1 /* 2 * Copyright (C) 2003 Jana Saout <jana@saout.de> 3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved. 5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/completion.h> 11 #include <linux/err.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/kernel.h> 15 #include <linux/key.h> 16 #include <linux/bio.h> 17 #include <linux/blkdev.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/crypto.h> 21 #include <linux/workqueue.h> 22 #include <linux/kthread.h> 23 #include <linux/backing-dev.h> 24 #include <linux/atomic.h> 25 #include <linux/scatterlist.h> 26 #include <linux/rbtree.h> 27 #include <linux/ctype.h> 28 #include <asm/page.h> 29 #include <asm/unaligned.h> 30 #include <crypto/hash.h> 31 #include <crypto/md5.h> 32 #include <crypto/algapi.h> 33 #include <crypto/skcipher.h> 34 #include <crypto/aead.h> 35 #include <crypto/authenc.h> 36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ 37 #include <keys/user-type.h> 38 39 #include <linux/device-mapper.h> 40 41 #define DM_MSG_PREFIX "crypt" 42 43 /* 44 * context holding the current state of a multi-part conversion 45 */ 46 struct convert_context { 47 struct completion restart; 48 struct bio *bio_in; 49 struct bio *bio_out; 50 struct bvec_iter iter_in; 51 struct bvec_iter iter_out; 52 sector_t cc_sector; 53 atomic_t cc_pending; 54 union { 55 struct skcipher_request *req; 56 struct aead_request *req_aead; 57 } r; 58 59 }; 60 61 /* 62 * per bio private data 63 */ 64 struct dm_crypt_io { 65 struct crypt_config *cc; 66 struct bio *base_bio; 67 u8 *integrity_metadata; 68 bool integrity_metadata_from_pool; 69 struct work_struct work; 70 71 struct convert_context ctx; 72 73 atomic_t io_pending; 74 blk_status_t error; 75 sector_t sector; 76 77 struct rb_node rb_node; 78 } CRYPTO_MINALIGN_ATTR; 79 80 struct dm_crypt_request { 81 struct convert_context *ctx; 82 struct scatterlist sg_in[4]; 83 struct scatterlist sg_out[4]; 84 sector_t iv_sector; 85 }; 86 87 struct crypt_config; 88 89 struct crypt_iv_operations { 90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 91 const char *opts); 92 void (*dtr)(struct crypt_config *cc); 93 int (*init)(struct crypt_config *cc); 94 int (*wipe)(struct crypt_config *cc); 95 int (*generator)(struct crypt_config *cc, u8 *iv, 96 struct dm_crypt_request *dmreq); 97 int (*post)(struct crypt_config *cc, u8 *iv, 98 struct dm_crypt_request *dmreq); 99 }; 100 101 struct iv_essiv_private { 102 struct crypto_ahash *hash_tfm; 103 u8 *salt; 104 }; 105 106 struct iv_benbi_private { 107 int shift; 108 }; 109 110 #define LMK_SEED_SIZE 64 /* hash + 0 */ 111 struct iv_lmk_private { 112 struct crypto_shash *hash_tfm; 113 u8 *seed; 114 }; 115 116 #define TCW_WHITENING_SIZE 16 117 struct iv_tcw_private { 118 struct crypto_shash *crc32_tfm; 119 u8 *iv_seed; 120 u8 *whitening; 121 }; 122 123 /* 124 * Crypt: maps a linear range of a block device 125 * and encrypts / decrypts at the same time. 126 */ 127 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 128 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD }; 129 130 enum cipher_flags { 131 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */ 132 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */ 133 }; 134 135 /* 136 * The fields in here must be read only after initialization. 137 */ 138 struct crypt_config { 139 struct dm_dev *dev; 140 sector_t start; 141 142 /* 143 * pool for per bio private data, crypto requests, 144 * encryption requeusts/buffer pages and integrity tags 145 */ 146 mempool_t *req_pool; 147 mempool_t *page_pool; 148 mempool_t *tag_pool; 149 unsigned tag_pool_max_sectors; 150 151 struct bio_set *bs; 152 struct mutex bio_alloc_lock; 153 154 struct workqueue_struct *io_queue; 155 struct workqueue_struct *crypt_queue; 156 157 struct task_struct *write_thread; 158 wait_queue_head_t write_thread_wait; 159 struct rb_root write_tree; 160 161 char *cipher; 162 char *cipher_string; 163 char *cipher_auth; 164 char *key_string; 165 166 const struct crypt_iv_operations *iv_gen_ops; 167 union { 168 struct iv_essiv_private essiv; 169 struct iv_benbi_private benbi; 170 struct iv_lmk_private lmk; 171 struct iv_tcw_private tcw; 172 } iv_gen_private; 173 sector_t iv_offset; 174 unsigned int iv_size; 175 unsigned short int sector_size; 176 unsigned char sector_shift; 177 178 /* ESSIV: struct crypto_cipher *essiv_tfm */ 179 void *iv_private; 180 union { 181 struct crypto_skcipher **tfms; 182 struct crypto_aead **tfms_aead; 183 } cipher_tfm; 184 unsigned tfms_count; 185 unsigned long cipher_flags; 186 187 /* 188 * Layout of each crypto request: 189 * 190 * struct skcipher_request 191 * context 192 * padding 193 * struct dm_crypt_request 194 * padding 195 * IV 196 * 197 * The padding is added so that dm_crypt_request and the IV are 198 * correctly aligned. 199 */ 200 unsigned int dmreq_start; 201 202 unsigned int per_bio_data_size; 203 204 unsigned long flags; 205 unsigned int key_size; 206 unsigned int key_parts; /* independent parts in key buffer */ 207 unsigned int key_extra_size; /* additional keys length */ 208 unsigned int key_mac_size; /* MAC key size for authenc(...) */ 209 210 unsigned int integrity_tag_size; 211 unsigned int integrity_iv_size; 212 unsigned int on_disk_tag_size; 213 214 u8 *authenc_key; /* space for keys in authenc() format (if used) */ 215 u8 key[0]; 216 }; 217 218 #define MIN_IOS 64 219 #define MAX_TAG_SIZE 480 220 #define POOL_ENTRY_SIZE 512 221 222 static void clone_init(struct dm_crypt_io *, struct bio *); 223 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 224 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 225 struct scatterlist *sg); 226 227 /* 228 * Use this to access cipher attributes that are independent of the key. 229 */ 230 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 231 { 232 return cc->cipher_tfm.tfms[0]; 233 } 234 235 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) 236 { 237 return cc->cipher_tfm.tfms_aead[0]; 238 } 239 240 /* 241 * Different IV generation algorithms: 242 * 243 * plain: the initial vector is the 32-bit little-endian version of the sector 244 * number, padded with zeros if necessary. 245 * 246 * plain64: the initial vector is the 64-bit little-endian version of the sector 247 * number, padded with zeros if necessary. 248 * 249 * plain64be: the initial vector is the 64-bit big-endian version of the sector 250 * number, padded with zeros if necessary. 251 * 252 * essiv: "encrypted sector|salt initial vector", the sector number is 253 * encrypted with the bulk cipher using a salt as key. The salt 254 * should be derived from the bulk cipher's key via hashing. 255 * 256 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 257 * (needed for LRW-32-AES and possible other narrow block modes) 258 * 259 * null: the initial vector is always zero. Provides compatibility with 260 * obsolete loop_fish2 devices. Do not use for new devices. 261 * 262 * lmk: Compatible implementation of the block chaining mode used 263 * by the Loop-AES block device encryption system 264 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 265 * It operates on full 512 byte sectors and uses CBC 266 * with an IV derived from the sector number, the data and 267 * optionally extra IV seed. 268 * This means that after decryption the first block 269 * of sector must be tweaked according to decrypted data. 270 * Loop-AES can use three encryption schemes: 271 * version 1: is plain aes-cbc mode 272 * version 2: uses 64 multikey scheme with lmk IV generator 273 * version 3: the same as version 2 with additional IV seed 274 * (it uses 65 keys, last key is used as IV seed) 275 * 276 * tcw: Compatible implementation of the block chaining mode used 277 * by the TrueCrypt device encryption system (prior to version 4.1). 278 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 279 * It operates on full 512 byte sectors and uses CBC 280 * with an IV derived from initial key and the sector number. 281 * In addition, whitening value is applied on every sector, whitening 282 * is calculated from initial key, sector number and mixed using CRC32. 283 * Note that this encryption scheme is vulnerable to watermarking attacks 284 * and should be used for old compatible containers access only. 285 * 286 * plumb: unimplemented, see: 287 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 288 */ 289 290 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 291 struct dm_crypt_request *dmreq) 292 { 293 memset(iv, 0, cc->iv_size); 294 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 295 296 return 0; 297 } 298 299 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 300 struct dm_crypt_request *dmreq) 301 { 302 memset(iv, 0, cc->iv_size); 303 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 304 305 return 0; 306 } 307 308 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, 309 struct dm_crypt_request *dmreq) 310 { 311 memset(iv, 0, cc->iv_size); 312 /* iv_size is at least of size u64; usually it is 16 bytes */ 313 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); 314 315 return 0; 316 } 317 318 /* Initialise ESSIV - compute salt but no local memory allocations */ 319 static int crypt_iv_essiv_init(struct crypt_config *cc) 320 { 321 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 322 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm); 323 struct scatterlist sg; 324 struct crypto_cipher *essiv_tfm; 325 int err; 326 327 sg_init_one(&sg, cc->key, cc->key_size); 328 ahash_request_set_tfm(req, essiv->hash_tfm); 329 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 330 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size); 331 332 err = crypto_ahash_digest(req); 333 ahash_request_zero(req); 334 if (err) 335 return err; 336 337 essiv_tfm = cc->iv_private; 338 339 err = crypto_cipher_setkey(essiv_tfm, essiv->salt, 340 crypto_ahash_digestsize(essiv->hash_tfm)); 341 if (err) 342 return err; 343 344 return 0; 345 } 346 347 /* Wipe salt and reset key derived from volume key */ 348 static int crypt_iv_essiv_wipe(struct crypt_config *cc) 349 { 350 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 351 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm); 352 struct crypto_cipher *essiv_tfm; 353 int r, err = 0; 354 355 memset(essiv->salt, 0, salt_size); 356 357 essiv_tfm = cc->iv_private; 358 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size); 359 if (r) 360 err = r; 361 362 return err; 363 } 364 365 /* Allocate the cipher for ESSIV */ 366 static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc, 367 struct dm_target *ti, 368 const u8 *salt, 369 unsigned int saltsize) 370 { 371 struct crypto_cipher *essiv_tfm; 372 int err; 373 374 /* Setup the essiv_tfm with the given salt */ 375 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); 376 if (IS_ERR(essiv_tfm)) { 377 ti->error = "Error allocating crypto tfm for ESSIV"; 378 return essiv_tfm; 379 } 380 381 if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) { 382 ti->error = "Block size of ESSIV cipher does " 383 "not match IV size of block cipher"; 384 crypto_free_cipher(essiv_tfm); 385 return ERR_PTR(-EINVAL); 386 } 387 388 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); 389 if (err) { 390 ti->error = "Failed to set key for ESSIV cipher"; 391 crypto_free_cipher(essiv_tfm); 392 return ERR_PTR(err); 393 } 394 395 return essiv_tfm; 396 } 397 398 static void crypt_iv_essiv_dtr(struct crypt_config *cc) 399 { 400 struct crypto_cipher *essiv_tfm; 401 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv; 402 403 crypto_free_ahash(essiv->hash_tfm); 404 essiv->hash_tfm = NULL; 405 406 kzfree(essiv->salt); 407 essiv->salt = NULL; 408 409 essiv_tfm = cc->iv_private; 410 411 if (essiv_tfm) 412 crypto_free_cipher(essiv_tfm); 413 414 cc->iv_private = NULL; 415 } 416 417 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, 418 const char *opts) 419 { 420 struct crypto_cipher *essiv_tfm = NULL; 421 struct crypto_ahash *hash_tfm = NULL; 422 u8 *salt = NULL; 423 int err; 424 425 if (!opts) { 426 ti->error = "Digest algorithm missing for ESSIV mode"; 427 return -EINVAL; 428 } 429 430 /* Allocate hash algorithm */ 431 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC); 432 if (IS_ERR(hash_tfm)) { 433 ti->error = "Error initializing ESSIV hash"; 434 err = PTR_ERR(hash_tfm); 435 goto bad; 436 } 437 438 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL); 439 if (!salt) { 440 ti->error = "Error kmallocing salt storage in ESSIV"; 441 err = -ENOMEM; 442 goto bad; 443 } 444 445 cc->iv_gen_private.essiv.salt = salt; 446 cc->iv_gen_private.essiv.hash_tfm = hash_tfm; 447 448 essiv_tfm = alloc_essiv_cipher(cc, ti, salt, 449 crypto_ahash_digestsize(hash_tfm)); 450 if (IS_ERR(essiv_tfm)) { 451 crypt_iv_essiv_dtr(cc); 452 return PTR_ERR(essiv_tfm); 453 } 454 cc->iv_private = essiv_tfm; 455 456 return 0; 457 458 bad: 459 if (hash_tfm && !IS_ERR(hash_tfm)) 460 crypto_free_ahash(hash_tfm); 461 kfree(salt); 462 return err; 463 } 464 465 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 466 struct dm_crypt_request *dmreq) 467 { 468 struct crypto_cipher *essiv_tfm = cc->iv_private; 469 470 memset(iv, 0, cc->iv_size); 471 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 472 crypto_cipher_encrypt_one(essiv_tfm, iv, iv); 473 474 return 0; 475 } 476 477 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 478 const char *opts) 479 { 480 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc)); 481 int log = ilog2(bs); 482 483 /* we need to calculate how far we must shift the sector count 484 * to get the cipher block count, we use this shift in _gen */ 485 486 if (1 << log != bs) { 487 ti->error = "cypher blocksize is not a power of 2"; 488 return -EINVAL; 489 } 490 491 if (log > 9) { 492 ti->error = "cypher blocksize is > 512"; 493 return -EINVAL; 494 } 495 496 cc->iv_gen_private.benbi.shift = 9 - log; 497 498 return 0; 499 } 500 501 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 502 { 503 } 504 505 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 506 struct dm_crypt_request *dmreq) 507 { 508 __be64 val; 509 510 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 511 512 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 513 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 514 515 return 0; 516 } 517 518 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 519 struct dm_crypt_request *dmreq) 520 { 521 memset(iv, 0, cc->iv_size); 522 523 return 0; 524 } 525 526 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 527 { 528 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 529 530 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 531 crypto_free_shash(lmk->hash_tfm); 532 lmk->hash_tfm = NULL; 533 534 kzfree(lmk->seed); 535 lmk->seed = NULL; 536 } 537 538 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 539 const char *opts) 540 { 541 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 542 543 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 544 ti->error = "Unsupported sector size for LMK"; 545 return -EINVAL; 546 } 547 548 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0); 549 if (IS_ERR(lmk->hash_tfm)) { 550 ti->error = "Error initializing LMK hash"; 551 return PTR_ERR(lmk->hash_tfm); 552 } 553 554 /* No seed in LMK version 2 */ 555 if (cc->key_parts == cc->tfms_count) { 556 lmk->seed = NULL; 557 return 0; 558 } 559 560 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 561 if (!lmk->seed) { 562 crypt_iv_lmk_dtr(cc); 563 ti->error = "Error kmallocing seed storage in LMK"; 564 return -ENOMEM; 565 } 566 567 return 0; 568 } 569 570 static int crypt_iv_lmk_init(struct crypt_config *cc) 571 { 572 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 573 int subkey_size = cc->key_size / cc->key_parts; 574 575 /* LMK seed is on the position of LMK_KEYS + 1 key */ 576 if (lmk->seed) 577 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 578 crypto_shash_digestsize(lmk->hash_tfm)); 579 580 return 0; 581 } 582 583 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 584 { 585 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 586 587 if (lmk->seed) 588 memset(lmk->seed, 0, LMK_SEED_SIZE); 589 590 return 0; 591 } 592 593 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 594 struct dm_crypt_request *dmreq, 595 u8 *data) 596 { 597 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 598 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); 599 struct md5_state md5state; 600 __le32 buf[4]; 601 int i, r; 602 603 desc->tfm = lmk->hash_tfm; 604 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 605 606 r = crypto_shash_init(desc); 607 if (r) 608 return r; 609 610 if (lmk->seed) { 611 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); 612 if (r) 613 return r; 614 } 615 616 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 617 r = crypto_shash_update(desc, data + 16, 16 * 31); 618 if (r) 619 return r; 620 621 /* Sector is cropped to 56 bits here */ 622 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 623 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 624 buf[2] = cpu_to_le32(4024); 625 buf[3] = 0; 626 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); 627 if (r) 628 return r; 629 630 /* No MD5 padding here */ 631 r = crypto_shash_export(desc, &md5state); 632 if (r) 633 return r; 634 635 for (i = 0; i < MD5_HASH_WORDS; i++) 636 __cpu_to_le32s(&md5state.hash[i]); 637 memcpy(iv, &md5state.hash, cc->iv_size); 638 639 return 0; 640 } 641 642 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 643 struct dm_crypt_request *dmreq) 644 { 645 struct scatterlist *sg; 646 u8 *src; 647 int r = 0; 648 649 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 650 sg = crypt_get_sg_data(cc, dmreq->sg_in); 651 src = kmap_atomic(sg_page(sg)); 652 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); 653 kunmap_atomic(src); 654 } else 655 memset(iv, 0, cc->iv_size); 656 657 return r; 658 } 659 660 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 661 struct dm_crypt_request *dmreq) 662 { 663 struct scatterlist *sg; 664 u8 *dst; 665 int r; 666 667 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 668 return 0; 669 670 sg = crypt_get_sg_data(cc, dmreq->sg_out); 671 dst = kmap_atomic(sg_page(sg)); 672 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); 673 674 /* Tweak the first block of plaintext sector */ 675 if (!r) 676 crypto_xor(dst + sg->offset, iv, cc->iv_size); 677 678 kunmap_atomic(dst); 679 return r; 680 } 681 682 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 683 { 684 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 685 686 kzfree(tcw->iv_seed); 687 tcw->iv_seed = NULL; 688 kzfree(tcw->whitening); 689 tcw->whitening = NULL; 690 691 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) 692 crypto_free_shash(tcw->crc32_tfm); 693 tcw->crc32_tfm = NULL; 694 } 695 696 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 697 const char *opts) 698 { 699 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 700 701 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 702 ti->error = "Unsupported sector size for TCW"; 703 return -EINVAL; 704 } 705 706 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 707 ti->error = "Wrong key size for TCW"; 708 return -EINVAL; 709 } 710 711 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0); 712 if (IS_ERR(tcw->crc32_tfm)) { 713 ti->error = "Error initializing CRC32 in TCW"; 714 return PTR_ERR(tcw->crc32_tfm); 715 } 716 717 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 718 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 719 if (!tcw->iv_seed || !tcw->whitening) { 720 crypt_iv_tcw_dtr(cc); 721 ti->error = "Error allocating seed storage in TCW"; 722 return -ENOMEM; 723 } 724 725 return 0; 726 } 727 728 static int crypt_iv_tcw_init(struct crypt_config *cc) 729 { 730 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 731 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 732 733 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 734 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 735 TCW_WHITENING_SIZE); 736 737 return 0; 738 } 739 740 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 741 { 742 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 743 744 memset(tcw->iv_seed, 0, cc->iv_size); 745 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 746 747 return 0; 748 } 749 750 static int crypt_iv_tcw_whitening(struct crypt_config *cc, 751 struct dm_crypt_request *dmreq, 752 u8 *data) 753 { 754 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 755 __le64 sector = cpu_to_le64(dmreq->iv_sector); 756 u8 buf[TCW_WHITENING_SIZE]; 757 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); 758 int i, r; 759 760 /* xor whitening with sector number */ 761 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); 762 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); 763 764 /* calculate crc32 for every 32bit part and xor it */ 765 desc->tfm = tcw->crc32_tfm; 766 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 767 for (i = 0; i < 4; i++) { 768 r = crypto_shash_init(desc); 769 if (r) 770 goto out; 771 r = crypto_shash_update(desc, &buf[i * 4], 4); 772 if (r) 773 goto out; 774 r = crypto_shash_final(desc, &buf[i * 4]); 775 if (r) 776 goto out; 777 } 778 crypto_xor(&buf[0], &buf[12], 4); 779 crypto_xor(&buf[4], &buf[8], 4); 780 781 /* apply whitening (8 bytes) to whole sector */ 782 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 783 crypto_xor(data + i * 8, buf, 8); 784 out: 785 memzero_explicit(buf, sizeof(buf)); 786 return r; 787 } 788 789 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 790 struct dm_crypt_request *dmreq) 791 { 792 struct scatterlist *sg; 793 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 794 __le64 sector = cpu_to_le64(dmreq->iv_sector); 795 u8 *src; 796 int r = 0; 797 798 /* Remove whitening from ciphertext */ 799 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 800 sg = crypt_get_sg_data(cc, dmreq->sg_in); 801 src = kmap_atomic(sg_page(sg)); 802 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); 803 kunmap_atomic(src); 804 } 805 806 /* Calculate IV */ 807 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); 808 if (cc->iv_size > 8) 809 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, 810 cc->iv_size - 8); 811 812 return r; 813 } 814 815 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 816 struct dm_crypt_request *dmreq) 817 { 818 struct scatterlist *sg; 819 u8 *dst; 820 int r; 821 822 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 823 return 0; 824 825 /* Apply whitening on ciphertext */ 826 sg = crypt_get_sg_data(cc, dmreq->sg_out); 827 dst = kmap_atomic(sg_page(sg)); 828 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); 829 kunmap_atomic(dst); 830 831 return r; 832 } 833 834 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, 835 struct dm_crypt_request *dmreq) 836 { 837 /* Used only for writes, there must be an additional space to store IV */ 838 get_random_bytes(iv, cc->iv_size); 839 return 0; 840 } 841 842 static const struct crypt_iv_operations crypt_iv_plain_ops = { 843 .generator = crypt_iv_plain_gen 844 }; 845 846 static const struct crypt_iv_operations crypt_iv_plain64_ops = { 847 .generator = crypt_iv_plain64_gen 848 }; 849 850 static const struct crypt_iv_operations crypt_iv_plain64be_ops = { 851 .generator = crypt_iv_plain64be_gen 852 }; 853 854 static const struct crypt_iv_operations crypt_iv_essiv_ops = { 855 .ctr = crypt_iv_essiv_ctr, 856 .dtr = crypt_iv_essiv_dtr, 857 .init = crypt_iv_essiv_init, 858 .wipe = crypt_iv_essiv_wipe, 859 .generator = crypt_iv_essiv_gen 860 }; 861 862 static const struct crypt_iv_operations crypt_iv_benbi_ops = { 863 .ctr = crypt_iv_benbi_ctr, 864 .dtr = crypt_iv_benbi_dtr, 865 .generator = crypt_iv_benbi_gen 866 }; 867 868 static const struct crypt_iv_operations crypt_iv_null_ops = { 869 .generator = crypt_iv_null_gen 870 }; 871 872 static const struct crypt_iv_operations crypt_iv_lmk_ops = { 873 .ctr = crypt_iv_lmk_ctr, 874 .dtr = crypt_iv_lmk_dtr, 875 .init = crypt_iv_lmk_init, 876 .wipe = crypt_iv_lmk_wipe, 877 .generator = crypt_iv_lmk_gen, 878 .post = crypt_iv_lmk_post 879 }; 880 881 static const struct crypt_iv_operations crypt_iv_tcw_ops = { 882 .ctr = crypt_iv_tcw_ctr, 883 .dtr = crypt_iv_tcw_dtr, 884 .init = crypt_iv_tcw_init, 885 .wipe = crypt_iv_tcw_wipe, 886 .generator = crypt_iv_tcw_gen, 887 .post = crypt_iv_tcw_post 888 }; 889 890 static struct crypt_iv_operations crypt_iv_random_ops = { 891 .generator = crypt_iv_random_gen 892 }; 893 894 /* 895 * Integrity extensions 896 */ 897 static bool crypt_integrity_aead(struct crypt_config *cc) 898 { 899 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 900 } 901 902 static bool crypt_integrity_hmac(struct crypt_config *cc) 903 { 904 return crypt_integrity_aead(cc) && cc->key_mac_size; 905 } 906 907 /* Get sg containing data */ 908 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 909 struct scatterlist *sg) 910 { 911 if (unlikely(crypt_integrity_aead(cc))) 912 return &sg[2]; 913 914 return sg; 915 } 916 917 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) 918 { 919 struct bio_integrity_payload *bip; 920 unsigned int tag_len; 921 int ret; 922 923 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size) 924 return 0; 925 926 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 927 if (IS_ERR(bip)) 928 return PTR_ERR(bip); 929 930 tag_len = io->cc->on_disk_tag_size * bio_sectors(bio); 931 932 bip->bip_iter.bi_size = tag_len; 933 bip->bip_iter.bi_sector = io->cc->start + io->sector; 934 935 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), 936 tag_len, offset_in_page(io->integrity_metadata)); 937 if (unlikely(ret != tag_len)) 938 return -ENOMEM; 939 940 return 0; 941 } 942 943 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) 944 { 945 #ifdef CONFIG_BLK_DEV_INTEGRITY 946 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); 947 948 /* From now we require underlying device with our integrity profile */ 949 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) { 950 ti->error = "Integrity profile not supported."; 951 return -EINVAL; 952 } 953 954 if (bi->tag_size != cc->on_disk_tag_size || 955 bi->tuple_size != cc->on_disk_tag_size) { 956 ti->error = "Integrity profile tag size mismatch."; 957 return -EINVAL; 958 } 959 if (1 << bi->interval_exp != cc->sector_size) { 960 ti->error = "Integrity profile sector size mismatch."; 961 return -EINVAL; 962 } 963 964 if (crypt_integrity_aead(cc)) { 965 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size; 966 DMINFO("Integrity AEAD, tag size %u, IV size %u.", 967 cc->integrity_tag_size, cc->integrity_iv_size); 968 969 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { 970 ti->error = "Integrity AEAD auth tag size is not supported."; 971 return -EINVAL; 972 } 973 } else if (cc->integrity_iv_size) 974 DMINFO("Additional per-sector space %u bytes for IV.", 975 cc->integrity_iv_size); 976 977 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) { 978 ti->error = "Not enough space for integrity tag in the profile."; 979 return -EINVAL; 980 } 981 982 return 0; 983 #else 984 ti->error = "Integrity profile not supported."; 985 return -EINVAL; 986 #endif 987 } 988 989 static void crypt_convert_init(struct crypt_config *cc, 990 struct convert_context *ctx, 991 struct bio *bio_out, struct bio *bio_in, 992 sector_t sector) 993 { 994 ctx->bio_in = bio_in; 995 ctx->bio_out = bio_out; 996 if (bio_in) 997 ctx->iter_in = bio_in->bi_iter; 998 if (bio_out) 999 ctx->iter_out = bio_out->bi_iter; 1000 ctx->cc_sector = sector + cc->iv_offset; 1001 init_completion(&ctx->restart); 1002 } 1003 1004 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 1005 void *req) 1006 { 1007 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 1008 } 1009 1010 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) 1011 { 1012 return (void *)((char *)dmreq - cc->dmreq_start); 1013 } 1014 1015 static u8 *iv_of_dmreq(struct crypt_config *cc, 1016 struct dm_crypt_request *dmreq) 1017 { 1018 if (crypt_integrity_aead(cc)) 1019 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1020 crypto_aead_alignmask(any_tfm_aead(cc)) + 1); 1021 else 1022 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1023 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 1024 } 1025 1026 static u8 *org_iv_of_dmreq(struct crypt_config *cc, 1027 struct dm_crypt_request *dmreq) 1028 { 1029 return iv_of_dmreq(cc, dmreq) + cc->iv_size; 1030 } 1031 1032 static uint64_t *org_sector_of_dmreq(struct crypt_config *cc, 1033 struct dm_crypt_request *dmreq) 1034 { 1035 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; 1036 return (uint64_t*) ptr; 1037 } 1038 1039 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, 1040 struct dm_crypt_request *dmreq) 1041 { 1042 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + 1043 cc->iv_size + sizeof(uint64_t); 1044 return (unsigned int*)ptr; 1045 } 1046 1047 static void *tag_from_dmreq(struct crypt_config *cc, 1048 struct dm_crypt_request *dmreq) 1049 { 1050 struct convert_context *ctx = dmreq->ctx; 1051 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1052 1053 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * 1054 cc->on_disk_tag_size]; 1055 } 1056 1057 static void *iv_tag_from_dmreq(struct crypt_config *cc, 1058 struct dm_crypt_request *dmreq) 1059 { 1060 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; 1061 } 1062 1063 static int crypt_convert_block_aead(struct crypt_config *cc, 1064 struct convert_context *ctx, 1065 struct aead_request *req, 1066 unsigned int tag_offset) 1067 { 1068 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1069 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1070 struct dm_crypt_request *dmreq; 1071 u8 *iv, *org_iv, *tag_iv, *tag; 1072 uint64_t *sector; 1073 int r = 0; 1074 1075 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); 1076 1077 /* Reject unexpected unaligned bio. */ 1078 if (unlikely(bv_in.bv_offset & (cc->sector_size - 1))) 1079 return -EIO; 1080 1081 dmreq = dmreq_of_req(cc, req); 1082 dmreq->iv_sector = ctx->cc_sector; 1083 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1084 dmreq->iv_sector >>= cc->sector_shift; 1085 dmreq->ctx = ctx; 1086 1087 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1088 1089 sector = org_sector_of_dmreq(cc, dmreq); 1090 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1091 1092 iv = iv_of_dmreq(cc, dmreq); 1093 org_iv = org_iv_of_dmreq(cc, dmreq); 1094 tag = tag_from_dmreq(cc, dmreq); 1095 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1096 1097 /* AEAD request: 1098 * |----- AAD -------|------ DATA -------|-- AUTH TAG --| 1099 * | (authenticated) | (auth+encryption) | | 1100 * | sector_LE | IV | sector in/out | tag in/out | 1101 */ 1102 sg_init_table(dmreq->sg_in, 4); 1103 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); 1104 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); 1105 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1106 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); 1107 1108 sg_init_table(dmreq->sg_out, 4); 1109 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); 1110 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); 1111 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1112 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); 1113 1114 if (cc->iv_gen_ops) { 1115 /* For READs use IV stored in integrity metadata */ 1116 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1117 memcpy(org_iv, tag_iv, cc->iv_size); 1118 } else { 1119 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1120 if (r < 0) 1121 return r; 1122 /* Store generated IV in integrity metadata */ 1123 if (cc->integrity_iv_size) 1124 memcpy(tag_iv, org_iv, cc->iv_size); 1125 } 1126 /* Working copy of IV, to be modified in crypto API */ 1127 memcpy(iv, org_iv, cc->iv_size); 1128 } 1129 1130 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); 1131 if (bio_data_dir(ctx->bio_in) == WRITE) { 1132 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1133 cc->sector_size, iv); 1134 r = crypto_aead_encrypt(req); 1135 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size) 1136 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, 1137 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size)); 1138 } else { 1139 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1140 cc->sector_size + cc->integrity_tag_size, iv); 1141 r = crypto_aead_decrypt(req); 1142 } 1143 1144 if (r == -EBADMSG) 1145 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu", 1146 (unsigned long long)le64_to_cpu(*sector)); 1147 1148 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1149 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1150 1151 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1152 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1153 1154 return r; 1155 } 1156 1157 static int crypt_convert_block_skcipher(struct crypt_config *cc, 1158 struct convert_context *ctx, 1159 struct skcipher_request *req, 1160 unsigned int tag_offset) 1161 { 1162 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1163 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1164 struct scatterlist *sg_in, *sg_out; 1165 struct dm_crypt_request *dmreq; 1166 u8 *iv, *org_iv, *tag_iv; 1167 uint64_t *sector; 1168 int r = 0; 1169 1170 /* Reject unexpected unaligned bio. */ 1171 if (unlikely(bv_in.bv_offset & (cc->sector_size - 1))) 1172 return -EIO; 1173 1174 dmreq = dmreq_of_req(cc, req); 1175 dmreq->iv_sector = ctx->cc_sector; 1176 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1177 dmreq->iv_sector >>= cc->sector_shift; 1178 dmreq->ctx = ctx; 1179 1180 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1181 1182 iv = iv_of_dmreq(cc, dmreq); 1183 org_iv = org_iv_of_dmreq(cc, dmreq); 1184 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1185 1186 sector = org_sector_of_dmreq(cc, dmreq); 1187 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1188 1189 /* For skcipher we use only the first sg item */ 1190 sg_in = &dmreq->sg_in[0]; 1191 sg_out = &dmreq->sg_out[0]; 1192 1193 sg_init_table(sg_in, 1); 1194 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1195 1196 sg_init_table(sg_out, 1); 1197 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1198 1199 if (cc->iv_gen_ops) { 1200 /* For READs use IV stored in integrity metadata */ 1201 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1202 memcpy(org_iv, tag_iv, cc->integrity_iv_size); 1203 } else { 1204 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1205 if (r < 0) 1206 return r; 1207 /* Store generated IV in integrity metadata */ 1208 if (cc->integrity_iv_size) 1209 memcpy(tag_iv, org_iv, cc->integrity_iv_size); 1210 } 1211 /* Working copy of IV, to be modified in crypto API */ 1212 memcpy(iv, org_iv, cc->iv_size); 1213 } 1214 1215 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); 1216 1217 if (bio_data_dir(ctx->bio_in) == WRITE) 1218 r = crypto_skcipher_encrypt(req); 1219 else 1220 r = crypto_skcipher_decrypt(req); 1221 1222 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1223 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1224 1225 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1226 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1227 1228 return r; 1229 } 1230 1231 static void kcryptd_async_done(struct crypto_async_request *async_req, 1232 int error); 1233 1234 static void crypt_alloc_req_skcipher(struct crypt_config *cc, 1235 struct convert_context *ctx) 1236 { 1237 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1); 1238 1239 if (!ctx->r.req) 1240 ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO); 1241 1242 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); 1243 1244 /* 1245 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1246 * requests if driver request queue is full. 1247 */ 1248 skcipher_request_set_callback(ctx->r.req, 1249 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 1250 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); 1251 } 1252 1253 static void crypt_alloc_req_aead(struct crypt_config *cc, 1254 struct convert_context *ctx) 1255 { 1256 if (!ctx->r.req_aead) 1257 ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO); 1258 1259 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); 1260 1261 /* 1262 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1263 * requests if driver request queue is full. 1264 */ 1265 aead_request_set_callback(ctx->r.req_aead, 1266 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 1267 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); 1268 } 1269 1270 static void crypt_alloc_req(struct crypt_config *cc, 1271 struct convert_context *ctx) 1272 { 1273 if (crypt_integrity_aead(cc)) 1274 crypt_alloc_req_aead(cc, ctx); 1275 else 1276 crypt_alloc_req_skcipher(cc, ctx); 1277 } 1278 1279 static void crypt_free_req_skcipher(struct crypt_config *cc, 1280 struct skcipher_request *req, struct bio *base_bio) 1281 { 1282 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1283 1284 if ((struct skcipher_request *)(io + 1) != req) 1285 mempool_free(req, cc->req_pool); 1286 } 1287 1288 static void crypt_free_req_aead(struct crypt_config *cc, 1289 struct aead_request *req, struct bio *base_bio) 1290 { 1291 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1292 1293 if ((struct aead_request *)(io + 1) != req) 1294 mempool_free(req, cc->req_pool); 1295 } 1296 1297 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) 1298 { 1299 if (crypt_integrity_aead(cc)) 1300 crypt_free_req_aead(cc, req, base_bio); 1301 else 1302 crypt_free_req_skcipher(cc, req, base_bio); 1303 } 1304 1305 /* 1306 * Encrypt / decrypt data from one bio to another one (can be the same one) 1307 */ 1308 static blk_status_t crypt_convert(struct crypt_config *cc, 1309 struct convert_context *ctx) 1310 { 1311 unsigned int tag_offset = 0; 1312 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; 1313 int r; 1314 1315 atomic_set(&ctx->cc_pending, 1); 1316 1317 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 1318 1319 crypt_alloc_req(cc, ctx); 1320 atomic_inc(&ctx->cc_pending); 1321 1322 if (crypt_integrity_aead(cc)) 1323 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset); 1324 else 1325 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset); 1326 1327 switch (r) { 1328 /* 1329 * The request was queued by a crypto driver 1330 * but the driver request queue is full, let's wait. 1331 */ 1332 case -EBUSY: 1333 wait_for_completion(&ctx->restart); 1334 reinit_completion(&ctx->restart); 1335 /* fall through */ 1336 /* 1337 * The request is queued and processed asynchronously, 1338 * completion function kcryptd_async_done() will be called. 1339 */ 1340 case -EINPROGRESS: 1341 ctx->r.req = NULL; 1342 ctx->cc_sector += sector_step; 1343 tag_offset++; 1344 continue; 1345 /* 1346 * The request was already processed (synchronously). 1347 */ 1348 case 0: 1349 atomic_dec(&ctx->cc_pending); 1350 ctx->cc_sector += sector_step; 1351 tag_offset++; 1352 cond_resched(); 1353 continue; 1354 /* 1355 * There was a data integrity error. 1356 */ 1357 case -EBADMSG: 1358 atomic_dec(&ctx->cc_pending); 1359 return BLK_STS_PROTECTION; 1360 /* 1361 * There was an error while processing the request. 1362 */ 1363 default: 1364 atomic_dec(&ctx->cc_pending); 1365 return BLK_STS_IOERR; 1366 } 1367 } 1368 1369 return 0; 1370 } 1371 1372 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 1373 1374 /* 1375 * Generate a new unfragmented bio with the given size 1376 * This should never violate the device limitations (but only because 1377 * max_segment_size is being constrained to PAGE_SIZE). 1378 * 1379 * This function may be called concurrently. If we allocate from the mempool 1380 * concurrently, there is a possibility of deadlock. For example, if we have 1381 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 1382 * the mempool concurrently, it may deadlock in a situation where both processes 1383 * have allocated 128 pages and the mempool is exhausted. 1384 * 1385 * In order to avoid this scenario we allocate the pages under a mutex. 1386 * 1387 * In order to not degrade performance with excessive locking, we try 1388 * non-blocking allocations without a mutex first but on failure we fallback 1389 * to blocking allocations with a mutex. 1390 */ 1391 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size) 1392 { 1393 struct crypt_config *cc = io->cc; 1394 struct bio *clone; 1395 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1396 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 1397 unsigned i, len, remaining_size; 1398 struct page *page; 1399 1400 retry: 1401 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1402 mutex_lock(&cc->bio_alloc_lock); 1403 1404 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs); 1405 if (!clone) 1406 goto out; 1407 1408 clone_init(io, clone); 1409 1410 remaining_size = size; 1411 1412 for (i = 0; i < nr_iovecs; i++) { 1413 page = mempool_alloc(cc->page_pool, gfp_mask); 1414 if (!page) { 1415 crypt_free_buffer_pages(cc, clone); 1416 bio_put(clone); 1417 gfp_mask |= __GFP_DIRECT_RECLAIM; 1418 goto retry; 1419 } 1420 1421 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size; 1422 1423 bio_add_page(clone, page, len, 0); 1424 1425 remaining_size -= len; 1426 } 1427 1428 /* Allocate space for integrity tags */ 1429 if (dm_crypt_integrity_io_alloc(io, clone)) { 1430 crypt_free_buffer_pages(cc, clone); 1431 bio_put(clone); 1432 clone = NULL; 1433 } 1434 out: 1435 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1436 mutex_unlock(&cc->bio_alloc_lock); 1437 1438 return clone; 1439 } 1440 1441 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1442 { 1443 unsigned int i; 1444 struct bio_vec *bv; 1445 1446 bio_for_each_segment_all(bv, clone, i) { 1447 BUG_ON(!bv->bv_page); 1448 mempool_free(bv->bv_page, cc->page_pool); 1449 bv->bv_page = NULL; 1450 } 1451 } 1452 1453 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1454 struct bio *bio, sector_t sector) 1455 { 1456 io->cc = cc; 1457 io->base_bio = bio; 1458 io->sector = sector; 1459 io->error = 0; 1460 io->ctx.r.req = NULL; 1461 io->integrity_metadata = NULL; 1462 io->integrity_metadata_from_pool = false; 1463 atomic_set(&io->io_pending, 0); 1464 } 1465 1466 static void crypt_inc_pending(struct dm_crypt_io *io) 1467 { 1468 atomic_inc(&io->io_pending); 1469 } 1470 1471 /* 1472 * One of the bios was finished. Check for completion of 1473 * the whole request and correctly clean up the buffer. 1474 */ 1475 static void crypt_dec_pending(struct dm_crypt_io *io) 1476 { 1477 struct crypt_config *cc = io->cc; 1478 struct bio *base_bio = io->base_bio; 1479 blk_status_t error = io->error; 1480 1481 if (!atomic_dec_and_test(&io->io_pending)) 1482 return; 1483 1484 if (io->ctx.r.req) 1485 crypt_free_req(cc, io->ctx.r.req, base_bio); 1486 1487 if (unlikely(io->integrity_metadata_from_pool)) 1488 mempool_free(io->integrity_metadata, io->cc->tag_pool); 1489 else 1490 kfree(io->integrity_metadata); 1491 1492 base_bio->bi_status = error; 1493 bio_endio(base_bio); 1494 } 1495 1496 /* 1497 * kcryptd/kcryptd_io: 1498 * 1499 * Needed because it would be very unwise to do decryption in an 1500 * interrupt context. 1501 * 1502 * kcryptd performs the actual encryption or decryption. 1503 * 1504 * kcryptd_io performs the IO submission. 1505 * 1506 * They must be separated as otherwise the final stages could be 1507 * starved by new requests which can block in the first stages due 1508 * to memory allocation. 1509 * 1510 * The work is done per CPU global for all dm-crypt instances. 1511 * They should not depend on each other and do not block. 1512 */ 1513 static void crypt_endio(struct bio *clone) 1514 { 1515 struct dm_crypt_io *io = clone->bi_private; 1516 struct crypt_config *cc = io->cc; 1517 unsigned rw = bio_data_dir(clone); 1518 blk_status_t error; 1519 1520 /* 1521 * free the processed pages 1522 */ 1523 if (rw == WRITE) 1524 crypt_free_buffer_pages(cc, clone); 1525 1526 error = clone->bi_status; 1527 bio_put(clone); 1528 1529 if (rw == READ && !error) { 1530 kcryptd_queue_crypt(io); 1531 return; 1532 } 1533 1534 if (unlikely(error)) 1535 io->error = error; 1536 1537 crypt_dec_pending(io); 1538 } 1539 1540 static void clone_init(struct dm_crypt_io *io, struct bio *clone) 1541 { 1542 struct crypt_config *cc = io->cc; 1543 1544 clone->bi_private = io; 1545 clone->bi_end_io = crypt_endio; 1546 bio_set_dev(clone, cc->dev->bdev); 1547 clone->bi_opf = io->base_bio->bi_opf; 1548 } 1549 1550 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1551 { 1552 struct crypt_config *cc = io->cc; 1553 struct bio *clone; 1554 1555 /* 1556 * We need the original biovec array in order to decrypt 1557 * the whole bio data *afterwards* -- thanks to immutable 1558 * biovecs we don't need to worry about the block layer 1559 * modifying the biovec array; so leverage bio_clone_fast(). 1560 */ 1561 clone = bio_clone_fast(io->base_bio, gfp, cc->bs); 1562 if (!clone) 1563 return 1; 1564 1565 crypt_inc_pending(io); 1566 1567 clone_init(io, clone); 1568 clone->bi_iter.bi_sector = cc->start + io->sector; 1569 1570 if (dm_crypt_integrity_io_alloc(io, clone)) { 1571 crypt_dec_pending(io); 1572 bio_put(clone); 1573 return 1; 1574 } 1575 1576 generic_make_request(clone); 1577 return 0; 1578 } 1579 1580 static void kcryptd_io_read_work(struct work_struct *work) 1581 { 1582 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1583 1584 crypt_inc_pending(io); 1585 if (kcryptd_io_read(io, GFP_NOIO)) 1586 io->error = BLK_STS_RESOURCE; 1587 crypt_dec_pending(io); 1588 } 1589 1590 static void kcryptd_queue_read(struct dm_crypt_io *io) 1591 { 1592 struct crypt_config *cc = io->cc; 1593 1594 INIT_WORK(&io->work, kcryptd_io_read_work); 1595 queue_work(cc->io_queue, &io->work); 1596 } 1597 1598 static void kcryptd_io_write(struct dm_crypt_io *io) 1599 { 1600 struct bio *clone = io->ctx.bio_out; 1601 1602 generic_make_request(clone); 1603 } 1604 1605 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1606 1607 static int dmcrypt_write(void *data) 1608 { 1609 struct crypt_config *cc = data; 1610 struct dm_crypt_io *io; 1611 1612 while (1) { 1613 struct rb_root write_tree; 1614 struct blk_plug plug; 1615 1616 DECLARE_WAITQUEUE(wait, current); 1617 1618 spin_lock_irq(&cc->write_thread_wait.lock); 1619 continue_locked: 1620 1621 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1622 goto pop_from_list; 1623 1624 set_current_state(TASK_INTERRUPTIBLE); 1625 __add_wait_queue(&cc->write_thread_wait, &wait); 1626 1627 spin_unlock_irq(&cc->write_thread_wait.lock); 1628 1629 if (unlikely(kthread_should_stop())) { 1630 set_current_state(TASK_RUNNING); 1631 remove_wait_queue(&cc->write_thread_wait, &wait); 1632 break; 1633 } 1634 1635 schedule(); 1636 1637 set_current_state(TASK_RUNNING); 1638 spin_lock_irq(&cc->write_thread_wait.lock); 1639 __remove_wait_queue(&cc->write_thread_wait, &wait); 1640 goto continue_locked; 1641 1642 pop_from_list: 1643 write_tree = cc->write_tree; 1644 cc->write_tree = RB_ROOT; 1645 spin_unlock_irq(&cc->write_thread_wait.lock); 1646 1647 BUG_ON(rb_parent(write_tree.rb_node)); 1648 1649 /* 1650 * Note: we cannot walk the tree here with rb_next because 1651 * the structures may be freed when kcryptd_io_write is called. 1652 */ 1653 blk_start_plug(&plug); 1654 do { 1655 io = crypt_io_from_node(rb_first(&write_tree)); 1656 rb_erase(&io->rb_node, &write_tree); 1657 kcryptd_io_write(io); 1658 } while (!RB_EMPTY_ROOT(&write_tree)); 1659 blk_finish_plug(&plug); 1660 } 1661 return 0; 1662 } 1663 1664 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 1665 { 1666 struct bio *clone = io->ctx.bio_out; 1667 struct crypt_config *cc = io->cc; 1668 unsigned long flags; 1669 sector_t sector; 1670 struct rb_node **rbp, *parent; 1671 1672 if (unlikely(io->error)) { 1673 crypt_free_buffer_pages(cc, clone); 1674 bio_put(clone); 1675 crypt_dec_pending(io); 1676 return; 1677 } 1678 1679 /* crypt_convert should have filled the clone bio */ 1680 BUG_ON(io->ctx.iter_out.bi_size); 1681 1682 clone->bi_iter.bi_sector = cc->start + io->sector; 1683 1684 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) { 1685 generic_make_request(clone); 1686 return; 1687 } 1688 1689 spin_lock_irqsave(&cc->write_thread_wait.lock, flags); 1690 rbp = &cc->write_tree.rb_node; 1691 parent = NULL; 1692 sector = io->sector; 1693 while (*rbp) { 1694 parent = *rbp; 1695 if (sector < crypt_io_from_node(parent)->sector) 1696 rbp = &(*rbp)->rb_left; 1697 else 1698 rbp = &(*rbp)->rb_right; 1699 } 1700 rb_link_node(&io->rb_node, parent, rbp); 1701 rb_insert_color(&io->rb_node, &cc->write_tree); 1702 1703 wake_up_locked(&cc->write_thread_wait); 1704 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags); 1705 } 1706 1707 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 1708 { 1709 struct crypt_config *cc = io->cc; 1710 struct bio *clone; 1711 int crypt_finished; 1712 sector_t sector = io->sector; 1713 blk_status_t r; 1714 1715 /* 1716 * Prevent io from disappearing until this function completes. 1717 */ 1718 crypt_inc_pending(io); 1719 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector); 1720 1721 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1722 if (unlikely(!clone)) { 1723 io->error = BLK_STS_IOERR; 1724 goto dec; 1725 } 1726 1727 io->ctx.bio_out = clone; 1728 io->ctx.iter_out = clone->bi_iter; 1729 1730 sector += bio_sectors(clone); 1731 1732 crypt_inc_pending(io); 1733 r = crypt_convert(cc, &io->ctx); 1734 if (r) 1735 io->error = r; 1736 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending); 1737 1738 /* Encryption was already finished, submit io now */ 1739 if (crypt_finished) { 1740 kcryptd_crypt_write_io_submit(io, 0); 1741 io->sector = sector; 1742 } 1743 1744 dec: 1745 crypt_dec_pending(io); 1746 } 1747 1748 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 1749 { 1750 crypt_dec_pending(io); 1751 } 1752 1753 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 1754 { 1755 struct crypt_config *cc = io->cc; 1756 blk_status_t r; 1757 1758 crypt_inc_pending(io); 1759 1760 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 1761 io->sector); 1762 1763 r = crypt_convert(cc, &io->ctx); 1764 if (r) 1765 io->error = r; 1766 1767 if (atomic_dec_and_test(&io->ctx.cc_pending)) 1768 kcryptd_crypt_read_done(io); 1769 1770 crypt_dec_pending(io); 1771 } 1772 1773 static void kcryptd_async_done(struct crypto_async_request *async_req, 1774 int error) 1775 { 1776 struct dm_crypt_request *dmreq = async_req->data; 1777 struct convert_context *ctx = dmreq->ctx; 1778 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1779 struct crypt_config *cc = io->cc; 1780 1781 /* 1782 * A request from crypto driver backlog is going to be processed now, 1783 * finish the completion and continue in crypt_convert(). 1784 * (Callback will be called for the second time for this request.) 1785 */ 1786 if (error == -EINPROGRESS) { 1787 complete(&ctx->restart); 1788 return; 1789 } 1790 1791 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 1792 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); 1793 1794 if (error == -EBADMSG) { 1795 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu", 1796 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq))); 1797 io->error = BLK_STS_PROTECTION; 1798 } else if (error < 0) 1799 io->error = BLK_STS_IOERR; 1800 1801 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 1802 1803 if (!atomic_dec_and_test(&ctx->cc_pending)) 1804 return; 1805 1806 if (bio_data_dir(io->base_bio) == READ) 1807 kcryptd_crypt_read_done(io); 1808 else 1809 kcryptd_crypt_write_io_submit(io, 1); 1810 } 1811 1812 static void kcryptd_crypt(struct work_struct *work) 1813 { 1814 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1815 1816 if (bio_data_dir(io->base_bio) == READ) 1817 kcryptd_crypt_read_convert(io); 1818 else 1819 kcryptd_crypt_write_convert(io); 1820 } 1821 1822 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 1823 { 1824 struct crypt_config *cc = io->cc; 1825 1826 INIT_WORK(&io->work, kcryptd_crypt); 1827 queue_work(cc->crypt_queue, &io->work); 1828 } 1829 1830 static void crypt_free_tfms_aead(struct crypt_config *cc) 1831 { 1832 if (!cc->cipher_tfm.tfms_aead) 1833 return; 1834 1835 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 1836 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); 1837 cc->cipher_tfm.tfms_aead[0] = NULL; 1838 } 1839 1840 kfree(cc->cipher_tfm.tfms_aead); 1841 cc->cipher_tfm.tfms_aead = NULL; 1842 } 1843 1844 static void crypt_free_tfms_skcipher(struct crypt_config *cc) 1845 { 1846 unsigned i; 1847 1848 if (!cc->cipher_tfm.tfms) 1849 return; 1850 1851 for (i = 0; i < cc->tfms_count; i++) 1852 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { 1853 crypto_free_skcipher(cc->cipher_tfm.tfms[i]); 1854 cc->cipher_tfm.tfms[i] = NULL; 1855 } 1856 1857 kfree(cc->cipher_tfm.tfms); 1858 cc->cipher_tfm.tfms = NULL; 1859 } 1860 1861 static void crypt_free_tfms(struct crypt_config *cc) 1862 { 1863 if (crypt_integrity_aead(cc)) 1864 crypt_free_tfms_aead(cc); 1865 else 1866 crypt_free_tfms_skcipher(cc); 1867 } 1868 1869 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) 1870 { 1871 unsigned i; 1872 int err; 1873 1874 cc->cipher_tfm.tfms = kzalloc(cc->tfms_count * 1875 sizeof(struct crypto_skcipher *), GFP_KERNEL); 1876 if (!cc->cipher_tfm.tfms) 1877 return -ENOMEM; 1878 1879 for (i = 0; i < cc->tfms_count; i++) { 1880 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0); 1881 if (IS_ERR(cc->cipher_tfm.tfms[i])) { 1882 err = PTR_ERR(cc->cipher_tfm.tfms[i]); 1883 crypt_free_tfms(cc); 1884 return err; 1885 } 1886 } 1887 1888 return 0; 1889 } 1890 1891 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) 1892 { 1893 int err; 1894 1895 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); 1896 if (!cc->cipher_tfm.tfms) 1897 return -ENOMEM; 1898 1899 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0); 1900 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 1901 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); 1902 crypt_free_tfms(cc); 1903 return err; 1904 } 1905 1906 return 0; 1907 } 1908 1909 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 1910 { 1911 if (crypt_integrity_aead(cc)) 1912 return crypt_alloc_tfms_aead(cc, ciphermode); 1913 else 1914 return crypt_alloc_tfms_skcipher(cc, ciphermode); 1915 } 1916 1917 static unsigned crypt_subkey_size(struct crypt_config *cc) 1918 { 1919 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 1920 } 1921 1922 static unsigned crypt_authenckey_size(struct crypt_config *cc) 1923 { 1924 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); 1925 } 1926 1927 /* 1928 * If AEAD is composed like authenc(hmac(sha256),xts(aes)), 1929 * the key must be for some reason in special format. 1930 * This funcion converts cc->key to this special format. 1931 */ 1932 static void crypt_copy_authenckey(char *p, const void *key, 1933 unsigned enckeylen, unsigned authkeylen) 1934 { 1935 struct crypto_authenc_key_param *param; 1936 struct rtattr *rta; 1937 1938 rta = (struct rtattr *)p; 1939 param = RTA_DATA(rta); 1940 param->enckeylen = cpu_to_be32(enckeylen); 1941 rta->rta_len = RTA_LENGTH(sizeof(*param)); 1942 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; 1943 p += RTA_SPACE(sizeof(*param)); 1944 memcpy(p, key + enckeylen, authkeylen); 1945 p += authkeylen; 1946 memcpy(p, key, enckeylen); 1947 } 1948 1949 static int crypt_setkey(struct crypt_config *cc) 1950 { 1951 unsigned subkey_size; 1952 int err = 0, i, r; 1953 1954 /* Ignore extra keys (which are used for IV etc) */ 1955 subkey_size = crypt_subkey_size(cc); 1956 1957 if (crypt_integrity_hmac(cc)) 1958 crypt_copy_authenckey(cc->authenc_key, cc->key, 1959 subkey_size - cc->key_mac_size, 1960 cc->key_mac_size); 1961 for (i = 0; i < cc->tfms_count; i++) { 1962 if (crypt_integrity_hmac(cc)) 1963 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 1964 cc->authenc_key, crypt_authenckey_size(cc)); 1965 else if (crypt_integrity_aead(cc)) 1966 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 1967 cc->key + (i * subkey_size), 1968 subkey_size); 1969 else 1970 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], 1971 cc->key + (i * subkey_size), 1972 subkey_size); 1973 if (r) 1974 err = r; 1975 } 1976 1977 if (crypt_integrity_hmac(cc)) 1978 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); 1979 1980 return err; 1981 } 1982 1983 #ifdef CONFIG_KEYS 1984 1985 static bool contains_whitespace(const char *str) 1986 { 1987 while (*str) 1988 if (isspace(*str++)) 1989 return true; 1990 return false; 1991 } 1992 1993 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 1994 { 1995 char *new_key_string, *key_desc; 1996 int ret; 1997 struct key *key; 1998 const struct user_key_payload *ukp; 1999 2000 /* 2001 * Reject key_string with whitespace. dm core currently lacks code for 2002 * proper whitespace escaping in arguments on DM_TABLE_STATUS path. 2003 */ 2004 if (contains_whitespace(key_string)) { 2005 DMERR("whitespace chars not allowed in key string"); 2006 return -EINVAL; 2007 } 2008 2009 /* look for next ':' separating key_type from key_description */ 2010 key_desc = strpbrk(key_string, ":"); 2011 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) 2012 return -EINVAL; 2013 2014 if (strncmp(key_string, "logon:", key_desc - key_string + 1) && 2015 strncmp(key_string, "user:", key_desc - key_string + 1)) 2016 return -EINVAL; 2017 2018 new_key_string = kstrdup(key_string, GFP_KERNEL); 2019 if (!new_key_string) 2020 return -ENOMEM; 2021 2022 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user, 2023 key_desc + 1, NULL); 2024 if (IS_ERR(key)) { 2025 kzfree(new_key_string); 2026 return PTR_ERR(key); 2027 } 2028 2029 down_read(&key->sem); 2030 2031 ukp = user_key_payload_locked(key); 2032 if (!ukp) { 2033 up_read(&key->sem); 2034 key_put(key); 2035 kzfree(new_key_string); 2036 return -EKEYREVOKED; 2037 } 2038 2039 if (cc->key_size != ukp->datalen) { 2040 up_read(&key->sem); 2041 key_put(key); 2042 kzfree(new_key_string); 2043 return -EINVAL; 2044 } 2045 2046 memcpy(cc->key, ukp->data, cc->key_size); 2047 2048 up_read(&key->sem); 2049 key_put(key); 2050 2051 /* clear the flag since following operations may invalidate previously valid key */ 2052 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2053 2054 ret = crypt_setkey(cc); 2055 2056 /* wipe the kernel key payload copy in each case */ 2057 memset(cc->key, 0, cc->key_size * sizeof(u8)); 2058 2059 if (!ret) { 2060 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2061 kzfree(cc->key_string); 2062 cc->key_string = new_key_string; 2063 } else 2064 kzfree(new_key_string); 2065 2066 return ret; 2067 } 2068 2069 static int get_key_size(char **key_string) 2070 { 2071 char *colon, dummy; 2072 int ret; 2073 2074 if (*key_string[0] != ':') 2075 return strlen(*key_string) >> 1; 2076 2077 /* look for next ':' in key string */ 2078 colon = strpbrk(*key_string + 1, ":"); 2079 if (!colon) 2080 return -EINVAL; 2081 2082 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') 2083 return -EINVAL; 2084 2085 *key_string = colon; 2086 2087 /* remaining key string should be :<logon|user>:<key_desc> */ 2088 2089 return ret; 2090 } 2091 2092 #else 2093 2094 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2095 { 2096 return -EINVAL; 2097 } 2098 2099 static int get_key_size(char **key_string) 2100 { 2101 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1; 2102 } 2103 2104 #endif 2105 2106 static int crypt_set_key(struct crypt_config *cc, char *key) 2107 { 2108 int r = -EINVAL; 2109 int key_string_len = strlen(key); 2110 2111 /* Hyphen (which gives a key_size of zero) means there is no key. */ 2112 if (!cc->key_size && strcmp(key, "-")) 2113 goto out; 2114 2115 /* ':' means the key is in kernel keyring, short-circuit normal key processing */ 2116 if (key[0] == ':') { 2117 r = crypt_set_keyring_key(cc, key + 1); 2118 goto out; 2119 } 2120 2121 /* clear the flag since following operations may invalidate previously valid key */ 2122 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2123 2124 /* wipe references to any kernel keyring key */ 2125 kzfree(cc->key_string); 2126 cc->key_string = NULL; 2127 2128 /* Decode key from its hex representation. */ 2129 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) 2130 goto out; 2131 2132 r = crypt_setkey(cc); 2133 if (!r) 2134 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2135 2136 out: 2137 /* Hex key string not needed after here, so wipe it. */ 2138 memset(key, '0', key_string_len); 2139 2140 return r; 2141 } 2142 2143 static int crypt_wipe_key(struct crypt_config *cc) 2144 { 2145 int r; 2146 2147 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2148 get_random_bytes(&cc->key, cc->key_size); 2149 kzfree(cc->key_string); 2150 cc->key_string = NULL; 2151 r = crypt_setkey(cc); 2152 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 2153 2154 return r; 2155 } 2156 2157 static void crypt_dtr(struct dm_target *ti) 2158 { 2159 struct crypt_config *cc = ti->private; 2160 2161 ti->private = NULL; 2162 2163 if (!cc) 2164 return; 2165 2166 if (cc->write_thread) 2167 kthread_stop(cc->write_thread); 2168 2169 if (cc->io_queue) 2170 destroy_workqueue(cc->io_queue); 2171 if (cc->crypt_queue) 2172 destroy_workqueue(cc->crypt_queue); 2173 2174 crypt_free_tfms(cc); 2175 2176 if (cc->bs) 2177 bioset_free(cc->bs); 2178 2179 mempool_destroy(cc->page_pool); 2180 mempool_destroy(cc->req_pool); 2181 mempool_destroy(cc->tag_pool); 2182 2183 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 2184 cc->iv_gen_ops->dtr(cc); 2185 2186 if (cc->dev) 2187 dm_put_device(ti, cc->dev); 2188 2189 kzfree(cc->cipher); 2190 kzfree(cc->cipher_string); 2191 kzfree(cc->key_string); 2192 kzfree(cc->cipher_auth); 2193 kzfree(cc->authenc_key); 2194 2195 /* Must zero key material before freeing */ 2196 kzfree(cc); 2197 } 2198 2199 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) 2200 { 2201 struct crypt_config *cc = ti->private; 2202 2203 if (crypt_integrity_aead(cc)) 2204 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2205 else 2206 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2207 2208 if (cc->iv_size) 2209 /* at least a 64 bit sector number should fit in our buffer */ 2210 cc->iv_size = max(cc->iv_size, 2211 (unsigned int)(sizeof(u64) / sizeof(u8))); 2212 else if (ivmode) { 2213 DMWARN("Selected cipher does not support IVs"); 2214 ivmode = NULL; 2215 } 2216 2217 /* Choose ivmode, see comments at iv code. */ 2218 if (ivmode == NULL) 2219 cc->iv_gen_ops = NULL; 2220 else if (strcmp(ivmode, "plain") == 0) 2221 cc->iv_gen_ops = &crypt_iv_plain_ops; 2222 else if (strcmp(ivmode, "plain64") == 0) 2223 cc->iv_gen_ops = &crypt_iv_plain64_ops; 2224 else if (strcmp(ivmode, "plain64be") == 0) 2225 cc->iv_gen_ops = &crypt_iv_plain64be_ops; 2226 else if (strcmp(ivmode, "essiv") == 0) 2227 cc->iv_gen_ops = &crypt_iv_essiv_ops; 2228 else if (strcmp(ivmode, "benbi") == 0) 2229 cc->iv_gen_ops = &crypt_iv_benbi_ops; 2230 else if (strcmp(ivmode, "null") == 0) 2231 cc->iv_gen_ops = &crypt_iv_null_ops; 2232 else if (strcmp(ivmode, "lmk") == 0) { 2233 cc->iv_gen_ops = &crypt_iv_lmk_ops; 2234 /* 2235 * Version 2 and 3 is recognised according 2236 * to length of provided multi-key string. 2237 * If present (version 3), last key is used as IV seed. 2238 * All keys (including IV seed) are always the same size. 2239 */ 2240 if (cc->key_size % cc->key_parts) { 2241 cc->key_parts++; 2242 cc->key_extra_size = cc->key_size / cc->key_parts; 2243 } 2244 } else if (strcmp(ivmode, "tcw") == 0) { 2245 cc->iv_gen_ops = &crypt_iv_tcw_ops; 2246 cc->key_parts += 2; /* IV + whitening */ 2247 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 2248 } else if (strcmp(ivmode, "random") == 0) { 2249 cc->iv_gen_ops = &crypt_iv_random_ops; 2250 /* Need storage space in integrity fields. */ 2251 cc->integrity_iv_size = cc->iv_size; 2252 } else { 2253 ti->error = "Invalid IV mode"; 2254 return -EINVAL; 2255 } 2256 2257 return 0; 2258 } 2259 2260 /* 2261 * Workaround to parse cipher algorithm from crypto API spec. 2262 * The cc->cipher is currently used only in ESSIV. 2263 * This should be probably done by crypto-api calls (once available...) 2264 */ 2265 static int crypt_ctr_blkdev_cipher(struct crypt_config *cc) 2266 { 2267 const char *alg_name = NULL; 2268 char *start, *end; 2269 2270 if (crypt_integrity_aead(cc)) { 2271 alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc))); 2272 if (!alg_name) 2273 return -EINVAL; 2274 if (crypt_integrity_hmac(cc)) { 2275 alg_name = strchr(alg_name, ','); 2276 if (!alg_name) 2277 return -EINVAL; 2278 } 2279 alg_name++; 2280 } else { 2281 alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc))); 2282 if (!alg_name) 2283 return -EINVAL; 2284 } 2285 2286 start = strchr(alg_name, '('); 2287 end = strchr(alg_name, ')'); 2288 2289 if (!start && !end) { 2290 cc->cipher = kstrdup(alg_name, GFP_KERNEL); 2291 return cc->cipher ? 0 : -ENOMEM; 2292 } 2293 2294 if (!start || !end || ++start >= end) 2295 return -EINVAL; 2296 2297 cc->cipher = kzalloc(end - start + 1, GFP_KERNEL); 2298 if (!cc->cipher) 2299 return -ENOMEM; 2300 2301 strncpy(cc->cipher, start, end - start); 2302 2303 return 0; 2304 } 2305 2306 /* 2307 * Workaround to parse HMAC algorithm from AEAD crypto API spec. 2308 * The HMAC is needed to calculate tag size (HMAC digest size). 2309 * This should be probably done by crypto-api calls (once available...) 2310 */ 2311 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) 2312 { 2313 char *start, *end, *mac_alg = NULL; 2314 struct crypto_ahash *mac; 2315 2316 if (!strstarts(cipher_api, "authenc(")) 2317 return 0; 2318 2319 start = strchr(cipher_api, '('); 2320 end = strchr(cipher_api, ','); 2321 if (!start || !end || ++start > end) 2322 return -EINVAL; 2323 2324 mac_alg = kzalloc(end - start + 1, GFP_KERNEL); 2325 if (!mac_alg) 2326 return -ENOMEM; 2327 strncpy(mac_alg, start, end - start); 2328 2329 mac = crypto_alloc_ahash(mac_alg, 0, 0); 2330 kfree(mac_alg); 2331 2332 if (IS_ERR(mac)) 2333 return PTR_ERR(mac); 2334 2335 cc->key_mac_size = crypto_ahash_digestsize(mac); 2336 crypto_free_ahash(mac); 2337 2338 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); 2339 if (!cc->authenc_key) 2340 return -ENOMEM; 2341 2342 return 0; 2343 } 2344 2345 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, 2346 char **ivmode, char **ivopts) 2347 { 2348 struct crypt_config *cc = ti->private; 2349 char *tmp, *cipher_api; 2350 int ret = -EINVAL; 2351 2352 cc->tfms_count = 1; 2353 2354 /* 2355 * New format (capi: prefix) 2356 * capi:cipher_api_spec-iv:ivopts 2357 */ 2358 tmp = &cipher_in[strlen("capi:")]; 2359 cipher_api = strsep(&tmp, "-"); 2360 *ivmode = strsep(&tmp, ":"); 2361 *ivopts = tmp; 2362 2363 if (*ivmode && !strcmp(*ivmode, "lmk")) 2364 cc->tfms_count = 64; 2365 2366 cc->key_parts = cc->tfms_count; 2367 2368 /* Allocate cipher */ 2369 ret = crypt_alloc_tfms(cc, cipher_api); 2370 if (ret < 0) { 2371 ti->error = "Error allocating crypto tfm"; 2372 return ret; 2373 } 2374 2375 /* Alloc AEAD, can be used only in new format. */ 2376 if (crypt_integrity_aead(cc)) { 2377 ret = crypt_ctr_auth_cipher(cc, cipher_api); 2378 if (ret < 0) { 2379 ti->error = "Invalid AEAD cipher spec"; 2380 return -ENOMEM; 2381 } 2382 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2383 } else 2384 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2385 2386 ret = crypt_ctr_blkdev_cipher(cc); 2387 if (ret < 0) { 2388 ti->error = "Cannot allocate cipher string"; 2389 return -ENOMEM; 2390 } 2391 2392 return 0; 2393 } 2394 2395 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, 2396 char **ivmode, char **ivopts) 2397 { 2398 struct crypt_config *cc = ti->private; 2399 char *tmp, *cipher, *chainmode, *keycount; 2400 char *cipher_api = NULL; 2401 int ret = -EINVAL; 2402 char dummy; 2403 2404 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { 2405 ti->error = "Bad cipher specification"; 2406 return -EINVAL; 2407 } 2408 2409 /* 2410 * Legacy dm-crypt cipher specification 2411 * cipher[:keycount]-mode-iv:ivopts 2412 */ 2413 tmp = cipher_in; 2414 keycount = strsep(&tmp, "-"); 2415 cipher = strsep(&keycount, ":"); 2416 2417 if (!keycount) 2418 cc->tfms_count = 1; 2419 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 2420 !is_power_of_2(cc->tfms_count)) { 2421 ti->error = "Bad cipher key count specification"; 2422 return -EINVAL; 2423 } 2424 cc->key_parts = cc->tfms_count; 2425 2426 cc->cipher = kstrdup(cipher, GFP_KERNEL); 2427 if (!cc->cipher) 2428 goto bad_mem; 2429 2430 chainmode = strsep(&tmp, "-"); 2431 *ivopts = strsep(&tmp, "-"); 2432 *ivmode = strsep(&*ivopts, ":"); 2433 2434 if (tmp) 2435 DMWARN("Ignoring unexpected additional cipher options"); 2436 2437 /* 2438 * For compatibility with the original dm-crypt mapping format, if 2439 * only the cipher name is supplied, use cbc-plain. 2440 */ 2441 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { 2442 chainmode = "cbc"; 2443 *ivmode = "plain"; 2444 } 2445 2446 if (strcmp(chainmode, "ecb") && !*ivmode) { 2447 ti->error = "IV mechanism required"; 2448 return -EINVAL; 2449 } 2450 2451 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 2452 if (!cipher_api) 2453 goto bad_mem; 2454 2455 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 2456 "%s(%s)", chainmode, cipher); 2457 if (ret < 0) { 2458 kfree(cipher_api); 2459 goto bad_mem; 2460 } 2461 2462 /* Allocate cipher */ 2463 ret = crypt_alloc_tfms(cc, cipher_api); 2464 if (ret < 0) { 2465 ti->error = "Error allocating crypto tfm"; 2466 kfree(cipher_api); 2467 return ret; 2468 } 2469 2470 return 0; 2471 bad_mem: 2472 ti->error = "Cannot allocate cipher strings"; 2473 return -ENOMEM; 2474 } 2475 2476 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) 2477 { 2478 struct crypt_config *cc = ti->private; 2479 char *ivmode = NULL, *ivopts = NULL; 2480 int ret; 2481 2482 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 2483 if (!cc->cipher_string) { 2484 ti->error = "Cannot allocate cipher strings"; 2485 return -ENOMEM; 2486 } 2487 2488 if (strstarts(cipher_in, "capi:")) 2489 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); 2490 else 2491 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); 2492 if (ret) 2493 return ret; 2494 2495 /* Initialize IV */ 2496 ret = crypt_ctr_ivmode(ti, ivmode); 2497 if (ret < 0) 2498 return ret; 2499 2500 /* Initialize and set key */ 2501 ret = crypt_set_key(cc, key); 2502 if (ret < 0) { 2503 ti->error = "Error decoding and setting key"; 2504 return ret; 2505 } 2506 2507 /* Allocate IV */ 2508 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 2509 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 2510 if (ret < 0) { 2511 ti->error = "Error creating IV"; 2512 return ret; 2513 } 2514 } 2515 2516 /* Initialize IV (set keys for ESSIV etc) */ 2517 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 2518 ret = cc->iv_gen_ops->init(cc); 2519 if (ret < 0) { 2520 ti->error = "Error initialising IV"; 2521 return ret; 2522 } 2523 } 2524 2525 return ret; 2526 } 2527 2528 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) 2529 { 2530 struct crypt_config *cc = ti->private; 2531 struct dm_arg_set as; 2532 static const struct dm_arg _args[] = { 2533 {0, 6, "Invalid number of feature args"}, 2534 }; 2535 unsigned int opt_params, val; 2536 const char *opt_string, *sval; 2537 char dummy; 2538 int ret; 2539 2540 /* Optional parameters */ 2541 as.argc = argc; 2542 as.argv = argv; 2543 2544 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 2545 if (ret) 2546 return ret; 2547 2548 while (opt_params--) { 2549 opt_string = dm_shift_arg(&as); 2550 if (!opt_string) { 2551 ti->error = "Not enough feature arguments"; 2552 return -EINVAL; 2553 } 2554 2555 if (!strcasecmp(opt_string, "allow_discards")) 2556 ti->num_discard_bios = 1; 2557 2558 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 2559 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 2560 2561 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 2562 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 2563 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { 2564 if (val == 0 || val > MAX_TAG_SIZE) { 2565 ti->error = "Invalid integrity arguments"; 2566 return -EINVAL; 2567 } 2568 cc->on_disk_tag_size = val; 2569 sval = strchr(opt_string + strlen("integrity:"), ':') + 1; 2570 if (!strcasecmp(sval, "aead")) { 2571 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 2572 } else if (strcasecmp(sval, "none")) { 2573 ti->error = "Unknown integrity profile"; 2574 return -EINVAL; 2575 } 2576 2577 cc->cipher_auth = kstrdup(sval, GFP_KERNEL); 2578 if (!cc->cipher_auth) 2579 return -ENOMEM; 2580 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { 2581 if (cc->sector_size < (1 << SECTOR_SHIFT) || 2582 cc->sector_size > 4096 || 2583 (cc->sector_size & (cc->sector_size - 1))) { 2584 ti->error = "Invalid feature value for sector_size"; 2585 return -EINVAL; 2586 } 2587 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; 2588 } else if (!strcasecmp(opt_string, "iv_large_sectors")) 2589 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 2590 else { 2591 ti->error = "Invalid feature arguments"; 2592 return -EINVAL; 2593 } 2594 } 2595 2596 return 0; 2597 } 2598 2599 /* 2600 * Construct an encryption mapping: 2601 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> 2602 */ 2603 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 2604 { 2605 struct crypt_config *cc; 2606 int key_size; 2607 unsigned int align_mask; 2608 unsigned long long tmpll; 2609 int ret; 2610 size_t iv_size_padding, additional_req_size; 2611 char dummy; 2612 2613 if (argc < 5) { 2614 ti->error = "Not enough arguments"; 2615 return -EINVAL; 2616 } 2617 2618 key_size = get_key_size(&argv[1]); 2619 if (key_size < 0) { 2620 ti->error = "Cannot parse key size"; 2621 return -EINVAL; 2622 } 2623 2624 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); 2625 if (!cc) { 2626 ti->error = "Cannot allocate encryption context"; 2627 return -ENOMEM; 2628 } 2629 cc->key_size = key_size; 2630 cc->sector_size = (1 << SECTOR_SHIFT); 2631 cc->sector_shift = 0; 2632 2633 ti->private = cc; 2634 2635 /* Optional parameters need to be read before cipher constructor */ 2636 if (argc > 5) { 2637 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); 2638 if (ret) 2639 goto bad; 2640 } 2641 2642 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 2643 if (ret < 0) 2644 goto bad; 2645 2646 if (crypt_integrity_aead(cc)) { 2647 cc->dmreq_start = sizeof(struct aead_request); 2648 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); 2649 align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); 2650 } else { 2651 cc->dmreq_start = sizeof(struct skcipher_request); 2652 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 2653 align_mask = crypto_skcipher_alignmask(any_tfm(cc)); 2654 } 2655 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 2656 2657 if (align_mask < CRYPTO_MINALIGN) { 2658 /* Allocate the padding exactly */ 2659 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 2660 & align_mask; 2661 } else { 2662 /* 2663 * If the cipher requires greater alignment than kmalloc 2664 * alignment, we don't know the exact position of the 2665 * initialization vector. We must assume worst case. 2666 */ 2667 iv_size_padding = align_mask; 2668 } 2669 2670 ret = -ENOMEM; 2671 2672 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */ 2673 additional_req_size = sizeof(struct dm_crypt_request) + 2674 iv_size_padding + cc->iv_size + 2675 cc->iv_size + 2676 sizeof(uint64_t) + 2677 sizeof(unsigned int); 2678 2679 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size); 2680 if (!cc->req_pool) { 2681 ti->error = "Cannot allocate crypt request mempool"; 2682 goto bad; 2683 } 2684 2685 cc->per_bio_data_size = ti->per_io_data_size = 2686 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, 2687 ARCH_KMALLOC_MINALIGN); 2688 2689 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0); 2690 if (!cc->page_pool) { 2691 ti->error = "Cannot allocate page mempool"; 2692 goto bad; 2693 } 2694 2695 cc->bs = bioset_create(MIN_IOS, 0, (BIOSET_NEED_BVECS | 2696 BIOSET_NEED_RESCUER)); 2697 if (!cc->bs) { 2698 ti->error = "Cannot allocate crypt bioset"; 2699 goto bad; 2700 } 2701 2702 mutex_init(&cc->bio_alloc_lock); 2703 2704 ret = -EINVAL; 2705 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || 2706 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { 2707 ti->error = "Invalid iv_offset sector"; 2708 goto bad; 2709 } 2710 cc->iv_offset = tmpll; 2711 2712 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 2713 if (ret) { 2714 ti->error = "Device lookup failed"; 2715 goto bad; 2716 } 2717 2718 ret = -EINVAL; 2719 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) { 2720 ti->error = "Invalid device sector"; 2721 goto bad; 2722 } 2723 cc->start = tmpll; 2724 2725 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { 2726 ret = crypt_integrity_ctr(cc, ti); 2727 if (ret) 2728 goto bad; 2729 2730 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size; 2731 if (!cc->tag_pool_max_sectors) 2732 cc->tag_pool_max_sectors = 1; 2733 2734 cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS, 2735 cc->tag_pool_max_sectors * cc->on_disk_tag_size); 2736 if (!cc->tag_pool) { 2737 ti->error = "Cannot allocate integrity tags mempool"; 2738 goto bad; 2739 } 2740 2741 cc->tag_pool_max_sectors <<= cc->sector_shift; 2742 } 2743 2744 ret = -ENOMEM; 2745 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); 2746 if (!cc->io_queue) { 2747 ti->error = "Couldn't create kcryptd io queue"; 2748 goto bad; 2749 } 2750 2751 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 2752 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); 2753 else 2754 cc->crypt_queue = alloc_workqueue("kcryptd", 2755 WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, 2756 num_online_cpus()); 2757 if (!cc->crypt_queue) { 2758 ti->error = "Couldn't create kcryptd queue"; 2759 goto bad; 2760 } 2761 2762 init_waitqueue_head(&cc->write_thread_wait); 2763 cc->write_tree = RB_ROOT; 2764 2765 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write"); 2766 if (IS_ERR(cc->write_thread)) { 2767 ret = PTR_ERR(cc->write_thread); 2768 cc->write_thread = NULL; 2769 ti->error = "Couldn't spawn write thread"; 2770 goto bad; 2771 } 2772 wake_up_process(cc->write_thread); 2773 2774 ti->num_flush_bios = 1; 2775 2776 return 0; 2777 2778 bad: 2779 crypt_dtr(ti); 2780 return ret; 2781 } 2782 2783 static int crypt_map(struct dm_target *ti, struct bio *bio) 2784 { 2785 struct dm_crypt_io *io; 2786 struct crypt_config *cc = ti->private; 2787 2788 /* 2789 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 2790 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 2791 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 2792 */ 2793 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 2794 bio_op(bio) == REQ_OP_DISCARD)) { 2795 bio_set_dev(bio, cc->dev->bdev); 2796 if (bio_sectors(bio)) 2797 bio->bi_iter.bi_sector = cc->start + 2798 dm_target_offset(ti, bio->bi_iter.bi_sector); 2799 return DM_MAPIO_REMAPPED; 2800 } 2801 2802 /* 2803 * Check if bio is too large, split as needed. 2804 */ 2805 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) && 2806 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size)) 2807 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT)); 2808 2809 /* 2810 * Ensure that bio is a multiple of internal sector encryption size 2811 * and is aligned to this size as defined in IO hints. 2812 */ 2813 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) 2814 return DM_MAPIO_KILL; 2815 2816 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) 2817 return DM_MAPIO_KILL; 2818 2819 io = dm_per_bio_data(bio, cc->per_bio_data_size); 2820 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 2821 2822 if (cc->on_disk_tag_size) { 2823 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift); 2824 2825 if (unlikely(tag_len > KMALLOC_MAX_SIZE) || 2826 unlikely(!(io->integrity_metadata = kmalloc(tag_len, 2827 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) { 2828 if (bio_sectors(bio) > cc->tag_pool_max_sectors) 2829 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); 2830 io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO); 2831 io->integrity_metadata_from_pool = true; 2832 } 2833 } 2834 2835 if (crypt_integrity_aead(cc)) 2836 io->ctx.r.req_aead = (struct aead_request *)(io + 1); 2837 else 2838 io->ctx.r.req = (struct skcipher_request *)(io + 1); 2839 2840 if (bio_data_dir(io->base_bio) == READ) { 2841 if (kcryptd_io_read(io, GFP_NOWAIT)) 2842 kcryptd_queue_read(io); 2843 } else 2844 kcryptd_queue_crypt(io); 2845 2846 return DM_MAPIO_SUBMITTED; 2847 } 2848 2849 static void crypt_status(struct dm_target *ti, status_type_t type, 2850 unsigned status_flags, char *result, unsigned maxlen) 2851 { 2852 struct crypt_config *cc = ti->private; 2853 unsigned i, sz = 0; 2854 int num_feature_args = 0; 2855 2856 switch (type) { 2857 case STATUSTYPE_INFO: 2858 result[0] = '\0'; 2859 break; 2860 2861 case STATUSTYPE_TABLE: 2862 DMEMIT("%s ", cc->cipher_string); 2863 2864 if (cc->key_size > 0) { 2865 if (cc->key_string) 2866 DMEMIT(":%u:%s", cc->key_size, cc->key_string); 2867 else 2868 for (i = 0; i < cc->key_size; i++) 2869 DMEMIT("%02x", cc->key[i]); 2870 } else 2871 DMEMIT("-"); 2872 2873 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 2874 cc->dev->name, (unsigned long long)cc->start); 2875 2876 num_feature_args += !!ti->num_discard_bios; 2877 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 2878 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 2879 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); 2880 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 2881 if (cc->on_disk_tag_size) 2882 num_feature_args++; 2883 if (num_feature_args) { 2884 DMEMIT(" %d", num_feature_args); 2885 if (ti->num_discard_bios) 2886 DMEMIT(" allow_discards"); 2887 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 2888 DMEMIT(" same_cpu_crypt"); 2889 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 2890 DMEMIT(" submit_from_crypt_cpus"); 2891 if (cc->on_disk_tag_size) 2892 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth); 2893 if (cc->sector_size != (1 << SECTOR_SHIFT)) 2894 DMEMIT(" sector_size:%d", cc->sector_size); 2895 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 2896 DMEMIT(" iv_large_sectors"); 2897 } 2898 2899 break; 2900 } 2901 } 2902 2903 static void crypt_postsuspend(struct dm_target *ti) 2904 { 2905 struct crypt_config *cc = ti->private; 2906 2907 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 2908 } 2909 2910 static int crypt_preresume(struct dm_target *ti) 2911 { 2912 struct crypt_config *cc = ti->private; 2913 2914 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 2915 DMERR("aborting resume - crypt key is not set."); 2916 return -EAGAIN; 2917 } 2918 2919 return 0; 2920 } 2921 2922 static void crypt_resume(struct dm_target *ti) 2923 { 2924 struct crypt_config *cc = ti->private; 2925 2926 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 2927 } 2928 2929 /* Message interface 2930 * key set <key> 2931 * key wipe 2932 */ 2933 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) 2934 { 2935 struct crypt_config *cc = ti->private; 2936 int key_size, ret = -EINVAL; 2937 2938 if (argc < 2) 2939 goto error; 2940 2941 if (!strcasecmp(argv[0], "key")) { 2942 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 2943 DMWARN("not suspended during key manipulation."); 2944 return -EINVAL; 2945 } 2946 if (argc == 3 && !strcasecmp(argv[1], "set")) { 2947 /* The key size may not be changed. */ 2948 key_size = get_key_size(&argv[2]); 2949 if (key_size < 0 || cc->key_size != key_size) { 2950 memset(argv[2], '0', strlen(argv[2])); 2951 return -EINVAL; 2952 } 2953 2954 ret = crypt_set_key(cc, argv[2]); 2955 if (ret) 2956 return ret; 2957 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 2958 ret = cc->iv_gen_ops->init(cc); 2959 return ret; 2960 } 2961 if (argc == 2 && !strcasecmp(argv[1], "wipe")) { 2962 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2963 ret = cc->iv_gen_ops->wipe(cc); 2964 if (ret) 2965 return ret; 2966 } 2967 return crypt_wipe_key(cc); 2968 } 2969 } 2970 2971 error: 2972 DMWARN("unrecognised message received."); 2973 return -EINVAL; 2974 } 2975 2976 static int crypt_iterate_devices(struct dm_target *ti, 2977 iterate_devices_callout_fn fn, void *data) 2978 { 2979 struct crypt_config *cc = ti->private; 2980 2981 return fn(ti, cc->dev, cc->start, ti->len, data); 2982 } 2983 2984 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 2985 { 2986 struct crypt_config *cc = ti->private; 2987 2988 /* 2989 * Unfortunate constraint that is required to avoid the potential 2990 * for exceeding underlying device's max_segments limits -- due to 2991 * crypt_alloc_buffer() possibly allocating pages for the encryption 2992 * bio that are not as physically contiguous as the original bio. 2993 */ 2994 limits->max_segment_size = PAGE_SIZE; 2995 2996 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 2997 limits->logical_block_size = cc->sector_size; 2998 limits->physical_block_size = cc->sector_size; 2999 blk_limits_io_min(limits, cc->sector_size); 3000 } 3001 } 3002 3003 static struct target_type crypt_target = { 3004 .name = "crypt", 3005 .version = {1, 18, 0}, 3006 .module = THIS_MODULE, 3007 .ctr = crypt_ctr, 3008 .dtr = crypt_dtr, 3009 .map = crypt_map, 3010 .status = crypt_status, 3011 .postsuspend = crypt_postsuspend, 3012 .preresume = crypt_preresume, 3013 .resume = crypt_resume, 3014 .message = crypt_message, 3015 .iterate_devices = crypt_iterate_devices, 3016 .io_hints = crypt_io_hints, 3017 }; 3018 3019 static int __init dm_crypt_init(void) 3020 { 3021 int r; 3022 3023 r = dm_register_target(&crypt_target); 3024 if (r < 0) 3025 DMERR("register failed %d", r); 3026 3027 return r; 3028 } 3029 3030 static void __exit dm_crypt_exit(void) 3031 { 3032 dm_unregister_target(&crypt_target); 3033 } 3034 3035 module_init(dm_crypt_init); 3036 module_exit(dm_crypt_exit); 3037 3038 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 3039 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 3040 MODULE_LICENSE("GPL"); 3041