xref: /linux/drivers/md/dm-crypt.c (revision 508ecc78b6c983a7921bee2f4bd22682f9f0396e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Jana Saout <jana@saout.de>
4  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7  *
8  * This file is released under the GPL.
9  */
10 
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43 
44 #include <linux/device-mapper.h>
45 
46 #include "dm-audit.h"
47 
48 #define DM_MSG_PREFIX "crypt"
49 
50 /*
51  * context holding the current state of a multi-part conversion
52  */
53 struct convert_context {
54 	struct completion restart;
55 	struct bio *bio_in;
56 	struct bio *bio_out;
57 	struct bvec_iter iter_in;
58 	struct bvec_iter iter_out;
59 	u64 cc_sector;
60 	atomic_t cc_pending;
61 	union {
62 		struct skcipher_request *req;
63 		struct aead_request *req_aead;
64 	} r;
65 
66 };
67 
68 /*
69  * per bio private data
70  */
71 struct dm_crypt_io {
72 	struct crypt_config *cc;
73 	struct bio *base_bio;
74 	u8 *integrity_metadata;
75 	bool integrity_metadata_from_pool:1;
76 
77 	struct work_struct work;
78 
79 	struct convert_context ctx;
80 
81 	atomic_t io_pending;
82 	blk_status_t error;
83 	sector_t sector;
84 
85 	struct rb_node rb_node;
86 } CRYPTO_MINALIGN_ATTR;
87 
88 struct dm_crypt_request {
89 	struct convert_context *ctx;
90 	struct scatterlist sg_in[4];
91 	struct scatterlist sg_out[4];
92 	u64 iv_sector;
93 };
94 
95 struct crypt_config;
96 
97 struct crypt_iv_operations {
98 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
99 		   const char *opts);
100 	void (*dtr)(struct crypt_config *cc);
101 	int (*init)(struct crypt_config *cc);
102 	int (*wipe)(struct crypt_config *cc);
103 	int (*generator)(struct crypt_config *cc, u8 *iv,
104 			 struct dm_crypt_request *dmreq);
105 	int (*post)(struct crypt_config *cc, u8 *iv,
106 		    struct dm_crypt_request *dmreq);
107 };
108 
109 struct iv_benbi_private {
110 	int shift;
111 };
112 
113 #define LMK_SEED_SIZE 64 /* hash + 0 */
114 struct iv_lmk_private {
115 	struct crypto_shash *hash_tfm;
116 	u8 *seed;
117 };
118 
119 #define TCW_WHITENING_SIZE 16
120 struct iv_tcw_private {
121 	struct crypto_shash *crc32_tfm;
122 	u8 *iv_seed;
123 	u8 *whitening;
124 };
125 
126 #define ELEPHANT_MAX_KEY_SIZE 32
127 struct iv_elephant_private {
128 	struct crypto_skcipher *tfm;
129 };
130 
131 /*
132  * Crypt: maps a linear range of a block device
133  * and encrypts / decrypts at the same time.
134  */
135 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
136 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
137 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
138 	     DM_CRYPT_WRITE_INLINE };
139 
140 enum cipher_flags {
141 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
142 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
143 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
144 };
145 
146 /*
147  * The fields in here must be read only after initialization.
148  */
149 struct crypt_config {
150 	struct dm_dev *dev;
151 	sector_t start;
152 
153 	struct percpu_counter n_allocated_pages;
154 
155 	struct workqueue_struct *io_queue;
156 	struct workqueue_struct *crypt_queue;
157 
158 	spinlock_t write_thread_lock;
159 	struct task_struct *write_thread;
160 	struct rb_root write_tree;
161 
162 	char *cipher_string;
163 	char *cipher_auth;
164 	char *key_string;
165 
166 	const struct crypt_iv_operations *iv_gen_ops;
167 	union {
168 		struct iv_benbi_private benbi;
169 		struct iv_lmk_private lmk;
170 		struct iv_tcw_private tcw;
171 		struct iv_elephant_private elephant;
172 	} iv_gen_private;
173 	u64 iv_offset;
174 	unsigned int iv_size;
175 	unsigned short sector_size;
176 	unsigned char sector_shift;
177 
178 	union {
179 		struct crypto_skcipher **tfms;
180 		struct crypto_aead **tfms_aead;
181 	} cipher_tfm;
182 	unsigned int tfms_count;
183 	unsigned long cipher_flags;
184 
185 	/*
186 	 * Layout of each crypto request:
187 	 *
188 	 *   struct skcipher_request
189 	 *      context
190 	 *      padding
191 	 *   struct dm_crypt_request
192 	 *      padding
193 	 *   IV
194 	 *
195 	 * The padding is added so that dm_crypt_request and the IV are
196 	 * correctly aligned.
197 	 */
198 	unsigned int dmreq_start;
199 
200 	unsigned int per_bio_data_size;
201 
202 	unsigned long flags;
203 	unsigned int key_size;
204 	unsigned int key_parts;      /* independent parts in key buffer */
205 	unsigned int key_extra_size; /* additional keys length */
206 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
207 
208 	unsigned int integrity_tag_size;
209 	unsigned int integrity_iv_size;
210 	unsigned int on_disk_tag_size;
211 
212 	/*
213 	 * pool for per bio private data, crypto requests,
214 	 * encryption requeusts/buffer pages and integrity tags
215 	 */
216 	unsigned int tag_pool_max_sectors;
217 	mempool_t tag_pool;
218 	mempool_t req_pool;
219 	mempool_t page_pool;
220 
221 	struct bio_set bs;
222 	struct mutex bio_alloc_lock;
223 
224 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
225 	u8 key[] __counted_by(key_size);
226 };
227 
228 #define MIN_IOS		64
229 #define MAX_TAG_SIZE	480
230 #define POOL_ENTRY_SIZE	512
231 
232 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
233 static unsigned int dm_crypt_clients_n;
234 static volatile unsigned long dm_crypt_pages_per_client;
235 #define DM_CRYPT_MEMORY_PERCENT			2
236 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
237 
238 static void crypt_endio(struct bio *clone);
239 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
240 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
241 					     struct scatterlist *sg);
242 
243 static bool crypt_integrity_aead(struct crypt_config *cc);
244 
245 /*
246  * Use this to access cipher attributes that are independent of the key.
247  */
248 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
249 {
250 	return cc->cipher_tfm.tfms[0];
251 }
252 
253 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
254 {
255 	return cc->cipher_tfm.tfms_aead[0];
256 }
257 
258 /*
259  * Different IV generation algorithms:
260  *
261  * plain: the initial vector is the 32-bit little-endian version of the sector
262  *        number, padded with zeros if necessary.
263  *
264  * plain64: the initial vector is the 64-bit little-endian version of the sector
265  *        number, padded with zeros if necessary.
266  *
267  * plain64be: the initial vector is the 64-bit big-endian version of the sector
268  *        number, padded with zeros if necessary.
269  *
270  * essiv: "encrypted sector|salt initial vector", the sector number is
271  *        encrypted with the bulk cipher using a salt as key. The salt
272  *        should be derived from the bulk cipher's key via hashing.
273  *
274  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
275  *        (needed for LRW-32-AES and possible other narrow block modes)
276  *
277  * null: the initial vector is always zero.  Provides compatibility with
278  *       obsolete loop_fish2 devices.  Do not use for new devices.
279  *
280  * lmk:  Compatible implementation of the block chaining mode used
281  *       by the Loop-AES block device encryption system
282  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
283  *       It operates on full 512 byte sectors and uses CBC
284  *       with an IV derived from the sector number, the data and
285  *       optionally extra IV seed.
286  *       This means that after decryption the first block
287  *       of sector must be tweaked according to decrypted data.
288  *       Loop-AES can use three encryption schemes:
289  *         version 1: is plain aes-cbc mode
290  *         version 2: uses 64 multikey scheme with lmk IV generator
291  *         version 3: the same as version 2 with additional IV seed
292  *                   (it uses 65 keys, last key is used as IV seed)
293  *
294  * tcw:  Compatible implementation of the block chaining mode used
295  *       by the TrueCrypt device encryption system (prior to version 4.1).
296  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
297  *       It operates on full 512 byte sectors and uses CBC
298  *       with an IV derived from initial key and the sector number.
299  *       In addition, whitening value is applied on every sector, whitening
300  *       is calculated from initial key, sector number and mixed using CRC32.
301  *       Note that this encryption scheme is vulnerable to watermarking attacks
302  *       and should be used for old compatible containers access only.
303  *
304  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
305  *        The IV is encrypted little-endian byte-offset (with the same key
306  *        and cipher as the volume).
307  *
308  * elephant: The extended version of eboiv with additional Elephant diffuser
309  *           used with Bitlocker CBC mode.
310  *           This mode was used in older Windows systems
311  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
312  */
313 
314 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
315 			      struct dm_crypt_request *dmreq)
316 {
317 	memset(iv, 0, cc->iv_size);
318 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
319 
320 	return 0;
321 }
322 
323 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
324 				struct dm_crypt_request *dmreq)
325 {
326 	memset(iv, 0, cc->iv_size);
327 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
328 
329 	return 0;
330 }
331 
332 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
333 				  struct dm_crypt_request *dmreq)
334 {
335 	memset(iv, 0, cc->iv_size);
336 	/* iv_size is at least of size u64; usually it is 16 bytes */
337 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
338 
339 	return 0;
340 }
341 
342 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
343 			      struct dm_crypt_request *dmreq)
344 {
345 	/*
346 	 * ESSIV encryption of the IV is now handled by the crypto API,
347 	 * so just pass the plain sector number here.
348 	 */
349 	memset(iv, 0, cc->iv_size);
350 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
351 
352 	return 0;
353 }
354 
355 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
356 			      const char *opts)
357 {
358 	unsigned int bs;
359 	int log;
360 
361 	if (crypt_integrity_aead(cc))
362 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
363 	else
364 		bs = crypto_skcipher_blocksize(any_tfm(cc));
365 	log = ilog2(bs);
366 
367 	/*
368 	 * We need to calculate how far we must shift the sector count
369 	 * to get the cipher block count, we use this shift in _gen.
370 	 */
371 	if (1 << log != bs) {
372 		ti->error = "cypher blocksize is not a power of 2";
373 		return -EINVAL;
374 	}
375 
376 	if (log > 9) {
377 		ti->error = "cypher blocksize is > 512";
378 		return -EINVAL;
379 	}
380 
381 	cc->iv_gen_private.benbi.shift = 9 - log;
382 
383 	return 0;
384 }
385 
386 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
387 {
388 }
389 
390 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
391 			      struct dm_crypt_request *dmreq)
392 {
393 	__be64 val;
394 
395 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
396 
397 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
398 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
399 
400 	return 0;
401 }
402 
403 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
404 			     struct dm_crypt_request *dmreq)
405 {
406 	memset(iv, 0, cc->iv_size);
407 
408 	return 0;
409 }
410 
411 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
412 {
413 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
414 
415 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
416 		crypto_free_shash(lmk->hash_tfm);
417 	lmk->hash_tfm = NULL;
418 
419 	kfree_sensitive(lmk->seed);
420 	lmk->seed = NULL;
421 }
422 
423 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
424 			    const char *opts)
425 {
426 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
427 
428 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
429 		ti->error = "Unsupported sector size for LMK";
430 		return -EINVAL;
431 	}
432 
433 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
434 					   CRYPTO_ALG_ALLOCATES_MEMORY);
435 	if (IS_ERR(lmk->hash_tfm)) {
436 		ti->error = "Error initializing LMK hash";
437 		return PTR_ERR(lmk->hash_tfm);
438 	}
439 
440 	/* No seed in LMK version 2 */
441 	if (cc->key_parts == cc->tfms_count) {
442 		lmk->seed = NULL;
443 		return 0;
444 	}
445 
446 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
447 	if (!lmk->seed) {
448 		crypt_iv_lmk_dtr(cc);
449 		ti->error = "Error kmallocing seed storage in LMK";
450 		return -ENOMEM;
451 	}
452 
453 	return 0;
454 }
455 
456 static int crypt_iv_lmk_init(struct crypt_config *cc)
457 {
458 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
459 	int subkey_size = cc->key_size / cc->key_parts;
460 
461 	/* LMK seed is on the position of LMK_KEYS + 1 key */
462 	if (lmk->seed)
463 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
464 		       crypto_shash_digestsize(lmk->hash_tfm));
465 
466 	return 0;
467 }
468 
469 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
470 {
471 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
472 
473 	if (lmk->seed)
474 		memset(lmk->seed, 0, LMK_SEED_SIZE);
475 
476 	return 0;
477 }
478 
479 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
480 			    struct dm_crypt_request *dmreq,
481 			    u8 *data)
482 {
483 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
484 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
485 	struct md5_state md5state;
486 	__le32 buf[4];
487 	int i, r;
488 
489 	desc->tfm = lmk->hash_tfm;
490 
491 	r = crypto_shash_init(desc);
492 	if (r)
493 		return r;
494 
495 	if (lmk->seed) {
496 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
497 		if (r)
498 			return r;
499 	}
500 
501 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
502 	r = crypto_shash_update(desc, data + 16, 16 * 31);
503 	if (r)
504 		return r;
505 
506 	/* Sector is cropped to 56 bits here */
507 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
508 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
509 	buf[2] = cpu_to_le32(4024);
510 	buf[3] = 0;
511 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
512 	if (r)
513 		return r;
514 
515 	/* No MD5 padding here */
516 	r = crypto_shash_export(desc, &md5state);
517 	if (r)
518 		return r;
519 
520 	for (i = 0; i < MD5_HASH_WORDS; i++)
521 		__cpu_to_le32s(&md5state.hash[i]);
522 	memcpy(iv, &md5state.hash, cc->iv_size);
523 
524 	return 0;
525 }
526 
527 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
528 			    struct dm_crypt_request *dmreq)
529 {
530 	struct scatterlist *sg;
531 	u8 *src;
532 	int r = 0;
533 
534 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
535 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
536 		src = kmap_local_page(sg_page(sg));
537 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
538 		kunmap_local(src);
539 	} else
540 		memset(iv, 0, cc->iv_size);
541 
542 	return r;
543 }
544 
545 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
546 			     struct dm_crypt_request *dmreq)
547 {
548 	struct scatterlist *sg;
549 	u8 *dst;
550 	int r;
551 
552 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
553 		return 0;
554 
555 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
556 	dst = kmap_local_page(sg_page(sg));
557 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
558 
559 	/* Tweak the first block of plaintext sector */
560 	if (!r)
561 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
562 
563 	kunmap_local(dst);
564 	return r;
565 }
566 
567 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
568 {
569 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
570 
571 	kfree_sensitive(tcw->iv_seed);
572 	tcw->iv_seed = NULL;
573 	kfree_sensitive(tcw->whitening);
574 	tcw->whitening = NULL;
575 
576 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
577 		crypto_free_shash(tcw->crc32_tfm);
578 	tcw->crc32_tfm = NULL;
579 }
580 
581 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
582 			    const char *opts)
583 {
584 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
585 
586 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
587 		ti->error = "Unsupported sector size for TCW";
588 		return -EINVAL;
589 	}
590 
591 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
592 		ti->error = "Wrong key size for TCW";
593 		return -EINVAL;
594 	}
595 
596 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
597 					    CRYPTO_ALG_ALLOCATES_MEMORY);
598 	if (IS_ERR(tcw->crc32_tfm)) {
599 		ti->error = "Error initializing CRC32 in TCW";
600 		return PTR_ERR(tcw->crc32_tfm);
601 	}
602 
603 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
604 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
605 	if (!tcw->iv_seed || !tcw->whitening) {
606 		crypt_iv_tcw_dtr(cc);
607 		ti->error = "Error allocating seed storage in TCW";
608 		return -ENOMEM;
609 	}
610 
611 	return 0;
612 }
613 
614 static int crypt_iv_tcw_init(struct crypt_config *cc)
615 {
616 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
617 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
618 
619 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
620 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
621 	       TCW_WHITENING_SIZE);
622 
623 	return 0;
624 }
625 
626 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
627 {
628 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
629 
630 	memset(tcw->iv_seed, 0, cc->iv_size);
631 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
632 
633 	return 0;
634 }
635 
636 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
637 				  struct dm_crypt_request *dmreq,
638 				  u8 *data)
639 {
640 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
641 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
642 	u8 buf[TCW_WHITENING_SIZE];
643 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
644 	int i, r;
645 
646 	/* xor whitening with sector number */
647 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
648 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
649 
650 	/* calculate crc32 for every 32bit part and xor it */
651 	desc->tfm = tcw->crc32_tfm;
652 	for (i = 0; i < 4; i++) {
653 		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
654 		if (r)
655 			goto out;
656 	}
657 	crypto_xor(&buf[0], &buf[12], 4);
658 	crypto_xor(&buf[4], &buf[8], 4);
659 
660 	/* apply whitening (8 bytes) to whole sector */
661 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
662 		crypto_xor(data + i * 8, buf, 8);
663 out:
664 	memzero_explicit(buf, sizeof(buf));
665 	return r;
666 }
667 
668 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
669 			    struct dm_crypt_request *dmreq)
670 {
671 	struct scatterlist *sg;
672 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
673 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
674 	u8 *src;
675 	int r = 0;
676 
677 	/* Remove whitening from ciphertext */
678 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
679 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
680 		src = kmap_local_page(sg_page(sg));
681 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
682 		kunmap_local(src);
683 	}
684 
685 	/* Calculate IV */
686 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
687 	if (cc->iv_size > 8)
688 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
689 			       cc->iv_size - 8);
690 
691 	return r;
692 }
693 
694 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
695 			     struct dm_crypt_request *dmreq)
696 {
697 	struct scatterlist *sg;
698 	u8 *dst;
699 	int r;
700 
701 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
702 		return 0;
703 
704 	/* Apply whitening on ciphertext */
705 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
706 	dst = kmap_local_page(sg_page(sg));
707 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
708 	kunmap_local(dst);
709 
710 	return r;
711 }
712 
713 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
714 				struct dm_crypt_request *dmreq)
715 {
716 	/* Used only for writes, there must be an additional space to store IV */
717 	get_random_bytes(iv, cc->iv_size);
718 	return 0;
719 }
720 
721 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
722 			    const char *opts)
723 {
724 	if (crypt_integrity_aead(cc)) {
725 		ti->error = "AEAD transforms not supported for EBOIV";
726 		return -EINVAL;
727 	}
728 
729 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
730 		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
731 		return -EINVAL;
732 	}
733 
734 	return 0;
735 }
736 
737 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
738 			    struct dm_crypt_request *dmreq)
739 {
740 	struct crypto_skcipher *tfm = any_tfm(cc);
741 	struct skcipher_request *req;
742 	struct scatterlist src, dst;
743 	DECLARE_CRYPTO_WAIT(wait);
744 	unsigned int reqsize;
745 	int err;
746 	u8 *buf;
747 
748 	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
749 	reqsize = ALIGN(reqsize, __alignof__(__le64));
750 
751 	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
752 	if (!req)
753 		return -ENOMEM;
754 
755 	skcipher_request_set_tfm(req, tfm);
756 
757 	buf = (u8 *)req + reqsize;
758 	memset(buf, 0, cc->iv_size);
759 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
760 
761 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
762 	sg_init_one(&dst, iv, cc->iv_size);
763 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
764 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
765 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
766 	kfree_sensitive(req);
767 
768 	return err;
769 }
770 
771 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
772 {
773 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
774 
775 	crypto_free_skcipher(elephant->tfm);
776 	elephant->tfm = NULL;
777 }
778 
779 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
780 			    const char *opts)
781 {
782 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
783 	int r;
784 
785 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
786 					      CRYPTO_ALG_ALLOCATES_MEMORY);
787 	if (IS_ERR(elephant->tfm)) {
788 		r = PTR_ERR(elephant->tfm);
789 		elephant->tfm = NULL;
790 		return r;
791 	}
792 
793 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
794 	if (r)
795 		crypt_iv_elephant_dtr(cc);
796 	return r;
797 }
798 
799 static void diffuser_disk_to_cpu(u32 *d, size_t n)
800 {
801 #ifndef __LITTLE_ENDIAN
802 	int i;
803 
804 	for (i = 0; i < n; i++)
805 		d[i] = le32_to_cpu((__le32)d[i]);
806 #endif
807 }
808 
809 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
810 {
811 #ifndef __LITTLE_ENDIAN
812 	int i;
813 
814 	for (i = 0; i < n; i++)
815 		d[i] = cpu_to_le32((u32)d[i]);
816 #endif
817 }
818 
819 static void diffuser_a_decrypt(u32 *d, size_t n)
820 {
821 	int i, i1, i2, i3;
822 
823 	for (i = 0; i < 5; i++) {
824 		i1 = 0;
825 		i2 = n - 2;
826 		i3 = n - 5;
827 
828 		while (i1 < (n - 1)) {
829 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
830 			i1++; i2++; i3++;
831 
832 			if (i3 >= n)
833 				i3 -= n;
834 
835 			d[i1] += d[i2] ^ d[i3];
836 			i1++; i2++; i3++;
837 
838 			if (i2 >= n)
839 				i2 -= n;
840 
841 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
842 			i1++; i2++; i3++;
843 
844 			d[i1] += d[i2] ^ d[i3];
845 			i1++; i2++; i3++;
846 		}
847 	}
848 }
849 
850 static void diffuser_a_encrypt(u32 *d, size_t n)
851 {
852 	int i, i1, i2, i3;
853 
854 	for (i = 0; i < 5; i++) {
855 		i1 = n - 1;
856 		i2 = n - 2 - 1;
857 		i3 = n - 5 - 1;
858 
859 		while (i1 > 0) {
860 			d[i1] -= d[i2] ^ d[i3];
861 			i1--; i2--; i3--;
862 
863 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
864 			i1--; i2--; i3--;
865 
866 			if (i2 < 0)
867 				i2 += n;
868 
869 			d[i1] -= d[i2] ^ d[i3];
870 			i1--; i2--; i3--;
871 
872 			if (i3 < 0)
873 				i3 += n;
874 
875 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
876 			i1--; i2--; i3--;
877 		}
878 	}
879 }
880 
881 static void diffuser_b_decrypt(u32 *d, size_t n)
882 {
883 	int i, i1, i2, i3;
884 
885 	for (i = 0; i < 3; i++) {
886 		i1 = 0;
887 		i2 = 2;
888 		i3 = 5;
889 
890 		while (i1 < (n - 1)) {
891 			d[i1] += d[i2] ^ d[i3];
892 			i1++; i2++; i3++;
893 
894 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
895 			i1++; i2++; i3++;
896 
897 			if (i2 >= n)
898 				i2 -= n;
899 
900 			d[i1] += d[i2] ^ d[i3];
901 			i1++; i2++; i3++;
902 
903 			if (i3 >= n)
904 				i3 -= n;
905 
906 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
907 			i1++; i2++; i3++;
908 		}
909 	}
910 }
911 
912 static void diffuser_b_encrypt(u32 *d, size_t n)
913 {
914 	int i, i1, i2, i3;
915 
916 	for (i = 0; i < 3; i++) {
917 		i1 = n - 1;
918 		i2 = 2 - 1;
919 		i3 = 5 - 1;
920 
921 		while (i1 > 0) {
922 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
923 			i1--; i2--; i3--;
924 
925 			if (i3 < 0)
926 				i3 += n;
927 
928 			d[i1] -= d[i2] ^ d[i3];
929 			i1--; i2--; i3--;
930 
931 			if (i2 < 0)
932 				i2 += n;
933 
934 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
935 			i1--; i2--; i3--;
936 
937 			d[i1] -= d[i2] ^ d[i3];
938 			i1--; i2--; i3--;
939 		}
940 	}
941 }
942 
943 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
944 {
945 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
946 	u8 *es, *ks, *data, *data2, *data_offset;
947 	struct skcipher_request *req;
948 	struct scatterlist *sg, *sg2, src, dst;
949 	DECLARE_CRYPTO_WAIT(wait);
950 	int i, r;
951 
952 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
953 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
954 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
955 
956 	if (!req || !es || !ks) {
957 		r = -ENOMEM;
958 		goto out;
959 	}
960 
961 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
962 
963 	/* E(Ks, e(s)) */
964 	sg_init_one(&src, es, 16);
965 	sg_init_one(&dst, ks, 16);
966 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
967 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
968 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
969 	if (r)
970 		goto out;
971 
972 	/* E(Ks, e'(s)) */
973 	es[15] = 0x80;
974 	sg_init_one(&dst, &ks[16], 16);
975 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
976 	if (r)
977 		goto out;
978 
979 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
980 	data = kmap_local_page(sg_page(sg));
981 	data_offset = data + sg->offset;
982 
983 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
984 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
985 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
986 		data2 = kmap_local_page(sg_page(sg2));
987 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
988 		kunmap_local(data2);
989 	}
990 
991 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
992 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
993 		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
994 		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
995 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
996 	}
997 
998 	for (i = 0; i < (cc->sector_size / 32); i++)
999 		crypto_xor(data_offset + i * 32, ks, 32);
1000 
1001 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1002 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1003 		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1004 		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1005 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1006 	}
1007 
1008 	kunmap_local(data);
1009 out:
1010 	kfree_sensitive(ks);
1011 	kfree_sensitive(es);
1012 	skcipher_request_free(req);
1013 	return r;
1014 }
1015 
1016 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1017 			    struct dm_crypt_request *dmreq)
1018 {
1019 	int r;
1020 
1021 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1022 		r = crypt_iv_elephant(cc, dmreq);
1023 		if (r)
1024 			return r;
1025 	}
1026 
1027 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1028 }
1029 
1030 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1031 				  struct dm_crypt_request *dmreq)
1032 {
1033 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1034 		return crypt_iv_elephant(cc, dmreq);
1035 
1036 	return 0;
1037 }
1038 
1039 static int crypt_iv_elephant_init(struct crypt_config *cc)
1040 {
1041 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1042 	int key_offset = cc->key_size - cc->key_extra_size;
1043 
1044 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1045 }
1046 
1047 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1048 {
1049 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1050 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1051 
1052 	memset(key, 0, cc->key_extra_size);
1053 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1054 }
1055 
1056 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1057 	.generator = crypt_iv_plain_gen
1058 };
1059 
1060 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1061 	.generator = crypt_iv_plain64_gen
1062 };
1063 
1064 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1065 	.generator = crypt_iv_plain64be_gen
1066 };
1067 
1068 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1069 	.generator = crypt_iv_essiv_gen
1070 };
1071 
1072 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1073 	.ctr	   = crypt_iv_benbi_ctr,
1074 	.dtr	   = crypt_iv_benbi_dtr,
1075 	.generator = crypt_iv_benbi_gen
1076 };
1077 
1078 static const struct crypt_iv_operations crypt_iv_null_ops = {
1079 	.generator = crypt_iv_null_gen
1080 };
1081 
1082 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1083 	.ctr	   = crypt_iv_lmk_ctr,
1084 	.dtr	   = crypt_iv_lmk_dtr,
1085 	.init	   = crypt_iv_lmk_init,
1086 	.wipe	   = crypt_iv_lmk_wipe,
1087 	.generator = crypt_iv_lmk_gen,
1088 	.post	   = crypt_iv_lmk_post
1089 };
1090 
1091 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1092 	.ctr	   = crypt_iv_tcw_ctr,
1093 	.dtr	   = crypt_iv_tcw_dtr,
1094 	.init	   = crypt_iv_tcw_init,
1095 	.wipe	   = crypt_iv_tcw_wipe,
1096 	.generator = crypt_iv_tcw_gen,
1097 	.post	   = crypt_iv_tcw_post
1098 };
1099 
1100 static const struct crypt_iv_operations crypt_iv_random_ops = {
1101 	.generator = crypt_iv_random_gen
1102 };
1103 
1104 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1105 	.ctr	   = crypt_iv_eboiv_ctr,
1106 	.generator = crypt_iv_eboiv_gen
1107 };
1108 
1109 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1110 	.ctr	   = crypt_iv_elephant_ctr,
1111 	.dtr	   = crypt_iv_elephant_dtr,
1112 	.init	   = crypt_iv_elephant_init,
1113 	.wipe	   = crypt_iv_elephant_wipe,
1114 	.generator = crypt_iv_elephant_gen,
1115 	.post	   = crypt_iv_elephant_post
1116 };
1117 
1118 /*
1119  * Integrity extensions
1120  */
1121 static bool crypt_integrity_aead(struct crypt_config *cc)
1122 {
1123 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1124 }
1125 
1126 static bool crypt_integrity_hmac(struct crypt_config *cc)
1127 {
1128 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1129 }
1130 
1131 /* Get sg containing data */
1132 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1133 					     struct scatterlist *sg)
1134 {
1135 	if (unlikely(crypt_integrity_aead(cc)))
1136 		return &sg[2];
1137 
1138 	return sg;
1139 }
1140 
1141 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1142 {
1143 	struct bio_integrity_payload *bip;
1144 	unsigned int tag_len;
1145 	int ret;
1146 
1147 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1148 		return 0;
1149 
1150 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1151 	if (IS_ERR(bip))
1152 		return PTR_ERR(bip);
1153 
1154 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1155 
1156 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1157 
1158 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1159 				     tag_len, offset_in_page(io->integrity_metadata));
1160 	if (unlikely(ret != tag_len))
1161 		return -ENOMEM;
1162 
1163 	return 0;
1164 }
1165 
1166 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1167 {
1168 #ifdef CONFIG_BLK_DEV_INTEGRITY
1169 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1170 	struct mapped_device *md = dm_table_get_md(ti->table);
1171 
1172 	/* From now we require underlying device with our integrity profile */
1173 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1174 		ti->error = "Integrity profile not supported.";
1175 		return -EINVAL;
1176 	}
1177 
1178 	if (bi->tag_size != cc->on_disk_tag_size ||
1179 	    bi->tuple_size != cc->on_disk_tag_size) {
1180 		ti->error = "Integrity profile tag size mismatch.";
1181 		return -EINVAL;
1182 	}
1183 	if (1 << bi->interval_exp != cc->sector_size) {
1184 		ti->error = "Integrity profile sector size mismatch.";
1185 		return -EINVAL;
1186 	}
1187 
1188 	if (crypt_integrity_aead(cc)) {
1189 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1190 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1191 		       cc->integrity_tag_size, cc->integrity_iv_size);
1192 
1193 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1194 			ti->error = "Integrity AEAD auth tag size is not supported.";
1195 			return -EINVAL;
1196 		}
1197 	} else if (cc->integrity_iv_size)
1198 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1199 		       cc->integrity_iv_size);
1200 
1201 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1202 		ti->error = "Not enough space for integrity tag in the profile.";
1203 		return -EINVAL;
1204 	}
1205 
1206 	return 0;
1207 #else
1208 	ti->error = "Integrity profile not supported.";
1209 	return -EINVAL;
1210 #endif
1211 }
1212 
1213 static void crypt_convert_init(struct crypt_config *cc,
1214 			       struct convert_context *ctx,
1215 			       struct bio *bio_out, struct bio *bio_in,
1216 			       sector_t sector)
1217 {
1218 	ctx->bio_in = bio_in;
1219 	ctx->bio_out = bio_out;
1220 	if (bio_in)
1221 		ctx->iter_in = bio_in->bi_iter;
1222 	if (bio_out)
1223 		ctx->iter_out = bio_out->bi_iter;
1224 	ctx->cc_sector = sector + cc->iv_offset;
1225 	init_completion(&ctx->restart);
1226 }
1227 
1228 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1229 					     void *req)
1230 {
1231 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1232 }
1233 
1234 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1235 {
1236 	return (void *)((char *)dmreq - cc->dmreq_start);
1237 }
1238 
1239 static u8 *iv_of_dmreq(struct crypt_config *cc,
1240 		       struct dm_crypt_request *dmreq)
1241 {
1242 	if (crypt_integrity_aead(cc))
1243 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1244 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1245 	else
1246 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1247 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1248 }
1249 
1250 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1251 		       struct dm_crypt_request *dmreq)
1252 {
1253 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1254 }
1255 
1256 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1257 		       struct dm_crypt_request *dmreq)
1258 {
1259 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1260 
1261 	return (__le64 *) ptr;
1262 }
1263 
1264 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1265 		       struct dm_crypt_request *dmreq)
1266 {
1267 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1268 		  cc->iv_size + sizeof(uint64_t);
1269 
1270 	return (unsigned int *)ptr;
1271 }
1272 
1273 static void *tag_from_dmreq(struct crypt_config *cc,
1274 				struct dm_crypt_request *dmreq)
1275 {
1276 	struct convert_context *ctx = dmreq->ctx;
1277 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1278 
1279 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1280 		cc->on_disk_tag_size];
1281 }
1282 
1283 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1284 			       struct dm_crypt_request *dmreq)
1285 {
1286 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1287 }
1288 
1289 static int crypt_convert_block_aead(struct crypt_config *cc,
1290 				     struct convert_context *ctx,
1291 				     struct aead_request *req,
1292 				     unsigned int tag_offset)
1293 {
1294 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1295 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1296 	struct dm_crypt_request *dmreq;
1297 	u8 *iv, *org_iv, *tag_iv, *tag;
1298 	__le64 *sector;
1299 	int r = 0;
1300 
1301 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1302 
1303 	/* Reject unexpected unaligned bio. */
1304 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1305 		return -EIO;
1306 
1307 	dmreq = dmreq_of_req(cc, req);
1308 	dmreq->iv_sector = ctx->cc_sector;
1309 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1310 		dmreq->iv_sector >>= cc->sector_shift;
1311 	dmreq->ctx = ctx;
1312 
1313 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1314 
1315 	sector = org_sector_of_dmreq(cc, dmreq);
1316 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1317 
1318 	iv = iv_of_dmreq(cc, dmreq);
1319 	org_iv = org_iv_of_dmreq(cc, dmreq);
1320 	tag = tag_from_dmreq(cc, dmreq);
1321 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1322 
1323 	/* AEAD request:
1324 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1325 	 *  | (authenticated) | (auth+encryption) |              |
1326 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1327 	 */
1328 	sg_init_table(dmreq->sg_in, 4);
1329 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1330 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1331 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1332 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1333 
1334 	sg_init_table(dmreq->sg_out, 4);
1335 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1336 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1337 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1338 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1339 
1340 	if (cc->iv_gen_ops) {
1341 		/* For READs use IV stored in integrity metadata */
1342 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1343 			memcpy(org_iv, tag_iv, cc->iv_size);
1344 		} else {
1345 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1346 			if (r < 0)
1347 				return r;
1348 			/* Store generated IV in integrity metadata */
1349 			if (cc->integrity_iv_size)
1350 				memcpy(tag_iv, org_iv, cc->iv_size);
1351 		}
1352 		/* Working copy of IV, to be modified in crypto API */
1353 		memcpy(iv, org_iv, cc->iv_size);
1354 	}
1355 
1356 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1357 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1358 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1359 				       cc->sector_size, iv);
1360 		r = crypto_aead_encrypt(req);
1361 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1362 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1363 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1364 	} else {
1365 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1366 				       cc->sector_size + cc->integrity_tag_size, iv);
1367 		r = crypto_aead_decrypt(req);
1368 	}
1369 
1370 	if (r == -EBADMSG) {
1371 		sector_t s = le64_to_cpu(*sector);
1372 
1373 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1374 			    ctx->bio_in->bi_bdev, s);
1375 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1376 				 ctx->bio_in, s, 0);
1377 	}
1378 
1379 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1380 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1381 
1382 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1383 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1384 
1385 	return r;
1386 }
1387 
1388 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1389 					struct convert_context *ctx,
1390 					struct skcipher_request *req,
1391 					unsigned int tag_offset)
1392 {
1393 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1394 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1395 	struct scatterlist *sg_in, *sg_out;
1396 	struct dm_crypt_request *dmreq;
1397 	u8 *iv, *org_iv, *tag_iv;
1398 	__le64 *sector;
1399 	int r = 0;
1400 
1401 	/* Reject unexpected unaligned bio. */
1402 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1403 		return -EIO;
1404 
1405 	dmreq = dmreq_of_req(cc, req);
1406 	dmreq->iv_sector = ctx->cc_sector;
1407 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1408 		dmreq->iv_sector >>= cc->sector_shift;
1409 	dmreq->ctx = ctx;
1410 
1411 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1412 
1413 	iv = iv_of_dmreq(cc, dmreq);
1414 	org_iv = org_iv_of_dmreq(cc, dmreq);
1415 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1416 
1417 	sector = org_sector_of_dmreq(cc, dmreq);
1418 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1419 
1420 	/* For skcipher we use only the first sg item */
1421 	sg_in  = &dmreq->sg_in[0];
1422 	sg_out = &dmreq->sg_out[0];
1423 
1424 	sg_init_table(sg_in, 1);
1425 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1426 
1427 	sg_init_table(sg_out, 1);
1428 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1429 
1430 	if (cc->iv_gen_ops) {
1431 		/* For READs use IV stored in integrity metadata */
1432 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1433 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1434 		} else {
1435 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1436 			if (r < 0)
1437 				return r;
1438 			/* Data can be already preprocessed in generator */
1439 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1440 				sg_in = sg_out;
1441 			/* Store generated IV in integrity metadata */
1442 			if (cc->integrity_iv_size)
1443 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1444 		}
1445 		/* Working copy of IV, to be modified in crypto API */
1446 		memcpy(iv, org_iv, cc->iv_size);
1447 	}
1448 
1449 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1450 
1451 	if (bio_data_dir(ctx->bio_in) == WRITE)
1452 		r = crypto_skcipher_encrypt(req);
1453 	else
1454 		r = crypto_skcipher_decrypt(req);
1455 
1456 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1457 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1458 
1459 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1460 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1461 
1462 	return r;
1463 }
1464 
1465 static void kcryptd_async_done(void *async_req, int error);
1466 
1467 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1468 				     struct convert_context *ctx)
1469 {
1470 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1471 
1472 	if (!ctx->r.req) {
1473 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1474 		if (!ctx->r.req)
1475 			return -ENOMEM;
1476 	}
1477 
1478 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1479 
1480 	/*
1481 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1482 	 * requests if driver request queue is full.
1483 	 */
1484 	skcipher_request_set_callback(ctx->r.req,
1485 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1486 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1487 
1488 	return 0;
1489 }
1490 
1491 static int crypt_alloc_req_aead(struct crypt_config *cc,
1492 				 struct convert_context *ctx)
1493 {
1494 	if (!ctx->r.req_aead) {
1495 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1496 		if (!ctx->r.req_aead)
1497 			return -ENOMEM;
1498 	}
1499 
1500 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1501 
1502 	/*
1503 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1504 	 * requests if driver request queue is full.
1505 	 */
1506 	aead_request_set_callback(ctx->r.req_aead,
1507 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1508 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1509 
1510 	return 0;
1511 }
1512 
1513 static int crypt_alloc_req(struct crypt_config *cc,
1514 			    struct convert_context *ctx)
1515 {
1516 	if (crypt_integrity_aead(cc))
1517 		return crypt_alloc_req_aead(cc, ctx);
1518 	else
1519 		return crypt_alloc_req_skcipher(cc, ctx);
1520 }
1521 
1522 static void crypt_free_req_skcipher(struct crypt_config *cc,
1523 				    struct skcipher_request *req, struct bio *base_bio)
1524 {
1525 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1526 
1527 	if ((struct skcipher_request *)(io + 1) != req)
1528 		mempool_free(req, &cc->req_pool);
1529 }
1530 
1531 static void crypt_free_req_aead(struct crypt_config *cc,
1532 				struct aead_request *req, struct bio *base_bio)
1533 {
1534 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1535 
1536 	if ((struct aead_request *)(io + 1) != req)
1537 		mempool_free(req, &cc->req_pool);
1538 }
1539 
1540 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1541 {
1542 	if (crypt_integrity_aead(cc))
1543 		crypt_free_req_aead(cc, req, base_bio);
1544 	else
1545 		crypt_free_req_skcipher(cc, req, base_bio);
1546 }
1547 
1548 /*
1549  * Encrypt / decrypt data from one bio to another one (can be the same one)
1550  */
1551 static blk_status_t crypt_convert(struct crypt_config *cc,
1552 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1553 {
1554 	unsigned int tag_offset = 0;
1555 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1556 	int r;
1557 
1558 	/*
1559 	 * if reset_pending is set we are dealing with the bio for the first time,
1560 	 * else we're continuing to work on the previous bio, so don't mess with
1561 	 * the cc_pending counter
1562 	 */
1563 	if (reset_pending)
1564 		atomic_set(&ctx->cc_pending, 1);
1565 
1566 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1567 
1568 		r = crypt_alloc_req(cc, ctx);
1569 		if (r) {
1570 			complete(&ctx->restart);
1571 			return BLK_STS_DEV_RESOURCE;
1572 		}
1573 
1574 		atomic_inc(&ctx->cc_pending);
1575 
1576 		if (crypt_integrity_aead(cc))
1577 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1578 		else
1579 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1580 
1581 		switch (r) {
1582 		/*
1583 		 * The request was queued by a crypto driver
1584 		 * but the driver request queue is full, let's wait.
1585 		 */
1586 		case -EBUSY:
1587 			if (in_interrupt()) {
1588 				if (try_wait_for_completion(&ctx->restart)) {
1589 					/*
1590 					 * we don't have to block to wait for completion,
1591 					 * so proceed
1592 					 */
1593 				} else {
1594 					/*
1595 					 * we can't wait for completion without blocking
1596 					 * exit and continue processing in a workqueue
1597 					 */
1598 					ctx->r.req = NULL;
1599 					ctx->cc_sector += sector_step;
1600 					tag_offset++;
1601 					return BLK_STS_DEV_RESOURCE;
1602 				}
1603 			} else {
1604 				wait_for_completion(&ctx->restart);
1605 			}
1606 			reinit_completion(&ctx->restart);
1607 			fallthrough;
1608 		/*
1609 		 * The request is queued and processed asynchronously,
1610 		 * completion function kcryptd_async_done() will be called.
1611 		 */
1612 		case -EINPROGRESS:
1613 			ctx->r.req = NULL;
1614 			ctx->cc_sector += sector_step;
1615 			tag_offset++;
1616 			continue;
1617 		/*
1618 		 * The request was already processed (synchronously).
1619 		 */
1620 		case 0:
1621 			atomic_dec(&ctx->cc_pending);
1622 			ctx->cc_sector += sector_step;
1623 			tag_offset++;
1624 			if (!atomic)
1625 				cond_resched();
1626 			continue;
1627 		/*
1628 		 * There was a data integrity error.
1629 		 */
1630 		case -EBADMSG:
1631 			atomic_dec(&ctx->cc_pending);
1632 			return BLK_STS_PROTECTION;
1633 		/*
1634 		 * There was an error while processing the request.
1635 		 */
1636 		default:
1637 			atomic_dec(&ctx->cc_pending);
1638 			return BLK_STS_IOERR;
1639 		}
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1646 
1647 /*
1648  * Generate a new unfragmented bio with the given size
1649  * This should never violate the device limitations (but only because
1650  * max_segment_size is being constrained to PAGE_SIZE).
1651  *
1652  * This function may be called concurrently. If we allocate from the mempool
1653  * concurrently, there is a possibility of deadlock. For example, if we have
1654  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1655  * the mempool concurrently, it may deadlock in a situation where both processes
1656  * have allocated 128 pages and the mempool is exhausted.
1657  *
1658  * In order to avoid this scenario we allocate the pages under a mutex.
1659  *
1660  * In order to not degrade performance with excessive locking, we try
1661  * non-blocking allocations without a mutex first but on failure we fallback
1662  * to blocking allocations with a mutex.
1663  *
1664  * In order to reduce allocation overhead, we try to allocate compound pages in
1665  * the first pass. If they are not available, we fall back to the mempool.
1666  */
1667 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1668 {
1669 	struct crypt_config *cc = io->cc;
1670 	struct bio *clone;
1671 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1672 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1673 	unsigned int remaining_size;
1674 	unsigned int order = MAX_PAGE_ORDER;
1675 
1676 retry:
1677 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1678 		mutex_lock(&cc->bio_alloc_lock);
1679 
1680 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1681 				 GFP_NOIO, &cc->bs);
1682 	clone->bi_private = io;
1683 	clone->bi_end_io = crypt_endio;
1684 
1685 	remaining_size = size;
1686 
1687 	while (remaining_size) {
1688 		struct page *pages;
1689 		unsigned size_to_add;
1690 		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1691 		order = min(order, remaining_order);
1692 
1693 		while (order > 0) {
1694 			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1695 					(1 << order) > dm_crypt_pages_per_client))
1696 				goto decrease_order;
1697 			pages = alloc_pages(gfp_mask
1698 				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1699 				order);
1700 			if (likely(pages != NULL)) {
1701 				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1702 				goto have_pages;
1703 			}
1704 decrease_order:
1705 			order--;
1706 		}
1707 
1708 		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1709 		if (!pages) {
1710 			crypt_free_buffer_pages(cc, clone);
1711 			bio_put(clone);
1712 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1713 			order = 0;
1714 			goto retry;
1715 		}
1716 
1717 have_pages:
1718 		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1719 		__bio_add_page(clone, pages, size_to_add, 0);
1720 		remaining_size -= size_to_add;
1721 	}
1722 
1723 	/* Allocate space for integrity tags */
1724 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1725 		crypt_free_buffer_pages(cc, clone);
1726 		bio_put(clone);
1727 		clone = NULL;
1728 	}
1729 
1730 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1731 		mutex_unlock(&cc->bio_alloc_lock);
1732 
1733 	return clone;
1734 }
1735 
1736 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1737 {
1738 	struct folio_iter fi;
1739 
1740 	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1741 		bio_for_each_folio_all(fi, clone) {
1742 			if (folio_test_large(fi.folio)) {
1743 				percpu_counter_sub(&cc->n_allocated_pages,
1744 						1 << folio_order(fi.folio));
1745 				folio_put(fi.folio);
1746 			} else {
1747 				mempool_free(&fi.folio->page, &cc->page_pool);
1748 			}
1749 		}
1750 	}
1751 }
1752 
1753 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1754 			  struct bio *bio, sector_t sector)
1755 {
1756 	io->cc = cc;
1757 	io->base_bio = bio;
1758 	io->sector = sector;
1759 	io->error = 0;
1760 	io->ctx.r.req = NULL;
1761 	io->integrity_metadata = NULL;
1762 	io->integrity_metadata_from_pool = false;
1763 	atomic_set(&io->io_pending, 0);
1764 }
1765 
1766 static void crypt_inc_pending(struct dm_crypt_io *io)
1767 {
1768 	atomic_inc(&io->io_pending);
1769 }
1770 
1771 /*
1772  * One of the bios was finished. Check for completion of
1773  * the whole request and correctly clean up the buffer.
1774  */
1775 static void crypt_dec_pending(struct dm_crypt_io *io)
1776 {
1777 	struct crypt_config *cc = io->cc;
1778 	struct bio *base_bio = io->base_bio;
1779 	blk_status_t error = io->error;
1780 
1781 	if (!atomic_dec_and_test(&io->io_pending))
1782 		return;
1783 
1784 	if (io->ctx.r.req)
1785 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1786 
1787 	if (unlikely(io->integrity_metadata_from_pool))
1788 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1789 	else
1790 		kfree(io->integrity_metadata);
1791 
1792 	base_bio->bi_status = error;
1793 
1794 	bio_endio(base_bio);
1795 }
1796 
1797 /*
1798  * kcryptd/kcryptd_io:
1799  *
1800  * Needed because it would be very unwise to do decryption in an
1801  * interrupt context.
1802  *
1803  * kcryptd performs the actual encryption or decryption.
1804  *
1805  * kcryptd_io performs the IO submission.
1806  *
1807  * They must be separated as otherwise the final stages could be
1808  * starved by new requests which can block in the first stages due
1809  * to memory allocation.
1810  *
1811  * The work is done per CPU global for all dm-crypt instances.
1812  * They should not depend on each other and do not block.
1813  */
1814 static void crypt_endio(struct bio *clone)
1815 {
1816 	struct dm_crypt_io *io = clone->bi_private;
1817 	struct crypt_config *cc = io->cc;
1818 	unsigned int rw = bio_data_dir(clone);
1819 	blk_status_t error;
1820 
1821 	/*
1822 	 * free the processed pages
1823 	 */
1824 	if (rw == WRITE)
1825 		crypt_free_buffer_pages(cc, clone);
1826 
1827 	error = clone->bi_status;
1828 	bio_put(clone);
1829 
1830 	if (rw == READ && !error) {
1831 		kcryptd_queue_crypt(io);
1832 		return;
1833 	}
1834 
1835 	if (unlikely(error))
1836 		io->error = error;
1837 
1838 	crypt_dec_pending(io);
1839 }
1840 
1841 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1842 
1843 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1844 {
1845 	struct crypt_config *cc = io->cc;
1846 	struct bio *clone;
1847 
1848 	/*
1849 	 * We need the original biovec array in order to decrypt the whole bio
1850 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1851 	 * worry about the block layer modifying the biovec array; so leverage
1852 	 * bio_alloc_clone().
1853 	 */
1854 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1855 	if (!clone)
1856 		return 1;
1857 	clone->bi_private = io;
1858 	clone->bi_end_io = crypt_endio;
1859 
1860 	crypt_inc_pending(io);
1861 
1862 	clone->bi_iter.bi_sector = cc->start + io->sector;
1863 
1864 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1865 		crypt_dec_pending(io);
1866 		bio_put(clone);
1867 		return 1;
1868 	}
1869 
1870 	dm_submit_bio_remap(io->base_bio, clone);
1871 	return 0;
1872 }
1873 
1874 static void kcryptd_io_read_work(struct work_struct *work)
1875 {
1876 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1877 
1878 	crypt_inc_pending(io);
1879 	if (kcryptd_io_read(io, GFP_NOIO))
1880 		io->error = BLK_STS_RESOURCE;
1881 	crypt_dec_pending(io);
1882 }
1883 
1884 static void kcryptd_queue_read(struct dm_crypt_io *io)
1885 {
1886 	struct crypt_config *cc = io->cc;
1887 
1888 	INIT_WORK(&io->work, kcryptd_io_read_work);
1889 	queue_work(cc->io_queue, &io->work);
1890 }
1891 
1892 static void kcryptd_io_write(struct dm_crypt_io *io)
1893 {
1894 	struct bio *clone = io->ctx.bio_out;
1895 
1896 	dm_submit_bio_remap(io->base_bio, clone);
1897 }
1898 
1899 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1900 
1901 static int dmcrypt_write(void *data)
1902 {
1903 	struct crypt_config *cc = data;
1904 	struct dm_crypt_io *io;
1905 
1906 	while (1) {
1907 		struct rb_root write_tree;
1908 		struct blk_plug plug;
1909 
1910 		spin_lock_irq(&cc->write_thread_lock);
1911 continue_locked:
1912 
1913 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1914 			goto pop_from_list;
1915 
1916 		set_current_state(TASK_INTERRUPTIBLE);
1917 
1918 		spin_unlock_irq(&cc->write_thread_lock);
1919 
1920 		if (unlikely(kthread_should_stop())) {
1921 			set_current_state(TASK_RUNNING);
1922 			break;
1923 		}
1924 
1925 		schedule();
1926 
1927 		set_current_state(TASK_RUNNING);
1928 		spin_lock_irq(&cc->write_thread_lock);
1929 		goto continue_locked;
1930 
1931 pop_from_list:
1932 		write_tree = cc->write_tree;
1933 		cc->write_tree = RB_ROOT;
1934 		spin_unlock_irq(&cc->write_thread_lock);
1935 
1936 		BUG_ON(rb_parent(write_tree.rb_node));
1937 
1938 		/*
1939 		 * Note: we cannot walk the tree here with rb_next because
1940 		 * the structures may be freed when kcryptd_io_write is called.
1941 		 */
1942 		blk_start_plug(&plug);
1943 		do {
1944 			io = crypt_io_from_node(rb_first(&write_tree));
1945 			rb_erase(&io->rb_node, &write_tree);
1946 			kcryptd_io_write(io);
1947 			cond_resched();
1948 		} while (!RB_EMPTY_ROOT(&write_tree));
1949 		blk_finish_plug(&plug);
1950 	}
1951 	return 0;
1952 }
1953 
1954 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1955 {
1956 	struct bio *clone = io->ctx.bio_out;
1957 	struct crypt_config *cc = io->cc;
1958 	unsigned long flags;
1959 	sector_t sector;
1960 	struct rb_node **rbp, *parent;
1961 
1962 	if (unlikely(io->error)) {
1963 		crypt_free_buffer_pages(cc, clone);
1964 		bio_put(clone);
1965 		crypt_dec_pending(io);
1966 		return;
1967 	}
1968 
1969 	/* crypt_convert should have filled the clone bio */
1970 	BUG_ON(io->ctx.iter_out.bi_size);
1971 
1972 	clone->bi_iter.bi_sector = cc->start + io->sector;
1973 
1974 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1975 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1976 		dm_submit_bio_remap(io->base_bio, clone);
1977 		return;
1978 	}
1979 
1980 	spin_lock_irqsave(&cc->write_thread_lock, flags);
1981 	if (RB_EMPTY_ROOT(&cc->write_tree))
1982 		wake_up_process(cc->write_thread);
1983 	rbp = &cc->write_tree.rb_node;
1984 	parent = NULL;
1985 	sector = io->sector;
1986 	while (*rbp) {
1987 		parent = *rbp;
1988 		if (sector < crypt_io_from_node(parent)->sector)
1989 			rbp = &(*rbp)->rb_left;
1990 		else
1991 			rbp = &(*rbp)->rb_right;
1992 	}
1993 	rb_link_node(&io->rb_node, parent, rbp);
1994 	rb_insert_color(&io->rb_node, &cc->write_tree);
1995 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1996 }
1997 
1998 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1999 				       struct convert_context *ctx)
2000 
2001 {
2002 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2003 		return false;
2004 
2005 	/*
2006 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2007 	 * constraints so they do not need to be issued inline by
2008 	 * kcryptd_crypt_write_convert().
2009 	 */
2010 	switch (bio_op(ctx->bio_in)) {
2011 	case REQ_OP_WRITE:
2012 	case REQ_OP_WRITE_ZEROES:
2013 		return true;
2014 	default:
2015 		return false;
2016 	}
2017 }
2018 
2019 static void kcryptd_crypt_write_continue(struct work_struct *work)
2020 {
2021 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2022 	struct crypt_config *cc = io->cc;
2023 	struct convert_context *ctx = &io->ctx;
2024 	int crypt_finished;
2025 	sector_t sector = io->sector;
2026 	blk_status_t r;
2027 
2028 	wait_for_completion(&ctx->restart);
2029 	reinit_completion(&ctx->restart);
2030 
2031 	r = crypt_convert(cc, &io->ctx, true, false);
2032 	if (r)
2033 		io->error = r;
2034 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2035 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2036 		/* Wait for completion signaled by kcryptd_async_done() */
2037 		wait_for_completion(&ctx->restart);
2038 		crypt_finished = 1;
2039 	}
2040 
2041 	/* Encryption was already finished, submit io now */
2042 	if (crypt_finished) {
2043 		kcryptd_crypt_write_io_submit(io, 0);
2044 		io->sector = sector;
2045 	}
2046 
2047 	crypt_dec_pending(io);
2048 }
2049 
2050 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2051 {
2052 	struct crypt_config *cc = io->cc;
2053 	struct convert_context *ctx = &io->ctx;
2054 	struct bio *clone;
2055 	int crypt_finished;
2056 	sector_t sector = io->sector;
2057 	blk_status_t r;
2058 
2059 	/*
2060 	 * Prevent io from disappearing until this function completes.
2061 	 */
2062 	crypt_inc_pending(io);
2063 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2064 
2065 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2066 	if (unlikely(!clone)) {
2067 		io->error = BLK_STS_IOERR;
2068 		goto dec;
2069 	}
2070 
2071 	io->ctx.bio_out = clone;
2072 	io->ctx.iter_out = clone->bi_iter;
2073 
2074 	sector += bio_sectors(clone);
2075 
2076 	crypt_inc_pending(io);
2077 	r = crypt_convert(cc, ctx,
2078 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2079 	/*
2080 	 * Crypto API backlogged the request, because its queue was full
2081 	 * and we're in softirq context, so continue from a workqueue
2082 	 * (TODO: is it actually possible to be in softirq in the write path?)
2083 	 */
2084 	if (r == BLK_STS_DEV_RESOURCE) {
2085 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2086 		queue_work(cc->crypt_queue, &io->work);
2087 		return;
2088 	}
2089 	if (r)
2090 		io->error = r;
2091 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2092 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2093 		/* Wait for completion signaled by kcryptd_async_done() */
2094 		wait_for_completion(&ctx->restart);
2095 		crypt_finished = 1;
2096 	}
2097 
2098 	/* Encryption was already finished, submit io now */
2099 	if (crypt_finished) {
2100 		kcryptd_crypt_write_io_submit(io, 0);
2101 		io->sector = sector;
2102 	}
2103 
2104 dec:
2105 	crypt_dec_pending(io);
2106 }
2107 
2108 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2109 {
2110 	crypt_dec_pending(io);
2111 }
2112 
2113 static void kcryptd_crypt_read_continue(struct work_struct *work)
2114 {
2115 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2116 	struct crypt_config *cc = io->cc;
2117 	blk_status_t r;
2118 
2119 	wait_for_completion(&io->ctx.restart);
2120 	reinit_completion(&io->ctx.restart);
2121 
2122 	r = crypt_convert(cc, &io->ctx, true, false);
2123 	if (r)
2124 		io->error = r;
2125 
2126 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2127 		kcryptd_crypt_read_done(io);
2128 
2129 	crypt_dec_pending(io);
2130 }
2131 
2132 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2133 {
2134 	struct crypt_config *cc = io->cc;
2135 	blk_status_t r;
2136 
2137 	crypt_inc_pending(io);
2138 
2139 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2140 			   io->sector);
2141 
2142 	r = crypt_convert(cc, &io->ctx,
2143 			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2144 	/*
2145 	 * Crypto API backlogged the request, because its queue was full
2146 	 * and we're in softirq context, so continue from a workqueue
2147 	 */
2148 	if (r == BLK_STS_DEV_RESOURCE) {
2149 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2150 		queue_work(cc->crypt_queue, &io->work);
2151 		return;
2152 	}
2153 	if (r)
2154 		io->error = r;
2155 
2156 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2157 		kcryptd_crypt_read_done(io);
2158 
2159 	crypt_dec_pending(io);
2160 }
2161 
2162 static void kcryptd_async_done(void *data, int error)
2163 {
2164 	struct dm_crypt_request *dmreq = data;
2165 	struct convert_context *ctx = dmreq->ctx;
2166 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2167 	struct crypt_config *cc = io->cc;
2168 
2169 	/*
2170 	 * A request from crypto driver backlog is going to be processed now,
2171 	 * finish the completion and continue in crypt_convert().
2172 	 * (Callback will be called for the second time for this request.)
2173 	 */
2174 	if (error == -EINPROGRESS) {
2175 		complete(&ctx->restart);
2176 		return;
2177 	}
2178 
2179 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2180 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2181 
2182 	if (error == -EBADMSG) {
2183 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2184 
2185 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2186 			    ctx->bio_in->bi_bdev, s);
2187 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2188 				 ctx->bio_in, s, 0);
2189 		io->error = BLK_STS_PROTECTION;
2190 	} else if (error < 0)
2191 		io->error = BLK_STS_IOERR;
2192 
2193 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2194 
2195 	if (!atomic_dec_and_test(&ctx->cc_pending))
2196 		return;
2197 
2198 	/*
2199 	 * The request is fully completed: for inline writes, let
2200 	 * kcryptd_crypt_write_convert() do the IO submission.
2201 	 */
2202 	if (bio_data_dir(io->base_bio) == READ) {
2203 		kcryptd_crypt_read_done(io);
2204 		return;
2205 	}
2206 
2207 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2208 		complete(&ctx->restart);
2209 		return;
2210 	}
2211 
2212 	kcryptd_crypt_write_io_submit(io, 1);
2213 }
2214 
2215 static void kcryptd_crypt(struct work_struct *work)
2216 {
2217 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2218 
2219 	if (bio_data_dir(io->base_bio) == READ)
2220 		kcryptd_crypt_read_convert(io);
2221 	else
2222 		kcryptd_crypt_write_convert(io);
2223 }
2224 
2225 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2226 {
2227 	struct crypt_config *cc = io->cc;
2228 
2229 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2230 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2231 		/*
2232 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2233 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2234 		 * it is being executed with irqs disabled.
2235 		 */
2236 		if (!(in_hardirq() || irqs_disabled())) {
2237 			kcryptd_crypt(&io->work);
2238 			return;
2239 		}
2240 	}
2241 
2242 	INIT_WORK(&io->work, kcryptd_crypt);
2243 	queue_work(cc->crypt_queue, &io->work);
2244 }
2245 
2246 static void crypt_free_tfms_aead(struct crypt_config *cc)
2247 {
2248 	if (!cc->cipher_tfm.tfms_aead)
2249 		return;
2250 
2251 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2252 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2253 		cc->cipher_tfm.tfms_aead[0] = NULL;
2254 	}
2255 
2256 	kfree(cc->cipher_tfm.tfms_aead);
2257 	cc->cipher_tfm.tfms_aead = NULL;
2258 }
2259 
2260 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2261 {
2262 	unsigned int i;
2263 
2264 	if (!cc->cipher_tfm.tfms)
2265 		return;
2266 
2267 	for (i = 0; i < cc->tfms_count; i++)
2268 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2269 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2270 			cc->cipher_tfm.tfms[i] = NULL;
2271 		}
2272 
2273 	kfree(cc->cipher_tfm.tfms);
2274 	cc->cipher_tfm.tfms = NULL;
2275 }
2276 
2277 static void crypt_free_tfms(struct crypt_config *cc)
2278 {
2279 	if (crypt_integrity_aead(cc))
2280 		crypt_free_tfms_aead(cc);
2281 	else
2282 		crypt_free_tfms_skcipher(cc);
2283 }
2284 
2285 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2286 {
2287 	unsigned int i;
2288 	int err;
2289 
2290 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2291 				      sizeof(struct crypto_skcipher *),
2292 				      GFP_KERNEL);
2293 	if (!cc->cipher_tfm.tfms)
2294 		return -ENOMEM;
2295 
2296 	for (i = 0; i < cc->tfms_count; i++) {
2297 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2298 						CRYPTO_ALG_ALLOCATES_MEMORY);
2299 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2300 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2301 			crypt_free_tfms(cc);
2302 			return err;
2303 		}
2304 	}
2305 
2306 	/*
2307 	 * dm-crypt performance can vary greatly depending on which crypto
2308 	 * algorithm implementation is used.  Help people debug performance
2309 	 * problems by logging the ->cra_driver_name.
2310 	 */
2311 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2312 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2313 	return 0;
2314 }
2315 
2316 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2317 {
2318 	int err;
2319 
2320 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2321 	if (!cc->cipher_tfm.tfms)
2322 		return -ENOMEM;
2323 
2324 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2325 						CRYPTO_ALG_ALLOCATES_MEMORY);
2326 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2327 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2328 		crypt_free_tfms(cc);
2329 		return err;
2330 	}
2331 
2332 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2333 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2334 	return 0;
2335 }
2336 
2337 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2338 {
2339 	if (crypt_integrity_aead(cc))
2340 		return crypt_alloc_tfms_aead(cc, ciphermode);
2341 	else
2342 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2343 }
2344 
2345 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2346 {
2347 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2348 }
2349 
2350 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2351 {
2352 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2353 }
2354 
2355 /*
2356  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2357  * the key must be for some reason in special format.
2358  * This funcion converts cc->key to this special format.
2359  */
2360 static void crypt_copy_authenckey(char *p, const void *key,
2361 				  unsigned int enckeylen, unsigned int authkeylen)
2362 {
2363 	struct crypto_authenc_key_param *param;
2364 	struct rtattr *rta;
2365 
2366 	rta = (struct rtattr *)p;
2367 	param = RTA_DATA(rta);
2368 	param->enckeylen = cpu_to_be32(enckeylen);
2369 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2370 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2371 	p += RTA_SPACE(sizeof(*param));
2372 	memcpy(p, key + enckeylen, authkeylen);
2373 	p += authkeylen;
2374 	memcpy(p, key, enckeylen);
2375 }
2376 
2377 static int crypt_setkey(struct crypt_config *cc)
2378 {
2379 	unsigned int subkey_size;
2380 	int err = 0, i, r;
2381 
2382 	/* Ignore extra keys (which are used for IV etc) */
2383 	subkey_size = crypt_subkey_size(cc);
2384 
2385 	if (crypt_integrity_hmac(cc)) {
2386 		if (subkey_size < cc->key_mac_size)
2387 			return -EINVAL;
2388 
2389 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2390 				      subkey_size - cc->key_mac_size,
2391 				      cc->key_mac_size);
2392 	}
2393 
2394 	for (i = 0; i < cc->tfms_count; i++) {
2395 		if (crypt_integrity_hmac(cc))
2396 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2397 				cc->authenc_key, crypt_authenckey_size(cc));
2398 		else if (crypt_integrity_aead(cc))
2399 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2400 					       cc->key + (i * subkey_size),
2401 					       subkey_size);
2402 		else
2403 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2404 						   cc->key + (i * subkey_size),
2405 						   subkey_size);
2406 		if (r)
2407 			err = r;
2408 	}
2409 
2410 	if (crypt_integrity_hmac(cc))
2411 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2412 
2413 	return err;
2414 }
2415 
2416 #ifdef CONFIG_KEYS
2417 
2418 static bool contains_whitespace(const char *str)
2419 {
2420 	while (*str)
2421 		if (isspace(*str++))
2422 			return true;
2423 	return false;
2424 }
2425 
2426 static int set_key_user(struct crypt_config *cc, struct key *key)
2427 {
2428 	const struct user_key_payload *ukp;
2429 
2430 	ukp = user_key_payload_locked(key);
2431 	if (!ukp)
2432 		return -EKEYREVOKED;
2433 
2434 	if (cc->key_size != ukp->datalen)
2435 		return -EINVAL;
2436 
2437 	memcpy(cc->key, ukp->data, cc->key_size);
2438 
2439 	return 0;
2440 }
2441 
2442 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2443 {
2444 	const struct encrypted_key_payload *ekp;
2445 
2446 	ekp = key->payload.data[0];
2447 	if (!ekp)
2448 		return -EKEYREVOKED;
2449 
2450 	if (cc->key_size != ekp->decrypted_datalen)
2451 		return -EINVAL;
2452 
2453 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2454 
2455 	return 0;
2456 }
2457 
2458 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2459 {
2460 	const struct trusted_key_payload *tkp;
2461 
2462 	tkp = key->payload.data[0];
2463 	if (!tkp)
2464 		return -EKEYREVOKED;
2465 
2466 	if (cc->key_size != tkp->key_len)
2467 		return -EINVAL;
2468 
2469 	memcpy(cc->key, tkp->key, cc->key_size);
2470 
2471 	return 0;
2472 }
2473 
2474 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2475 {
2476 	char *new_key_string, *key_desc;
2477 	int ret;
2478 	struct key_type *type;
2479 	struct key *key;
2480 	int (*set_key)(struct crypt_config *cc, struct key *key);
2481 
2482 	/*
2483 	 * Reject key_string with whitespace. dm core currently lacks code for
2484 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2485 	 */
2486 	if (contains_whitespace(key_string)) {
2487 		DMERR("whitespace chars not allowed in key string");
2488 		return -EINVAL;
2489 	}
2490 
2491 	/* look for next ':' separating key_type from key_description */
2492 	key_desc = strchr(key_string, ':');
2493 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2494 		return -EINVAL;
2495 
2496 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2497 		type = &key_type_logon;
2498 		set_key = set_key_user;
2499 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2500 		type = &key_type_user;
2501 		set_key = set_key_user;
2502 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2503 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2504 		type = &key_type_encrypted;
2505 		set_key = set_key_encrypted;
2506 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2507 		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2508 		type = &key_type_trusted;
2509 		set_key = set_key_trusted;
2510 	} else {
2511 		return -EINVAL;
2512 	}
2513 
2514 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2515 	if (!new_key_string)
2516 		return -ENOMEM;
2517 
2518 	key = request_key(type, key_desc + 1, NULL);
2519 	if (IS_ERR(key)) {
2520 		kfree_sensitive(new_key_string);
2521 		return PTR_ERR(key);
2522 	}
2523 
2524 	down_read(&key->sem);
2525 
2526 	ret = set_key(cc, key);
2527 	if (ret < 0) {
2528 		up_read(&key->sem);
2529 		key_put(key);
2530 		kfree_sensitive(new_key_string);
2531 		return ret;
2532 	}
2533 
2534 	up_read(&key->sem);
2535 	key_put(key);
2536 
2537 	/* clear the flag since following operations may invalidate previously valid key */
2538 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2539 
2540 	ret = crypt_setkey(cc);
2541 
2542 	if (!ret) {
2543 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2544 		kfree_sensitive(cc->key_string);
2545 		cc->key_string = new_key_string;
2546 	} else
2547 		kfree_sensitive(new_key_string);
2548 
2549 	return ret;
2550 }
2551 
2552 static int get_key_size(char **key_string)
2553 {
2554 	char *colon, dummy;
2555 	int ret;
2556 
2557 	if (*key_string[0] != ':')
2558 		return strlen(*key_string) >> 1;
2559 
2560 	/* look for next ':' in key string */
2561 	colon = strpbrk(*key_string + 1, ":");
2562 	if (!colon)
2563 		return -EINVAL;
2564 
2565 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2566 		return -EINVAL;
2567 
2568 	*key_string = colon;
2569 
2570 	/* remaining key string should be :<logon|user>:<key_desc> */
2571 
2572 	return ret;
2573 }
2574 
2575 #else
2576 
2577 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2578 {
2579 	return -EINVAL;
2580 }
2581 
2582 static int get_key_size(char **key_string)
2583 {
2584 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2585 }
2586 
2587 #endif /* CONFIG_KEYS */
2588 
2589 static int crypt_set_key(struct crypt_config *cc, char *key)
2590 {
2591 	int r = -EINVAL;
2592 	int key_string_len = strlen(key);
2593 
2594 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2595 	if (!cc->key_size && strcmp(key, "-"))
2596 		goto out;
2597 
2598 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2599 	if (key[0] == ':') {
2600 		r = crypt_set_keyring_key(cc, key + 1);
2601 		goto out;
2602 	}
2603 
2604 	/* clear the flag since following operations may invalidate previously valid key */
2605 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2606 
2607 	/* wipe references to any kernel keyring key */
2608 	kfree_sensitive(cc->key_string);
2609 	cc->key_string = NULL;
2610 
2611 	/* Decode key from its hex representation. */
2612 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2613 		goto out;
2614 
2615 	r = crypt_setkey(cc);
2616 	if (!r)
2617 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2618 
2619 out:
2620 	/* Hex key string not needed after here, so wipe it. */
2621 	memset(key, '0', key_string_len);
2622 
2623 	return r;
2624 }
2625 
2626 static int crypt_wipe_key(struct crypt_config *cc)
2627 {
2628 	int r;
2629 
2630 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2631 	get_random_bytes(&cc->key, cc->key_size);
2632 
2633 	/* Wipe IV private keys */
2634 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2635 		r = cc->iv_gen_ops->wipe(cc);
2636 		if (r)
2637 			return r;
2638 	}
2639 
2640 	kfree_sensitive(cc->key_string);
2641 	cc->key_string = NULL;
2642 	r = crypt_setkey(cc);
2643 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2644 
2645 	return r;
2646 }
2647 
2648 static void crypt_calculate_pages_per_client(void)
2649 {
2650 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2651 
2652 	if (!dm_crypt_clients_n)
2653 		return;
2654 
2655 	pages /= dm_crypt_clients_n;
2656 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2657 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2658 	dm_crypt_pages_per_client = pages;
2659 }
2660 
2661 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2662 {
2663 	struct crypt_config *cc = pool_data;
2664 	struct page *page;
2665 
2666 	/*
2667 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2668 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2669 	 * but avoids potential spinlock contention of an exact result.
2670 	 */
2671 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2672 	    likely(gfp_mask & __GFP_NORETRY))
2673 		return NULL;
2674 
2675 	page = alloc_page(gfp_mask);
2676 	if (likely(page != NULL))
2677 		percpu_counter_add(&cc->n_allocated_pages, 1);
2678 
2679 	return page;
2680 }
2681 
2682 static void crypt_page_free(void *page, void *pool_data)
2683 {
2684 	struct crypt_config *cc = pool_data;
2685 
2686 	__free_page(page);
2687 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2688 }
2689 
2690 static void crypt_dtr(struct dm_target *ti)
2691 {
2692 	struct crypt_config *cc = ti->private;
2693 
2694 	ti->private = NULL;
2695 
2696 	if (!cc)
2697 		return;
2698 
2699 	if (cc->write_thread)
2700 		kthread_stop(cc->write_thread);
2701 
2702 	if (cc->io_queue)
2703 		destroy_workqueue(cc->io_queue);
2704 	if (cc->crypt_queue)
2705 		destroy_workqueue(cc->crypt_queue);
2706 
2707 	crypt_free_tfms(cc);
2708 
2709 	bioset_exit(&cc->bs);
2710 
2711 	mempool_exit(&cc->page_pool);
2712 	mempool_exit(&cc->req_pool);
2713 	mempool_exit(&cc->tag_pool);
2714 
2715 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2716 	percpu_counter_destroy(&cc->n_allocated_pages);
2717 
2718 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2719 		cc->iv_gen_ops->dtr(cc);
2720 
2721 	if (cc->dev)
2722 		dm_put_device(ti, cc->dev);
2723 
2724 	kfree_sensitive(cc->cipher_string);
2725 	kfree_sensitive(cc->key_string);
2726 	kfree_sensitive(cc->cipher_auth);
2727 	kfree_sensitive(cc->authenc_key);
2728 
2729 	mutex_destroy(&cc->bio_alloc_lock);
2730 
2731 	/* Must zero key material before freeing */
2732 	kfree_sensitive(cc);
2733 
2734 	spin_lock(&dm_crypt_clients_lock);
2735 	WARN_ON(!dm_crypt_clients_n);
2736 	dm_crypt_clients_n--;
2737 	crypt_calculate_pages_per_client();
2738 	spin_unlock(&dm_crypt_clients_lock);
2739 
2740 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2741 }
2742 
2743 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2744 {
2745 	struct crypt_config *cc = ti->private;
2746 
2747 	if (crypt_integrity_aead(cc))
2748 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2749 	else
2750 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2751 
2752 	if (cc->iv_size)
2753 		/* at least a 64 bit sector number should fit in our buffer */
2754 		cc->iv_size = max(cc->iv_size,
2755 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2756 	else if (ivmode) {
2757 		DMWARN("Selected cipher does not support IVs");
2758 		ivmode = NULL;
2759 	}
2760 
2761 	/* Choose ivmode, see comments at iv code. */
2762 	if (ivmode == NULL)
2763 		cc->iv_gen_ops = NULL;
2764 	else if (strcmp(ivmode, "plain") == 0)
2765 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2766 	else if (strcmp(ivmode, "plain64") == 0)
2767 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2768 	else if (strcmp(ivmode, "plain64be") == 0)
2769 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2770 	else if (strcmp(ivmode, "essiv") == 0)
2771 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2772 	else if (strcmp(ivmode, "benbi") == 0)
2773 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2774 	else if (strcmp(ivmode, "null") == 0)
2775 		cc->iv_gen_ops = &crypt_iv_null_ops;
2776 	else if (strcmp(ivmode, "eboiv") == 0)
2777 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2778 	else if (strcmp(ivmode, "elephant") == 0) {
2779 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2780 		cc->key_parts = 2;
2781 		cc->key_extra_size = cc->key_size / 2;
2782 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2783 			return -EINVAL;
2784 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2785 	} else if (strcmp(ivmode, "lmk") == 0) {
2786 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2787 		/*
2788 		 * Version 2 and 3 is recognised according
2789 		 * to length of provided multi-key string.
2790 		 * If present (version 3), last key is used as IV seed.
2791 		 * All keys (including IV seed) are always the same size.
2792 		 */
2793 		if (cc->key_size % cc->key_parts) {
2794 			cc->key_parts++;
2795 			cc->key_extra_size = cc->key_size / cc->key_parts;
2796 		}
2797 	} else if (strcmp(ivmode, "tcw") == 0) {
2798 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2799 		cc->key_parts += 2; /* IV + whitening */
2800 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2801 	} else if (strcmp(ivmode, "random") == 0) {
2802 		cc->iv_gen_ops = &crypt_iv_random_ops;
2803 		/* Need storage space in integrity fields. */
2804 		cc->integrity_iv_size = cc->iv_size;
2805 	} else {
2806 		ti->error = "Invalid IV mode";
2807 		return -EINVAL;
2808 	}
2809 
2810 	return 0;
2811 }
2812 
2813 /*
2814  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2815  * The HMAC is needed to calculate tag size (HMAC digest size).
2816  * This should be probably done by crypto-api calls (once available...)
2817  */
2818 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2819 {
2820 	char *start, *end, *mac_alg = NULL;
2821 	struct crypto_ahash *mac;
2822 
2823 	if (!strstarts(cipher_api, "authenc("))
2824 		return 0;
2825 
2826 	start = strchr(cipher_api, '(');
2827 	end = strchr(cipher_api, ',');
2828 	if (!start || !end || ++start > end)
2829 		return -EINVAL;
2830 
2831 	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2832 	if (!mac_alg)
2833 		return -ENOMEM;
2834 
2835 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2836 	kfree(mac_alg);
2837 
2838 	if (IS_ERR(mac))
2839 		return PTR_ERR(mac);
2840 
2841 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2842 	crypto_free_ahash(mac);
2843 
2844 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2845 	if (!cc->authenc_key)
2846 		return -ENOMEM;
2847 
2848 	return 0;
2849 }
2850 
2851 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2852 				char **ivmode, char **ivopts)
2853 {
2854 	struct crypt_config *cc = ti->private;
2855 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2856 	int ret = -EINVAL;
2857 
2858 	cc->tfms_count = 1;
2859 
2860 	/*
2861 	 * New format (capi: prefix)
2862 	 * capi:cipher_api_spec-iv:ivopts
2863 	 */
2864 	tmp = &cipher_in[strlen("capi:")];
2865 
2866 	/* Separate IV options if present, it can contain another '-' in hash name */
2867 	*ivopts = strrchr(tmp, ':');
2868 	if (*ivopts) {
2869 		**ivopts = '\0';
2870 		(*ivopts)++;
2871 	}
2872 	/* Parse IV mode */
2873 	*ivmode = strrchr(tmp, '-');
2874 	if (*ivmode) {
2875 		**ivmode = '\0';
2876 		(*ivmode)++;
2877 	}
2878 	/* The rest is crypto API spec */
2879 	cipher_api = tmp;
2880 
2881 	/* Alloc AEAD, can be used only in new format. */
2882 	if (crypt_integrity_aead(cc)) {
2883 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2884 		if (ret < 0) {
2885 			ti->error = "Invalid AEAD cipher spec";
2886 			return ret;
2887 		}
2888 	}
2889 
2890 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2891 		cc->tfms_count = 64;
2892 
2893 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2894 		if (!*ivopts) {
2895 			ti->error = "Digest algorithm missing for ESSIV mode";
2896 			return -EINVAL;
2897 		}
2898 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2899 			       cipher_api, *ivopts);
2900 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2901 			ti->error = "Cannot allocate cipher string";
2902 			return -ENOMEM;
2903 		}
2904 		cipher_api = buf;
2905 	}
2906 
2907 	cc->key_parts = cc->tfms_count;
2908 
2909 	/* Allocate cipher */
2910 	ret = crypt_alloc_tfms(cc, cipher_api);
2911 	if (ret < 0) {
2912 		ti->error = "Error allocating crypto tfm";
2913 		return ret;
2914 	}
2915 
2916 	if (crypt_integrity_aead(cc))
2917 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2918 	else
2919 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2920 
2921 	return 0;
2922 }
2923 
2924 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2925 				char **ivmode, char **ivopts)
2926 {
2927 	struct crypt_config *cc = ti->private;
2928 	char *tmp, *cipher, *chainmode, *keycount;
2929 	char *cipher_api = NULL;
2930 	int ret = -EINVAL;
2931 	char dummy;
2932 
2933 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2934 		ti->error = "Bad cipher specification";
2935 		return -EINVAL;
2936 	}
2937 
2938 	/*
2939 	 * Legacy dm-crypt cipher specification
2940 	 * cipher[:keycount]-mode-iv:ivopts
2941 	 */
2942 	tmp = cipher_in;
2943 	keycount = strsep(&tmp, "-");
2944 	cipher = strsep(&keycount, ":");
2945 
2946 	if (!keycount)
2947 		cc->tfms_count = 1;
2948 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2949 		 !is_power_of_2(cc->tfms_count)) {
2950 		ti->error = "Bad cipher key count specification";
2951 		return -EINVAL;
2952 	}
2953 	cc->key_parts = cc->tfms_count;
2954 
2955 	chainmode = strsep(&tmp, "-");
2956 	*ivmode = strsep(&tmp, ":");
2957 	*ivopts = tmp;
2958 
2959 	/*
2960 	 * For compatibility with the original dm-crypt mapping format, if
2961 	 * only the cipher name is supplied, use cbc-plain.
2962 	 */
2963 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2964 		chainmode = "cbc";
2965 		*ivmode = "plain";
2966 	}
2967 
2968 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2969 		ti->error = "IV mechanism required";
2970 		return -EINVAL;
2971 	}
2972 
2973 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2974 	if (!cipher_api)
2975 		goto bad_mem;
2976 
2977 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2978 		if (!*ivopts) {
2979 			ti->error = "Digest algorithm missing for ESSIV mode";
2980 			kfree(cipher_api);
2981 			return -EINVAL;
2982 		}
2983 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2984 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2985 	} else {
2986 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2987 			       "%s(%s)", chainmode, cipher);
2988 	}
2989 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2990 		kfree(cipher_api);
2991 		goto bad_mem;
2992 	}
2993 
2994 	/* Allocate cipher */
2995 	ret = crypt_alloc_tfms(cc, cipher_api);
2996 	if (ret < 0) {
2997 		ti->error = "Error allocating crypto tfm";
2998 		kfree(cipher_api);
2999 		return ret;
3000 	}
3001 	kfree(cipher_api);
3002 
3003 	return 0;
3004 bad_mem:
3005 	ti->error = "Cannot allocate cipher strings";
3006 	return -ENOMEM;
3007 }
3008 
3009 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3010 {
3011 	struct crypt_config *cc = ti->private;
3012 	char *ivmode = NULL, *ivopts = NULL;
3013 	int ret;
3014 
3015 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3016 	if (!cc->cipher_string) {
3017 		ti->error = "Cannot allocate cipher strings";
3018 		return -ENOMEM;
3019 	}
3020 
3021 	if (strstarts(cipher_in, "capi:"))
3022 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3023 	else
3024 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3025 	if (ret)
3026 		return ret;
3027 
3028 	/* Initialize IV */
3029 	ret = crypt_ctr_ivmode(ti, ivmode);
3030 	if (ret < 0)
3031 		return ret;
3032 
3033 	/* Initialize and set key */
3034 	ret = crypt_set_key(cc, key);
3035 	if (ret < 0) {
3036 		ti->error = "Error decoding and setting key";
3037 		return ret;
3038 	}
3039 
3040 	/* Allocate IV */
3041 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3042 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3043 		if (ret < 0) {
3044 			ti->error = "Error creating IV";
3045 			return ret;
3046 		}
3047 	}
3048 
3049 	/* Initialize IV (set keys for ESSIV etc) */
3050 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3051 		ret = cc->iv_gen_ops->init(cc);
3052 		if (ret < 0) {
3053 			ti->error = "Error initialising IV";
3054 			return ret;
3055 		}
3056 	}
3057 
3058 	/* wipe the kernel key payload copy */
3059 	if (cc->key_string)
3060 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3061 
3062 	return ret;
3063 }
3064 
3065 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3066 {
3067 	struct crypt_config *cc = ti->private;
3068 	struct dm_arg_set as;
3069 	static const struct dm_arg _args[] = {
3070 		{0, 8, "Invalid number of feature args"},
3071 	};
3072 	unsigned int opt_params, val;
3073 	const char *opt_string, *sval;
3074 	char dummy;
3075 	int ret;
3076 
3077 	/* Optional parameters */
3078 	as.argc = argc;
3079 	as.argv = argv;
3080 
3081 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3082 	if (ret)
3083 		return ret;
3084 
3085 	while (opt_params--) {
3086 		opt_string = dm_shift_arg(&as);
3087 		if (!opt_string) {
3088 			ti->error = "Not enough feature arguments";
3089 			return -EINVAL;
3090 		}
3091 
3092 		if (!strcasecmp(opt_string, "allow_discards"))
3093 			ti->num_discard_bios = 1;
3094 
3095 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3096 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3097 
3098 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3099 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3100 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3101 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3102 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3103 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3104 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3105 			if (val == 0 || val > MAX_TAG_SIZE) {
3106 				ti->error = "Invalid integrity arguments";
3107 				return -EINVAL;
3108 			}
3109 			cc->on_disk_tag_size = val;
3110 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3111 			if (!strcasecmp(sval, "aead")) {
3112 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3113 			} else  if (strcasecmp(sval, "none")) {
3114 				ti->error = "Unknown integrity profile";
3115 				return -EINVAL;
3116 			}
3117 
3118 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3119 			if (!cc->cipher_auth)
3120 				return -ENOMEM;
3121 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3122 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3123 			    cc->sector_size > 4096 ||
3124 			    (cc->sector_size & (cc->sector_size - 1))) {
3125 				ti->error = "Invalid feature value for sector_size";
3126 				return -EINVAL;
3127 			}
3128 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3129 				ti->error = "Device size is not multiple of sector_size feature";
3130 				return -EINVAL;
3131 			}
3132 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3133 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3134 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3135 		else {
3136 			ti->error = "Invalid feature arguments";
3137 			return -EINVAL;
3138 		}
3139 	}
3140 
3141 	return 0;
3142 }
3143 
3144 #ifdef CONFIG_BLK_DEV_ZONED
3145 static int crypt_report_zones(struct dm_target *ti,
3146 		struct dm_report_zones_args *args, unsigned int nr_zones)
3147 {
3148 	struct crypt_config *cc = ti->private;
3149 
3150 	return dm_report_zones(cc->dev->bdev, cc->start,
3151 			cc->start + dm_target_offset(ti, args->next_sector),
3152 			args, nr_zones);
3153 }
3154 #else
3155 #define crypt_report_zones NULL
3156 #endif
3157 
3158 /*
3159  * Construct an encryption mapping:
3160  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3161  */
3162 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3163 {
3164 	struct crypt_config *cc;
3165 	const char *devname = dm_table_device_name(ti->table);
3166 	int key_size;
3167 	unsigned int align_mask;
3168 	unsigned long long tmpll;
3169 	int ret;
3170 	size_t iv_size_padding, additional_req_size;
3171 	char dummy;
3172 
3173 	if (argc < 5) {
3174 		ti->error = "Not enough arguments";
3175 		return -EINVAL;
3176 	}
3177 
3178 	key_size = get_key_size(&argv[1]);
3179 	if (key_size < 0) {
3180 		ti->error = "Cannot parse key size";
3181 		return -EINVAL;
3182 	}
3183 
3184 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3185 	if (!cc) {
3186 		ti->error = "Cannot allocate encryption context";
3187 		return -ENOMEM;
3188 	}
3189 	cc->key_size = key_size;
3190 	cc->sector_size = (1 << SECTOR_SHIFT);
3191 	cc->sector_shift = 0;
3192 
3193 	ti->private = cc;
3194 
3195 	spin_lock(&dm_crypt_clients_lock);
3196 	dm_crypt_clients_n++;
3197 	crypt_calculate_pages_per_client();
3198 	spin_unlock(&dm_crypt_clients_lock);
3199 
3200 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3201 	if (ret < 0)
3202 		goto bad;
3203 
3204 	/* Optional parameters need to be read before cipher constructor */
3205 	if (argc > 5) {
3206 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3207 		if (ret)
3208 			goto bad;
3209 	}
3210 
3211 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3212 	if (ret < 0)
3213 		goto bad;
3214 
3215 	if (crypt_integrity_aead(cc)) {
3216 		cc->dmreq_start = sizeof(struct aead_request);
3217 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3218 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3219 	} else {
3220 		cc->dmreq_start = sizeof(struct skcipher_request);
3221 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3222 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3223 	}
3224 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3225 
3226 	if (align_mask < CRYPTO_MINALIGN) {
3227 		/* Allocate the padding exactly */
3228 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3229 				& align_mask;
3230 	} else {
3231 		/*
3232 		 * If the cipher requires greater alignment than kmalloc
3233 		 * alignment, we don't know the exact position of the
3234 		 * initialization vector. We must assume worst case.
3235 		 */
3236 		iv_size_padding = align_mask;
3237 	}
3238 
3239 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3240 	additional_req_size = sizeof(struct dm_crypt_request) +
3241 		iv_size_padding + cc->iv_size +
3242 		cc->iv_size +
3243 		sizeof(uint64_t) +
3244 		sizeof(unsigned int);
3245 
3246 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3247 	if (ret) {
3248 		ti->error = "Cannot allocate crypt request mempool";
3249 		goto bad;
3250 	}
3251 
3252 	cc->per_bio_data_size = ti->per_io_data_size =
3253 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3254 		      ARCH_DMA_MINALIGN);
3255 
3256 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3257 	if (ret) {
3258 		ti->error = "Cannot allocate page mempool";
3259 		goto bad;
3260 	}
3261 
3262 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3263 	if (ret) {
3264 		ti->error = "Cannot allocate crypt bioset";
3265 		goto bad;
3266 	}
3267 
3268 	mutex_init(&cc->bio_alloc_lock);
3269 
3270 	ret = -EINVAL;
3271 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3272 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3273 		ti->error = "Invalid iv_offset sector";
3274 		goto bad;
3275 	}
3276 	cc->iv_offset = tmpll;
3277 
3278 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3279 	if (ret) {
3280 		ti->error = "Device lookup failed";
3281 		goto bad;
3282 	}
3283 
3284 	ret = -EINVAL;
3285 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3286 		ti->error = "Invalid device sector";
3287 		goto bad;
3288 	}
3289 	cc->start = tmpll;
3290 
3291 	if (bdev_is_zoned(cc->dev->bdev)) {
3292 		/*
3293 		 * For zoned block devices, we need to preserve the issuer write
3294 		 * ordering. To do so, disable write workqueues and force inline
3295 		 * encryption completion.
3296 		 */
3297 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3298 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3299 
3300 		/*
3301 		 * All zone append writes to a zone of a zoned block device will
3302 		 * have the same BIO sector, the start of the zone. When the
3303 		 * cypher IV mode uses sector values, all data targeting a
3304 		 * zone will be encrypted using the first sector numbers of the
3305 		 * zone. This will not result in write errors but will
3306 		 * cause most reads to fail as reads will use the sector values
3307 		 * for the actual data locations, resulting in IV mismatch.
3308 		 * To avoid this problem, ask DM core to emulate zone append
3309 		 * operations with regular writes.
3310 		 */
3311 		DMDEBUG("Zone append operations will be emulated");
3312 		ti->emulate_zone_append = true;
3313 	}
3314 
3315 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3316 		ret = crypt_integrity_ctr(cc, ti);
3317 		if (ret)
3318 			goto bad;
3319 
3320 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3321 		if (!cc->tag_pool_max_sectors)
3322 			cc->tag_pool_max_sectors = 1;
3323 
3324 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3325 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3326 		if (ret) {
3327 			ti->error = "Cannot allocate integrity tags mempool";
3328 			goto bad;
3329 		}
3330 
3331 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3332 	}
3333 
3334 	ret = -ENOMEM;
3335 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3336 	if (!cc->io_queue) {
3337 		ti->error = "Couldn't create kcryptd io queue";
3338 		goto bad;
3339 	}
3340 
3341 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3342 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3343 						  1, devname);
3344 	else
3345 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3346 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3347 						  num_online_cpus(), devname);
3348 	if (!cc->crypt_queue) {
3349 		ti->error = "Couldn't create kcryptd queue";
3350 		goto bad;
3351 	}
3352 
3353 	spin_lock_init(&cc->write_thread_lock);
3354 	cc->write_tree = RB_ROOT;
3355 
3356 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3357 	if (IS_ERR(cc->write_thread)) {
3358 		ret = PTR_ERR(cc->write_thread);
3359 		cc->write_thread = NULL;
3360 		ti->error = "Couldn't spawn write thread";
3361 		goto bad;
3362 	}
3363 
3364 	ti->num_flush_bios = 1;
3365 	ti->limit_swap_bios = true;
3366 	ti->accounts_remapped_io = true;
3367 
3368 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3369 	return 0;
3370 
3371 bad:
3372 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3373 	crypt_dtr(ti);
3374 	return ret;
3375 }
3376 
3377 static int crypt_map(struct dm_target *ti, struct bio *bio)
3378 {
3379 	struct dm_crypt_io *io;
3380 	struct crypt_config *cc = ti->private;
3381 
3382 	/*
3383 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3384 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3385 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3386 	 */
3387 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3388 	    bio_op(bio) == REQ_OP_DISCARD)) {
3389 		bio_set_dev(bio, cc->dev->bdev);
3390 		if (bio_sectors(bio))
3391 			bio->bi_iter.bi_sector = cc->start +
3392 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3393 		return DM_MAPIO_REMAPPED;
3394 	}
3395 
3396 	/*
3397 	 * Check if bio is too large, split as needed.
3398 	 */
3399 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3400 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3401 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3402 
3403 	/*
3404 	 * Ensure that bio is a multiple of internal sector encryption size
3405 	 * and is aligned to this size as defined in IO hints.
3406 	 */
3407 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3408 		return DM_MAPIO_KILL;
3409 
3410 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3411 		return DM_MAPIO_KILL;
3412 
3413 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3414 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3415 
3416 	if (cc->on_disk_tag_size) {
3417 		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3418 
3419 		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3420 			io->integrity_metadata = NULL;
3421 		else
3422 			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3423 
3424 		if (unlikely(!io->integrity_metadata)) {
3425 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3426 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3427 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3428 			io->integrity_metadata_from_pool = true;
3429 		}
3430 	}
3431 
3432 	if (crypt_integrity_aead(cc))
3433 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3434 	else
3435 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3436 
3437 	if (bio_data_dir(io->base_bio) == READ) {
3438 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3439 			kcryptd_queue_read(io);
3440 	} else
3441 		kcryptd_queue_crypt(io);
3442 
3443 	return DM_MAPIO_SUBMITTED;
3444 }
3445 
3446 static char hex2asc(unsigned char c)
3447 {
3448 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3449 }
3450 
3451 static void crypt_status(struct dm_target *ti, status_type_t type,
3452 			 unsigned int status_flags, char *result, unsigned int maxlen)
3453 {
3454 	struct crypt_config *cc = ti->private;
3455 	unsigned int i, sz = 0;
3456 	int num_feature_args = 0;
3457 
3458 	switch (type) {
3459 	case STATUSTYPE_INFO:
3460 		result[0] = '\0';
3461 		break;
3462 
3463 	case STATUSTYPE_TABLE:
3464 		DMEMIT("%s ", cc->cipher_string);
3465 
3466 		if (cc->key_size > 0) {
3467 			if (cc->key_string)
3468 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3469 			else {
3470 				for (i = 0; i < cc->key_size; i++) {
3471 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3472 					       hex2asc(cc->key[i] & 0xf));
3473 				}
3474 			}
3475 		} else
3476 			DMEMIT("-");
3477 
3478 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3479 				cc->dev->name, (unsigned long long)cc->start);
3480 
3481 		num_feature_args += !!ti->num_discard_bios;
3482 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3483 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3484 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3485 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3486 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3487 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3488 		if (cc->on_disk_tag_size)
3489 			num_feature_args++;
3490 		if (num_feature_args) {
3491 			DMEMIT(" %d", num_feature_args);
3492 			if (ti->num_discard_bios)
3493 				DMEMIT(" allow_discards");
3494 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3495 				DMEMIT(" same_cpu_crypt");
3496 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3497 				DMEMIT(" submit_from_crypt_cpus");
3498 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3499 				DMEMIT(" no_read_workqueue");
3500 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3501 				DMEMIT(" no_write_workqueue");
3502 			if (cc->on_disk_tag_size)
3503 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3504 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3505 				DMEMIT(" sector_size:%d", cc->sector_size);
3506 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3507 				DMEMIT(" iv_large_sectors");
3508 		}
3509 		break;
3510 
3511 	case STATUSTYPE_IMA:
3512 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3513 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3514 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3515 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3516 		       'y' : 'n');
3517 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3518 		       'y' : 'n');
3519 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3520 		       'y' : 'n');
3521 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3522 		       'y' : 'n');
3523 
3524 		if (cc->on_disk_tag_size)
3525 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3526 			       cc->on_disk_tag_size, cc->cipher_auth);
3527 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3528 			DMEMIT(",sector_size=%d", cc->sector_size);
3529 		if (cc->cipher_string)
3530 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3531 
3532 		DMEMIT(",key_size=%u", cc->key_size);
3533 		DMEMIT(",key_parts=%u", cc->key_parts);
3534 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3535 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3536 		DMEMIT(";");
3537 		break;
3538 	}
3539 }
3540 
3541 static void crypt_postsuspend(struct dm_target *ti)
3542 {
3543 	struct crypt_config *cc = ti->private;
3544 
3545 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3546 }
3547 
3548 static int crypt_preresume(struct dm_target *ti)
3549 {
3550 	struct crypt_config *cc = ti->private;
3551 
3552 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3553 		DMERR("aborting resume - crypt key is not set.");
3554 		return -EAGAIN;
3555 	}
3556 
3557 	return 0;
3558 }
3559 
3560 static void crypt_resume(struct dm_target *ti)
3561 {
3562 	struct crypt_config *cc = ti->private;
3563 
3564 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3565 }
3566 
3567 /* Message interface
3568  *	key set <key>
3569  *	key wipe
3570  */
3571 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3572 			 char *result, unsigned int maxlen)
3573 {
3574 	struct crypt_config *cc = ti->private;
3575 	int key_size, ret = -EINVAL;
3576 
3577 	if (argc < 2)
3578 		goto error;
3579 
3580 	if (!strcasecmp(argv[0], "key")) {
3581 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3582 			DMWARN("not suspended during key manipulation.");
3583 			return -EINVAL;
3584 		}
3585 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3586 			/* The key size may not be changed. */
3587 			key_size = get_key_size(&argv[2]);
3588 			if (key_size < 0 || cc->key_size != key_size) {
3589 				memset(argv[2], '0', strlen(argv[2]));
3590 				return -EINVAL;
3591 			}
3592 
3593 			ret = crypt_set_key(cc, argv[2]);
3594 			if (ret)
3595 				return ret;
3596 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3597 				ret = cc->iv_gen_ops->init(cc);
3598 			/* wipe the kernel key payload copy */
3599 			if (cc->key_string)
3600 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3601 			return ret;
3602 		}
3603 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3604 			return crypt_wipe_key(cc);
3605 	}
3606 
3607 error:
3608 	DMWARN("unrecognised message received.");
3609 	return -EINVAL;
3610 }
3611 
3612 static int crypt_iterate_devices(struct dm_target *ti,
3613 				 iterate_devices_callout_fn fn, void *data)
3614 {
3615 	struct crypt_config *cc = ti->private;
3616 
3617 	return fn(ti, cc->dev, cc->start, ti->len, data);
3618 }
3619 
3620 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3621 {
3622 	struct crypt_config *cc = ti->private;
3623 
3624 	/*
3625 	 * Unfortunate constraint that is required to avoid the potential
3626 	 * for exceeding underlying device's max_segments limits -- due to
3627 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3628 	 * bio that are not as physically contiguous as the original bio.
3629 	 */
3630 	limits->max_segment_size = PAGE_SIZE;
3631 
3632 	limits->logical_block_size =
3633 		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3634 	limits->physical_block_size =
3635 		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3636 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3637 	limits->dma_alignment = limits->logical_block_size - 1;
3638 }
3639 
3640 static struct target_type crypt_target = {
3641 	.name   = "crypt",
3642 	.version = {1, 24, 0},
3643 	.module = THIS_MODULE,
3644 	.ctr    = crypt_ctr,
3645 	.dtr    = crypt_dtr,
3646 	.features = DM_TARGET_ZONED_HM,
3647 	.report_zones = crypt_report_zones,
3648 	.map    = crypt_map,
3649 	.status = crypt_status,
3650 	.postsuspend = crypt_postsuspend,
3651 	.preresume = crypt_preresume,
3652 	.resume = crypt_resume,
3653 	.message = crypt_message,
3654 	.iterate_devices = crypt_iterate_devices,
3655 	.io_hints = crypt_io_hints,
3656 };
3657 module_dm(crypt);
3658 
3659 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3660 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3661 MODULE_LICENSE("GPL");
3662