xref: /linux/drivers/md/dm-crypt.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
38 
39 #include <linux/device-mapper.h>
40 
41 #define DM_MSG_PREFIX "crypt"
42 
43 /*
44  * context holding the current state of a multi-part conversion
45  */
46 struct convert_context {
47 	struct completion restart;
48 	struct bio *bio_in;
49 	struct bio *bio_out;
50 	struct bvec_iter iter_in;
51 	struct bvec_iter iter_out;
52 	sector_t cc_sector;
53 	atomic_t cc_pending;
54 	union {
55 		struct skcipher_request *req;
56 		struct aead_request *req_aead;
57 	} r;
58 
59 };
60 
61 /*
62  * per bio private data
63  */
64 struct dm_crypt_io {
65 	struct crypt_config *cc;
66 	struct bio *base_bio;
67 	u8 *integrity_metadata;
68 	bool integrity_metadata_from_pool;
69 	struct work_struct work;
70 
71 	struct convert_context ctx;
72 
73 	atomic_t io_pending;
74 	blk_status_t error;
75 	sector_t sector;
76 
77 	struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
79 
80 struct dm_crypt_request {
81 	struct convert_context *ctx;
82 	struct scatterlist sg_in[4];
83 	struct scatterlist sg_out[4];
84 	sector_t iv_sector;
85 };
86 
87 struct crypt_config;
88 
89 struct crypt_iv_operations {
90 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 		   const char *opts);
92 	void (*dtr)(struct crypt_config *cc);
93 	int (*init)(struct crypt_config *cc);
94 	int (*wipe)(struct crypt_config *cc);
95 	int (*generator)(struct crypt_config *cc, u8 *iv,
96 			 struct dm_crypt_request *dmreq);
97 	int (*post)(struct crypt_config *cc, u8 *iv,
98 		    struct dm_crypt_request *dmreq);
99 };
100 
101 struct iv_essiv_private {
102 	struct crypto_ahash *hash_tfm;
103 	u8 *salt;
104 };
105 
106 struct iv_benbi_private {
107 	int shift;
108 };
109 
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 	struct crypto_shash *hash_tfm;
113 	u8 *seed;
114 };
115 
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 	struct crypto_shash *crc32_tfm;
119 	u8 *iv_seed;
120 	u8 *whitening;
121 };
122 
123 /*
124  * Crypt: maps a linear range of a block device
125  * and encrypts / decrypts at the same time.
126  */
127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
129 
130 enum cipher_flags {
131 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */
132 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
133 };
134 
135 /*
136  * The fields in here must be read only after initialization.
137  */
138 struct crypt_config {
139 	struct dm_dev *dev;
140 	sector_t start;
141 
142 	/*
143 	 * pool for per bio private data, crypto requests,
144 	 * encryption requeusts/buffer pages and integrity tags
145 	 */
146 	mempool_t *req_pool;
147 	mempool_t *page_pool;
148 	mempool_t *tag_pool;
149 	unsigned tag_pool_max_sectors;
150 
151 	struct bio_set *bs;
152 	struct mutex bio_alloc_lock;
153 
154 	struct workqueue_struct *io_queue;
155 	struct workqueue_struct *crypt_queue;
156 
157 	struct task_struct *write_thread;
158 	wait_queue_head_t write_thread_wait;
159 	struct rb_root write_tree;
160 
161 	char *cipher;
162 	char *cipher_string;
163 	char *cipher_auth;
164 	char *key_string;
165 
166 	const struct crypt_iv_operations *iv_gen_ops;
167 	union {
168 		struct iv_essiv_private essiv;
169 		struct iv_benbi_private benbi;
170 		struct iv_lmk_private lmk;
171 		struct iv_tcw_private tcw;
172 	} iv_gen_private;
173 	sector_t iv_offset;
174 	unsigned int iv_size;
175 	unsigned short int sector_size;
176 	unsigned char sector_shift;
177 
178 	/* ESSIV: struct crypto_cipher *essiv_tfm */
179 	void *iv_private;
180 	union {
181 		struct crypto_skcipher **tfms;
182 		struct crypto_aead **tfms_aead;
183 	} cipher_tfm;
184 	unsigned tfms_count;
185 	unsigned long cipher_flags;
186 
187 	/*
188 	 * Layout of each crypto request:
189 	 *
190 	 *   struct skcipher_request
191 	 *      context
192 	 *      padding
193 	 *   struct dm_crypt_request
194 	 *      padding
195 	 *   IV
196 	 *
197 	 * The padding is added so that dm_crypt_request and the IV are
198 	 * correctly aligned.
199 	 */
200 	unsigned int dmreq_start;
201 
202 	unsigned int per_bio_data_size;
203 
204 	unsigned long flags;
205 	unsigned int key_size;
206 	unsigned int key_parts;      /* independent parts in key buffer */
207 	unsigned int key_extra_size; /* additional keys length */
208 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
209 
210 	unsigned int integrity_tag_size;
211 	unsigned int integrity_iv_size;
212 	unsigned int on_disk_tag_size;
213 
214 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
215 	u8 key[0];
216 };
217 
218 #define MIN_IOS		64
219 #define MAX_TAG_SIZE	480
220 #define POOL_ENTRY_SIZE	512
221 
222 static void clone_init(struct dm_crypt_io *, struct bio *);
223 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
224 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
225 					     struct scatterlist *sg);
226 
227 /*
228  * Use this to access cipher attributes that are independent of the key.
229  */
230 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
231 {
232 	return cc->cipher_tfm.tfms[0];
233 }
234 
235 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
236 {
237 	return cc->cipher_tfm.tfms_aead[0];
238 }
239 
240 /*
241  * Different IV generation algorithms:
242  *
243  * plain: the initial vector is the 32-bit little-endian version of the sector
244  *        number, padded with zeros if necessary.
245  *
246  * plain64: the initial vector is the 64-bit little-endian version of the sector
247  *        number, padded with zeros if necessary.
248  *
249  * plain64be: the initial vector is the 64-bit big-endian version of the sector
250  *        number, padded with zeros if necessary.
251  *
252  * essiv: "encrypted sector|salt initial vector", the sector number is
253  *        encrypted with the bulk cipher using a salt as key. The salt
254  *        should be derived from the bulk cipher's key via hashing.
255  *
256  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
257  *        (needed for LRW-32-AES and possible other narrow block modes)
258  *
259  * null: the initial vector is always zero.  Provides compatibility with
260  *       obsolete loop_fish2 devices.  Do not use for new devices.
261  *
262  * lmk:  Compatible implementation of the block chaining mode used
263  *       by the Loop-AES block device encryption system
264  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
265  *       It operates on full 512 byte sectors and uses CBC
266  *       with an IV derived from the sector number, the data and
267  *       optionally extra IV seed.
268  *       This means that after decryption the first block
269  *       of sector must be tweaked according to decrypted data.
270  *       Loop-AES can use three encryption schemes:
271  *         version 1: is plain aes-cbc mode
272  *         version 2: uses 64 multikey scheme with lmk IV generator
273  *         version 3: the same as version 2 with additional IV seed
274  *                   (it uses 65 keys, last key is used as IV seed)
275  *
276  * tcw:  Compatible implementation of the block chaining mode used
277  *       by the TrueCrypt device encryption system (prior to version 4.1).
278  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
279  *       It operates on full 512 byte sectors and uses CBC
280  *       with an IV derived from initial key and the sector number.
281  *       In addition, whitening value is applied on every sector, whitening
282  *       is calculated from initial key, sector number and mixed using CRC32.
283  *       Note that this encryption scheme is vulnerable to watermarking attacks
284  *       and should be used for old compatible containers access only.
285  *
286  * plumb: unimplemented, see:
287  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
288  */
289 
290 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
291 			      struct dm_crypt_request *dmreq)
292 {
293 	memset(iv, 0, cc->iv_size);
294 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
295 
296 	return 0;
297 }
298 
299 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
300 				struct dm_crypt_request *dmreq)
301 {
302 	memset(iv, 0, cc->iv_size);
303 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
304 
305 	return 0;
306 }
307 
308 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
309 				  struct dm_crypt_request *dmreq)
310 {
311 	memset(iv, 0, cc->iv_size);
312 	/* iv_size is at least of size u64; usually it is 16 bytes */
313 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
314 
315 	return 0;
316 }
317 
318 /* Initialise ESSIV - compute salt but no local memory allocations */
319 static int crypt_iv_essiv_init(struct crypt_config *cc)
320 {
321 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
322 	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
323 	struct scatterlist sg;
324 	struct crypto_cipher *essiv_tfm;
325 	int err;
326 
327 	sg_init_one(&sg, cc->key, cc->key_size);
328 	ahash_request_set_tfm(req, essiv->hash_tfm);
329 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
330 	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
331 
332 	err = crypto_ahash_digest(req);
333 	ahash_request_zero(req);
334 	if (err)
335 		return err;
336 
337 	essiv_tfm = cc->iv_private;
338 
339 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
340 			    crypto_ahash_digestsize(essiv->hash_tfm));
341 	if (err)
342 		return err;
343 
344 	return 0;
345 }
346 
347 /* Wipe salt and reset key derived from volume key */
348 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
349 {
350 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
351 	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
352 	struct crypto_cipher *essiv_tfm;
353 	int r, err = 0;
354 
355 	memset(essiv->salt, 0, salt_size);
356 
357 	essiv_tfm = cc->iv_private;
358 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
359 	if (r)
360 		err = r;
361 
362 	return err;
363 }
364 
365 /* Allocate the cipher for ESSIV */
366 static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
367 						struct dm_target *ti,
368 						const u8 *salt,
369 						unsigned int saltsize)
370 {
371 	struct crypto_cipher *essiv_tfm;
372 	int err;
373 
374 	/* Setup the essiv_tfm with the given salt */
375 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
376 	if (IS_ERR(essiv_tfm)) {
377 		ti->error = "Error allocating crypto tfm for ESSIV";
378 		return essiv_tfm;
379 	}
380 
381 	if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
382 		ti->error = "Block size of ESSIV cipher does "
383 			    "not match IV size of block cipher";
384 		crypto_free_cipher(essiv_tfm);
385 		return ERR_PTR(-EINVAL);
386 	}
387 
388 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
389 	if (err) {
390 		ti->error = "Failed to set key for ESSIV cipher";
391 		crypto_free_cipher(essiv_tfm);
392 		return ERR_PTR(err);
393 	}
394 
395 	return essiv_tfm;
396 }
397 
398 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
399 {
400 	struct crypto_cipher *essiv_tfm;
401 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
402 
403 	crypto_free_ahash(essiv->hash_tfm);
404 	essiv->hash_tfm = NULL;
405 
406 	kzfree(essiv->salt);
407 	essiv->salt = NULL;
408 
409 	essiv_tfm = cc->iv_private;
410 
411 	if (essiv_tfm)
412 		crypto_free_cipher(essiv_tfm);
413 
414 	cc->iv_private = NULL;
415 }
416 
417 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
418 			      const char *opts)
419 {
420 	struct crypto_cipher *essiv_tfm = NULL;
421 	struct crypto_ahash *hash_tfm = NULL;
422 	u8 *salt = NULL;
423 	int err;
424 
425 	if (!opts) {
426 		ti->error = "Digest algorithm missing for ESSIV mode";
427 		return -EINVAL;
428 	}
429 
430 	/* Allocate hash algorithm */
431 	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
432 	if (IS_ERR(hash_tfm)) {
433 		ti->error = "Error initializing ESSIV hash";
434 		err = PTR_ERR(hash_tfm);
435 		goto bad;
436 	}
437 
438 	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
439 	if (!salt) {
440 		ti->error = "Error kmallocing salt storage in ESSIV";
441 		err = -ENOMEM;
442 		goto bad;
443 	}
444 
445 	cc->iv_gen_private.essiv.salt = salt;
446 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
447 
448 	essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
449 				       crypto_ahash_digestsize(hash_tfm));
450 	if (IS_ERR(essiv_tfm)) {
451 		crypt_iv_essiv_dtr(cc);
452 		return PTR_ERR(essiv_tfm);
453 	}
454 	cc->iv_private = essiv_tfm;
455 
456 	return 0;
457 
458 bad:
459 	if (hash_tfm && !IS_ERR(hash_tfm))
460 		crypto_free_ahash(hash_tfm);
461 	kfree(salt);
462 	return err;
463 }
464 
465 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
466 			      struct dm_crypt_request *dmreq)
467 {
468 	struct crypto_cipher *essiv_tfm = cc->iv_private;
469 
470 	memset(iv, 0, cc->iv_size);
471 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
472 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
473 
474 	return 0;
475 }
476 
477 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
478 			      const char *opts)
479 {
480 	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
481 	int log = ilog2(bs);
482 
483 	/* we need to calculate how far we must shift the sector count
484 	 * to get the cipher block count, we use this shift in _gen */
485 
486 	if (1 << log != bs) {
487 		ti->error = "cypher blocksize is not a power of 2";
488 		return -EINVAL;
489 	}
490 
491 	if (log > 9) {
492 		ti->error = "cypher blocksize is > 512";
493 		return -EINVAL;
494 	}
495 
496 	cc->iv_gen_private.benbi.shift = 9 - log;
497 
498 	return 0;
499 }
500 
501 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
502 {
503 }
504 
505 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
506 			      struct dm_crypt_request *dmreq)
507 {
508 	__be64 val;
509 
510 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
511 
512 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
513 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
514 
515 	return 0;
516 }
517 
518 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
519 			     struct dm_crypt_request *dmreq)
520 {
521 	memset(iv, 0, cc->iv_size);
522 
523 	return 0;
524 }
525 
526 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
527 {
528 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529 
530 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
531 		crypto_free_shash(lmk->hash_tfm);
532 	lmk->hash_tfm = NULL;
533 
534 	kzfree(lmk->seed);
535 	lmk->seed = NULL;
536 }
537 
538 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
539 			    const char *opts)
540 {
541 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
542 
543 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
544 		ti->error = "Unsupported sector size for LMK";
545 		return -EINVAL;
546 	}
547 
548 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
549 	if (IS_ERR(lmk->hash_tfm)) {
550 		ti->error = "Error initializing LMK hash";
551 		return PTR_ERR(lmk->hash_tfm);
552 	}
553 
554 	/* No seed in LMK version 2 */
555 	if (cc->key_parts == cc->tfms_count) {
556 		lmk->seed = NULL;
557 		return 0;
558 	}
559 
560 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
561 	if (!lmk->seed) {
562 		crypt_iv_lmk_dtr(cc);
563 		ti->error = "Error kmallocing seed storage in LMK";
564 		return -ENOMEM;
565 	}
566 
567 	return 0;
568 }
569 
570 static int crypt_iv_lmk_init(struct crypt_config *cc)
571 {
572 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
573 	int subkey_size = cc->key_size / cc->key_parts;
574 
575 	/* LMK seed is on the position of LMK_KEYS + 1 key */
576 	if (lmk->seed)
577 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
578 		       crypto_shash_digestsize(lmk->hash_tfm));
579 
580 	return 0;
581 }
582 
583 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
584 {
585 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
586 
587 	if (lmk->seed)
588 		memset(lmk->seed, 0, LMK_SEED_SIZE);
589 
590 	return 0;
591 }
592 
593 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
594 			    struct dm_crypt_request *dmreq,
595 			    u8 *data)
596 {
597 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
598 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
599 	struct md5_state md5state;
600 	__le32 buf[4];
601 	int i, r;
602 
603 	desc->tfm = lmk->hash_tfm;
604 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
605 
606 	r = crypto_shash_init(desc);
607 	if (r)
608 		return r;
609 
610 	if (lmk->seed) {
611 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
612 		if (r)
613 			return r;
614 	}
615 
616 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
617 	r = crypto_shash_update(desc, data + 16, 16 * 31);
618 	if (r)
619 		return r;
620 
621 	/* Sector is cropped to 56 bits here */
622 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
623 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
624 	buf[2] = cpu_to_le32(4024);
625 	buf[3] = 0;
626 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
627 	if (r)
628 		return r;
629 
630 	/* No MD5 padding here */
631 	r = crypto_shash_export(desc, &md5state);
632 	if (r)
633 		return r;
634 
635 	for (i = 0; i < MD5_HASH_WORDS; i++)
636 		__cpu_to_le32s(&md5state.hash[i]);
637 	memcpy(iv, &md5state.hash, cc->iv_size);
638 
639 	return 0;
640 }
641 
642 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
643 			    struct dm_crypt_request *dmreq)
644 {
645 	struct scatterlist *sg;
646 	u8 *src;
647 	int r = 0;
648 
649 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
650 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
651 		src = kmap_atomic(sg_page(sg));
652 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
653 		kunmap_atomic(src);
654 	} else
655 		memset(iv, 0, cc->iv_size);
656 
657 	return r;
658 }
659 
660 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
661 			     struct dm_crypt_request *dmreq)
662 {
663 	struct scatterlist *sg;
664 	u8 *dst;
665 	int r;
666 
667 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
668 		return 0;
669 
670 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
671 	dst = kmap_atomic(sg_page(sg));
672 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
673 
674 	/* Tweak the first block of plaintext sector */
675 	if (!r)
676 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
677 
678 	kunmap_atomic(dst);
679 	return r;
680 }
681 
682 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
683 {
684 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
685 
686 	kzfree(tcw->iv_seed);
687 	tcw->iv_seed = NULL;
688 	kzfree(tcw->whitening);
689 	tcw->whitening = NULL;
690 
691 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
692 		crypto_free_shash(tcw->crc32_tfm);
693 	tcw->crc32_tfm = NULL;
694 }
695 
696 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
697 			    const char *opts)
698 {
699 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
700 
701 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
702 		ti->error = "Unsupported sector size for TCW";
703 		return -EINVAL;
704 	}
705 
706 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
707 		ti->error = "Wrong key size for TCW";
708 		return -EINVAL;
709 	}
710 
711 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
712 	if (IS_ERR(tcw->crc32_tfm)) {
713 		ti->error = "Error initializing CRC32 in TCW";
714 		return PTR_ERR(tcw->crc32_tfm);
715 	}
716 
717 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
718 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
719 	if (!tcw->iv_seed || !tcw->whitening) {
720 		crypt_iv_tcw_dtr(cc);
721 		ti->error = "Error allocating seed storage in TCW";
722 		return -ENOMEM;
723 	}
724 
725 	return 0;
726 }
727 
728 static int crypt_iv_tcw_init(struct crypt_config *cc)
729 {
730 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
731 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
732 
733 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
734 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
735 	       TCW_WHITENING_SIZE);
736 
737 	return 0;
738 }
739 
740 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
741 {
742 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
743 
744 	memset(tcw->iv_seed, 0, cc->iv_size);
745 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
746 
747 	return 0;
748 }
749 
750 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
751 				  struct dm_crypt_request *dmreq,
752 				  u8 *data)
753 {
754 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
755 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
756 	u8 buf[TCW_WHITENING_SIZE];
757 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
758 	int i, r;
759 
760 	/* xor whitening with sector number */
761 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
762 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
763 
764 	/* calculate crc32 for every 32bit part and xor it */
765 	desc->tfm = tcw->crc32_tfm;
766 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
767 	for (i = 0; i < 4; i++) {
768 		r = crypto_shash_init(desc);
769 		if (r)
770 			goto out;
771 		r = crypto_shash_update(desc, &buf[i * 4], 4);
772 		if (r)
773 			goto out;
774 		r = crypto_shash_final(desc, &buf[i * 4]);
775 		if (r)
776 			goto out;
777 	}
778 	crypto_xor(&buf[0], &buf[12], 4);
779 	crypto_xor(&buf[4], &buf[8], 4);
780 
781 	/* apply whitening (8 bytes) to whole sector */
782 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
783 		crypto_xor(data + i * 8, buf, 8);
784 out:
785 	memzero_explicit(buf, sizeof(buf));
786 	return r;
787 }
788 
789 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
790 			    struct dm_crypt_request *dmreq)
791 {
792 	struct scatterlist *sg;
793 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
794 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
795 	u8 *src;
796 	int r = 0;
797 
798 	/* Remove whitening from ciphertext */
799 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
800 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
801 		src = kmap_atomic(sg_page(sg));
802 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
803 		kunmap_atomic(src);
804 	}
805 
806 	/* Calculate IV */
807 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
808 	if (cc->iv_size > 8)
809 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
810 			       cc->iv_size - 8);
811 
812 	return r;
813 }
814 
815 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
816 			     struct dm_crypt_request *dmreq)
817 {
818 	struct scatterlist *sg;
819 	u8 *dst;
820 	int r;
821 
822 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
823 		return 0;
824 
825 	/* Apply whitening on ciphertext */
826 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
827 	dst = kmap_atomic(sg_page(sg));
828 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
829 	kunmap_atomic(dst);
830 
831 	return r;
832 }
833 
834 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
835 				struct dm_crypt_request *dmreq)
836 {
837 	/* Used only for writes, there must be an additional space to store IV */
838 	get_random_bytes(iv, cc->iv_size);
839 	return 0;
840 }
841 
842 static const struct crypt_iv_operations crypt_iv_plain_ops = {
843 	.generator = crypt_iv_plain_gen
844 };
845 
846 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
847 	.generator = crypt_iv_plain64_gen
848 };
849 
850 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
851 	.generator = crypt_iv_plain64be_gen
852 };
853 
854 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
855 	.ctr       = crypt_iv_essiv_ctr,
856 	.dtr       = crypt_iv_essiv_dtr,
857 	.init      = crypt_iv_essiv_init,
858 	.wipe      = crypt_iv_essiv_wipe,
859 	.generator = crypt_iv_essiv_gen
860 };
861 
862 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
863 	.ctr	   = crypt_iv_benbi_ctr,
864 	.dtr	   = crypt_iv_benbi_dtr,
865 	.generator = crypt_iv_benbi_gen
866 };
867 
868 static const struct crypt_iv_operations crypt_iv_null_ops = {
869 	.generator = crypt_iv_null_gen
870 };
871 
872 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
873 	.ctr	   = crypt_iv_lmk_ctr,
874 	.dtr	   = crypt_iv_lmk_dtr,
875 	.init	   = crypt_iv_lmk_init,
876 	.wipe	   = crypt_iv_lmk_wipe,
877 	.generator = crypt_iv_lmk_gen,
878 	.post	   = crypt_iv_lmk_post
879 };
880 
881 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
882 	.ctr	   = crypt_iv_tcw_ctr,
883 	.dtr	   = crypt_iv_tcw_dtr,
884 	.init	   = crypt_iv_tcw_init,
885 	.wipe	   = crypt_iv_tcw_wipe,
886 	.generator = crypt_iv_tcw_gen,
887 	.post	   = crypt_iv_tcw_post
888 };
889 
890 static struct crypt_iv_operations crypt_iv_random_ops = {
891 	.generator = crypt_iv_random_gen
892 };
893 
894 /*
895  * Integrity extensions
896  */
897 static bool crypt_integrity_aead(struct crypt_config *cc)
898 {
899 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
900 }
901 
902 static bool crypt_integrity_hmac(struct crypt_config *cc)
903 {
904 	return crypt_integrity_aead(cc) && cc->key_mac_size;
905 }
906 
907 /* Get sg containing data */
908 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
909 					     struct scatterlist *sg)
910 {
911 	if (unlikely(crypt_integrity_aead(cc)))
912 		return &sg[2];
913 
914 	return sg;
915 }
916 
917 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
918 {
919 	struct bio_integrity_payload *bip;
920 	unsigned int tag_len;
921 	int ret;
922 
923 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
924 		return 0;
925 
926 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
927 	if (IS_ERR(bip))
928 		return PTR_ERR(bip);
929 
930 	tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
931 
932 	bip->bip_iter.bi_size = tag_len;
933 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
934 
935 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
936 				     tag_len, offset_in_page(io->integrity_metadata));
937 	if (unlikely(ret != tag_len))
938 		return -ENOMEM;
939 
940 	return 0;
941 }
942 
943 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
944 {
945 #ifdef CONFIG_BLK_DEV_INTEGRITY
946 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
947 
948 	/* From now we require underlying device with our integrity profile */
949 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
950 		ti->error = "Integrity profile not supported.";
951 		return -EINVAL;
952 	}
953 
954 	if (bi->tag_size != cc->on_disk_tag_size ||
955 	    bi->tuple_size != cc->on_disk_tag_size) {
956 		ti->error = "Integrity profile tag size mismatch.";
957 		return -EINVAL;
958 	}
959 	if (1 << bi->interval_exp != cc->sector_size) {
960 		ti->error = "Integrity profile sector size mismatch.";
961 		return -EINVAL;
962 	}
963 
964 	if (crypt_integrity_aead(cc)) {
965 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
966 		DMINFO("Integrity AEAD, tag size %u, IV size %u.",
967 		       cc->integrity_tag_size, cc->integrity_iv_size);
968 
969 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
970 			ti->error = "Integrity AEAD auth tag size is not supported.";
971 			return -EINVAL;
972 		}
973 	} else if (cc->integrity_iv_size)
974 		DMINFO("Additional per-sector space %u bytes for IV.",
975 		       cc->integrity_iv_size);
976 
977 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
978 		ti->error = "Not enough space for integrity tag in the profile.";
979 		return -EINVAL;
980 	}
981 
982 	return 0;
983 #else
984 	ti->error = "Integrity profile not supported.";
985 	return -EINVAL;
986 #endif
987 }
988 
989 static void crypt_convert_init(struct crypt_config *cc,
990 			       struct convert_context *ctx,
991 			       struct bio *bio_out, struct bio *bio_in,
992 			       sector_t sector)
993 {
994 	ctx->bio_in = bio_in;
995 	ctx->bio_out = bio_out;
996 	if (bio_in)
997 		ctx->iter_in = bio_in->bi_iter;
998 	if (bio_out)
999 		ctx->iter_out = bio_out->bi_iter;
1000 	ctx->cc_sector = sector + cc->iv_offset;
1001 	init_completion(&ctx->restart);
1002 }
1003 
1004 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1005 					     void *req)
1006 {
1007 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1008 }
1009 
1010 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1011 {
1012 	return (void *)((char *)dmreq - cc->dmreq_start);
1013 }
1014 
1015 static u8 *iv_of_dmreq(struct crypt_config *cc,
1016 		       struct dm_crypt_request *dmreq)
1017 {
1018 	if (crypt_integrity_aead(cc))
1019 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1020 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1021 	else
1022 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1023 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1024 }
1025 
1026 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1027 		       struct dm_crypt_request *dmreq)
1028 {
1029 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1030 }
1031 
1032 static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1033 		       struct dm_crypt_request *dmreq)
1034 {
1035 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1036 	return (uint64_t*) ptr;
1037 }
1038 
1039 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1040 		       struct dm_crypt_request *dmreq)
1041 {
1042 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1043 		  cc->iv_size + sizeof(uint64_t);
1044 	return (unsigned int*)ptr;
1045 }
1046 
1047 static void *tag_from_dmreq(struct crypt_config *cc,
1048 				struct dm_crypt_request *dmreq)
1049 {
1050 	struct convert_context *ctx = dmreq->ctx;
1051 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1052 
1053 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1054 		cc->on_disk_tag_size];
1055 }
1056 
1057 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1058 			       struct dm_crypt_request *dmreq)
1059 {
1060 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1061 }
1062 
1063 static int crypt_convert_block_aead(struct crypt_config *cc,
1064 				     struct convert_context *ctx,
1065 				     struct aead_request *req,
1066 				     unsigned int tag_offset)
1067 {
1068 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1069 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1070 	struct dm_crypt_request *dmreq;
1071 	u8 *iv, *org_iv, *tag_iv, *tag;
1072 	uint64_t *sector;
1073 	int r = 0;
1074 
1075 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1076 
1077 	/* Reject unexpected unaligned bio. */
1078 	if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1079 		return -EIO;
1080 
1081 	dmreq = dmreq_of_req(cc, req);
1082 	dmreq->iv_sector = ctx->cc_sector;
1083 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1084 		dmreq->iv_sector >>= cc->sector_shift;
1085 	dmreq->ctx = ctx;
1086 
1087 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1088 
1089 	sector = org_sector_of_dmreq(cc, dmreq);
1090 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1091 
1092 	iv = iv_of_dmreq(cc, dmreq);
1093 	org_iv = org_iv_of_dmreq(cc, dmreq);
1094 	tag = tag_from_dmreq(cc, dmreq);
1095 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1096 
1097 	/* AEAD request:
1098 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1099 	 *  | (authenticated) | (auth+encryption) |              |
1100 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1101 	 */
1102 	sg_init_table(dmreq->sg_in, 4);
1103 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1104 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1105 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1106 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1107 
1108 	sg_init_table(dmreq->sg_out, 4);
1109 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1110 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1111 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1112 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1113 
1114 	if (cc->iv_gen_ops) {
1115 		/* For READs use IV stored in integrity metadata */
1116 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1117 			memcpy(org_iv, tag_iv, cc->iv_size);
1118 		} else {
1119 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1120 			if (r < 0)
1121 				return r;
1122 			/* Store generated IV in integrity metadata */
1123 			if (cc->integrity_iv_size)
1124 				memcpy(tag_iv, org_iv, cc->iv_size);
1125 		}
1126 		/* Working copy of IV, to be modified in crypto API */
1127 		memcpy(iv, org_iv, cc->iv_size);
1128 	}
1129 
1130 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1131 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1132 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1133 				       cc->sector_size, iv);
1134 		r = crypto_aead_encrypt(req);
1135 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1136 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1137 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1138 	} else {
1139 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1140 				       cc->sector_size + cc->integrity_tag_size, iv);
1141 		r = crypto_aead_decrypt(req);
1142 	}
1143 
1144 	if (r == -EBADMSG)
1145 		DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1146 			    (unsigned long long)le64_to_cpu(*sector));
1147 
1148 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1149 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1150 
1151 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1152 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1153 
1154 	return r;
1155 }
1156 
1157 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1158 					struct convert_context *ctx,
1159 					struct skcipher_request *req,
1160 					unsigned int tag_offset)
1161 {
1162 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1163 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1164 	struct scatterlist *sg_in, *sg_out;
1165 	struct dm_crypt_request *dmreq;
1166 	u8 *iv, *org_iv, *tag_iv;
1167 	uint64_t *sector;
1168 	int r = 0;
1169 
1170 	/* Reject unexpected unaligned bio. */
1171 	if (unlikely(bv_in.bv_offset & (cc->sector_size - 1)))
1172 		return -EIO;
1173 
1174 	dmreq = dmreq_of_req(cc, req);
1175 	dmreq->iv_sector = ctx->cc_sector;
1176 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1177 		dmreq->iv_sector >>= cc->sector_shift;
1178 	dmreq->ctx = ctx;
1179 
1180 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1181 
1182 	iv = iv_of_dmreq(cc, dmreq);
1183 	org_iv = org_iv_of_dmreq(cc, dmreq);
1184 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1185 
1186 	sector = org_sector_of_dmreq(cc, dmreq);
1187 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1188 
1189 	/* For skcipher we use only the first sg item */
1190 	sg_in  = &dmreq->sg_in[0];
1191 	sg_out = &dmreq->sg_out[0];
1192 
1193 	sg_init_table(sg_in, 1);
1194 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1195 
1196 	sg_init_table(sg_out, 1);
1197 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1198 
1199 	if (cc->iv_gen_ops) {
1200 		/* For READs use IV stored in integrity metadata */
1201 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1202 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1203 		} else {
1204 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1205 			if (r < 0)
1206 				return r;
1207 			/* Store generated IV in integrity metadata */
1208 			if (cc->integrity_iv_size)
1209 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1210 		}
1211 		/* Working copy of IV, to be modified in crypto API */
1212 		memcpy(iv, org_iv, cc->iv_size);
1213 	}
1214 
1215 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1216 
1217 	if (bio_data_dir(ctx->bio_in) == WRITE)
1218 		r = crypto_skcipher_encrypt(req);
1219 	else
1220 		r = crypto_skcipher_decrypt(req);
1221 
1222 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1223 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1224 
1225 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1226 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1227 
1228 	return r;
1229 }
1230 
1231 static void kcryptd_async_done(struct crypto_async_request *async_req,
1232 			       int error);
1233 
1234 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1235 				     struct convert_context *ctx)
1236 {
1237 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1238 
1239 	if (!ctx->r.req)
1240 		ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1241 
1242 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1243 
1244 	/*
1245 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1246 	 * requests if driver request queue is full.
1247 	 */
1248 	skcipher_request_set_callback(ctx->r.req,
1249 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1250 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1251 }
1252 
1253 static void crypt_alloc_req_aead(struct crypt_config *cc,
1254 				 struct convert_context *ctx)
1255 {
1256 	if (!ctx->r.req_aead)
1257 		ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1258 
1259 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1260 
1261 	/*
1262 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1263 	 * requests if driver request queue is full.
1264 	 */
1265 	aead_request_set_callback(ctx->r.req_aead,
1266 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1267 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1268 }
1269 
1270 static void crypt_alloc_req(struct crypt_config *cc,
1271 			    struct convert_context *ctx)
1272 {
1273 	if (crypt_integrity_aead(cc))
1274 		crypt_alloc_req_aead(cc, ctx);
1275 	else
1276 		crypt_alloc_req_skcipher(cc, ctx);
1277 }
1278 
1279 static void crypt_free_req_skcipher(struct crypt_config *cc,
1280 				    struct skcipher_request *req, struct bio *base_bio)
1281 {
1282 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1283 
1284 	if ((struct skcipher_request *)(io + 1) != req)
1285 		mempool_free(req, cc->req_pool);
1286 }
1287 
1288 static void crypt_free_req_aead(struct crypt_config *cc,
1289 				struct aead_request *req, struct bio *base_bio)
1290 {
1291 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1292 
1293 	if ((struct aead_request *)(io + 1) != req)
1294 		mempool_free(req, cc->req_pool);
1295 }
1296 
1297 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1298 {
1299 	if (crypt_integrity_aead(cc))
1300 		crypt_free_req_aead(cc, req, base_bio);
1301 	else
1302 		crypt_free_req_skcipher(cc, req, base_bio);
1303 }
1304 
1305 /*
1306  * Encrypt / decrypt data from one bio to another one (can be the same one)
1307  */
1308 static blk_status_t crypt_convert(struct crypt_config *cc,
1309 			 struct convert_context *ctx)
1310 {
1311 	unsigned int tag_offset = 0;
1312 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1313 	int r;
1314 
1315 	atomic_set(&ctx->cc_pending, 1);
1316 
1317 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1318 
1319 		crypt_alloc_req(cc, ctx);
1320 		atomic_inc(&ctx->cc_pending);
1321 
1322 		if (crypt_integrity_aead(cc))
1323 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1324 		else
1325 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1326 
1327 		switch (r) {
1328 		/*
1329 		 * The request was queued by a crypto driver
1330 		 * but the driver request queue is full, let's wait.
1331 		 */
1332 		case -EBUSY:
1333 			wait_for_completion(&ctx->restart);
1334 			reinit_completion(&ctx->restart);
1335 			/* fall through */
1336 		/*
1337 		 * The request is queued and processed asynchronously,
1338 		 * completion function kcryptd_async_done() will be called.
1339 		 */
1340 		case -EINPROGRESS:
1341 			ctx->r.req = NULL;
1342 			ctx->cc_sector += sector_step;
1343 			tag_offset++;
1344 			continue;
1345 		/*
1346 		 * The request was already processed (synchronously).
1347 		 */
1348 		case 0:
1349 			atomic_dec(&ctx->cc_pending);
1350 			ctx->cc_sector += sector_step;
1351 			tag_offset++;
1352 			cond_resched();
1353 			continue;
1354 		/*
1355 		 * There was a data integrity error.
1356 		 */
1357 		case -EBADMSG:
1358 			atomic_dec(&ctx->cc_pending);
1359 			return BLK_STS_PROTECTION;
1360 		/*
1361 		 * There was an error while processing the request.
1362 		 */
1363 		default:
1364 			atomic_dec(&ctx->cc_pending);
1365 			return BLK_STS_IOERR;
1366 		}
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1373 
1374 /*
1375  * Generate a new unfragmented bio with the given size
1376  * This should never violate the device limitations (but only because
1377  * max_segment_size is being constrained to PAGE_SIZE).
1378  *
1379  * This function may be called concurrently. If we allocate from the mempool
1380  * concurrently, there is a possibility of deadlock. For example, if we have
1381  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1382  * the mempool concurrently, it may deadlock in a situation where both processes
1383  * have allocated 128 pages and the mempool is exhausted.
1384  *
1385  * In order to avoid this scenario we allocate the pages under a mutex.
1386  *
1387  * In order to not degrade performance with excessive locking, we try
1388  * non-blocking allocations without a mutex first but on failure we fallback
1389  * to blocking allocations with a mutex.
1390  */
1391 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1392 {
1393 	struct crypt_config *cc = io->cc;
1394 	struct bio *clone;
1395 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1396 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1397 	unsigned i, len, remaining_size;
1398 	struct page *page;
1399 
1400 retry:
1401 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1402 		mutex_lock(&cc->bio_alloc_lock);
1403 
1404 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1405 	if (!clone)
1406 		goto out;
1407 
1408 	clone_init(io, clone);
1409 
1410 	remaining_size = size;
1411 
1412 	for (i = 0; i < nr_iovecs; i++) {
1413 		page = mempool_alloc(cc->page_pool, gfp_mask);
1414 		if (!page) {
1415 			crypt_free_buffer_pages(cc, clone);
1416 			bio_put(clone);
1417 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1418 			goto retry;
1419 		}
1420 
1421 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1422 
1423 		bio_add_page(clone, page, len, 0);
1424 
1425 		remaining_size -= len;
1426 	}
1427 
1428 	/* Allocate space for integrity tags */
1429 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1430 		crypt_free_buffer_pages(cc, clone);
1431 		bio_put(clone);
1432 		clone = NULL;
1433 	}
1434 out:
1435 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1436 		mutex_unlock(&cc->bio_alloc_lock);
1437 
1438 	return clone;
1439 }
1440 
1441 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1442 {
1443 	unsigned int i;
1444 	struct bio_vec *bv;
1445 
1446 	bio_for_each_segment_all(bv, clone, i) {
1447 		BUG_ON(!bv->bv_page);
1448 		mempool_free(bv->bv_page, cc->page_pool);
1449 		bv->bv_page = NULL;
1450 	}
1451 }
1452 
1453 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1454 			  struct bio *bio, sector_t sector)
1455 {
1456 	io->cc = cc;
1457 	io->base_bio = bio;
1458 	io->sector = sector;
1459 	io->error = 0;
1460 	io->ctx.r.req = NULL;
1461 	io->integrity_metadata = NULL;
1462 	io->integrity_metadata_from_pool = false;
1463 	atomic_set(&io->io_pending, 0);
1464 }
1465 
1466 static void crypt_inc_pending(struct dm_crypt_io *io)
1467 {
1468 	atomic_inc(&io->io_pending);
1469 }
1470 
1471 /*
1472  * One of the bios was finished. Check for completion of
1473  * the whole request and correctly clean up the buffer.
1474  */
1475 static void crypt_dec_pending(struct dm_crypt_io *io)
1476 {
1477 	struct crypt_config *cc = io->cc;
1478 	struct bio *base_bio = io->base_bio;
1479 	blk_status_t error = io->error;
1480 
1481 	if (!atomic_dec_and_test(&io->io_pending))
1482 		return;
1483 
1484 	if (io->ctx.r.req)
1485 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1486 
1487 	if (unlikely(io->integrity_metadata_from_pool))
1488 		mempool_free(io->integrity_metadata, io->cc->tag_pool);
1489 	else
1490 		kfree(io->integrity_metadata);
1491 
1492 	base_bio->bi_status = error;
1493 	bio_endio(base_bio);
1494 }
1495 
1496 /*
1497  * kcryptd/kcryptd_io:
1498  *
1499  * Needed because it would be very unwise to do decryption in an
1500  * interrupt context.
1501  *
1502  * kcryptd performs the actual encryption or decryption.
1503  *
1504  * kcryptd_io performs the IO submission.
1505  *
1506  * They must be separated as otherwise the final stages could be
1507  * starved by new requests which can block in the first stages due
1508  * to memory allocation.
1509  *
1510  * The work is done per CPU global for all dm-crypt instances.
1511  * They should not depend on each other and do not block.
1512  */
1513 static void crypt_endio(struct bio *clone)
1514 {
1515 	struct dm_crypt_io *io = clone->bi_private;
1516 	struct crypt_config *cc = io->cc;
1517 	unsigned rw = bio_data_dir(clone);
1518 	blk_status_t error;
1519 
1520 	/*
1521 	 * free the processed pages
1522 	 */
1523 	if (rw == WRITE)
1524 		crypt_free_buffer_pages(cc, clone);
1525 
1526 	error = clone->bi_status;
1527 	bio_put(clone);
1528 
1529 	if (rw == READ && !error) {
1530 		kcryptd_queue_crypt(io);
1531 		return;
1532 	}
1533 
1534 	if (unlikely(error))
1535 		io->error = error;
1536 
1537 	crypt_dec_pending(io);
1538 }
1539 
1540 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1541 {
1542 	struct crypt_config *cc = io->cc;
1543 
1544 	clone->bi_private = io;
1545 	clone->bi_end_io  = crypt_endio;
1546 	bio_set_dev(clone, cc->dev->bdev);
1547 	clone->bi_opf	  = io->base_bio->bi_opf;
1548 }
1549 
1550 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1551 {
1552 	struct crypt_config *cc = io->cc;
1553 	struct bio *clone;
1554 
1555 	/*
1556 	 * We need the original biovec array in order to decrypt
1557 	 * the whole bio data *afterwards* -- thanks to immutable
1558 	 * biovecs we don't need to worry about the block layer
1559 	 * modifying the biovec array; so leverage bio_clone_fast().
1560 	 */
1561 	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1562 	if (!clone)
1563 		return 1;
1564 
1565 	crypt_inc_pending(io);
1566 
1567 	clone_init(io, clone);
1568 	clone->bi_iter.bi_sector = cc->start + io->sector;
1569 
1570 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1571 		crypt_dec_pending(io);
1572 		bio_put(clone);
1573 		return 1;
1574 	}
1575 
1576 	generic_make_request(clone);
1577 	return 0;
1578 }
1579 
1580 static void kcryptd_io_read_work(struct work_struct *work)
1581 {
1582 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1583 
1584 	crypt_inc_pending(io);
1585 	if (kcryptd_io_read(io, GFP_NOIO))
1586 		io->error = BLK_STS_RESOURCE;
1587 	crypt_dec_pending(io);
1588 }
1589 
1590 static void kcryptd_queue_read(struct dm_crypt_io *io)
1591 {
1592 	struct crypt_config *cc = io->cc;
1593 
1594 	INIT_WORK(&io->work, kcryptd_io_read_work);
1595 	queue_work(cc->io_queue, &io->work);
1596 }
1597 
1598 static void kcryptd_io_write(struct dm_crypt_io *io)
1599 {
1600 	struct bio *clone = io->ctx.bio_out;
1601 
1602 	generic_make_request(clone);
1603 }
1604 
1605 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1606 
1607 static int dmcrypt_write(void *data)
1608 {
1609 	struct crypt_config *cc = data;
1610 	struct dm_crypt_io *io;
1611 
1612 	while (1) {
1613 		struct rb_root write_tree;
1614 		struct blk_plug plug;
1615 
1616 		DECLARE_WAITQUEUE(wait, current);
1617 
1618 		spin_lock_irq(&cc->write_thread_wait.lock);
1619 continue_locked:
1620 
1621 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1622 			goto pop_from_list;
1623 
1624 		set_current_state(TASK_INTERRUPTIBLE);
1625 		__add_wait_queue(&cc->write_thread_wait, &wait);
1626 
1627 		spin_unlock_irq(&cc->write_thread_wait.lock);
1628 
1629 		if (unlikely(kthread_should_stop())) {
1630 			set_current_state(TASK_RUNNING);
1631 			remove_wait_queue(&cc->write_thread_wait, &wait);
1632 			break;
1633 		}
1634 
1635 		schedule();
1636 
1637 		set_current_state(TASK_RUNNING);
1638 		spin_lock_irq(&cc->write_thread_wait.lock);
1639 		__remove_wait_queue(&cc->write_thread_wait, &wait);
1640 		goto continue_locked;
1641 
1642 pop_from_list:
1643 		write_tree = cc->write_tree;
1644 		cc->write_tree = RB_ROOT;
1645 		spin_unlock_irq(&cc->write_thread_wait.lock);
1646 
1647 		BUG_ON(rb_parent(write_tree.rb_node));
1648 
1649 		/*
1650 		 * Note: we cannot walk the tree here with rb_next because
1651 		 * the structures may be freed when kcryptd_io_write is called.
1652 		 */
1653 		blk_start_plug(&plug);
1654 		do {
1655 			io = crypt_io_from_node(rb_first(&write_tree));
1656 			rb_erase(&io->rb_node, &write_tree);
1657 			kcryptd_io_write(io);
1658 		} while (!RB_EMPTY_ROOT(&write_tree));
1659 		blk_finish_plug(&plug);
1660 	}
1661 	return 0;
1662 }
1663 
1664 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1665 {
1666 	struct bio *clone = io->ctx.bio_out;
1667 	struct crypt_config *cc = io->cc;
1668 	unsigned long flags;
1669 	sector_t sector;
1670 	struct rb_node **rbp, *parent;
1671 
1672 	if (unlikely(io->error)) {
1673 		crypt_free_buffer_pages(cc, clone);
1674 		bio_put(clone);
1675 		crypt_dec_pending(io);
1676 		return;
1677 	}
1678 
1679 	/* crypt_convert should have filled the clone bio */
1680 	BUG_ON(io->ctx.iter_out.bi_size);
1681 
1682 	clone->bi_iter.bi_sector = cc->start + io->sector;
1683 
1684 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1685 		generic_make_request(clone);
1686 		return;
1687 	}
1688 
1689 	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1690 	rbp = &cc->write_tree.rb_node;
1691 	parent = NULL;
1692 	sector = io->sector;
1693 	while (*rbp) {
1694 		parent = *rbp;
1695 		if (sector < crypt_io_from_node(parent)->sector)
1696 			rbp = &(*rbp)->rb_left;
1697 		else
1698 			rbp = &(*rbp)->rb_right;
1699 	}
1700 	rb_link_node(&io->rb_node, parent, rbp);
1701 	rb_insert_color(&io->rb_node, &cc->write_tree);
1702 
1703 	wake_up_locked(&cc->write_thread_wait);
1704 	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1705 }
1706 
1707 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1708 {
1709 	struct crypt_config *cc = io->cc;
1710 	struct bio *clone;
1711 	int crypt_finished;
1712 	sector_t sector = io->sector;
1713 	blk_status_t r;
1714 
1715 	/*
1716 	 * Prevent io from disappearing until this function completes.
1717 	 */
1718 	crypt_inc_pending(io);
1719 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1720 
1721 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1722 	if (unlikely(!clone)) {
1723 		io->error = BLK_STS_IOERR;
1724 		goto dec;
1725 	}
1726 
1727 	io->ctx.bio_out = clone;
1728 	io->ctx.iter_out = clone->bi_iter;
1729 
1730 	sector += bio_sectors(clone);
1731 
1732 	crypt_inc_pending(io);
1733 	r = crypt_convert(cc, &io->ctx);
1734 	if (r)
1735 		io->error = r;
1736 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1737 
1738 	/* Encryption was already finished, submit io now */
1739 	if (crypt_finished) {
1740 		kcryptd_crypt_write_io_submit(io, 0);
1741 		io->sector = sector;
1742 	}
1743 
1744 dec:
1745 	crypt_dec_pending(io);
1746 }
1747 
1748 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1749 {
1750 	crypt_dec_pending(io);
1751 }
1752 
1753 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1754 {
1755 	struct crypt_config *cc = io->cc;
1756 	blk_status_t r;
1757 
1758 	crypt_inc_pending(io);
1759 
1760 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1761 			   io->sector);
1762 
1763 	r = crypt_convert(cc, &io->ctx);
1764 	if (r)
1765 		io->error = r;
1766 
1767 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1768 		kcryptd_crypt_read_done(io);
1769 
1770 	crypt_dec_pending(io);
1771 }
1772 
1773 static void kcryptd_async_done(struct crypto_async_request *async_req,
1774 			       int error)
1775 {
1776 	struct dm_crypt_request *dmreq = async_req->data;
1777 	struct convert_context *ctx = dmreq->ctx;
1778 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1779 	struct crypt_config *cc = io->cc;
1780 
1781 	/*
1782 	 * A request from crypto driver backlog is going to be processed now,
1783 	 * finish the completion and continue in crypt_convert().
1784 	 * (Callback will be called for the second time for this request.)
1785 	 */
1786 	if (error == -EINPROGRESS) {
1787 		complete(&ctx->restart);
1788 		return;
1789 	}
1790 
1791 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1792 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1793 
1794 	if (error == -EBADMSG) {
1795 		DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1796 			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1797 		io->error = BLK_STS_PROTECTION;
1798 	} else if (error < 0)
1799 		io->error = BLK_STS_IOERR;
1800 
1801 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1802 
1803 	if (!atomic_dec_and_test(&ctx->cc_pending))
1804 		return;
1805 
1806 	if (bio_data_dir(io->base_bio) == READ)
1807 		kcryptd_crypt_read_done(io);
1808 	else
1809 		kcryptd_crypt_write_io_submit(io, 1);
1810 }
1811 
1812 static void kcryptd_crypt(struct work_struct *work)
1813 {
1814 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1815 
1816 	if (bio_data_dir(io->base_bio) == READ)
1817 		kcryptd_crypt_read_convert(io);
1818 	else
1819 		kcryptd_crypt_write_convert(io);
1820 }
1821 
1822 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1823 {
1824 	struct crypt_config *cc = io->cc;
1825 
1826 	INIT_WORK(&io->work, kcryptd_crypt);
1827 	queue_work(cc->crypt_queue, &io->work);
1828 }
1829 
1830 static void crypt_free_tfms_aead(struct crypt_config *cc)
1831 {
1832 	if (!cc->cipher_tfm.tfms_aead)
1833 		return;
1834 
1835 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1836 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1837 		cc->cipher_tfm.tfms_aead[0] = NULL;
1838 	}
1839 
1840 	kfree(cc->cipher_tfm.tfms_aead);
1841 	cc->cipher_tfm.tfms_aead = NULL;
1842 }
1843 
1844 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1845 {
1846 	unsigned i;
1847 
1848 	if (!cc->cipher_tfm.tfms)
1849 		return;
1850 
1851 	for (i = 0; i < cc->tfms_count; i++)
1852 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1853 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1854 			cc->cipher_tfm.tfms[i] = NULL;
1855 		}
1856 
1857 	kfree(cc->cipher_tfm.tfms);
1858 	cc->cipher_tfm.tfms = NULL;
1859 }
1860 
1861 static void crypt_free_tfms(struct crypt_config *cc)
1862 {
1863 	if (crypt_integrity_aead(cc))
1864 		crypt_free_tfms_aead(cc);
1865 	else
1866 		crypt_free_tfms_skcipher(cc);
1867 }
1868 
1869 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1870 {
1871 	unsigned i;
1872 	int err;
1873 
1874 	cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1875 				      sizeof(struct crypto_skcipher *), GFP_KERNEL);
1876 	if (!cc->cipher_tfm.tfms)
1877 		return -ENOMEM;
1878 
1879 	for (i = 0; i < cc->tfms_count; i++) {
1880 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1881 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1882 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1883 			crypt_free_tfms(cc);
1884 			return err;
1885 		}
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1892 {
1893 	int err;
1894 
1895 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1896 	if (!cc->cipher_tfm.tfms)
1897 		return -ENOMEM;
1898 
1899 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1900 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1901 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1902 		crypt_free_tfms(cc);
1903 		return err;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1910 {
1911 	if (crypt_integrity_aead(cc))
1912 		return crypt_alloc_tfms_aead(cc, ciphermode);
1913 	else
1914 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
1915 }
1916 
1917 static unsigned crypt_subkey_size(struct crypt_config *cc)
1918 {
1919 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1920 }
1921 
1922 static unsigned crypt_authenckey_size(struct crypt_config *cc)
1923 {
1924 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1925 }
1926 
1927 /*
1928  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1929  * the key must be for some reason in special format.
1930  * This funcion converts cc->key to this special format.
1931  */
1932 static void crypt_copy_authenckey(char *p, const void *key,
1933 				  unsigned enckeylen, unsigned authkeylen)
1934 {
1935 	struct crypto_authenc_key_param *param;
1936 	struct rtattr *rta;
1937 
1938 	rta = (struct rtattr *)p;
1939 	param = RTA_DATA(rta);
1940 	param->enckeylen = cpu_to_be32(enckeylen);
1941 	rta->rta_len = RTA_LENGTH(sizeof(*param));
1942 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1943 	p += RTA_SPACE(sizeof(*param));
1944 	memcpy(p, key + enckeylen, authkeylen);
1945 	p += authkeylen;
1946 	memcpy(p, key, enckeylen);
1947 }
1948 
1949 static int crypt_setkey(struct crypt_config *cc)
1950 {
1951 	unsigned subkey_size;
1952 	int err = 0, i, r;
1953 
1954 	/* Ignore extra keys (which are used for IV etc) */
1955 	subkey_size = crypt_subkey_size(cc);
1956 
1957 	if (crypt_integrity_hmac(cc))
1958 		crypt_copy_authenckey(cc->authenc_key, cc->key,
1959 				      subkey_size - cc->key_mac_size,
1960 				      cc->key_mac_size);
1961 	for (i = 0; i < cc->tfms_count; i++) {
1962 		if (crypt_integrity_hmac(cc))
1963 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1964 				cc->authenc_key, crypt_authenckey_size(cc));
1965 		else if (crypt_integrity_aead(cc))
1966 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1967 					       cc->key + (i * subkey_size),
1968 					       subkey_size);
1969 		else
1970 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1971 						   cc->key + (i * subkey_size),
1972 						   subkey_size);
1973 		if (r)
1974 			err = r;
1975 	}
1976 
1977 	if (crypt_integrity_hmac(cc))
1978 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1979 
1980 	return err;
1981 }
1982 
1983 #ifdef CONFIG_KEYS
1984 
1985 static bool contains_whitespace(const char *str)
1986 {
1987 	while (*str)
1988 		if (isspace(*str++))
1989 			return true;
1990 	return false;
1991 }
1992 
1993 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1994 {
1995 	char *new_key_string, *key_desc;
1996 	int ret;
1997 	struct key *key;
1998 	const struct user_key_payload *ukp;
1999 
2000 	/*
2001 	 * Reject key_string with whitespace. dm core currently lacks code for
2002 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2003 	 */
2004 	if (contains_whitespace(key_string)) {
2005 		DMERR("whitespace chars not allowed in key string");
2006 		return -EINVAL;
2007 	}
2008 
2009 	/* look for next ':' separating key_type from key_description */
2010 	key_desc = strpbrk(key_string, ":");
2011 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2012 		return -EINVAL;
2013 
2014 	if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2015 	    strncmp(key_string, "user:", key_desc - key_string + 1))
2016 		return -EINVAL;
2017 
2018 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2019 	if (!new_key_string)
2020 		return -ENOMEM;
2021 
2022 	key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2023 			  key_desc + 1, NULL);
2024 	if (IS_ERR(key)) {
2025 		kzfree(new_key_string);
2026 		return PTR_ERR(key);
2027 	}
2028 
2029 	down_read(&key->sem);
2030 
2031 	ukp = user_key_payload_locked(key);
2032 	if (!ukp) {
2033 		up_read(&key->sem);
2034 		key_put(key);
2035 		kzfree(new_key_string);
2036 		return -EKEYREVOKED;
2037 	}
2038 
2039 	if (cc->key_size != ukp->datalen) {
2040 		up_read(&key->sem);
2041 		key_put(key);
2042 		kzfree(new_key_string);
2043 		return -EINVAL;
2044 	}
2045 
2046 	memcpy(cc->key, ukp->data, cc->key_size);
2047 
2048 	up_read(&key->sem);
2049 	key_put(key);
2050 
2051 	/* clear the flag since following operations may invalidate previously valid key */
2052 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2053 
2054 	ret = crypt_setkey(cc);
2055 
2056 	/* wipe the kernel key payload copy in each case */
2057 	memset(cc->key, 0, cc->key_size * sizeof(u8));
2058 
2059 	if (!ret) {
2060 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2061 		kzfree(cc->key_string);
2062 		cc->key_string = new_key_string;
2063 	} else
2064 		kzfree(new_key_string);
2065 
2066 	return ret;
2067 }
2068 
2069 static int get_key_size(char **key_string)
2070 {
2071 	char *colon, dummy;
2072 	int ret;
2073 
2074 	if (*key_string[0] != ':')
2075 		return strlen(*key_string) >> 1;
2076 
2077 	/* look for next ':' in key string */
2078 	colon = strpbrk(*key_string + 1, ":");
2079 	if (!colon)
2080 		return -EINVAL;
2081 
2082 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2083 		return -EINVAL;
2084 
2085 	*key_string = colon;
2086 
2087 	/* remaining key string should be :<logon|user>:<key_desc> */
2088 
2089 	return ret;
2090 }
2091 
2092 #else
2093 
2094 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2095 {
2096 	return -EINVAL;
2097 }
2098 
2099 static int get_key_size(char **key_string)
2100 {
2101 	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2102 }
2103 
2104 #endif
2105 
2106 static int crypt_set_key(struct crypt_config *cc, char *key)
2107 {
2108 	int r = -EINVAL;
2109 	int key_string_len = strlen(key);
2110 
2111 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2112 	if (!cc->key_size && strcmp(key, "-"))
2113 		goto out;
2114 
2115 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2116 	if (key[0] == ':') {
2117 		r = crypt_set_keyring_key(cc, key + 1);
2118 		goto out;
2119 	}
2120 
2121 	/* clear the flag since following operations may invalidate previously valid key */
2122 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2123 
2124 	/* wipe references to any kernel keyring key */
2125 	kzfree(cc->key_string);
2126 	cc->key_string = NULL;
2127 
2128 	/* Decode key from its hex representation. */
2129 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2130 		goto out;
2131 
2132 	r = crypt_setkey(cc);
2133 	if (!r)
2134 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2135 
2136 out:
2137 	/* Hex key string not needed after here, so wipe it. */
2138 	memset(key, '0', key_string_len);
2139 
2140 	return r;
2141 }
2142 
2143 static int crypt_wipe_key(struct crypt_config *cc)
2144 {
2145 	int r;
2146 
2147 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2148 	get_random_bytes(&cc->key, cc->key_size);
2149 	kzfree(cc->key_string);
2150 	cc->key_string = NULL;
2151 	r = crypt_setkey(cc);
2152 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2153 
2154 	return r;
2155 }
2156 
2157 static void crypt_dtr(struct dm_target *ti)
2158 {
2159 	struct crypt_config *cc = ti->private;
2160 
2161 	ti->private = NULL;
2162 
2163 	if (!cc)
2164 		return;
2165 
2166 	if (cc->write_thread)
2167 		kthread_stop(cc->write_thread);
2168 
2169 	if (cc->io_queue)
2170 		destroy_workqueue(cc->io_queue);
2171 	if (cc->crypt_queue)
2172 		destroy_workqueue(cc->crypt_queue);
2173 
2174 	crypt_free_tfms(cc);
2175 
2176 	if (cc->bs)
2177 		bioset_free(cc->bs);
2178 
2179 	mempool_destroy(cc->page_pool);
2180 	mempool_destroy(cc->req_pool);
2181 	mempool_destroy(cc->tag_pool);
2182 
2183 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2184 		cc->iv_gen_ops->dtr(cc);
2185 
2186 	if (cc->dev)
2187 		dm_put_device(ti, cc->dev);
2188 
2189 	kzfree(cc->cipher);
2190 	kzfree(cc->cipher_string);
2191 	kzfree(cc->key_string);
2192 	kzfree(cc->cipher_auth);
2193 	kzfree(cc->authenc_key);
2194 
2195 	/* Must zero key material before freeing */
2196 	kzfree(cc);
2197 }
2198 
2199 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2200 {
2201 	struct crypt_config *cc = ti->private;
2202 
2203 	if (crypt_integrity_aead(cc))
2204 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2205 	else
2206 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2207 
2208 	if (cc->iv_size)
2209 		/* at least a 64 bit sector number should fit in our buffer */
2210 		cc->iv_size = max(cc->iv_size,
2211 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2212 	else if (ivmode) {
2213 		DMWARN("Selected cipher does not support IVs");
2214 		ivmode = NULL;
2215 	}
2216 
2217 	/* Choose ivmode, see comments at iv code. */
2218 	if (ivmode == NULL)
2219 		cc->iv_gen_ops = NULL;
2220 	else if (strcmp(ivmode, "plain") == 0)
2221 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2222 	else if (strcmp(ivmode, "plain64") == 0)
2223 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2224 	else if (strcmp(ivmode, "plain64be") == 0)
2225 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2226 	else if (strcmp(ivmode, "essiv") == 0)
2227 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2228 	else if (strcmp(ivmode, "benbi") == 0)
2229 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2230 	else if (strcmp(ivmode, "null") == 0)
2231 		cc->iv_gen_ops = &crypt_iv_null_ops;
2232 	else if (strcmp(ivmode, "lmk") == 0) {
2233 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2234 		/*
2235 		 * Version 2 and 3 is recognised according
2236 		 * to length of provided multi-key string.
2237 		 * If present (version 3), last key is used as IV seed.
2238 		 * All keys (including IV seed) are always the same size.
2239 		 */
2240 		if (cc->key_size % cc->key_parts) {
2241 			cc->key_parts++;
2242 			cc->key_extra_size = cc->key_size / cc->key_parts;
2243 		}
2244 	} else if (strcmp(ivmode, "tcw") == 0) {
2245 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2246 		cc->key_parts += 2; /* IV + whitening */
2247 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2248 	} else if (strcmp(ivmode, "random") == 0) {
2249 		cc->iv_gen_ops = &crypt_iv_random_ops;
2250 		/* Need storage space in integrity fields. */
2251 		cc->integrity_iv_size = cc->iv_size;
2252 	} else {
2253 		ti->error = "Invalid IV mode";
2254 		return -EINVAL;
2255 	}
2256 
2257 	return 0;
2258 }
2259 
2260 /*
2261  * Workaround to parse cipher algorithm from crypto API spec.
2262  * The cc->cipher is currently used only in ESSIV.
2263  * This should be probably done by crypto-api calls (once available...)
2264  */
2265 static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2266 {
2267 	const char *alg_name = NULL;
2268 	char *start, *end;
2269 
2270 	if (crypt_integrity_aead(cc)) {
2271 		alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2272 		if (!alg_name)
2273 			return -EINVAL;
2274 		if (crypt_integrity_hmac(cc)) {
2275 			alg_name = strchr(alg_name, ',');
2276 			if (!alg_name)
2277 				return -EINVAL;
2278 		}
2279 		alg_name++;
2280 	} else {
2281 		alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2282 		if (!alg_name)
2283 			return -EINVAL;
2284 	}
2285 
2286 	start = strchr(alg_name, '(');
2287 	end = strchr(alg_name, ')');
2288 
2289 	if (!start && !end) {
2290 		cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2291 		return cc->cipher ? 0 : -ENOMEM;
2292 	}
2293 
2294 	if (!start || !end || ++start >= end)
2295 		return -EINVAL;
2296 
2297 	cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2298 	if (!cc->cipher)
2299 		return -ENOMEM;
2300 
2301 	strncpy(cc->cipher, start, end - start);
2302 
2303 	return 0;
2304 }
2305 
2306 /*
2307  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2308  * The HMAC is needed to calculate tag size (HMAC digest size).
2309  * This should be probably done by crypto-api calls (once available...)
2310  */
2311 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2312 {
2313 	char *start, *end, *mac_alg = NULL;
2314 	struct crypto_ahash *mac;
2315 
2316 	if (!strstarts(cipher_api, "authenc("))
2317 		return 0;
2318 
2319 	start = strchr(cipher_api, '(');
2320 	end = strchr(cipher_api, ',');
2321 	if (!start || !end || ++start > end)
2322 		return -EINVAL;
2323 
2324 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2325 	if (!mac_alg)
2326 		return -ENOMEM;
2327 	strncpy(mac_alg, start, end - start);
2328 
2329 	mac = crypto_alloc_ahash(mac_alg, 0, 0);
2330 	kfree(mac_alg);
2331 
2332 	if (IS_ERR(mac))
2333 		return PTR_ERR(mac);
2334 
2335 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2336 	crypto_free_ahash(mac);
2337 
2338 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2339 	if (!cc->authenc_key)
2340 		return -ENOMEM;
2341 
2342 	return 0;
2343 }
2344 
2345 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2346 				char **ivmode, char **ivopts)
2347 {
2348 	struct crypt_config *cc = ti->private;
2349 	char *tmp, *cipher_api;
2350 	int ret = -EINVAL;
2351 
2352 	cc->tfms_count = 1;
2353 
2354 	/*
2355 	 * New format (capi: prefix)
2356 	 * capi:cipher_api_spec-iv:ivopts
2357 	 */
2358 	tmp = &cipher_in[strlen("capi:")];
2359 	cipher_api = strsep(&tmp, "-");
2360 	*ivmode = strsep(&tmp, ":");
2361 	*ivopts = tmp;
2362 
2363 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2364 		cc->tfms_count = 64;
2365 
2366 	cc->key_parts = cc->tfms_count;
2367 
2368 	/* Allocate cipher */
2369 	ret = crypt_alloc_tfms(cc, cipher_api);
2370 	if (ret < 0) {
2371 		ti->error = "Error allocating crypto tfm";
2372 		return ret;
2373 	}
2374 
2375 	/* Alloc AEAD, can be used only in new format. */
2376 	if (crypt_integrity_aead(cc)) {
2377 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2378 		if (ret < 0) {
2379 			ti->error = "Invalid AEAD cipher spec";
2380 			return -ENOMEM;
2381 		}
2382 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2383 	} else
2384 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2385 
2386 	ret = crypt_ctr_blkdev_cipher(cc);
2387 	if (ret < 0) {
2388 		ti->error = "Cannot allocate cipher string";
2389 		return -ENOMEM;
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2396 				char **ivmode, char **ivopts)
2397 {
2398 	struct crypt_config *cc = ti->private;
2399 	char *tmp, *cipher, *chainmode, *keycount;
2400 	char *cipher_api = NULL;
2401 	int ret = -EINVAL;
2402 	char dummy;
2403 
2404 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2405 		ti->error = "Bad cipher specification";
2406 		return -EINVAL;
2407 	}
2408 
2409 	/*
2410 	 * Legacy dm-crypt cipher specification
2411 	 * cipher[:keycount]-mode-iv:ivopts
2412 	 */
2413 	tmp = cipher_in;
2414 	keycount = strsep(&tmp, "-");
2415 	cipher = strsep(&keycount, ":");
2416 
2417 	if (!keycount)
2418 		cc->tfms_count = 1;
2419 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2420 		 !is_power_of_2(cc->tfms_count)) {
2421 		ti->error = "Bad cipher key count specification";
2422 		return -EINVAL;
2423 	}
2424 	cc->key_parts = cc->tfms_count;
2425 
2426 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
2427 	if (!cc->cipher)
2428 		goto bad_mem;
2429 
2430 	chainmode = strsep(&tmp, "-");
2431 	*ivopts = strsep(&tmp, "-");
2432 	*ivmode = strsep(&*ivopts, ":");
2433 
2434 	if (tmp)
2435 		DMWARN("Ignoring unexpected additional cipher options");
2436 
2437 	/*
2438 	 * For compatibility with the original dm-crypt mapping format, if
2439 	 * only the cipher name is supplied, use cbc-plain.
2440 	 */
2441 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2442 		chainmode = "cbc";
2443 		*ivmode = "plain";
2444 	}
2445 
2446 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2447 		ti->error = "IV mechanism required";
2448 		return -EINVAL;
2449 	}
2450 
2451 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2452 	if (!cipher_api)
2453 		goto bad_mem;
2454 
2455 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2456 		       "%s(%s)", chainmode, cipher);
2457 	if (ret < 0) {
2458 		kfree(cipher_api);
2459 		goto bad_mem;
2460 	}
2461 
2462 	/* Allocate cipher */
2463 	ret = crypt_alloc_tfms(cc, cipher_api);
2464 	if (ret < 0) {
2465 		ti->error = "Error allocating crypto tfm";
2466 		kfree(cipher_api);
2467 		return ret;
2468 	}
2469 
2470 	return 0;
2471 bad_mem:
2472 	ti->error = "Cannot allocate cipher strings";
2473 	return -ENOMEM;
2474 }
2475 
2476 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2477 {
2478 	struct crypt_config *cc = ti->private;
2479 	char *ivmode = NULL, *ivopts = NULL;
2480 	int ret;
2481 
2482 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2483 	if (!cc->cipher_string) {
2484 		ti->error = "Cannot allocate cipher strings";
2485 		return -ENOMEM;
2486 	}
2487 
2488 	if (strstarts(cipher_in, "capi:"))
2489 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2490 	else
2491 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2492 	if (ret)
2493 		return ret;
2494 
2495 	/* Initialize IV */
2496 	ret = crypt_ctr_ivmode(ti, ivmode);
2497 	if (ret < 0)
2498 		return ret;
2499 
2500 	/* Initialize and set key */
2501 	ret = crypt_set_key(cc, key);
2502 	if (ret < 0) {
2503 		ti->error = "Error decoding and setting key";
2504 		return ret;
2505 	}
2506 
2507 	/* Allocate IV */
2508 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2509 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2510 		if (ret < 0) {
2511 			ti->error = "Error creating IV";
2512 			return ret;
2513 		}
2514 	}
2515 
2516 	/* Initialize IV (set keys for ESSIV etc) */
2517 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2518 		ret = cc->iv_gen_ops->init(cc);
2519 		if (ret < 0) {
2520 			ti->error = "Error initialising IV";
2521 			return ret;
2522 		}
2523 	}
2524 
2525 	return ret;
2526 }
2527 
2528 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2529 {
2530 	struct crypt_config *cc = ti->private;
2531 	struct dm_arg_set as;
2532 	static const struct dm_arg _args[] = {
2533 		{0, 6, "Invalid number of feature args"},
2534 	};
2535 	unsigned int opt_params, val;
2536 	const char *opt_string, *sval;
2537 	char dummy;
2538 	int ret;
2539 
2540 	/* Optional parameters */
2541 	as.argc = argc;
2542 	as.argv = argv;
2543 
2544 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2545 	if (ret)
2546 		return ret;
2547 
2548 	while (opt_params--) {
2549 		opt_string = dm_shift_arg(&as);
2550 		if (!opt_string) {
2551 			ti->error = "Not enough feature arguments";
2552 			return -EINVAL;
2553 		}
2554 
2555 		if (!strcasecmp(opt_string, "allow_discards"))
2556 			ti->num_discard_bios = 1;
2557 
2558 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2559 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2560 
2561 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2562 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2563 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2564 			if (val == 0 || val > MAX_TAG_SIZE) {
2565 				ti->error = "Invalid integrity arguments";
2566 				return -EINVAL;
2567 			}
2568 			cc->on_disk_tag_size = val;
2569 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2570 			if (!strcasecmp(sval, "aead")) {
2571 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2572 			} else  if (strcasecmp(sval, "none")) {
2573 				ti->error = "Unknown integrity profile";
2574 				return -EINVAL;
2575 			}
2576 
2577 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2578 			if (!cc->cipher_auth)
2579 				return -ENOMEM;
2580 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2581 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2582 			    cc->sector_size > 4096 ||
2583 			    (cc->sector_size & (cc->sector_size - 1))) {
2584 				ti->error = "Invalid feature value for sector_size";
2585 				return -EINVAL;
2586 			}
2587 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2588 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
2589 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2590 		else {
2591 			ti->error = "Invalid feature arguments";
2592 			return -EINVAL;
2593 		}
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 /*
2600  * Construct an encryption mapping:
2601  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2602  */
2603 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2604 {
2605 	struct crypt_config *cc;
2606 	int key_size;
2607 	unsigned int align_mask;
2608 	unsigned long long tmpll;
2609 	int ret;
2610 	size_t iv_size_padding, additional_req_size;
2611 	char dummy;
2612 
2613 	if (argc < 5) {
2614 		ti->error = "Not enough arguments";
2615 		return -EINVAL;
2616 	}
2617 
2618 	key_size = get_key_size(&argv[1]);
2619 	if (key_size < 0) {
2620 		ti->error = "Cannot parse key size";
2621 		return -EINVAL;
2622 	}
2623 
2624 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2625 	if (!cc) {
2626 		ti->error = "Cannot allocate encryption context";
2627 		return -ENOMEM;
2628 	}
2629 	cc->key_size = key_size;
2630 	cc->sector_size = (1 << SECTOR_SHIFT);
2631 	cc->sector_shift = 0;
2632 
2633 	ti->private = cc;
2634 
2635 	/* Optional parameters need to be read before cipher constructor */
2636 	if (argc > 5) {
2637 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2638 		if (ret)
2639 			goto bad;
2640 	}
2641 
2642 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2643 	if (ret < 0)
2644 		goto bad;
2645 
2646 	if (crypt_integrity_aead(cc)) {
2647 		cc->dmreq_start = sizeof(struct aead_request);
2648 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2649 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2650 	} else {
2651 		cc->dmreq_start = sizeof(struct skcipher_request);
2652 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2653 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2654 	}
2655 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2656 
2657 	if (align_mask < CRYPTO_MINALIGN) {
2658 		/* Allocate the padding exactly */
2659 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2660 				& align_mask;
2661 	} else {
2662 		/*
2663 		 * If the cipher requires greater alignment than kmalloc
2664 		 * alignment, we don't know the exact position of the
2665 		 * initialization vector. We must assume worst case.
2666 		 */
2667 		iv_size_padding = align_mask;
2668 	}
2669 
2670 	ret = -ENOMEM;
2671 
2672 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2673 	additional_req_size = sizeof(struct dm_crypt_request) +
2674 		iv_size_padding + cc->iv_size +
2675 		cc->iv_size +
2676 		sizeof(uint64_t) +
2677 		sizeof(unsigned int);
2678 
2679 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2680 	if (!cc->req_pool) {
2681 		ti->error = "Cannot allocate crypt request mempool";
2682 		goto bad;
2683 	}
2684 
2685 	cc->per_bio_data_size = ti->per_io_data_size =
2686 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2687 		      ARCH_KMALLOC_MINALIGN);
2688 
2689 	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
2690 	if (!cc->page_pool) {
2691 		ti->error = "Cannot allocate page mempool";
2692 		goto bad;
2693 	}
2694 
2695 	cc->bs = bioset_create(MIN_IOS, 0, (BIOSET_NEED_BVECS |
2696 					    BIOSET_NEED_RESCUER));
2697 	if (!cc->bs) {
2698 		ti->error = "Cannot allocate crypt bioset";
2699 		goto bad;
2700 	}
2701 
2702 	mutex_init(&cc->bio_alloc_lock);
2703 
2704 	ret = -EINVAL;
2705 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2706 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2707 		ti->error = "Invalid iv_offset sector";
2708 		goto bad;
2709 	}
2710 	cc->iv_offset = tmpll;
2711 
2712 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2713 	if (ret) {
2714 		ti->error = "Device lookup failed";
2715 		goto bad;
2716 	}
2717 
2718 	ret = -EINVAL;
2719 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2720 		ti->error = "Invalid device sector";
2721 		goto bad;
2722 	}
2723 	cc->start = tmpll;
2724 
2725 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2726 		ret = crypt_integrity_ctr(cc, ti);
2727 		if (ret)
2728 			goto bad;
2729 
2730 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2731 		if (!cc->tag_pool_max_sectors)
2732 			cc->tag_pool_max_sectors = 1;
2733 
2734 		cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2735 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2736 		if (!cc->tag_pool) {
2737 			ti->error = "Cannot allocate integrity tags mempool";
2738 			goto bad;
2739 		}
2740 
2741 		cc->tag_pool_max_sectors <<= cc->sector_shift;
2742 	}
2743 
2744 	ret = -ENOMEM;
2745 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2746 	if (!cc->io_queue) {
2747 		ti->error = "Couldn't create kcryptd io queue";
2748 		goto bad;
2749 	}
2750 
2751 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2752 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2753 	else
2754 		cc->crypt_queue = alloc_workqueue("kcryptd",
2755 						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2756 						  num_online_cpus());
2757 	if (!cc->crypt_queue) {
2758 		ti->error = "Couldn't create kcryptd queue";
2759 		goto bad;
2760 	}
2761 
2762 	init_waitqueue_head(&cc->write_thread_wait);
2763 	cc->write_tree = RB_ROOT;
2764 
2765 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2766 	if (IS_ERR(cc->write_thread)) {
2767 		ret = PTR_ERR(cc->write_thread);
2768 		cc->write_thread = NULL;
2769 		ti->error = "Couldn't spawn write thread";
2770 		goto bad;
2771 	}
2772 	wake_up_process(cc->write_thread);
2773 
2774 	ti->num_flush_bios = 1;
2775 
2776 	return 0;
2777 
2778 bad:
2779 	crypt_dtr(ti);
2780 	return ret;
2781 }
2782 
2783 static int crypt_map(struct dm_target *ti, struct bio *bio)
2784 {
2785 	struct dm_crypt_io *io;
2786 	struct crypt_config *cc = ti->private;
2787 
2788 	/*
2789 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2790 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2791 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2792 	 */
2793 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2794 	    bio_op(bio) == REQ_OP_DISCARD)) {
2795 		bio_set_dev(bio, cc->dev->bdev);
2796 		if (bio_sectors(bio))
2797 			bio->bi_iter.bi_sector = cc->start +
2798 				dm_target_offset(ti, bio->bi_iter.bi_sector);
2799 		return DM_MAPIO_REMAPPED;
2800 	}
2801 
2802 	/*
2803 	 * Check if bio is too large, split as needed.
2804 	 */
2805 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2806 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2807 		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2808 
2809 	/*
2810 	 * Ensure that bio is a multiple of internal sector encryption size
2811 	 * and is aligned to this size as defined in IO hints.
2812 	 */
2813 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2814 		return DM_MAPIO_KILL;
2815 
2816 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2817 		return DM_MAPIO_KILL;
2818 
2819 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
2820 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2821 
2822 	if (cc->on_disk_tag_size) {
2823 		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2824 
2825 		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2826 		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2827 				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2828 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2829 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2830 			io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2831 			io->integrity_metadata_from_pool = true;
2832 		}
2833 	}
2834 
2835 	if (crypt_integrity_aead(cc))
2836 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2837 	else
2838 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
2839 
2840 	if (bio_data_dir(io->base_bio) == READ) {
2841 		if (kcryptd_io_read(io, GFP_NOWAIT))
2842 			kcryptd_queue_read(io);
2843 	} else
2844 		kcryptd_queue_crypt(io);
2845 
2846 	return DM_MAPIO_SUBMITTED;
2847 }
2848 
2849 static void crypt_status(struct dm_target *ti, status_type_t type,
2850 			 unsigned status_flags, char *result, unsigned maxlen)
2851 {
2852 	struct crypt_config *cc = ti->private;
2853 	unsigned i, sz = 0;
2854 	int num_feature_args = 0;
2855 
2856 	switch (type) {
2857 	case STATUSTYPE_INFO:
2858 		result[0] = '\0';
2859 		break;
2860 
2861 	case STATUSTYPE_TABLE:
2862 		DMEMIT("%s ", cc->cipher_string);
2863 
2864 		if (cc->key_size > 0) {
2865 			if (cc->key_string)
2866 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2867 			else
2868 				for (i = 0; i < cc->key_size; i++)
2869 					DMEMIT("%02x", cc->key[i]);
2870 		} else
2871 			DMEMIT("-");
2872 
2873 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2874 				cc->dev->name, (unsigned long long)cc->start);
2875 
2876 		num_feature_args += !!ti->num_discard_bios;
2877 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2878 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2879 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2880 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2881 		if (cc->on_disk_tag_size)
2882 			num_feature_args++;
2883 		if (num_feature_args) {
2884 			DMEMIT(" %d", num_feature_args);
2885 			if (ti->num_discard_bios)
2886 				DMEMIT(" allow_discards");
2887 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2888 				DMEMIT(" same_cpu_crypt");
2889 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2890 				DMEMIT(" submit_from_crypt_cpus");
2891 			if (cc->on_disk_tag_size)
2892 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2893 			if (cc->sector_size != (1 << SECTOR_SHIFT))
2894 				DMEMIT(" sector_size:%d", cc->sector_size);
2895 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2896 				DMEMIT(" iv_large_sectors");
2897 		}
2898 
2899 		break;
2900 	}
2901 }
2902 
2903 static void crypt_postsuspend(struct dm_target *ti)
2904 {
2905 	struct crypt_config *cc = ti->private;
2906 
2907 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2908 }
2909 
2910 static int crypt_preresume(struct dm_target *ti)
2911 {
2912 	struct crypt_config *cc = ti->private;
2913 
2914 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2915 		DMERR("aborting resume - crypt key is not set.");
2916 		return -EAGAIN;
2917 	}
2918 
2919 	return 0;
2920 }
2921 
2922 static void crypt_resume(struct dm_target *ti)
2923 {
2924 	struct crypt_config *cc = ti->private;
2925 
2926 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2927 }
2928 
2929 /* Message interface
2930  *	key set <key>
2931  *	key wipe
2932  */
2933 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2934 {
2935 	struct crypt_config *cc = ti->private;
2936 	int key_size, ret = -EINVAL;
2937 
2938 	if (argc < 2)
2939 		goto error;
2940 
2941 	if (!strcasecmp(argv[0], "key")) {
2942 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2943 			DMWARN("not suspended during key manipulation.");
2944 			return -EINVAL;
2945 		}
2946 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
2947 			/* The key size may not be changed. */
2948 			key_size = get_key_size(&argv[2]);
2949 			if (key_size < 0 || cc->key_size != key_size) {
2950 				memset(argv[2], '0', strlen(argv[2]));
2951 				return -EINVAL;
2952 			}
2953 
2954 			ret = crypt_set_key(cc, argv[2]);
2955 			if (ret)
2956 				return ret;
2957 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2958 				ret = cc->iv_gen_ops->init(cc);
2959 			return ret;
2960 		}
2961 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2962 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2963 				ret = cc->iv_gen_ops->wipe(cc);
2964 				if (ret)
2965 					return ret;
2966 			}
2967 			return crypt_wipe_key(cc);
2968 		}
2969 	}
2970 
2971 error:
2972 	DMWARN("unrecognised message received.");
2973 	return -EINVAL;
2974 }
2975 
2976 static int crypt_iterate_devices(struct dm_target *ti,
2977 				 iterate_devices_callout_fn fn, void *data)
2978 {
2979 	struct crypt_config *cc = ti->private;
2980 
2981 	return fn(ti, cc->dev, cc->start, ti->len, data);
2982 }
2983 
2984 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2985 {
2986 	struct crypt_config *cc = ti->private;
2987 
2988 	/*
2989 	 * Unfortunate constraint that is required to avoid the potential
2990 	 * for exceeding underlying device's max_segments limits -- due to
2991 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2992 	 * bio that are not as physically contiguous as the original bio.
2993 	 */
2994 	limits->max_segment_size = PAGE_SIZE;
2995 
2996 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
2997 		limits->logical_block_size = cc->sector_size;
2998 		limits->physical_block_size = cc->sector_size;
2999 		blk_limits_io_min(limits, cc->sector_size);
3000 	}
3001 }
3002 
3003 static struct target_type crypt_target = {
3004 	.name   = "crypt",
3005 	.version = {1, 18, 0},
3006 	.module = THIS_MODULE,
3007 	.ctr    = crypt_ctr,
3008 	.dtr    = crypt_dtr,
3009 	.map    = crypt_map,
3010 	.status = crypt_status,
3011 	.postsuspend = crypt_postsuspend,
3012 	.preresume = crypt_preresume,
3013 	.resume = crypt_resume,
3014 	.message = crypt_message,
3015 	.iterate_devices = crypt_iterate_devices,
3016 	.io_hints = crypt_io_hints,
3017 };
3018 
3019 static int __init dm_crypt_init(void)
3020 {
3021 	int r;
3022 
3023 	r = dm_register_target(&crypt_target);
3024 	if (r < 0)
3025 		DMERR("register failed %d", r);
3026 
3027 	return r;
3028 }
3029 
3030 static void __exit dm_crypt_exit(void)
3031 {
3032 	dm_unregister_target(&crypt_target);
3033 }
3034 
3035 module_init(dm_crypt_init);
3036 module_exit(dm_crypt_exit);
3037 
3038 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3039 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3040 MODULE_LICENSE("GPL");
3041