 /* 3026 * For compatibility with the original dm-crypt mapping format, if 3027 * only the cipher name is supplied, use cbc-plain. 3028 */ 3029 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { 3030 chainmode = "cbc"; 3031 *ivmode = "plain"; 3032 } 3033 3034 if (strcmp(chainmode, "ecb") && !*ivmode) { 3035 ti->error = "IV mechanism required"; 3036 return -EINVAL; 3037 } 3038 3039 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 3040 if (!cipher_api) 3041 goto bad_mem; 3042 3043 if (*ivmode && !strcmp(*ivmode, "essiv")) { 3044 if (!*ivopts) { 3045 ti->error = "Digest algorithm missing for ESSIV mode"; 3046 kfree(cipher_api); 3047 return -EINVAL; 3048 } 3049 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3050 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts); 3051 } else { 3052 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3053 "%s(%s)", chainmode, cipher); 3054 } 3055 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 3056 kfree(cipher_api); 3057 goto bad_mem; 3058 } 3059 3060 /* Allocate cipher */ 3061 ret = crypt_alloc_tfms(cc, cipher_api); 3062 if (ret < 0) { 3063 ti->error = "Error allocating crypto tfm"; 3064 kfree(cipher_api); 3065 return ret; 3066 } 3067 kfree(cipher_api); 3068 3069 return 0; 3070 bad_mem: 3071 ti->error = "Cannot allocate cipher strings"; 3072 return -ENOMEM; 3073 } 3074 3075 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) 3076 { 3077 struct crypt_config *cc = ti->private; 3078 char *ivmode = NULL, *ivopts = NULL; 3079 int ret; 3080 3081 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 3082 if (!cc->cipher_string) { 3083 ti->error = "Cannot allocate cipher strings"; 3084 return -ENOMEM; 3085 } 3086 3087 if (strstarts(cipher_in, "capi:")) 3088 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); 3089 else 3090 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); 3091 if (ret) 3092 return ret; 3093 3094 /* Initialize IV */ 3095 ret = crypt_ctr_ivmode(ti, ivmode); 3096 if (ret < 0) 3097 return ret; 3098 3099 /* Initialize and set key */ 3100 ret = crypt_set_key(cc, key); 3101 if (ret < 0) { 3102 ti->error = "Error decoding and setting key"; 3103 return ret; 3104 } 3105 3106 /* Allocate IV */ 3107 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 3108 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 3109 if (ret < 0) { 3110 ti->error = "Error creating IV"; 3111 return ret; 3112 } 3113 } 3114 3115 /* Initialize IV (set keys for ESSIV etc) */ 3116 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 3117 ret = cc->iv_gen_ops->init(cc); 3118 if (ret < 0) { 3119 ti->error = "Error initialising IV"; 3120 return ret; 3121 } 3122 } 3123 3124 /* wipe the kernel key payload copy */ 3125 if (cc->key_string) 3126 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3127 3128 return ret; 3129 } 3130 3131 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) 3132 { 3133 struct crypt_config *cc = ti->private; 3134 struct dm_arg_set as; 3135 static const struct dm_arg _args[] = { 3136 {0, 9, "Invalid number of feature args"}, 3137 }; 3138 unsigned int opt_params, val; 3139 const char *opt_string, *sval; 3140 char dummy; 3141 int ret; 3142 3143 /* Optional parameters */ 3144 as.argc = argc; 3145 as.argv = argv; 3146 3147 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 3148 if (ret) 3149 return ret; 3150 3151 while (opt_params--) { 3152 opt_string = dm_shift_arg(&as); 3153 if (!opt_string) { 3154 ti->error = "Not enough feature arguments"; 3155 return -EINVAL; 3156 } 3157 3158 if (!strcasecmp(opt_string, "allow_discards")) 3159 ti->num_discard_bios = 1; 3160 3161 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 3162 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3163 else if (!strcasecmp(opt_string, "high_priority")) 3164 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3165 3166 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 3167 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3168 else if (!strcasecmp(opt_string, "no_read_workqueue")) 3169 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3170 else if (!strcasecmp(opt_string, "no_write_workqueue")) 3171 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3172 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { 3173 if (val == 0 || val > MAX_TAG_SIZE) { 3174 ti->error = "Invalid integrity arguments"; 3175 return -EINVAL; 3176 } 3177 cc->used_tag_size = val; 3178 sval = strchr(opt_string + strlen("integrity:"), ':') + 1; 3179 if (!strcasecmp(sval, "aead")) { 3180 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 3181 } else if (strcasecmp(sval, "none")) { 3182 ti->error = "Unknown integrity profile"; 3183 return -EINVAL; 3184 } 3185 3186 cc->cipher_auth = kstrdup(sval, GFP_KERNEL); 3187 if (!cc->cipher_auth) 3188 return -ENOMEM; 3189 } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) { 3190 if (!val) { 3191 ti->error = "Invalid integrity_key_size argument"; 3192 return -EINVAL; 3193 } 3194 cc->key_mac_size = val; 3195 set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3196 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { 3197 if (cc->sector_size < (1 << SECTOR_SHIFT) || 3198 cc->sector_size > 4096 || 3199 (cc->sector_size & (cc->sector_size - 1))) { 3200 ti->error = "Invalid feature value for sector_size"; 3201 return -EINVAL; 3202 } 3203 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { 3204 ti->error = "Device size is not multiple of sector_size feature"; 3205 return -EINVAL; 3206 } 3207 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; 3208 } else if (!strcasecmp(opt_string, "iv_large_sectors")) 3209 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3210 else { 3211 ti->error = "Invalid feature arguments"; 3212 return -EINVAL; 3213 } 3214 } 3215 3216 return 0; 3217 } 3218 3219 #ifdef CONFIG_BLK_DEV_ZONED 3220 static int crypt_report_zones(struct dm_target *ti, 3221 struct dm_report_zones_args *args, unsigned int nr_zones) 3222 { 3223 struct crypt_config *cc = ti->private; 3224 3225 return dm_report_zones(cc->dev->bdev, cc->start, 3226 cc->start + dm_target_offset(ti, args->next_sector), 3227 args, nr_zones); 3228 } 3229 #else 3230 #define crypt_report_zones NULL 3231 #endif 3232 3233 /* 3234 * Construct an encryption mapping: 3235 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> 3236 */ 3237 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3238 { 3239 struct crypt_config *cc; 3240 const char *devname = dm_table_device_name(ti->table); 3241 int key_size, wq_id; 3242 unsigned int align_mask; 3243 unsigned int common_wq_flags; 3244 unsigned long long tmpll; 3245 int ret; 3246 size_t iv_size_padding, additional_req_size; 3247 char dummy; 3248 3249 if (argc < 5) { 3250 ti->error = "Not enough arguments"; 3251 return -EINVAL; 3252 } 3253 3254 key_size = get_key_size(&argv[1]); 3255 if (key_size < 0) { 3256 ti->error = "Cannot parse key size"; 3257 return -EINVAL; 3258 } 3259 3260 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); 3261 if (!cc) { 3262 ti->error = "Cannot allocate encryption context"; 3263 return -ENOMEM; 3264 } 3265 cc->key_size = key_size; 3266 cc->sector_size = (1 << SECTOR_SHIFT); 3267 cc->sector_shift = 0; 3268 3269 ti->private = cc; 3270 3271 spin_lock(&dm_crypt_clients_lock); 3272 dm_crypt_clients_n++; 3273 crypt_calculate_pages_per_client(); 3274 spin_unlock(&dm_crypt_clients_lock); 3275 3276 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); 3277 if (ret < 0) 3278 goto bad; 3279 3280 /* Optional parameters need to be read before cipher constructor */ 3281 if (argc > 5) { 3282 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); 3283 if (ret) 3284 goto bad; 3285 } 3286 3287 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 3288 if (ret < 0) 3289 goto bad; 3290 3291 if (crypt_integrity_aead(cc)) { 3292 cc->dmreq_start = sizeof(struct aead_request); 3293 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); 3294 align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); 3295 } else { 3296 cc->dmreq_start = sizeof(struct skcipher_request); 3297 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 3298 align_mask = crypto_skcipher_alignmask(any_tfm(cc)); 3299 } 3300 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 3301 3302 if (align_mask < CRYPTO_MINALIGN) { 3303 /* Allocate the padding exactly */ 3304 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 3305 & align_mask; 3306 } else { 3307 /* 3308 * If the cipher requires greater alignment than kmalloc 3309 * alignment, we don't know the exact position of the 3310 * initialization vector. We must assume worst case. 3311 */ 3312 iv_size_padding = align_mask; 3313 } 3314 3315 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */ 3316 additional_req_size = sizeof(struct dm_crypt_request) + 3317 iv_size_padding + cc->iv_size + 3318 cc->iv_size + 3319 sizeof(uint64_t) + 3320 sizeof(unsigned int); 3321 3322 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); 3323 if (ret) { 3324 ti->error = "Cannot allocate crypt request mempool"; 3325 goto bad; 3326 } 3327 3328 cc->per_bio_data_size = ti->per_io_data_size = 3329 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, 3330 ARCH_DMA_MINALIGN); 3331 3332 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); 3333 if (ret) { 3334 ti->error = "Cannot allocate page mempool"; 3335 goto bad; 3336 } 3337 3338 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS); 3339 if (ret) { 3340 ti->error = "Cannot allocate crypt bioset"; 3341 goto bad; 3342 } 3343 3344 mutex_init(&cc->bio_alloc_lock); 3345 3346 ret = -EINVAL; 3347 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || 3348 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { 3349 ti->error = "Invalid iv_offset sector"; 3350 goto bad; 3351 } 3352 cc->iv_offset = tmpll; 3353 3354 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 3355 if (ret) { 3356 ti->error = "Device lookup failed"; 3357 goto bad; 3358 } 3359 3360 ret = -EINVAL; 3361 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { 3362 ti->error = "Invalid device sector"; 3363 goto bad; 3364 } 3365 cc->start = tmpll; 3366 3367 if (bdev_is_zoned(cc->dev->bdev)) { 3368 /* 3369 * For zoned block devices, we need to preserve the issuer write 3370 * ordering. To do so, disable write workqueues and force inline 3371 * encryption completion. 3372 */ 3373 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3374 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags); 3375 3376 /* 3377 * All zone append writes to a zone of a zoned block device will 3378 * have the same BIO sector, the start of the zone. When the 3379 * cypher IV mode uses sector values, all data targeting a 3380 * zone will be encrypted using the first sector numbers of the 3381 * zone. This will not result in write errors but will 3382 * cause most reads to fail as reads will use the sector values 3383 * for the actual data locations, resulting in IV mismatch. 3384 * To avoid this problem, ask DM core to emulate zone append 3385 * operations with regular writes. 3386 */ 3387 DMDEBUG("Zone append operations will be emulated"); 3388 ti->emulate_zone_append = true; 3389 } 3390 3391 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { 3392 ret = crypt_integrity_ctr(cc, ti); 3393 if (ret) 3394 goto bad; 3395 3396 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size; 3397 if (!cc->tag_pool_max_sectors) 3398 cc->tag_pool_max_sectors = 1; 3399 3400 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, 3401 cc->tag_pool_max_sectors * cc->tuple_size); 3402 if (ret) { 3403 ti->error = "Cannot allocate integrity tags mempool"; 3404 goto bad; 3405 } 3406 3407 cc->tag_pool_max_sectors <<= cc->sector_shift; 3408 } 3409 3410 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL); 3411 if (wq_id < 0) { 3412 ti->error = "Couldn't get workqueue id"; 3413 ret = wq_id; 3414 goto bad; 3415 } 3416 cc->workqueue_id = wq_id; 3417 3418 ret = -ENOMEM; 3419 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS; 3420 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3421 common_wq_flags |= WQ_HIGHPRI; 3422 3423 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id); 3424 if (!cc->io_queue) { 3425 ti->error = "Couldn't create kcryptd io queue"; 3426 goto bad; 3427 } 3428 3429 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) { 3430 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3431 common_wq_flags | WQ_CPU_INTENSIVE, 3432 1, devname, wq_id); 3433 } else { 3434 /* 3435 * While crypt_queue is certainly CPU intensive, the use of 3436 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND. 3437 */ 3438 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3439 common_wq_flags | WQ_UNBOUND, 3440 num_online_cpus(), devname, wq_id); 3441 } 3442 if (!cc->crypt_queue) { 3443 ti->error = "Couldn't create kcryptd queue"; 3444 goto bad; 3445 } 3446 3447 spin_lock_init(&cc->write_thread_lock); 3448 cc->write_tree = RB_ROOT; 3449 3450 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname); 3451 if (IS_ERR(cc->write_thread)) { 3452 ret = PTR_ERR(cc->write_thread); 3453 cc->write_thread = NULL; 3454 ti->error = "Couldn't spawn write thread"; 3455 goto bad; 3456 } 3457 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3458 set_user_nice(cc->write_thread, MIN_NICE); 3459 3460 ti->num_flush_bios = 1; 3461 ti->limit_swap_bios = true; 3462 ti->accounts_remapped_io = true; 3463 3464 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 3465 return 0; 3466 3467 bad: 3468 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 3469 crypt_dtr(ti); 3470 return ret; 3471 } 3472 3473 static int crypt_map(struct dm_target *ti, struct bio *bio) 3474 { 3475 struct dm_crypt_io *io; 3476 struct crypt_config *cc = ti->private; 3477 unsigned max_sectors; 3478 3479 /* 3480 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 3481 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 3482 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 3483 */ 3484 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 3485 bio_op(bio) == REQ_OP_DISCARD)) { 3486 bio_set_dev(bio, cc->dev->bdev); 3487 if (bio_sectors(bio)) 3488 bio->bi_iter.bi_sector = cc->start + 3489 dm_target_offset(ti, bio->bi_iter.bi_sector); 3490 return DM_MAPIO_REMAPPED; 3491 } 3492 3493 /* 3494 * Check if bio is too large, split as needed. 3495 */ 3496 max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE); 3497 if (unlikely(bio_sectors(bio) > max_sectors)) 3498 dm_accept_partial_bio(bio, max_sectors); 3499 3500 /* 3501 * Ensure that bio is a multiple of internal sector encryption size 3502 * and is aligned to this size as defined in IO hints. 3503 */ 3504 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) 3505 return DM_MAPIO_KILL; 3506 3507 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) 3508 return DM_MAPIO_KILL; 3509 3510 io = dm_per_bio_data(bio, cc->per_bio_data_size); 3511 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 3512 3513 if (cc->tuple_size) { 3514 unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift); 3515 3516 if (unlikely(tag_len > KMALLOC_MAX_SIZE)) 3517 io->integrity_metadata = NULL; 3518 else 3519 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3520 3521 if (unlikely(!io->integrity_metadata)) { 3522 if (bio_sectors(bio) > cc->tag_pool_max_sectors) 3523 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); 3524 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); 3525 io->integrity_metadata_from_pool = true; 3526 } 3527 } 3528 3529 if (crypt_integrity_aead(cc)) 3530 io->ctx.r.req_aead = (struct aead_request *)(io + 1); 3531 else 3532 io->ctx.r.req = (struct skcipher_request *)(io + 1); 3533 3534 if (bio_data_dir(io->base_bio) == READ) { 3535 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) 3536 kcryptd_queue_read(io); 3537 } else 3538 kcryptd_queue_crypt(io); 3539 3540 return DM_MAPIO_SUBMITTED; 3541 } 3542 3543 static char hex2asc(unsigned char c) 3544 { 3545 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); 3546 } 3547 3548 static void crypt_status(struct dm_target *ti, status_type_t type, 3549 unsigned int status_flags, char *result, unsigned int maxlen) 3550 { 3551 struct crypt_config *cc = ti->private; 3552 unsigned int i, sz = 0; 3553 int num_feature_args = 0; 3554 3555 switch (type) { 3556 case STATUSTYPE_INFO: 3557 result[0] = '\0'; 3558 break; 3559 3560 case STATUSTYPE_TABLE: 3561 DMEMIT("%s ", cc->cipher_string); 3562 3563 if (cc->key_size > 0) { 3564 if (cc->key_string) 3565 DMEMIT(":%u:%s", cc->key_size, cc->key_string); 3566 else { 3567 for (i = 0; i < cc->key_size; i++) { 3568 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4), 3569 hex2asc(cc->key[i] & 0xf)); 3570 } 3571 } 3572 } else 3573 DMEMIT("-"); 3574 3575 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 3576 cc->dev->name, (unsigned long long)cc->start); 3577 3578 num_feature_args += !!ti->num_discard_bios; 3579 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3580 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3581 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3582 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3583 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3584 num_feature_args += !!cc->used_tag_size; 3585 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); 3586 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3587 num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); 3588 if (num_feature_args) { 3589 DMEMIT(" %d", num_feature_args); 3590 if (ti->num_discard_bios) 3591 DMEMIT(" allow_discards"); 3592 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 3593 DMEMIT(" same_cpu_crypt"); 3594 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3595 DMEMIT(" high_priority"); 3596 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 3597 DMEMIT(" submit_from_crypt_cpus"); 3598 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) 3599 DMEMIT(" no_read_workqueue"); 3600 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) 3601 DMEMIT(" no_write_workqueue"); 3602 if (cc->used_tag_size) 3603 DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth); 3604 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3605 DMEMIT(" sector_size:%d", cc->sector_size); 3606 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 3607 DMEMIT(" iv_large_sectors"); 3608 if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) 3609 DMEMIT(" integrity_key_size:%u", cc->key_mac_size); 3610 } 3611 break; 3612 3613 case STATUSTYPE_IMA: 3614 DMEMIT_TARGET_NAME_VERSION(ti->type); 3615 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n'); 3616 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); 3617 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n'); 3618 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? 3619 'y' : 'n'); 3620 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? 3621 'y' : 'n'); 3622 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? 3623 'y' : 'n'); 3624 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? 3625 'y' : 'n'); 3626 3627 if (cc->used_tag_size) 3628 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s", 3629 cc->used_tag_size, cc->cipher_auth); 3630 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3631 DMEMIT(",sector_size=%d", cc->sector_size); 3632 if (cc->cipher_string) 3633 DMEMIT(",cipher_string=%s", cc->cipher_string); 3634 3635 DMEMIT(",key_size=%u", cc->key_size); 3636 DMEMIT(",key_parts=%u", cc->key_parts); 3637 DMEMIT(",key_extra_size=%u", cc->key_extra_size); 3638 DMEMIT(",key_mac_size=%u", cc->key_mac_size); 3639 DMEMIT(";"); 3640 break; 3641 } 3642 } 3643 3644 static void crypt_postsuspend(struct dm_target *ti) 3645 { 3646 struct crypt_config *cc = ti->private; 3647 3648 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3649 } 3650 3651 static int crypt_preresume(struct dm_target *ti) 3652 { 3653 struct crypt_config *cc = ti->private; 3654 3655 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 3656 DMERR("aborting resume - crypt key is not set."); 3657 return -EAGAIN; 3658 } 3659 3660 return 0; 3661 } 3662 3663 static void crypt_resume(struct dm_target *ti) 3664 { 3665 struct crypt_config *cc = ti->private; 3666 3667 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3668 } 3669 3670 /* Message interface 3671 * key set <key> 3672 * key wipe 3673 */ 3674 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, 3675 char *result, unsigned int maxlen) 3676 { 3677 struct crypt_config *cc = ti->private; 3678 int key_size, ret = -EINVAL; 3679 3680 if (argc < 2) 3681 goto error; 3682 3683 if (!strcasecmp(argv[0], "key")) { 3684 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 3685 DMWARN("not suspended during key manipulation."); 3686 return -EINVAL; 3687 } 3688 if (argc == 3 && !strcasecmp(argv[1], "set")) { 3689 /* The key size may not be changed. */ 3690 key_size = get_key_size(&argv[2]); 3691 if (key_size < 0 || cc->key_size != key_size) { 3692 memset(argv[2], '0', strlen(argv[2])); 3693 return -EINVAL; 3694 } 3695 3696 ret = crypt_set_key(cc, argv[2]); 3697 if (ret) 3698 return ret; 3699 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 3700 ret = cc->iv_gen_ops->init(cc); 3701 /* wipe the kernel key payload copy */ 3702 if (cc->key_string) 3703 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3704 return ret; 3705 } 3706 if (argc == 2 && !strcasecmp(argv[1], "wipe")) 3707 return crypt_wipe_key(cc); 3708 } 3709 3710 error: 3711 DMWARN("unrecognised message received."); 3712 return -EINVAL; 3713 } 3714 3715 static int crypt_iterate_devices(struct dm_target *ti, 3716 iterate_devices_callout_fn fn, void *data) 3717 { 3718 struct crypt_config *cc = ti->private; 3719 3720 return fn(ti, cc->dev, cc->start, ti->len, data); 3721 } 3722 3723 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 3724 { 3725 struct crypt_config *cc = ti->private; 3726 3727 limits->logical_block_size = 3728 max_t(unsigned int, limits->logical_block_size, cc->sector_size); 3729 limits->physical_block_size = 3730 max_t(unsigned int, limits->physical_block_size, cc->sector_size); 3731 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); 3732 limits->dma_alignment = limits->logical_block_size - 1; 3733 } 3734 3735 static struct target_type crypt_target = { 3736 .name = "crypt", 3737 .version = {1, 28, 0}, 3738 .module = THIS_MODULE, 3739 .ctr = crypt_ctr, 3740 .dtr = crypt_dtr, 3741 .features = DM_TARGET_ZONED_HM, 3742 .report_zones = crypt_report_zones, 3743 .map = crypt_map, 3744 .status = crypt_status, 3745 .postsuspend = crypt_postsuspend, 3746 .preresume = crypt_preresume, 3747 .resume = crypt_resume, 3748 .message = crypt_message, 3749 .iterate_devices = crypt_iterate_devices, 3750 .io_hints = crypt_io_hints, 3751 }; 3752 module_dm(crypt); 3753 3754 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 3755 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 3756 MODULE_LICENSE("GPL"); 3757