xref: /linux/drivers/md/dm-crypt.c (revision 3df692169e8486fc3dd91fcd5ea81c27a0bac033)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Jana Saout <jana@saout.de>
4  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7  *
8  * This file is released under the GPL.
9  */
10 
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43 
44 #include <linux/device-mapper.h>
45 
46 #include "dm-audit.h"
47 
48 #define DM_MSG_PREFIX "crypt"
49 
50 /*
51  * context holding the current state of a multi-part conversion
52  */
53 struct convert_context {
54 	struct completion restart;
55 	struct bio *bio_in;
56 	struct bio *bio_out;
57 	struct bvec_iter iter_in;
58 	struct bvec_iter iter_out;
59 	u64 cc_sector;
60 	atomic_t cc_pending;
61 	union {
62 		struct skcipher_request *req;
63 		struct aead_request *req_aead;
64 	} r;
65 
66 };
67 
68 /*
69  * per bio private data
70  */
71 struct dm_crypt_io {
72 	struct crypt_config *cc;
73 	struct bio *base_bio;
74 	u8 *integrity_metadata;
75 	bool integrity_metadata_from_pool:1;
76 	bool in_tasklet:1;
77 
78 	struct work_struct work;
79 	struct tasklet_struct tasklet;
80 
81 	struct convert_context ctx;
82 
83 	atomic_t io_pending;
84 	blk_status_t error;
85 	sector_t sector;
86 
87 	struct rb_node rb_node;
88 } CRYPTO_MINALIGN_ATTR;
89 
90 struct dm_crypt_request {
91 	struct convert_context *ctx;
92 	struct scatterlist sg_in[4];
93 	struct scatterlist sg_out[4];
94 	u64 iv_sector;
95 };
96 
97 struct crypt_config;
98 
99 struct crypt_iv_operations {
100 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
101 		   const char *opts);
102 	void (*dtr)(struct crypt_config *cc);
103 	int (*init)(struct crypt_config *cc);
104 	int (*wipe)(struct crypt_config *cc);
105 	int (*generator)(struct crypt_config *cc, u8 *iv,
106 			 struct dm_crypt_request *dmreq);
107 	int (*post)(struct crypt_config *cc, u8 *iv,
108 		    struct dm_crypt_request *dmreq);
109 };
110 
111 struct iv_benbi_private {
112 	int shift;
113 };
114 
115 #define LMK_SEED_SIZE 64 /* hash + 0 */
116 struct iv_lmk_private {
117 	struct crypto_shash *hash_tfm;
118 	u8 *seed;
119 };
120 
121 #define TCW_WHITENING_SIZE 16
122 struct iv_tcw_private {
123 	struct crypto_shash *crc32_tfm;
124 	u8 *iv_seed;
125 	u8 *whitening;
126 };
127 
128 #define ELEPHANT_MAX_KEY_SIZE 32
129 struct iv_elephant_private {
130 	struct crypto_skcipher *tfm;
131 };
132 
133 /*
134  * Crypt: maps a linear range of a block device
135  * and encrypts / decrypts at the same time.
136  */
137 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
138 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
139 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
140 	     DM_CRYPT_WRITE_INLINE };
141 
142 enum cipher_flags {
143 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
144 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
145 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
146 };
147 
148 /*
149  * The fields in here must be read only after initialization.
150  */
151 struct crypt_config {
152 	struct dm_dev *dev;
153 	sector_t start;
154 
155 	struct percpu_counter n_allocated_pages;
156 
157 	struct workqueue_struct *io_queue;
158 	struct workqueue_struct *crypt_queue;
159 
160 	spinlock_t write_thread_lock;
161 	struct task_struct *write_thread;
162 	struct rb_root write_tree;
163 
164 	char *cipher_string;
165 	char *cipher_auth;
166 	char *key_string;
167 
168 	const struct crypt_iv_operations *iv_gen_ops;
169 	union {
170 		struct iv_benbi_private benbi;
171 		struct iv_lmk_private lmk;
172 		struct iv_tcw_private tcw;
173 		struct iv_elephant_private elephant;
174 	} iv_gen_private;
175 	u64 iv_offset;
176 	unsigned int iv_size;
177 	unsigned short sector_size;
178 	unsigned char sector_shift;
179 
180 	union {
181 		struct crypto_skcipher **tfms;
182 		struct crypto_aead **tfms_aead;
183 	} cipher_tfm;
184 	unsigned int tfms_count;
185 	unsigned long cipher_flags;
186 
187 	/*
188 	 * Layout of each crypto request:
189 	 *
190 	 *   struct skcipher_request
191 	 *      context
192 	 *      padding
193 	 *   struct dm_crypt_request
194 	 *      padding
195 	 *   IV
196 	 *
197 	 * The padding is added so that dm_crypt_request and the IV are
198 	 * correctly aligned.
199 	 */
200 	unsigned int dmreq_start;
201 
202 	unsigned int per_bio_data_size;
203 
204 	unsigned long flags;
205 	unsigned int key_size;
206 	unsigned int key_parts;      /* independent parts in key buffer */
207 	unsigned int key_extra_size; /* additional keys length */
208 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
209 
210 	unsigned int integrity_tag_size;
211 	unsigned int integrity_iv_size;
212 	unsigned int on_disk_tag_size;
213 
214 	/*
215 	 * pool for per bio private data, crypto requests,
216 	 * encryption requeusts/buffer pages and integrity tags
217 	 */
218 	unsigned int tag_pool_max_sectors;
219 	mempool_t tag_pool;
220 	mempool_t req_pool;
221 	mempool_t page_pool;
222 
223 	struct bio_set bs;
224 	struct mutex bio_alloc_lock;
225 
226 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
227 	u8 key[] __counted_by(key_size);
228 };
229 
230 #define MIN_IOS		64
231 #define MAX_TAG_SIZE	480
232 #define POOL_ENTRY_SIZE	512
233 
234 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
235 static unsigned int dm_crypt_clients_n;
236 static volatile unsigned long dm_crypt_pages_per_client;
237 #define DM_CRYPT_MEMORY_PERCENT			2
238 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
239 
240 static void crypt_endio(struct bio *clone);
241 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
242 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
243 					     struct scatterlist *sg);
244 
245 static bool crypt_integrity_aead(struct crypt_config *cc);
246 
247 /*
248  * Use this to access cipher attributes that are independent of the key.
249  */
250 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
251 {
252 	return cc->cipher_tfm.tfms[0];
253 }
254 
255 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
256 {
257 	return cc->cipher_tfm.tfms_aead[0];
258 }
259 
260 /*
261  * Different IV generation algorithms:
262  *
263  * plain: the initial vector is the 32-bit little-endian version of the sector
264  *        number, padded with zeros if necessary.
265  *
266  * plain64: the initial vector is the 64-bit little-endian version of the sector
267  *        number, padded with zeros if necessary.
268  *
269  * plain64be: the initial vector is the 64-bit big-endian version of the sector
270  *        number, padded with zeros if necessary.
271  *
272  * essiv: "encrypted sector|salt initial vector", the sector number is
273  *        encrypted with the bulk cipher using a salt as key. The salt
274  *        should be derived from the bulk cipher's key via hashing.
275  *
276  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
277  *        (needed for LRW-32-AES and possible other narrow block modes)
278  *
279  * null: the initial vector is always zero.  Provides compatibility with
280  *       obsolete loop_fish2 devices.  Do not use for new devices.
281  *
282  * lmk:  Compatible implementation of the block chaining mode used
283  *       by the Loop-AES block device encryption system
284  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
285  *       It operates on full 512 byte sectors and uses CBC
286  *       with an IV derived from the sector number, the data and
287  *       optionally extra IV seed.
288  *       This means that after decryption the first block
289  *       of sector must be tweaked according to decrypted data.
290  *       Loop-AES can use three encryption schemes:
291  *         version 1: is plain aes-cbc mode
292  *         version 2: uses 64 multikey scheme with lmk IV generator
293  *         version 3: the same as version 2 with additional IV seed
294  *                   (it uses 65 keys, last key is used as IV seed)
295  *
296  * tcw:  Compatible implementation of the block chaining mode used
297  *       by the TrueCrypt device encryption system (prior to version 4.1).
298  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
299  *       It operates on full 512 byte sectors and uses CBC
300  *       with an IV derived from initial key and the sector number.
301  *       In addition, whitening value is applied on every sector, whitening
302  *       is calculated from initial key, sector number and mixed using CRC32.
303  *       Note that this encryption scheme is vulnerable to watermarking attacks
304  *       and should be used for old compatible containers access only.
305  *
306  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
307  *        The IV is encrypted little-endian byte-offset (with the same key
308  *        and cipher as the volume).
309  *
310  * elephant: The extended version of eboiv with additional Elephant diffuser
311  *           used with Bitlocker CBC mode.
312  *           This mode was used in older Windows systems
313  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
314  */
315 
316 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
317 			      struct dm_crypt_request *dmreq)
318 {
319 	memset(iv, 0, cc->iv_size);
320 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
321 
322 	return 0;
323 }
324 
325 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
326 				struct dm_crypt_request *dmreq)
327 {
328 	memset(iv, 0, cc->iv_size);
329 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
330 
331 	return 0;
332 }
333 
334 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
335 				  struct dm_crypt_request *dmreq)
336 {
337 	memset(iv, 0, cc->iv_size);
338 	/* iv_size is at least of size u64; usually it is 16 bytes */
339 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
340 
341 	return 0;
342 }
343 
344 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
345 			      struct dm_crypt_request *dmreq)
346 {
347 	/*
348 	 * ESSIV encryption of the IV is now handled by the crypto API,
349 	 * so just pass the plain sector number here.
350 	 */
351 	memset(iv, 0, cc->iv_size);
352 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
353 
354 	return 0;
355 }
356 
357 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
358 			      const char *opts)
359 {
360 	unsigned int bs;
361 	int log;
362 
363 	if (crypt_integrity_aead(cc))
364 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
365 	else
366 		bs = crypto_skcipher_blocksize(any_tfm(cc));
367 	log = ilog2(bs);
368 
369 	/*
370 	 * We need to calculate how far we must shift the sector count
371 	 * to get the cipher block count, we use this shift in _gen.
372 	 */
373 	if (1 << log != bs) {
374 		ti->error = "cypher blocksize is not a power of 2";
375 		return -EINVAL;
376 	}
377 
378 	if (log > 9) {
379 		ti->error = "cypher blocksize is > 512";
380 		return -EINVAL;
381 	}
382 
383 	cc->iv_gen_private.benbi.shift = 9 - log;
384 
385 	return 0;
386 }
387 
388 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
389 {
390 }
391 
392 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
393 			      struct dm_crypt_request *dmreq)
394 {
395 	__be64 val;
396 
397 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
398 
399 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
400 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
401 
402 	return 0;
403 }
404 
405 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
406 			     struct dm_crypt_request *dmreq)
407 {
408 	memset(iv, 0, cc->iv_size);
409 
410 	return 0;
411 }
412 
413 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
414 {
415 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
416 
417 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
418 		crypto_free_shash(lmk->hash_tfm);
419 	lmk->hash_tfm = NULL;
420 
421 	kfree_sensitive(lmk->seed);
422 	lmk->seed = NULL;
423 }
424 
425 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
426 			    const char *opts)
427 {
428 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
429 
430 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
431 		ti->error = "Unsupported sector size for LMK";
432 		return -EINVAL;
433 	}
434 
435 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
436 					   CRYPTO_ALG_ALLOCATES_MEMORY);
437 	if (IS_ERR(lmk->hash_tfm)) {
438 		ti->error = "Error initializing LMK hash";
439 		return PTR_ERR(lmk->hash_tfm);
440 	}
441 
442 	/* No seed in LMK version 2 */
443 	if (cc->key_parts == cc->tfms_count) {
444 		lmk->seed = NULL;
445 		return 0;
446 	}
447 
448 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
449 	if (!lmk->seed) {
450 		crypt_iv_lmk_dtr(cc);
451 		ti->error = "Error kmallocing seed storage in LMK";
452 		return -ENOMEM;
453 	}
454 
455 	return 0;
456 }
457 
458 static int crypt_iv_lmk_init(struct crypt_config *cc)
459 {
460 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
461 	int subkey_size = cc->key_size / cc->key_parts;
462 
463 	/* LMK seed is on the position of LMK_KEYS + 1 key */
464 	if (lmk->seed)
465 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
466 		       crypto_shash_digestsize(lmk->hash_tfm));
467 
468 	return 0;
469 }
470 
471 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
472 {
473 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
474 
475 	if (lmk->seed)
476 		memset(lmk->seed, 0, LMK_SEED_SIZE);
477 
478 	return 0;
479 }
480 
481 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
482 			    struct dm_crypt_request *dmreq,
483 			    u8 *data)
484 {
485 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
486 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
487 	struct md5_state md5state;
488 	__le32 buf[4];
489 	int i, r;
490 
491 	desc->tfm = lmk->hash_tfm;
492 
493 	r = crypto_shash_init(desc);
494 	if (r)
495 		return r;
496 
497 	if (lmk->seed) {
498 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
499 		if (r)
500 			return r;
501 	}
502 
503 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
504 	r = crypto_shash_update(desc, data + 16, 16 * 31);
505 	if (r)
506 		return r;
507 
508 	/* Sector is cropped to 56 bits here */
509 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
510 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
511 	buf[2] = cpu_to_le32(4024);
512 	buf[3] = 0;
513 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
514 	if (r)
515 		return r;
516 
517 	/* No MD5 padding here */
518 	r = crypto_shash_export(desc, &md5state);
519 	if (r)
520 		return r;
521 
522 	for (i = 0; i < MD5_HASH_WORDS; i++)
523 		__cpu_to_le32s(&md5state.hash[i]);
524 	memcpy(iv, &md5state.hash, cc->iv_size);
525 
526 	return 0;
527 }
528 
529 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
530 			    struct dm_crypt_request *dmreq)
531 {
532 	struct scatterlist *sg;
533 	u8 *src;
534 	int r = 0;
535 
536 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
537 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
538 		src = kmap_local_page(sg_page(sg));
539 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
540 		kunmap_local(src);
541 	} else
542 		memset(iv, 0, cc->iv_size);
543 
544 	return r;
545 }
546 
547 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
548 			     struct dm_crypt_request *dmreq)
549 {
550 	struct scatterlist *sg;
551 	u8 *dst;
552 	int r;
553 
554 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
555 		return 0;
556 
557 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
558 	dst = kmap_local_page(sg_page(sg));
559 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
560 
561 	/* Tweak the first block of plaintext sector */
562 	if (!r)
563 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
564 
565 	kunmap_local(dst);
566 	return r;
567 }
568 
569 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
570 {
571 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
572 
573 	kfree_sensitive(tcw->iv_seed);
574 	tcw->iv_seed = NULL;
575 	kfree_sensitive(tcw->whitening);
576 	tcw->whitening = NULL;
577 
578 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
579 		crypto_free_shash(tcw->crc32_tfm);
580 	tcw->crc32_tfm = NULL;
581 }
582 
583 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
584 			    const char *opts)
585 {
586 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
587 
588 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
589 		ti->error = "Unsupported sector size for TCW";
590 		return -EINVAL;
591 	}
592 
593 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
594 		ti->error = "Wrong key size for TCW";
595 		return -EINVAL;
596 	}
597 
598 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
599 					    CRYPTO_ALG_ALLOCATES_MEMORY);
600 	if (IS_ERR(tcw->crc32_tfm)) {
601 		ti->error = "Error initializing CRC32 in TCW";
602 		return PTR_ERR(tcw->crc32_tfm);
603 	}
604 
605 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
606 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
607 	if (!tcw->iv_seed || !tcw->whitening) {
608 		crypt_iv_tcw_dtr(cc);
609 		ti->error = "Error allocating seed storage in TCW";
610 		return -ENOMEM;
611 	}
612 
613 	return 0;
614 }
615 
616 static int crypt_iv_tcw_init(struct crypt_config *cc)
617 {
618 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
619 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
620 
621 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
622 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
623 	       TCW_WHITENING_SIZE);
624 
625 	return 0;
626 }
627 
628 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
629 {
630 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
631 
632 	memset(tcw->iv_seed, 0, cc->iv_size);
633 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
634 
635 	return 0;
636 }
637 
638 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
639 				  struct dm_crypt_request *dmreq,
640 				  u8 *data)
641 {
642 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
643 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
644 	u8 buf[TCW_WHITENING_SIZE];
645 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
646 	int i, r;
647 
648 	/* xor whitening with sector number */
649 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
650 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
651 
652 	/* calculate crc32 for every 32bit part and xor it */
653 	desc->tfm = tcw->crc32_tfm;
654 	for (i = 0; i < 4; i++) {
655 		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
656 		if (r)
657 			goto out;
658 	}
659 	crypto_xor(&buf[0], &buf[12], 4);
660 	crypto_xor(&buf[4], &buf[8], 4);
661 
662 	/* apply whitening (8 bytes) to whole sector */
663 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
664 		crypto_xor(data + i * 8, buf, 8);
665 out:
666 	memzero_explicit(buf, sizeof(buf));
667 	return r;
668 }
669 
670 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
671 			    struct dm_crypt_request *dmreq)
672 {
673 	struct scatterlist *sg;
674 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
675 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
676 	u8 *src;
677 	int r = 0;
678 
679 	/* Remove whitening from ciphertext */
680 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
681 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
682 		src = kmap_local_page(sg_page(sg));
683 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
684 		kunmap_local(src);
685 	}
686 
687 	/* Calculate IV */
688 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
689 	if (cc->iv_size > 8)
690 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
691 			       cc->iv_size - 8);
692 
693 	return r;
694 }
695 
696 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
697 			     struct dm_crypt_request *dmreq)
698 {
699 	struct scatterlist *sg;
700 	u8 *dst;
701 	int r;
702 
703 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
704 		return 0;
705 
706 	/* Apply whitening on ciphertext */
707 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
708 	dst = kmap_local_page(sg_page(sg));
709 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
710 	kunmap_local(dst);
711 
712 	return r;
713 }
714 
715 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
716 				struct dm_crypt_request *dmreq)
717 {
718 	/* Used only for writes, there must be an additional space to store IV */
719 	get_random_bytes(iv, cc->iv_size);
720 	return 0;
721 }
722 
723 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
724 			    const char *opts)
725 {
726 	if (crypt_integrity_aead(cc)) {
727 		ti->error = "AEAD transforms not supported for EBOIV";
728 		return -EINVAL;
729 	}
730 
731 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
732 		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
733 		return -EINVAL;
734 	}
735 
736 	return 0;
737 }
738 
739 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
740 			    struct dm_crypt_request *dmreq)
741 {
742 	struct crypto_skcipher *tfm = any_tfm(cc);
743 	struct skcipher_request *req;
744 	struct scatterlist src, dst;
745 	DECLARE_CRYPTO_WAIT(wait);
746 	unsigned int reqsize;
747 	int err;
748 	u8 *buf;
749 
750 	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
751 	reqsize = ALIGN(reqsize, __alignof__(__le64));
752 
753 	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
754 	if (!req)
755 		return -ENOMEM;
756 
757 	skcipher_request_set_tfm(req, tfm);
758 
759 	buf = (u8 *)req + reqsize;
760 	memset(buf, 0, cc->iv_size);
761 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
762 
763 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
764 	sg_init_one(&dst, iv, cc->iv_size);
765 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
766 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
767 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
768 	kfree_sensitive(req);
769 
770 	return err;
771 }
772 
773 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
774 {
775 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
776 
777 	crypto_free_skcipher(elephant->tfm);
778 	elephant->tfm = NULL;
779 }
780 
781 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
782 			    const char *opts)
783 {
784 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
785 	int r;
786 
787 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
788 					      CRYPTO_ALG_ALLOCATES_MEMORY);
789 	if (IS_ERR(elephant->tfm)) {
790 		r = PTR_ERR(elephant->tfm);
791 		elephant->tfm = NULL;
792 		return r;
793 	}
794 
795 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
796 	if (r)
797 		crypt_iv_elephant_dtr(cc);
798 	return r;
799 }
800 
801 static void diffuser_disk_to_cpu(u32 *d, size_t n)
802 {
803 #ifndef __LITTLE_ENDIAN
804 	int i;
805 
806 	for (i = 0; i < n; i++)
807 		d[i] = le32_to_cpu((__le32)d[i]);
808 #endif
809 }
810 
811 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
812 {
813 #ifndef __LITTLE_ENDIAN
814 	int i;
815 
816 	for (i = 0; i < n; i++)
817 		d[i] = cpu_to_le32((u32)d[i]);
818 #endif
819 }
820 
821 static void diffuser_a_decrypt(u32 *d, size_t n)
822 {
823 	int i, i1, i2, i3;
824 
825 	for (i = 0; i < 5; i++) {
826 		i1 = 0;
827 		i2 = n - 2;
828 		i3 = n - 5;
829 
830 		while (i1 < (n - 1)) {
831 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
832 			i1++; i2++; i3++;
833 
834 			if (i3 >= n)
835 				i3 -= n;
836 
837 			d[i1] += d[i2] ^ d[i3];
838 			i1++; i2++; i3++;
839 
840 			if (i2 >= n)
841 				i2 -= n;
842 
843 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
844 			i1++; i2++; i3++;
845 
846 			d[i1] += d[i2] ^ d[i3];
847 			i1++; i2++; i3++;
848 		}
849 	}
850 }
851 
852 static void diffuser_a_encrypt(u32 *d, size_t n)
853 {
854 	int i, i1, i2, i3;
855 
856 	for (i = 0; i < 5; i++) {
857 		i1 = n - 1;
858 		i2 = n - 2 - 1;
859 		i3 = n - 5 - 1;
860 
861 		while (i1 > 0) {
862 			d[i1] -= d[i2] ^ d[i3];
863 			i1--; i2--; i3--;
864 
865 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
866 			i1--; i2--; i3--;
867 
868 			if (i2 < 0)
869 				i2 += n;
870 
871 			d[i1] -= d[i2] ^ d[i3];
872 			i1--; i2--; i3--;
873 
874 			if (i3 < 0)
875 				i3 += n;
876 
877 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
878 			i1--; i2--; i3--;
879 		}
880 	}
881 }
882 
883 static void diffuser_b_decrypt(u32 *d, size_t n)
884 {
885 	int i, i1, i2, i3;
886 
887 	for (i = 0; i < 3; i++) {
888 		i1 = 0;
889 		i2 = 2;
890 		i3 = 5;
891 
892 		while (i1 < (n - 1)) {
893 			d[i1] += d[i2] ^ d[i3];
894 			i1++; i2++; i3++;
895 
896 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
897 			i1++; i2++; i3++;
898 
899 			if (i2 >= n)
900 				i2 -= n;
901 
902 			d[i1] += d[i2] ^ d[i3];
903 			i1++; i2++; i3++;
904 
905 			if (i3 >= n)
906 				i3 -= n;
907 
908 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
909 			i1++; i2++; i3++;
910 		}
911 	}
912 }
913 
914 static void diffuser_b_encrypt(u32 *d, size_t n)
915 {
916 	int i, i1, i2, i3;
917 
918 	for (i = 0; i < 3; i++) {
919 		i1 = n - 1;
920 		i2 = 2 - 1;
921 		i3 = 5 - 1;
922 
923 		while (i1 > 0) {
924 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
925 			i1--; i2--; i3--;
926 
927 			if (i3 < 0)
928 				i3 += n;
929 
930 			d[i1] -= d[i2] ^ d[i3];
931 			i1--; i2--; i3--;
932 
933 			if (i2 < 0)
934 				i2 += n;
935 
936 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
937 			i1--; i2--; i3--;
938 
939 			d[i1] -= d[i2] ^ d[i3];
940 			i1--; i2--; i3--;
941 		}
942 	}
943 }
944 
945 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
946 {
947 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
948 	u8 *es, *ks, *data, *data2, *data_offset;
949 	struct skcipher_request *req;
950 	struct scatterlist *sg, *sg2, src, dst;
951 	DECLARE_CRYPTO_WAIT(wait);
952 	int i, r;
953 
954 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
955 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
956 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
957 
958 	if (!req || !es || !ks) {
959 		r = -ENOMEM;
960 		goto out;
961 	}
962 
963 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
964 
965 	/* E(Ks, e(s)) */
966 	sg_init_one(&src, es, 16);
967 	sg_init_one(&dst, ks, 16);
968 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
969 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
970 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
971 	if (r)
972 		goto out;
973 
974 	/* E(Ks, e'(s)) */
975 	es[15] = 0x80;
976 	sg_init_one(&dst, &ks[16], 16);
977 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
978 	if (r)
979 		goto out;
980 
981 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
982 	data = kmap_local_page(sg_page(sg));
983 	data_offset = data + sg->offset;
984 
985 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
986 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
987 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
988 		data2 = kmap_local_page(sg_page(sg2));
989 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
990 		kunmap_local(data2);
991 	}
992 
993 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
994 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
995 		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
996 		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
997 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
998 	}
999 
1000 	for (i = 0; i < (cc->sector_size / 32); i++)
1001 		crypto_xor(data_offset + i * 32, ks, 32);
1002 
1003 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1004 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1005 		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1006 		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1007 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1008 	}
1009 
1010 	kunmap_local(data);
1011 out:
1012 	kfree_sensitive(ks);
1013 	kfree_sensitive(es);
1014 	skcipher_request_free(req);
1015 	return r;
1016 }
1017 
1018 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1019 			    struct dm_crypt_request *dmreq)
1020 {
1021 	int r;
1022 
1023 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1024 		r = crypt_iv_elephant(cc, dmreq);
1025 		if (r)
1026 			return r;
1027 	}
1028 
1029 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1030 }
1031 
1032 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1033 				  struct dm_crypt_request *dmreq)
1034 {
1035 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1036 		return crypt_iv_elephant(cc, dmreq);
1037 
1038 	return 0;
1039 }
1040 
1041 static int crypt_iv_elephant_init(struct crypt_config *cc)
1042 {
1043 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1044 	int key_offset = cc->key_size - cc->key_extra_size;
1045 
1046 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1047 }
1048 
1049 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1050 {
1051 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1052 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1053 
1054 	memset(key, 0, cc->key_extra_size);
1055 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1056 }
1057 
1058 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1059 	.generator = crypt_iv_plain_gen
1060 };
1061 
1062 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1063 	.generator = crypt_iv_plain64_gen
1064 };
1065 
1066 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1067 	.generator = crypt_iv_plain64be_gen
1068 };
1069 
1070 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1071 	.generator = crypt_iv_essiv_gen
1072 };
1073 
1074 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1075 	.ctr	   = crypt_iv_benbi_ctr,
1076 	.dtr	   = crypt_iv_benbi_dtr,
1077 	.generator = crypt_iv_benbi_gen
1078 };
1079 
1080 static const struct crypt_iv_operations crypt_iv_null_ops = {
1081 	.generator = crypt_iv_null_gen
1082 };
1083 
1084 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1085 	.ctr	   = crypt_iv_lmk_ctr,
1086 	.dtr	   = crypt_iv_lmk_dtr,
1087 	.init	   = crypt_iv_lmk_init,
1088 	.wipe	   = crypt_iv_lmk_wipe,
1089 	.generator = crypt_iv_lmk_gen,
1090 	.post	   = crypt_iv_lmk_post
1091 };
1092 
1093 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1094 	.ctr	   = crypt_iv_tcw_ctr,
1095 	.dtr	   = crypt_iv_tcw_dtr,
1096 	.init	   = crypt_iv_tcw_init,
1097 	.wipe	   = crypt_iv_tcw_wipe,
1098 	.generator = crypt_iv_tcw_gen,
1099 	.post	   = crypt_iv_tcw_post
1100 };
1101 
1102 static const struct crypt_iv_operations crypt_iv_random_ops = {
1103 	.generator = crypt_iv_random_gen
1104 };
1105 
1106 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1107 	.ctr	   = crypt_iv_eboiv_ctr,
1108 	.generator = crypt_iv_eboiv_gen
1109 };
1110 
1111 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1112 	.ctr	   = crypt_iv_elephant_ctr,
1113 	.dtr	   = crypt_iv_elephant_dtr,
1114 	.init	   = crypt_iv_elephant_init,
1115 	.wipe	   = crypt_iv_elephant_wipe,
1116 	.generator = crypt_iv_elephant_gen,
1117 	.post	   = crypt_iv_elephant_post
1118 };
1119 
1120 /*
1121  * Integrity extensions
1122  */
1123 static bool crypt_integrity_aead(struct crypt_config *cc)
1124 {
1125 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1126 }
1127 
1128 static bool crypt_integrity_hmac(struct crypt_config *cc)
1129 {
1130 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1131 }
1132 
1133 /* Get sg containing data */
1134 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1135 					     struct scatterlist *sg)
1136 {
1137 	if (unlikely(crypt_integrity_aead(cc)))
1138 		return &sg[2];
1139 
1140 	return sg;
1141 }
1142 
1143 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1144 {
1145 	struct bio_integrity_payload *bip;
1146 	unsigned int tag_len;
1147 	int ret;
1148 
1149 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1150 		return 0;
1151 
1152 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1153 	if (IS_ERR(bip))
1154 		return PTR_ERR(bip);
1155 
1156 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1157 
1158 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1159 
1160 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1161 				     tag_len, offset_in_page(io->integrity_metadata));
1162 	if (unlikely(ret != tag_len))
1163 		return -ENOMEM;
1164 
1165 	return 0;
1166 }
1167 
1168 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1169 {
1170 #ifdef CONFIG_BLK_DEV_INTEGRITY
1171 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1172 	struct mapped_device *md = dm_table_get_md(ti->table);
1173 
1174 	/* From now we require underlying device with our integrity profile */
1175 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1176 		ti->error = "Integrity profile not supported.";
1177 		return -EINVAL;
1178 	}
1179 
1180 	if (bi->tag_size != cc->on_disk_tag_size ||
1181 	    bi->tuple_size != cc->on_disk_tag_size) {
1182 		ti->error = "Integrity profile tag size mismatch.";
1183 		return -EINVAL;
1184 	}
1185 	if (1 << bi->interval_exp != cc->sector_size) {
1186 		ti->error = "Integrity profile sector size mismatch.";
1187 		return -EINVAL;
1188 	}
1189 
1190 	if (crypt_integrity_aead(cc)) {
1191 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1192 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1193 		       cc->integrity_tag_size, cc->integrity_iv_size);
1194 
1195 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1196 			ti->error = "Integrity AEAD auth tag size is not supported.";
1197 			return -EINVAL;
1198 		}
1199 	} else if (cc->integrity_iv_size)
1200 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1201 		       cc->integrity_iv_size);
1202 
1203 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1204 		ti->error = "Not enough space for integrity tag in the profile.";
1205 		return -EINVAL;
1206 	}
1207 
1208 	return 0;
1209 #else
1210 	ti->error = "Integrity profile not supported.";
1211 	return -EINVAL;
1212 #endif
1213 }
1214 
1215 static void crypt_convert_init(struct crypt_config *cc,
1216 			       struct convert_context *ctx,
1217 			       struct bio *bio_out, struct bio *bio_in,
1218 			       sector_t sector)
1219 {
1220 	ctx->bio_in = bio_in;
1221 	ctx->bio_out = bio_out;
1222 	if (bio_in)
1223 		ctx->iter_in = bio_in->bi_iter;
1224 	if (bio_out)
1225 		ctx->iter_out = bio_out->bi_iter;
1226 	ctx->cc_sector = sector + cc->iv_offset;
1227 	init_completion(&ctx->restart);
1228 }
1229 
1230 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1231 					     void *req)
1232 {
1233 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1234 }
1235 
1236 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1237 {
1238 	return (void *)((char *)dmreq - cc->dmreq_start);
1239 }
1240 
1241 static u8 *iv_of_dmreq(struct crypt_config *cc,
1242 		       struct dm_crypt_request *dmreq)
1243 {
1244 	if (crypt_integrity_aead(cc))
1245 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1246 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1247 	else
1248 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1249 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1250 }
1251 
1252 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1253 		       struct dm_crypt_request *dmreq)
1254 {
1255 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1256 }
1257 
1258 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1259 		       struct dm_crypt_request *dmreq)
1260 {
1261 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1262 
1263 	return (__le64 *) ptr;
1264 }
1265 
1266 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1267 		       struct dm_crypt_request *dmreq)
1268 {
1269 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1270 		  cc->iv_size + sizeof(uint64_t);
1271 
1272 	return (unsigned int *)ptr;
1273 }
1274 
1275 static void *tag_from_dmreq(struct crypt_config *cc,
1276 				struct dm_crypt_request *dmreq)
1277 {
1278 	struct convert_context *ctx = dmreq->ctx;
1279 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1280 
1281 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1282 		cc->on_disk_tag_size];
1283 }
1284 
1285 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1286 			       struct dm_crypt_request *dmreq)
1287 {
1288 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1289 }
1290 
1291 static int crypt_convert_block_aead(struct crypt_config *cc,
1292 				     struct convert_context *ctx,
1293 				     struct aead_request *req,
1294 				     unsigned int tag_offset)
1295 {
1296 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1297 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1298 	struct dm_crypt_request *dmreq;
1299 	u8 *iv, *org_iv, *tag_iv, *tag;
1300 	__le64 *sector;
1301 	int r = 0;
1302 
1303 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1304 
1305 	/* Reject unexpected unaligned bio. */
1306 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1307 		return -EIO;
1308 
1309 	dmreq = dmreq_of_req(cc, req);
1310 	dmreq->iv_sector = ctx->cc_sector;
1311 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1312 		dmreq->iv_sector >>= cc->sector_shift;
1313 	dmreq->ctx = ctx;
1314 
1315 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1316 
1317 	sector = org_sector_of_dmreq(cc, dmreq);
1318 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1319 
1320 	iv = iv_of_dmreq(cc, dmreq);
1321 	org_iv = org_iv_of_dmreq(cc, dmreq);
1322 	tag = tag_from_dmreq(cc, dmreq);
1323 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1324 
1325 	/* AEAD request:
1326 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1327 	 *  | (authenticated) | (auth+encryption) |              |
1328 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1329 	 */
1330 	sg_init_table(dmreq->sg_in, 4);
1331 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1332 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1333 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1334 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1335 
1336 	sg_init_table(dmreq->sg_out, 4);
1337 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1338 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1339 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1340 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1341 
1342 	if (cc->iv_gen_ops) {
1343 		/* For READs use IV stored in integrity metadata */
1344 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1345 			memcpy(org_iv, tag_iv, cc->iv_size);
1346 		} else {
1347 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1348 			if (r < 0)
1349 				return r;
1350 			/* Store generated IV in integrity metadata */
1351 			if (cc->integrity_iv_size)
1352 				memcpy(tag_iv, org_iv, cc->iv_size);
1353 		}
1354 		/* Working copy of IV, to be modified in crypto API */
1355 		memcpy(iv, org_iv, cc->iv_size);
1356 	}
1357 
1358 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1359 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1360 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1361 				       cc->sector_size, iv);
1362 		r = crypto_aead_encrypt(req);
1363 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1364 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1365 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1366 	} else {
1367 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1368 				       cc->sector_size + cc->integrity_tag_size, iv);
1369 		r = crypto_aead_decrypt(req);
1370 	}
1371 
1372 	if (r == -EBADMSG) {
1373 		sector_t s = le64_to_cpu(*sector);
1374 
1375 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1376 			    ctx->bio_in->bi_bdev, s);
1377 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1378 				 ctx->bio_in, s, 0);
1379 	}
1380 
1381 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1382 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1383 
1384 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1385 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1386 
1387 	return r;
1388 }
1389 
1390 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1391 					struct convert_context *ctx,
1392 					struct skcipher_request *req,
1393 					unsigned int tag_offset)
1394 {
1395 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1396 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1397 	struct scatterlist *sg_in, *sg_out;
1398 	struct dm_crypt_request *dmreq;
1399 	u8 *iv, *org_iv, *tag_iv;
1400 	__le64 *sector;
1401 	int r = 0;
1402 
1403 	/* Reject unexpected unaligned bio. */
1404 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1405 		return -EIO;
1406 
1407 	dmreq = dmreq_of_req(cc, req);
1408 	dmreq->iv_sector = ctx->cc_sector;
1409 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1410 		dmreq->iv_sector >>= cc->sector_shift;
1411 	dmreq->ctx = ctx;
1412 
1413 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1414 
1415 	iv = iv_of_dmreq(cc, dmreq);
1416 	org_iv = org_iv_of_dmreq(cc, dmreq);
1417 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1418 
1419 	sector = org_sector_of_dmreq(cc, dmreq);
1420 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1421 
1422 	/* For skcipher we use only the first sg item */
1423 	sg_in  = &dmreq->sg_in[0];
1424 	sg_out = &dmreq->sg_out[0];
1425 
1426 	sg_init_table(sg_in, 1);
1427 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1428 
1429 	sg_init_table(sg_out, 1);
1430 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1431 
1432 	if (cc->iv_gen_ops) {
1433 		/* For READs use IV stored in integrity metadata */
1434 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1435 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1436 		} else {
1437 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1438 			if (r < 0)
1439 				return r;
1440 			/* Data can be already preprocessed in generator */
1441 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1442 				sg_in = sg_out;
1443 			/* Store generated IV in integrity metadata */
1444 			if (cc->integrity_iv_size)
1445 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1446 		}
1447 		/* Working copy of IV, to be modified in crypto API */
1448 		memcpy(iv, org_iv, cc->iv_size);
1449 	}
1450 
1451 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1452 
1453 	if (bio_data_dir(ctx->bio_in) == WRITE)
1454 		r = crypto_skcipher_encrypt(req);
1455 	else
1456 		r = crypto_skcipher_decrypt(req);
1457 
1458 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1459 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1460 
1461 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1462 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1463 
1464 	return r;
1465 }
1466 
1467 static void kcryptd_async_done(void *async_req, int error);
1468 
1469 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1470 				     struct convert_context *ctx)
1471 {
1472 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1473 
1474 	if (!ctx->r.req) {
1475 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1476 		if (!ctx->r.req)
1477 			return -ENOMEM;
1478 	}
1479 
1480 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1481 
1482 	/*
1483 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1484 	 * requests if driver request queue is full.
1485 	 */
1486 	skcipher_request_set_callback(ctx->r.req,
1487 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1488 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1489 
1490 	return 0;
1491 }
1492 
1493 static int crypt_alloc_req_aead(struct crypt_config *cc,
1494 				 struct convert_context *ctx)
1495 {
1496 	if (!ctx->r.req_aead) {
1497 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1498 		if (!ctx->r.req_aead)
1499 			return -ENOMEM;
1500 	}
1501 
1502 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1503 
1504 	/*
1505 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1506 	 * requests if driver request queue is full.
1507 	 */
1508 	aead_request_set_callback(ctx->r.req_aead,
1509 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1510 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1511 
1512 	return 0;
1513 }
1514 
1515 static int crypt_alloc_req(struct crypt_config *cc,
1516 			    struct convert_context *ctx)
1517 {
1518 	if (crypt_integrity_aead(cc))
1519 		return crypt_alloc_req_aead(cc, ctx);
1520 	else
1521 		return crypt_alloc_req_skcipher(cc, ctx);
1522 }
1523 
1524 static void crypt_free_req_skcipher(struct crypt_config *cc,
1525 				    struct skcipher_request *req, struct bio *base_bio)
1526 {
1527 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1528 
1529 	if ((struct skcipher_request *)(io + 1) != req)
1530 		mempool_free(req, &cc->req_pool);
1531 }
1532 
1533 static void crypt_free_req_aead(struct crypt_config *cc,
1534 				struct aead_request *req, struct bio *base_bio)
1535 {
1536 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1537 
1538 	if ((struct aead_request *)(io + 1) != req)
1539 		mempool_free(req, &cc->req_pool);
1540 }
1541 
1542 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1543 {
1544 	if (crypt_integrity_aead(cc))
1545 		crypt_free_req_aead(cc, req, base_bio);
1546 	else
1547 		crypt_free_req_skcipher(cc, req, base_bio);
1548 }
1549 
1550 /*
1551  * Encrypt / decrypt data from one bio to another one (can be the same one)
1552  */
1553 static blk_status_t crypt_convert(struct crypt_config *cc,
1554 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1555 {
1556 	unsigned int tag_offset = 0;
1557 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1558 	int r;
1559 
1560 	/*
1561 	 * if reset_pending is set we are dealing with the bio for the first time,
1562 	 * else we're continuing to work on the previous bio, so don't mess with
1563 	 * the cc_pending counter
1564 	 */
1565 	if (reset_pending)
1566 		atomic_set(&ctx->cc_pending, 1);
1567 
1568 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1569 
1570 		r = crypt_alloc_req(cc, ctx);
1571 		if (r) {
1572 			complete(&ctx->restart);
1573 			return BLK_STS_DEV_RESOURCE;
1574 		}
1575 
1576 		atomic_inc(&ctx->cc_pending);
1577 
1578 		if (crypt_integrity_aead(cc))
1579 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1580 		else
1581 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1582 
1583 		switch (r) {
1584 		/*
1585 		 * The request was queued by a crypto driver
1586 		 * but the driver request queue is full, let's wait.
1587 		 */
1588 		case -EBUSY:
1589 			if (in_interrupt()) {
1590 				if (try_wait_for_completion(&ctx->restart)) {
1591 					/*
1592 					 * we don't have to block to wait for completion,
1593 					 * so proceed
1594 					 */
1595 				} else {
1596 					/*
1597 					 * we can't wait for completion without blocking
1598 					 * exit and continue processing in a workqueue
1599 					 */
1600 					ctx->r.req = NULL;
1601 					ctx->cc_sector += sector_step;
1602 					tag_offset++;
1603 					return BLK_STS_DEV_RESOURCE;
1604 				}
1605 			} else {
1606 				wait_for_completion(&ctx->restart);
1607 			}
1608 			reinit_completion(&ctx->restart);
1609 			fallthrough;
1610 		/*
1611 		 * The request is queued and processed asynchronously,
1612 		 * completion function kcryptd_async_done() will be called.
1613 		 */
1614 		case -EINPROGRESS:
1615 			ctx->r.req = NULL;
1616 			ctx->cc_sector += sector_step;
1617 			tag_offset++;
1618 			continue;
1619 		/*
1620 		 * The request was already processed (synchronously).
1621 		 */
1622 		case 0:
1623 			atomic_dec(&ctx->cc_pending);
1624 			ctx->cc_sector += sector_step;
1625 			tag_offset++;
1626 			if (!atomic)
1627 				cond_resched();
1628 			continue;
1629 		/*
1630 		 * There was a data integrity error.
1631 		 */
1632 		case -EBADMSG:
1633 			atomic_dec(&ctx->cc_pending);
1634 			return BLK_STS_PROTECTION;
1635 		/*
1636 		 * There was an error while processing the request.
1637 		 */
1638 		default:
1639 			atomic_dec(&ctx->cc_pending);
1640 			return BLK_STS_IOERR;
1641 		}
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1648 
1649 /*
1650  * Generate a new unfragmented bio with the given size
1651  * This should never violate the device limitations (but only because
1652  * max_segment_size is being constrained to PAGE_SIZE).
1653  *
1654  * This function may be called concurrently. If we allocate from the mempool
1655  * concurrently, there is a possibility of deadlock. For example, if we have
1656  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1657  * the mempool concurrently, it may deadlock in a situation where both processes
1658  * have allocated 128 pages and the mempool is exhausted.
1659  *
1660  * In order to avoid this scenario we allocate the pages under a mutex.
1661  *
1662  * In order to not degrade performance with excessive locking, we try
1663  * non-blocking allocations without a mutex first but on failure we fallback
1664  * to blocking allocations with a mutex.
1665  *
1666  * In order to reduce allocation overhead, we try to allocate compound pages in
1667  * the first pass. If they are not available, we fall back to the mempool.
1668  */
1669 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1670 {
1671 	struct crypt_config *cc = io->cc;
1672 	struct bio *clone;
1673 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1674 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1675 	unsigned int remaining_size;
1676 	unsigned int order = MAX_ORDER - 1;
1677 
1678 retry:
1679 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1680 		mutex_lock(&cc->bio_alloc_lock);
1681 
1682 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1683 				 GFP_NOIO, &cc->bs);
1684 	clone->bi_private = io;
1685 	clone->bi_end_io = crypt_endio;
1686 
1687 	remaining_size = size;
1688 
1689 	while (remaining_size) {
1690 		struct page *pages;
1691 		unsigned size_to_add;
1692 		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1693 		order = min(order, remaining_order);
1694 
1695 		while (order > 0) {
1696 			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1697 					(1 << order) > dm_crypt_pages_per_client))
1698 				goto decrease_order;
1699 			pages = alloc_pages(gfp_mask
1700 				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1701 				order);
1702 			if (likely(pages != NULL)) {
1703 				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1704 				goto have_pages;
1705 			}
1706 decrease_order:
1707 			order--;
1708 		}
1709 
1710 		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1711 		if (!pages) {
1712 			crypt_free_buffer_pages(cc, clone);
1713 			bio_put(clone);
1714 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1715 			order = 0;
1716 			goto retry;
1717 		}
1718 
1719 have_pages:
1720 		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1721 		__bio_add_page(clone, pages, size_to_add, 0);
1722 		remaining_size -= size_to_add;
1723 	}
1724 
1725 	/* Allocate space for integrity tags */
1726 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1727 		crypt_free_buffer_pages(cc, clone);
1728 		bio_put(clone);
1729 		clone = NULL;
1730 	}
1731 
1732 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1733 		mutex_unlock(&cc->bio_alloc_lock);
1734 
1735 	return clone;
1736 }
1737 
1738 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1739 {
1740 	struct folio_iter fi;
1741 
1742 	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1743 		bio_for_each_folio_all(fi, clone) {
1744 			if (folio_test_large(fi.folio)) {
1745 				percpu_counter_sub(&cc->n_allocated_pages,
1746 						1 << folio_order(fi.folio));
1747 				folio_put(fi.folio);
1748 			} else {
1749 				mempool_free(&fi.folio->page, &cc->page_pool);
1750 			}
1751 		}
1752 	}
1753 }
1754 
1755 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1756 			  struct bio *bio, sector_t sector)
1757 {
1758 	io->cc = cc;
1759 	io->base_bio = bio;
1760 	io->sector = sector;
1761 	io->error = 0;
1762 	io->ctx.r.req = NULL;
1763 	io->integrity_metadata = NULL;
1764 	io->integrity_metadata_from_pool = false;
1765 	io->in_tasklet = false;
1766 	atomic_set(&io->io_pending, 0);
1767 }
1768 
1769 static void crypt_inc_pending(struct dm_crypt_io *io)
1770 {
1771 	atomic_inc(&io->io_pending);
1772 }
1773 
1774 static void kcryptd_io_bio_endio(struct work_struct *work)
1775 {
1776 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1777 
1778 	bio_endio(io->base_bio);
1779 }
1780 
1781 /*
1782  * One of the bios was finished. Check for completion of
1783  * the whole request and correctly clean up the buffer.
1784  */
1785 static void crypt_dec_pending(struct dm_crypt_io *io)
1786 {
1787 	struct crypt_config *cc = io->cc;
1788 	struct bio *base_bio = io->base_bio;
1789 	blk_status_t error = io->error;
1790 
1791 	if (!atomic_dec_and_test(&io->io_pending))
1792 		return;
1793 
1794 	if (io->ctx.r.req)
1795 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1796 
1797 	if (unlikely(io->integrity_metadata_from_pool))
1798 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1799 	else
1800 		kfree(io->integrity_metadata);
1801 
1802 	base_bio->bi_status = error;
1803 
1804 	/*
1805 	 * If we are running this function from our tasklet,
1806 	 * we can't call bio_endio() here, because it will call
1807 	 * clone_endio() from dm.c, which in turn will
1808 	 * free the current struct dm_crypt_io structure with
1809 	 * our tasklet. In this case we need to delay bio_endio()
1810 	 * execution to after the tasklet is done and dequeued.
1811 	 */
1812 	if (io->in_tasklet) {
1813 		INIT_WORK(&io->work, kcryptd_io_bio_endio);
1814 		queue_work(cc->io_queue, &io->work);
1815 		return;
1816 	}
1817 
1818 	bio_endio(base_bio);
1819 }
1820 
1821 /*
1822  * kcryptd/kcryptd_io:
1823  *
1824  * Needed because it would be very unwise to do decryption in an
1825  * interrupt context.
1826  *
1827  * kcryptd performs the actual encryption or decryption.
1828  *
1829  * kcryptd_io performs the IO submission.
1830  *
1831  * They must be separated as otherwise the final stages could be
1832  * starved by new requests which can block in the first stages due
1833  * to memory allocation.
1834  *
1835  * The work is done per CPU global for all dm-crypt instances.
1836  * They should not depend on each other and do not block.
1837  */
1838 static void crypt_endio(struct bio *clone)
1839 {
1840 	struct dm_crypt_io *io = clone->bi_private;
1841 	struct crypt_config *cc = io->cc;
1842 	unsigned int rw = bio_data_dir(clone);
1843 	blk_status_t error;
1844 
1845 	/*
1846 	 * free the processed pages
1847 	 */
1848 	if (rw == WRITE)
1849 		crypt_free_buffer_pages(cc, clone);
1850 
1851 	error = clone->bi_status;
1852 	bio_put(clone);
1853 
1854 	if (rw == READ && !error) {
1855 		kcryptd_queue_crypt(io);
1856 		return;
1857 	}
1858 
1859 	if (unlikely(error))
1860 		io->error = error;
1861 
1862 	crypt_dec_pending(io);
1863 }
1864 
1865 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1866 
1867 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1868 {
1869 	struct crypt_config *cc = io->cc;
1870 	struct bio *clone;
1871 
1872 	/*
1873 	 * We need the original biovec array in order to decrypt the whole bio
1874 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1875 	 * worry about the block layer modifying the biovec array; so leverage
1876 	 * bio_alloc_clone().
1877 	 */
1878 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1879 	if (!clone)
1880 		return 1;
1881 	clone->bi_private = io;
1882 	clone->bi_end_io = crypt_endio;
1883 
1884 	crypt_inc_pending(io);
1885 
1886 	clone->bi_iter.bi_sector = cc->start + io->sector;
1887 
1888 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1889 		crypt_dec_pending(io);
1890 		bio_put(clone);
1891 		return 1;
1892 	}
1893 
1894 	dm_submit_bio_remap(io->base_bio, clone);
1895 	return 0;
1896 }
1897 
1898 static void kcryptd_io_read_work(struct work_struct *work)
1899 {
1900 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1901 
1902 	crypt_inc_pending(io);
1903 	if (kcryptd_io_read(io, GFP_NOIO))
1904 		io->error = BLK_STS_RESOURCE;
1905 	crypt_dec_pending(io);
1906 }
1907 
1908 static void kcryptd_queue_read(struct dm_crypt_io *io)
1909 {
1910 	struct crypt_config *cc = io->cc;
1911 
1912 	INIT_WORK(&io->work, kcryptd_io_read_work);
1913 	queue_work(cc->io_queue, &io->work);
1914 }
1915 
1916 static void kcryptd_io_write(struct dm_crypt_io *io)
1917 {
1918 	struct bio *clone = io->ctx.bio_out;
1919 
1920 	dm_submit_bio_remap(io->base_bio, clone);
1921 }
1922 
1923 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1924 
1925 static int dmcrypt_write(void *data)
1926 {
1927 	struct crypt_config *cc = data;
1928 	struct dm_crypt_io *io;
1929 
1930 	while (1) {
1931 		struct rb_root write_tree;
1932 		struct blk_plug plug;
1933 
1934 		spin_lock_irq(&cc->write_thread_lock);
1935 continue_locked:
1936 
1937 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1938 			goto pop_from_list;
1939 
1940 		set_current_state(TASK_INTERRUPTIBLE);
1941 
1942 		spin_unlock_irq(&cc->write_thread_lock);
1943 
1944 		if (unlikely(kthread_should_stop())) {
1945 			set_current_state(TASK_RUNNING);
1946 			break;
1947 		}
1948 
1949 		schedule();
1950 
1951 		set_current_state(TASK_RUNNING);
1952 		spin_lock_irq(&cc->write_thread_lock);
1953 		goto continue_locked;
1954 
1955 pop_from_list:
1956 		write_tree = cc->write_tree;
1957 		cc->write_tree = RB_ROOT;
1958 		spin_unlock_irq(&cc->write_thread_lock);
1959 
1960 		BUG_ON(rb_parent(write_tree.rb_node));
1961 
1962 		/*
1963 		 * Note: we cannot walk the tree here with rb_next because
1964 		 * the structures may be freed when kcryptd_io_write is called.
1965 		 */
1966 		blk_start_plug(&plug);
1967 		do {
1968 			io = crypt_io_from_node(rb_first(&write_tree));
1969 			rb_erase(&io->rb_node, &write_tree);
1970 			kcryptd_io_write(io);
1971 			cond_resched();
1972 		} while (!RB_EMPTY_ROOT(&write_tree));
1973 		blk_finish_plug(&plug);
1974 	}
1975 	return 0;
1976 }
1977 
1978 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1979 {
1980 	struct bio *clone = io->ctx.bio_out;
1981 	struct crypt_config *cc = io->cc;
1982 	unsigned long flags;
1983 	sector_t sector;
1984 	struct rb_node **rbp, *parent;
1985 
1986 	if (unlikely(io->error)) {
1987 		crypt_free_buffer_pages(cc, clone);
1988 		bio_put(clone);
1989 		crypt_dec_pending(io);
1990 		return;
1991 	}
1992 
1993 	/* crypt_convert should have filled the clone bio */
1994 	BUG_ON(io->ctx.iter_out.bi_size);
1995 
1996 	clone->bi_iter.bi_sector = cc->start + io->sector;
1997 
1998 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1999 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2000 		dm_submit_bio_remap(io->base_bio, clone);
2001 		return;
2002 	}
2003 
2004 	spin_lock_irqsave(&cc->write_thread_lock, flags);
2005 	if (RB_EMPTY_ROOT(&cc->write_tree))
2006 		wake_up_process(cc->write_thread);
2007 	rbp = &cc->write_tree.rb_node;
2008 	parent = NULL;
2009 	sector = io->sector;
2010 	while (*rbp) {
2011 		parent = *rbp;
2012 		if (sector < crypt_io_from_node(parent)->sector)
2013 			rbp = &(*rbp)->rb_left;
2014 		else
2015 			rbp = &(*rbp)->rb_right;
2016 	}
2017 	rb_link_node(&io->rb_node, parent, rbp);
2018 	rb_insert_color(&io->rb_node, &cc->write_tree);
2019 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2020 }
2021 
2022 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2023 				       struct convert_context *ctx)
2024 
2025 {
2026 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2027 		return false;
2028 
2029 	/*
2030 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2031 	 * constraints so they do not need to be issued inline by
2032 	 * kcryptd_crypt_write_convert().
2033 	 */
2034 	switch (bio_op(ctx->bio_in)) {
2035 	case REQ_OP_WRITE:
2036 	case REQ_OP_WRITE_ZEROES:
2037 		return true;
2038 	default:
2039 		return false;
2040 	}
2041 }
2042 
2043 static void kcryptd_crypt_write_continue(struct work_struct *work)
2044 {
2045 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2046 	struct crypt_config *cc = io->cc;
2047 	struct convert_context *ctx = &io->ctx;
2048 	int crypt_finished;
2049 	sector_t sector = io->sector;
2050 	blk_status_t r;
2051 
2052 	wait_for_completion(&ctx->restart);
2053 	reinit_completion(&ctx->restart);
2054 
2055 	r = crypt_convert(cc, &io->ctx, true, false);
2056 	if (r)
2057 		io->error = r;
2058 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2059 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2060 		/* Wait for completion signaled by kcryptd_async_done() */
2061 		wait_for_completion(&ctx->restart);
2062 		crypt_finished = 1;
2063 	}
2064 
2065 	/* Encryption was already finished, submit io now */
2066 	if (crypt_finished) {
2067 		kcryptd_crypt_write_io_submit(io, 0);
2068 		io->sector = sector;
2069 	}
2070 
2071 	crypt_dec_pending(io);
2072 }
2073 
2074 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2075 {
2076 	struct crypt_config *cc = io->cc;
2077 	struct convert_context *ctx = &io->ctx;
2078 	struct bio *clone;
2079 	int crypt_finished;
2080 	sector_t sector = io->sector;
2081 	blk_status_t r;
2082 
2083 	/*
2084 	 * Prevent io from disappearing until this function completes.
2085 	 */
2086 	crypt_inc_pending(io);
2087 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2088 
2089 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2090 	if (unlikely(!clone)) {
2091 		io->error = BLK_STS_IOERR;
2092 		goto dec;
2093 	}
2094 
2095 	io->ctx.bio_out = clone;
2096 	io->ctx.iter_out = clone->bi_iter;
2097 
2098 	sector += bio_sectors(clone);
2099 
2100 	crypt_inc_pending(io);
2101 	r = crypt_convert(cc, ctx,
2102 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2103 	/*
2104 	 * Crypto API backlogged the request, because its queue was full
2105 	 * and we're in softirq context, so continue from a workqueue
2106 	 * (TODO: is it actually possible to be in softirq in the write path?)
2107 	 */
2108 	if (r == BLK_STS_DEV_RESOURCE) {
2109 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2110 		queue_work(cc->crypt_queue, &io->work);
2111 		return;
2112 	}
2113 	if (r)
2114 		io->error = r;
2115 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2116 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2117 		/* Wait for completion signaled by kcryptd_async_done() */
2118 		wait_for_completion(&ctx->restart);
2119 		crypt_finished = 1;
2120 	}
2121 
2122 	/* Encryption was already finished, submit io now */
2123 	if (crypt_finished) {
2124 		kcryptd_crypt_write_io_submit(io, 0);
2125 		io->sector = sector;
2126 	}
2127 
2128 dec:
2129 	crypt_dec_pending(io);
2130 }
2131 
2132 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2133 {
2134 	crypt_dec_pending(io);
2135 }
2136 
2137 static void kcryptd_crypt_read_continue(struct work_struct *work)
2138 {
2139 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2140 	struct crypt_config *cc = io->cc;
2141 	blk_status_t r;
2142 
2143 	wait_for_completion(&io->ctx.restart);
2144 	reinit_completion(&io->ctx.restart);
2145 
2146 	r = crypt_convert(cc, &io->ctx, true, false);
2147 	if (r)
2148 		io->error = r;
2149 
2150 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2151 		kcryptd_crypt_read_done(io);
2152 
2153 	crypt_dec_pending(io);
2154 }
2155 
2156 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2157 {
2158 	struct crypt_config *cc = io->cc;
2159 	blk_status_t r;
2160 
2161 	crypt_inc_pending(io);
2162 
2163 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2164 			   io->sector);
2165 
2166 	r = crypt_convert(cc, &io->ctx,
2167 			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2168 	/*
2169 	 * Crypto API backlogged the request, because its queue was full
2170 	 * and we're in softirq context, so continue from a workqueue
2171 	 */
2172 	if (r == BLK_STS_DEV_RESOURCE) {
2173 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2174 		queue_work(cc->crypt_queue, &io->work);
2175 		return;
2176 	}
2177 	if (r)
2178 		io->error = r;
2179 
2180 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2181 		kcryptd_crypt_read_done(io);
2182 
2183 	crypt_dec_pending(io);
2184 }
2185 
2186 static void kcryptd_async_done(void *data, int error)
2187 {
2188 	struct dm_crypt_request *dmreq = data;
2189 	struct convert_context *ctx = dmreq->ctx;
2190 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2191 	struct crypt_config *cc = io->cc;
2192 
2193 	/*
2194 	 * A request from crypto driver backlog is going to be processed now,
2195 	 * finish the completion and continue in crypt_convert().
2196 	 * (Callback will be called for the second time for this request.)
2197 	 */
2198 	if (error == -EINPROGRESS) {
2199 		complete(&ctx->restart);
2200 		return;
2201 	}
2202 
2203 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2204 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2205 
2206 	if (error == -EBADMSG) {
2207 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2208 
2209 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2210 			    ctx->bio_in->bi_bdev, s);
2211 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2212 				 ctx->bio_in, s, 0);
2213 		io->error = BLK_STS_PROTECTION;
2214 	} else if (error < 0)
2215 		io->error = BLK_STS_IOERR;
2216 
2217 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2218 
2219 	if (!atomic_dec_and_test(&ctx->cc_pending))
2220 		return;
2221 
2222 	/*
2223 	 * The request is fully completed: for inline writes, let
2224 	 * kcryptd_crypt_write_convert() do the IO submission.
2225 	 */
2226 	if (bio_data_dir(io->base_bio) == READ) {
2227 		kcryptd_crypt_read_done(io);
2228 		return;
2229 	}
2230 
2231 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2232 		complete(&ctx->restart);
2233 		return;
2234 	}
2235 
2236 	kcryptd_crypt_write_io_submit(io, 1);
2237 }
2238 
2239 static void kcryptd_crypt(struct work_struct *work)
2240 {
2241 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2242 
2243 	if (bio_data_dir(io->base_bio) == READ)
2244 		kcryptd_crypt_read_convert(io);
2245 	else
2246 		kcryptd_crypt_write_convert(io);
2247 }
2248 
2249 static void kcryptd_crypt_tasklet(unsigned long work)
2250 {
2251 	kcryptd_crypt((struct work_struct *)work);
2252 }
2253 
2254 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2255 {
2256 	struct crypt_config *cc = io->cc;
2257 
2258 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2259 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2260 		/*
2261 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2262 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2263 		 * it is being executed with irqs disabled.
2264 		 */
2265 		if (in_hardirq() || irqs_disabled()) {
2266 			io->in_tasklet = true;
2267 			tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2268 			tasklet_schedule(&io->tasklet);
2269 			return;
2270 		}
2271 
2272 		kcryptd_crypt(&io->work);
2273 		return;
2274 	}
2275 
2276 	INIT_WORK(&io->work, kcryptd_crypt);
2277 	queue_work(cc->crypt_queue, &io->work);
2278 }
2279 
2280 static void crypt_free_tfms_aead(struct crypt_config *cc)
2281 {
2282 	if (!cc->cipher_tfm.tfms_aead)
2283 		return;
2284 
2285 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2286 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2287 		cc->cipher_tfm.tfms_aead[0] = NULL;
2288 	}
2289 
2290 	kfree(cc->cipher_tfm.tfms_aead);
2291 	cc->cipher_tfm.tfms_aead = NULL;
2292 }
2293 
2294 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2295 {
2296 	unsigned int i;
2297 
2298 	if (!cc->cipher_tfm.tfms)
2299 		return;
2300 
2301 	for (i = 0; i < cc->tfms_count; i++)
2302 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2303 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2304 			cc->cipher_tfm.tfms[i] = NULL;
2305 		}
2306 
2307 	kfree(cc->cipher_tfm.tfms);
2308 	cc->cipher_tfm.tfms = NULL;
2309 }
2310 
2311 static void crypt_free_tfms(struct crypt_config *cc)
2312 {
2313 	if (crypt_integrity_aead(cc))
2314 		crypt_free_tfms_aead(cc);
2315 	else
2316 		crypt_free_tfms_skcipher(cc);
2317 }
2318 
2319 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2320 {
2321 	unsigned int i;
2322 	int err;
2323 
2324 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2325 				      sizeof(struct crypto_skcipher *),
2326 				      GFP_KERNEL);
2327 	if (!cc->cipher_tfm.tfms)
2328 		return -ENOMEM;
2329 
2330 	for (i = 0; i < cc->tfms_count; i++) {
2331 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2332 						CRYPTO_ALG_ALLOCATES_MEMORY);
2333 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2334 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2335 			crypt_free_tfms(cc);
2336 			return err;
2337 		}
2338 	}
2339 
2340 	/*
2341 	 * dm-crypt performance can vary greatly depending on which crypto
2342 	 * algorithm implementation is used.  Help people debug performance
2343 	 * problems by logging the ->cra_driver_name.
2344 	 */
2345 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2346 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2347 	return 0;
2348 }
2349 
2350 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2351 {
2352 	int err;
2353 
2354 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2355 	if (!cc->cipher_tfm.tfms)
2356 		return -ENOMEM;
2357 
2358 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2359 						CRYPTO_ALG_ALLOCATES_MEMORY);
2360 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2361 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2362 		crypt_free_tfms(cc);
2363 		return err;
2364 	}
2365 
2366 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2367 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2368 	return 0;
2369 }
2370 
2371 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2372 {
2373 	if (crypt_integrity_aead(cc))
2374 		return crypt_alloc_tfms_aead(cc, ciphermode);
2375 	else
2376 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2377 }
2378 
2379 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2380 {
2381 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2382 }
2383 
2384 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2385 {
2386 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2387 }
2388 
2389 /*
2390  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2391  * the key must be for some reason in special format.
2392  * This funcion converts cc->key to this special format.
2393  */
2394 static void crypt_copy_authenckey(char *p, const void *key,
2395 				  unsigned int enckeylen, unsigned int authkeylen)
2396 {
2397 	struct crypto_authenc_key_param *param;
2398 	struct rtattr *rta;
2399 
2400 	rta = (struct rtattr *)p;
2401 	param = RTA_DATA(rta);
2402 	param->enckeylen = cpu_to_be32(enckeylen);
2403 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2404 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2405 	p += RTA_SPACE(sizeof(*param));
2406 	memcpy(p, key + enckeylen, authkeylen);
2407 	p += authkeylen;
2408 	memcpy(p, key, enckeylen);
2409 }
2410 
2411 static int crypt_setkey(struct crypt_config *cc)
2412 {
2413 	unsigned int subkey_size;
2414 	int err = 0, i, r;
2415 
2416 	/* Ignore extra keys (which are used for IV etc) */
2417 	subkey_size = crypt_subkey_size(cc);
2418 
2419 	if (crypt_integrity_hmac(cc)) {
2420 		if (subkey_size < cc->key_mac_size)
2421 			return -EINVAL;
2422 
2423 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2424 				      subkey_size - cc->key_mac_size,
2425 				      cc->key_mac_size);
2426 	}
2427 
2428 	for (i = 0; i < cc->tfms_count; i++) {
2429 		if (crypt_integrity_hmac(cc))
2430 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2431 				cc->authenc_key, crypt_authenckey_size(cc));
2432 		else if (crypt_integrity_aead(cc))
2433 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2434 					       cc->key + (i * subkey_size),
2435 					       subkey_size);
2436 		else
2437 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2438 						   cc->key + (i * subkey_size),
2439 						   subkey_size);
2440 		if (r)
2441 			err = r;
2442 	}
2443 
2444 	if (crypt_integrity_hmac(cc))
2445 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2446 
2447 	return err;
2448 }
2449 
2450 #ifdef CONFIG_KEYS
2451 
2452 static bool contains_whitespace(const char *str)
2453 {
2454 	while (*str)
2455 		if (isspace(*str++))
2456 			return true;
2457 	return false;
2458 }
2459 
2460 static int set_key_user(struct crypt_config *cc, struct key *key)
2461 {
2462 	const struct user_key_payload *ukp;
2463 
2464 	ukp = user_key_payload_locked(key);
2465 	if (!ukp)
2466 		return -EKEYREVOKED;
2467 
2468 	if (cc->key_size != ukp->datalen)
2469 		return -EINVAL;
2470 
2471 	memcpy(cc->key, ukp->data, cc->key_size);
2472 
2473 	return 0;
2474 }
2475 
2476 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2477 {
2478 	const struct encrypted_key_payload *ekp;
2479 
2480 	ekp = key->payload.data[0];
2481 	if (!ekp)
2482 		return -EKEYREVOKED;
2483 
2484 	if (cc->key_size != ekp->decrypted_datalen)
2485 		return -EINVAL;
2486 
2487 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2488 
2489 	return 0;
2490 }
2491 
2492 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2493 {
2494 	const struct trusted_key_payload *tkp;
2495 
2496 	tkp = key->payload.data[0];
2497 	if (!tkp)
2498 		return -EKEYREVOKED;
2499 
2500 	if (cc->key_size != tkp->key_len)
2501 		return -EINVAL;
2502 
2503 	memcpy(cc->key, tkp->key, cc->key_size);
2504 
2505 	return 0;
2506 }
2507 
2508 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2509 {
2510 	char *new_key_string, *key_desc;
2511 	int ret;
2512 	struct key_type *type;
2513 	struct key *key;
2514 	int (*set_key)(struct crypt_config *cc, struct key *key);
2515 
2516 	/*
2517 	 * Reject key_string with whitespace. dm core currently lacks code for
2518 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2519 	 */
2520 	if (contains_whitespace(key_string)) {
2521 		DMERR("whitespace chars not allowed in key string");
2522 		return -EINVAL;
2523 	}
2524 
2525 	/* look for next ':' separating key_type from key_description */
2526 	key_desc = strchr(key_string, ':');
2527 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2528 		return -EINVAL;
2529 
2530 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2531 		type = &key_type_logon;
2532 		set_key = set_key_user;
2533 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2534 		type = &key_type_user;
2535 		set_key = set_key_user;
2536 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2537 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2538 		type = &key_type_encrypted;
2539 		set_key = set_key_encrypted;
2540 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2541 		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2542 		type = &key_type_trusted;
2543 		set_key = set_key_trusted;
2544 	} else {
2545 		return -EINVAL;
2546 	}
2547 
2548 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2549 	if (!new_key_string)
2550 		return -ENOMEM;
2551 
2552 	key = request_key(type, key_desc + 1, NULL);
2553 	if (IS_ERR(key)) {
2554 		kfree_sensitive(new_key_string);
2555 		return PTR_ERR(key);
2556 	}
2557 
2558 	down_read(&key->sem);
2559 
2560 	ret = set_key(cc, key);
2561 	if (ret < 0) {
2562 		up_read(&key->sem);
2563 		key_put(key);
2564 		kfree_sensitive(new_key_string);
2565 		return ret;
2566 	}
2567 
2568 	up_read(&key->sem);
2569 	key_put(key);
2570 
2571 	/* clear the flag since following operations may invalidate previously valid key */
2572 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2573 
2574 	ret = crypt_setkey(cc);
2575 
2576 	if (!ret) {
2577 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2578 		kfree_sensitive(cc->key_string);
2579 		cc->key_string = new_key_string;
2580 	} else
2581 		kfree_sensitive(new_key_string);
2582 
2583 	return ret;
2584 }
2585 
2586 static int get_key_size(char **key_string)
2587 {
2588 	char *colon, dummy;
2589 	int ret;
2590 
2591 	if (*key_string[0] != ':')
2592 		return strlen(*key_string) >> 1;
2593 
2594 	/* look for next ':' in key string */
2595 	colon = strpbrk(*key_string + 1, ":");
2596 	if (!colon)
2597 		return -EINVAL;
2598 
2599 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2600 		return -EINVAL;
2601 
2602 	*key_string = colon;
2603 
2604 	/* remaining key string should be :<logon|user>:<key_desc> */
2605 
2606 	return ret;
2607 }
2608 
2609 #else
2610 
2611 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2612 {
2613 	return -EINVAL;
2614 }
2615 
2616 static int get_key_size(char **key_string)
2617 {
2618 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2619 }
2620 
2621 #endif /* CONFIG_KEYS */
2622 
2623 static int crypt_set_key(struct crypt_config *cc, char *key)
2624 {
2625 	int r = -EINVAL;
2626 	int key_string_len = strlen(key);
2627 
2628 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2629 	if (!cc->key_size && strcmp(key, "-"))
2630 		goto out;
2631 
2632 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2633 	if (key[0] == ':') {
2634 		r = crypt_set_keyring_key(cc, key + 1);
2635 		goto out;
2636 	}
2637 
2638 	/* clear the flag since following operations may invalidate previously valid key */
2639 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2640 
2641 	/* wipe references to any kernel keyring key */
2642 	kfree_sensitive(cc->key_string);
2643 	cc->key_string = NULL;
2644 
2645 	/* Decode key from its hex representation. */
2646 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2647 		goto out;
2648 
2649 	r = crypt_setkey(cc);
2650 	if (!r)
2651 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2652 
2653 out:
2654 	/* Hex key string not needed after here, so wipe it. */
2655 	memset(key, '0', key_string_len);
2656 
2657 	return r;
2658 }
2659 
2660 static int crypt_wipe_key(struct crypt_config *cc)
2661 {
2662 	int r;
2663 
2664 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2665 	get_random_bytes(&cc->key, cc->key_size);
2666 
2667 	/* Wipe IV private keys */
2668 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2669 		r = cc->iv_gen_ops->wipe(cc);
2670 		if (r)
2671 			return r;
2672 	}
2673 
2674 	kfree_sensitive(cc->key_string);
2675 	cc->key_string = NULL;
2676 	r = crypt_setkey(cc);
2677 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2678 
2679 	return r;
2680 }
2681 
2682 static void crypt_calculate_pages_per_client(void)
2683 {
2684 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2685 
2686 	if (!dm_crypt_clients_n)
2687 		return;
2688 
2689 	pages /= dm_crypt_clients_n;
2690 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2691 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2692 	dm_crypt_pages_per_client = pages;
2693 }
2694 
2695 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2696 {
2697 	struct crypt_config *cc = pool_data;
2698 	struct page *page;
2699 
2700 	/*
2701 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2702 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2703 	 * but avoids potential spinlock contention of an exact result.
2704 	 */
2705 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2706 	    likely(gfp_mask & __GFP_NORETRY))
2707 		return NULL;
2708 
2709 	page = alloc_page(gfp_mask);
2710 	if (likely(page != NULL))
2711 		percpu_counter_add(&cc->n_allocated_pages, 1);
2712 
2713 	return page;
2714 }
2715 
2716 static void crypt_page_free(void *page, void *pool_data)
2717 {
2718 	struct crypt_config *cc = pool_data;
2719 
2720 	__free_page(page);
2721 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2722 }
2723 
2724 static void crypt_dtr(struct dm_target *ti)
2725 {
2726 	struct crypt_config *cc = ti->private;
2727 
2728 	ti->private = NULL;
2729 
2730 	if (!cc)
2731 		return;
2732 
2733 	if (cc->write_thread)
2734 		kthread_stop(cc->write_thread);
2735 
2736 	if (cc->io_queue)
2737 		destroy_workqueue(cc->io_queue);
2738 	if (cc->crypt_queue)
2739 		destroy_workqueue(cc->crypt_queue);
2740 
2741 	crypt_free_tfms(cc);
2742 
2743 	bioset_exit(&cc->bs);
2744 
2745 	mempool_exit(&cc->page_pool);
2746 	mempool_exit(&cc->req_pool);
2747 	mempool_exit(&cc->tag_pool);
2748 
2749 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2750 	percpu_counter_destroy(&cc->n_allocated_pages);
2751 
2752 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2753 		cc->iv_gen_ops->dtr(cc);
2754 
2755 	if (cc->dev)
2756 		dm_put_device(ti, cc->dev);
2757 
2758 	kfree_sensitive(cc->cipher_string);
2759 	kfree_sensitive(cc->key_string);
2760 	kfree_sensitive(cc->cipher_auth);
2761 	kfree_sensitive(cc->authenc_key);
2762 
2763 	mutex_destroy(&cc->bio_alloc_lock);
2764 
2765 	/* Must zero key material before freeing */
2766 	kfree_sensitive(cc);
2767 
2768 	spin_lock(&dm_crypt_clients_lock);
2769 	WARN_ON(!dm_crypt_clients_n);
2770 	dm_crypt_clients_n--;
2771 	crypt_calculate_pages_per_client();
2772 	spin_unlock(&dm_crypt_clients_lock);
2773 
2774 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2775 }
2776 
2777 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2778 {
2779 	struct crypt_config *cc = ti->private;
2780 
2781 	if (crypt_integrity_aead(cc))
2782 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2783 	else
2784 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2785 
2786 	if (cc->iv_size)
2787 		/* at least a 64 bit sector number should fit in our buffer */
2788 		cc->iv_size = max(cc->iv_size,
2789 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2790 	else if (ivmode) {
2791 		DMWARN("Selected cipher does not support IVs");
2792 		ivmode = NULL;
2793 	}
2794 
2795 	/* Choose ivmode, see comments at iv code. */
2796 	if (ivmode == NULL)
2797 		cc->iv_gen_ops = NULL;
2798 	else if (strcmp(ivmode, "plain") == 0)
2799 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2800 	else if (strcmp(ivmode, "plain64") == 0)
2801 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2802 	else if (strcmp(ivmode, "plain64be") == 0)
2803 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2804 	else if (strcmp(ivmode, "essiv") == 0)
2805 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2806 	else if (strcmp(ivmode, "benbi") == 0)
2807 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2808 	else if (strcmp(ivmode, "null") == 0)
2809 		cc->iv_gen_ops = &crypt_iv_null_ops;
2810 	else if (strcmp(ivmode, "eboiv") == 0)
2811 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2812 	else if (strcmp(ivmode, "elephant") == 0) {
2813 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2814 		cc->key_parts = 2;
2815 		cc->key_extra_size = cc->key_size / 2;
2816 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2817 			return -EINVAL;
2818 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2819 	} else if (strcmp(ivmode, "lmk") == 0) {
2820 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2821 		/*
2822 		 * Version 2 and 3 is recognised according
2823 		 * to length of provided multi-key string.
2824 		 * If present (version 3), last key is used as IV seed.
2825 		 * All keys (including IV seed) are always the same size.
2826 		 */
2827 		if (cc->key_size % cc->key_parts) {
2828 			cc->key_parts++;
2829 			cc->key_extra_size = cc->key_size / cc->key_parts;
2830 		}
2831 	} else if (strcmp(ivmode, "tcw") == 0) {
2832 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2833 		cc->key_parts += 2; /* IV + whitening */
2834 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2835 	} else if (strcmp(ivmode, "random") == 0) {
2836 		cc->iv_gen_ops = &crypt_iv_random_ops;
2837 		/* Need storage space in integrity fields. */
2838 		cc->integrity_iv_size = cc->iv_size;
2839 	} else {
2840 		ti->error = "Invalid IV mode";
2841 		return -EINVAL;
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 /*
2848  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2849  * The HMAC is needed to calculate tag size (HMAC digest size).
2850  * This should be probably done by crypto-api calls (once available...)
2851  */
2852 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2853 {
2854 	char *start, *end, *mac_alg = NULL;
2855 	struct crypto_ahash *mac;
2856 
2857 	if (!strstarts(cipher_api, "authenc("))
2858 		return 0;
2859 
2860 	start = strchr(cipher_api, '(');
2861 	end = strchr(cipher_api, ',');
2862 	if (!start || !end || ++start > end)
2863 		return -EINVAL;
2864 
2865 	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2866 	if (!mac_alg)
2867 		return -ENOMEM;
2868 
2869 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2870 	kfree(mac_alg);
2871 
2872 	if (IS_ERR(mac))
2873 		return PTR_ERR(mac);
2874 
2875 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2876 	crypto_free_ahash(mac);
2877 
2878 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2879 	if (!cc->authenc_key)
2880 		return -ENOMEM;
2881 
2882 	return 0;
2883 }
2884 
2885 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2886 				char **ivmode, char **ivopts)
2887 {
2888 	struct crypt_config *cc = ti->private;
2889 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2890 	int ret = -EINVAL;
2891 
2892 	cc->tfms_count = 1;
2893 
2894 	/*
2895 	 * New format (capi: prefix)
2896 	 * capi:cipher_api_spec-iv:ivopts
2897 	 */
2898 	tmp = &cipher_in[strlen("capi:")];
2899 
2900 	/* Separate IV options if present, it can contain another '-' in hash name */
2901 	*ivopts = strrchr(tmp, ':');
2902 	if (*ivopts) {
2903 		**ivopts = '\0';
2904 		(*ivopts)++;
2905 	}
2906 	/* Parse IV mode */
2907 	*ivmode = strrchr(tmp, '-');
2908 	if (*ivmode) {
2909 		**ivmode = '\0';
2910 		(*ivmode)++;
2911 	}
2912 	/* The rest is crypto API spec */
2913 	cipher_api = tmp;
2914 
2915 	/* Alloc AEAD, can be used only in new format. */
2916 	if (crypt_integrity_aead(cc)) {
2917 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2918 		if (ret < 0) {
2919 			ti->error = "Invalid AEAD cipher spec";
2920 			return ret;
2921 		}
2922 	}
2923 
2924 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2925 		cc->tfms_count = 64;
2926 
2927 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2928 		if (!*ivopts) {
2929 			ti->error = "Digest algorithm missing for ESSIV mode";
2930 			return -EINVAL;
2931 		}
2932 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2933 			       cipher_api, *ivopts);
2934 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2935 			ti->error = "Cannot allocate cipher string";
2936 			return -ENOMEM;
2937 		}
2938 		cipher_api = buf;
2939 	}
2940 
2941 	cc->key_parts = cc->tfms_count;
2942 
2943 	/* Allocate cipher */
2944 	ret = crypt_alloc_tfms(cc, cipher_api);
2945 	if (ret < 0) {
2946 		ti->error = "Error allocating crypto tfm";
2947 		return ret;
2948 	}
2949 
2950 	if (crypt_integrity_aead(cc))
2951 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2952 	else
2953 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2954 
2955 	return 0;
2956 }
2957 
2958 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2959 				char **ivmode, char **ivopts)
2960 {
2961 	struct crypt_config *cc = ti->private;
2962 	char *tmp, *cipher, *chainmode, *keycount;
2963 	char *cipher_api = NULL;
2964 	int ret = -EINVAL;
2965 	char dummy;
2966 
2967 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2968 		ti->error = "Bad cipher specification";
2969 		return -EINVAL;
2970 	}
2971 
2972 	/*
2973 	 * Legacy dm-crypt cipher specification
2974 	 * cipher[:keycount]-mode-iv:ivopts
2975 	 */
2976 	tmp = cipher_in;
2977 	keycount = strsep(&tmp, "-");
2978 	cipher = strsep(&keycount, ":");
2979 
2980 	if (!keycount)
2981 		cc->tfms_count = 1;
2982 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2983 		 !is_power_of_2(cc->tfms_count)) {
2984 		ti->error = "Bad cipher key count specification";
2985 		return -EINVAL;
2986 	}
2987 	cc->key_parts = cc->tfms_count;
2988 
2989 	chainmode = strsep(&tmp, "-");
2990 	*ivmode = strsep(&tmp, ":");
2991 	*ivopts = tmp;
2992 
2993 	/*
2994 	 * For compatibility with the original dm-crypt mapping format, if
2995 	 * only the cipher name is supplied, use cbc-plain.
2996 	 */
2997 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2998 		chainmode = "cbc";
2999 		*ivmode = "plain";
3000 	}
3001 
3002 	if (strcmp(chainmode, "ecb") && !*ivmode) {
3003 		ti->error = "IV mechanism required";
3004 		return -EINVAL;
3005 	}
3006 
3007 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3008 	if (!cipher_api)
3009 		goto bad_mem;
3010 
3011 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3012 		if (!*ivopts) {
3013 			ti->error = "Digest algorithm missing for ESSIV mode";
3014 			kfree(cipher_api);
3015 			return -EINVAL;
3016 		}
3017 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3018 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3019 	} else {
3020 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3021 			       "%s(%s)", chainmode, cipher);
3022 	}
3023 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3024 		kfree(cipher_api);
3025 		goto bad_mem;
3026 	}
3027 
3028 	/* Allocate cipher */
3029 	ret = crypt_alloc_tfms(cc, cipher_api);
3030 	if (ret < 0) {
3031 		ti->error = "Error allocating crypto tfm";
3032 		kfree(cipher_api);
3033 		return ret;
3034 	}
3035 	kfree(cipher_api);
3036 
3037 	return 0;
3038 bad_mem:
3039 	ti->error = "Cannot allocate cipher strings";
3040 	return -ENOMEM;
3041 }
3042 
3043 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3044 {
3045 	struct crypt_config *cc = ti->private;
3046 	char *ivmode = NULL, *ivopts = NULL;
3047 	int ret;
3048 
3049 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3050 	if (!cc->cipher_string) {
3051 		ti->error = "Cannot allocate cipher strings";
3052 		return -ENOMEM;
3053 	}
3054 
3055 	if (strstarts(cipher_in, "capi:"))
3056 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3057 	else
3058 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3059 	if (ret)
3060 		return ret;
3061 
3062 	/* Initialize IV */
3063 	ret = crypt_ctr_ivmode(ti, ivmode);
3064 	if (ret < 0)
3065 		return ret;
3066 
3067 	/* Initialize and set key */
3068 	ret = crypt_set_key(cc, key);
3069 	if (ret < 0) {
3070 		ti->error = "Error decoding and setting key";
3071 		return ret;
3072 	}
3073 
3074 	/* Allocate IV */
3075 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3076 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3077 		if (ret < 0) {
3078 			ti->error = "Error creating IV";
3079 			return ret;
3080 		}
3081 	}
3082 
3083 	/* Initialize IV (set keys for ESSIV etc) */
3084 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3085 		ret = cc->iv_gen_ops->init(cc);
3086 		if (ret < 0) {
3087 			ti->error = "Error initialising IV";
3088 			return ret;
3089 		}
3090 	}
3091 
3092 	/* wipe the kernel key payload copy */
3093 	if (cc->key_string)
3094 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3095 
3096 	return ret;
3097 }
3098 
3099 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3100 {
3101 	struct crypt_config *cc = ti->private;
3102 	struct dm_arg_set as;
3103 	static const struct dm_arg _args[] = {
3104 		{0, 8, "Invalid number of feature args"},
3105 	};
3106 	unsigned int opt_params, val;
3107 	const char *opt_string, *sval;
3108 	char dummy;
3109 	int ret;
3110 
3111 	/* Optional parameters */
3112 	as.argc = argc;
3113 	as.argv = argv;
3114 
3115 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3116 	if (ret)
3117 		return ret;
3118 
3119 	while (opt_params--) {
3120 		opt_string = dm_shift_arg(&as);
3121 		if (!opt_string) {
3122 			ti->error = "Not enough feature arguments";
3123 			return -EINVAL;
3124 		}
3125 
3126 		if (!strcasecmp(opt_string, "allow_discards"))
3127 			ti->num_discard_bios = 1;
3128 
3129 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3130 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3131 
3132 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3133 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3134 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3135 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3136 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3137 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3138 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3139 			if (val == 0 || val > MAX_TAG_SIZE) {
3140 				ti->error = "Invalid integrity arguments";
3141 				return -EINVAL;
3142 			}
3143 			cc->on_disk_tag_size = val;
3144 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3145 			if (!strcasecmp(sval, "aead")) {
3146 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3147 			} else  if (strcasecmp(sval, "none")) {
3148 				ti->error = "Unknown integrity profile";
3149 				return -EINVAL;
3150 			}
3151 
3152 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3153 			if (!cc->cipher_auth)
3154 				return -ENOMEM;
3155 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3156 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3157 			    cc->sector_size > 4096 ||
3158 			    (cc->sector_size & (cc->sector_size - 1))) {
3159 				ti->error = "Invalid feature value for sector_size";
3160 				return -EINVAL;
3161 			}
3162 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3163 				ti->error = "Device size is not multiple of sector_size feature";
3164 				return -EINVAL;
3165 			}
3166 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3167 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3168 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3169 		else {
3170 			ti->error = "Invalid feature arguments";
3171 			return -EINVAL;
3172 		}
3173 	}
3174 
3175 	return 0;
3176 }
3177 
3178 #ifdef CONFIG_BLK_DEV_ZONED
3179 static int crypt_report_zones(struct dm_target *ti,
3180 		struct dm_report_zones_args *args, unsigned int nr_zones)
3181 {
3182 	struct crypt_config *cc = ti->private;
3183 
3184 	return dm_report_zones(cc->dev->bdev, cc->start,
3185 			cc->start + dm_target_offset(ti, args->next_sector),
3186 			args, nr_zones);
3187 }
3188 #else
3189 #define crypt_report_zones NULL
3190 #endif
3191 
3192 /*
3193  * Construct an encryption mapping:
3194  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3195  */
3196 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3197 {
3198 	struct crypt_config *cc;
3199 	const char *devname = dm_table_device_name(ti->table);
3200 	int key_size;
3201 	unsigned int align_mask;
3202 	unsigned long long tmpll;
3203 	int ret;
3204 	size_t iv_size_padding, additional_req_size;
3205 	char dummy;
3206 
3207 	if (argc < 5) {
3208 		ti->error = "Not enough arguments";
3209 		return -EINVAL;
3210 	}
3211 
3212 	key_size = get_key_size(&argv[1]);
3213 	if (key_size < 0) {
3214 		ti->error = "Cannot parse key size";
3215 		return -EINVAL;
3216 	}
3217 
3218 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3219 	if (!cc) {
3220 		ti->error = "Cannot allocate encryption context";
3221 		return -ENOMEM;
3222 	}
3223 	cc->key_size = key_size;
3224 	cc->sector_size = (1 << SECTOR_SHIFT);
3225 	cc->sector_shift = 0;
3226 
3227 	ti->private = cc;
3228 
3229 	spin_lock(&dm_crypt_clients_lock);
3230 	dm_crypt_clients_n++;
3231 	crypt_calculate_pages_per_client();
3232 	spin_unlock(&dm_crypt_clients_lock);
3233 
3234 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3235 	if (ret < 0)
3236 		goto bad;
3237 
3238 	/* Optional parameters need to be read before cipher constructor */
3239 	if (argc > 5) {
3240 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3241 		if (ret)
3242 			goto bad;
3243 	}
3244 
3245 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3246 	if (ret < 0)
3247 		goto bad;
3248 
3249 	if (crypt_integrity_aead(cc)) {
3250 		cc->dmreq_start = sizeof(struct aead_request);
3251 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3252 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3253 	} else {
3254 		cc->dmreq_start = sizeof(struct skcipher_request);
3255 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3256 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3257 	}
3258 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3259 
3260 	if (align_mask < CRYPTO_MINALIGN) {
3261 		/* Allocate the padding exactly */
3262 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3263 				& align_mask;
3264 	} else {
3265 		/*
3266 		 * If the cipher requires greater alignment than kmalloc
3267 		 * alignment, we don't know the exact position of the
3268 		 * initialization vector. We must assume worst case.
3269 		 */
3270 		iv_size_padding = align_mask;
3271 	}
3272 
3273 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3274 	additional_req_size = sizeof(struct dm_crypt_request) +
3275 		iv_size_padding + cc->iv_size +
3276 		cc->iv_size +
3277 		sizeof(uint64_t) +
3278 		sizeof(unsigned int);
3279 
3280 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3281 	if (ret) {
3282 		ti->error = "Cannot allocate crypt request mempool";
3283 		goto bad;
3284 	}
3285 
3286 	cc->per_bio_data_size = ti->per_io_data_size =
3287 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3288 		      ARCH_DMA_MINALIGN);
3289 
3290 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3291 	if (ret) {
3292 		ti->error = "Cannot allocate page mempool";
3293 		goto bad;
3294 	}
3295 
3296 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3297 	if (ret) {
3298 		ti->error = "Cannot allocate crypt bioset";
3299 		goto bad;
3300 	}
3301 
3302 	mutex_init(&cc->bio_alloc_lock);
3303 
3304 	ret = -EINVAL;
3305 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3306 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3307 		ti->error = "Invalid iv_offset sector";
3308 		goto bad;
3309 	}
3310 	cc->iv_offset = tmpll;
3311 
3312 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3313 	if (ret) {
3314 		ti->error = "Device lookup failed";
3315 		goto bad;
3316 	}
3317 
3318 	ret = -EINVAL;
3319 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3320 		ti->error = "Invalid device sector";
3321 		goto bad;
3322 	}
3323 	cc->start = tmpll;
3324 
3325 	if (bdev_is_zoned(cc->dev->bdev)) {
3326 		/*
3327 		 * For zoned block devices, we need to preserve the issuer write
3328 		 * ordering. To do so, disable write workqueues and force inline
3329 		 * encryption completion.
3330 		 */
3331 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3332 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3333 
3334 		/*
3335 		 * All zone append writes to a zone of a zoned block device will
3336 		 * have the same BIO sector, the start of the zone. When the
3337 		 * cypher IV mode uses sector values, all data targeting a
3338 		 * zone will be encrypted using the first sector numbers of the
3339 		 * zone. This will not result in write errors but will
3340 		 * cause most reads to fail as reads will use the sector values
3341 		 * for the actual data locations, resulting in IV mismatch.
3342 		 * To avoid this problem, ask DM core to emulate zone append
3343 		 * operations with regular writes.
3344 		 */
3345 		DMDEBUG("Zone append operations will be emulated");
3346 		ti->emulate_zone_append = true;
3347 	}
3348 
3349 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3350 		ret = crypt_integrity_ctr(cc, ti);
3351 		if (ret)
3352 			goto bad;
3353 
3354 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3355 		if (!cc->tag_pool_max_sectors)
3356 			cc->tag_pool_max_sectors = 1;
3357 
3358 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3359 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3360 		if (ret) {
3361 			ti->error = "Cannot allocate integrity tags mempool";
3362 			goto bad;
3363 		}
3364 
3365 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3366 	}
3367 
3368 	ret = -ENOMEM;
3369 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3370 	if (!cc->io_queue) {
3371 		ti->error = "Couldn't create kcryptd io queue";
3372 		goto bad;
3373 	}
3374 
3375 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3376 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3377 						  1, devname);
3378 	else
3379 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3380 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3381 						  num_online_cpus(), devname);
3382 	if (!cc->crypt_queue) {
3383 		ti->error = "Couldn't create kcryptd queue";
3384 		goto bad;
3385 	}
3386 
3387 	spin_lock_init(&cc->write_thread_lock);
3388 	cc->write_tree = RB_ROOT;
3389 
3390 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3391 	if (IS_ERR(cc->write_thread)) {
3392 		ret = PTR_ERR(cc->write_thread);
3393 		cc->write_thread = NULL;
3394 		ti->error = "Couldn't spawn write thread";
3395 		goto bad;
3396 	}
3397 
3398 	ti->num_flush_bios = 1;
3399 	ti->limit_swap_bios = true;
3400 	ti->accounts_remapped_io = true;
3401 
3402 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3403 	return 0;
3404 
3405 bad:
3406 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3407 	crypt_dtr(ti);
3408 	return ret;
3409 }
3410 
3411 static int crypt_map(struct dm_target *ti, struct bio *bio)
3412 {
3413 	struct dm_crypt_io *io;
3414 	struct crypt_config *cc = ti->private;
3415 
3416 	/*
3417 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3418 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3419 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3420 	 */
3421 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3422 	    bio_op(bio) == REQ_OP_DISCARD)) {
3423 		bio_set_dev(bio, cc->dev->bdev);
3424 		if (bio_sectors(bio))
3425 			bio->bi_iter.bi_sector = cc->start +
3426 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3427 		return DM_MAPIO_REMAPPED;
3428 	}
3429 
3430 	/*
3431 	 * Check if bio is too large, split as needed.
3432 	 */
3433 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3434 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3435 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3436 
3437 	/*
3438 	 * Ensure that bio is a multiple of internal sector encryption size
3439 	 * and is aligned to this size as defined in IO hints.
3440 	 */
3441 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3442 		return DM_MAPIO_KILL;
3443 
3444 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3445 		return DM_MAPIO_KILL;
3446 
3447 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3448 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3449 
3450 	if (cc->on_disk_tag_size) {
3451 		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3452 
3453 		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3454 			io->integrity_metadata = NULL;
3455 		else
3456 			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3457 
3458 		if (unlikely(!io->integrity_metadata)) {
3459 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3460 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3461 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3462 			io->integrity_metadata_from_pool = true;
3463 		}
3464 	}
3465 
3466 	if (crypt_integrity_aead(cc))
3467 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3468 	else
3469 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3470 
3471 	if (bio_data_dir(io->base_bio) == READ) {
3472 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3473 			kcryptd_queue_read(io);
3474 	} else
3475 		kcryptd_queue_crypt(io);
3476 
3477 	return DM_MAPIO_SUBMITTED;
3478 }
3479 
3480 static char hex2asc(unsigned char c)
3481 {
3482 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3483 }
3484 
3485 static void crypt_status(struct dm_target *ti, status_type_t type,
3486 			 unsigned int status_flags, char *result, unsigned int maxlen)
3487 {
3488 	struct crypt_config *cc = ti->private;
3489 	unsigned int i, sz = 0;
3490 	int num_feature_args = 0;
3491 
3492 	switch (type) {
3493 	case STATUSTYPE_INFO:
3494 		result[0] = '\0';
3495 		break;
3496 
3497 	case STATUSTYPE_TABLE:
3498 		DMEMIT("%s ", cc->cipher_string);
3499 
3500 		if (cc->key_size > 0) {
3501 			if (cc->key_string)
3502 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3503 			else {
3504 				for (i = 0; i < cc->key_size; i++) {
3505 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3506 					       hex2asc(cc->key[i] & 0xf));
3507 				}
3508 			}
3509 		} else
3510 			DMEMIT("-");
3511 
3512 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3513 				cc->dev->name, (unsigned long long)cc->start);
3514 
3515 		num_feature_args += !!ti->num_discard_bios;
3516 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3517 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3518 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3519 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3520 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3521 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3522 		if (cc->on_disk_tag_size)
3523 			num_feature_args++;
3524 		if (num_feature_args) {
3525 			DMEMIT(" %d", num_feature_args);
3526 			if (ti->num_discard_bios)
3527 				DMEMIT(" allow_discards");
3528 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3529 				DMEMIT(" same_cpu_crypt");
3530 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3531 				DMEMIT(" submit_from_crypt_cpus");
3532 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3533 				DMEMIT(" no_read_workqueue");
3534 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3535 				DMEMIT(" no_write_workqueue");
3536 			if (cc->on_disk_tag_size)
3537 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3538 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3539 				DMEMIT(" sector_size:%d", cc->sector_size);
3540 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3541 				DMEMIT(" iv_large_sectors");
3542 		}
3543 		break;
3544 
3545 	case STATUSTYPE_IMA:
3546 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3547 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3548 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3549 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3550 		       'y' : 'n');
3551 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3552 		       'y' : 'n');
3553 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3554 		       'y' : 'n');
3555 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3556 		       'y' : 'n');
3557 
3558 		if (cc->on_disk_tag_size)
3559 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3560 			       cc->on_disk_tag_size, cc->cipher_auth);
3561 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3562 			DMEMIT(",sector_size=%d", cc->sector_size);
3563 		if (cc->cipher_string)
3564 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3565 
3566 		DMEMIT(",key_size=%u", cc->key_size);
3567 		DMEMIT(",key_parts=%u", cc->key_parts);
3568 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3569 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3570 		DMEMIT(";");
3571 		break;
3572 	}
3573 }
3574 
3575 static void crypt_postsuspend(struct dm_target *ti)
3576 {
3577 	struct crypt_config *cc = ti->private;
3578 
3579 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3580 }
3581 
3582 static int crypt_preresume(struct dm_target *ti)
3583 {
3584 	struct crypt_config *cc = ti->private;
3585 
3586 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3587 		DMERR("aborting resume - crypt key is not set.");
3588 		return -EAGAIN;
3589 	}
3590 
3591 	return 0;
3592 }
3593 
3594 static void crypt_resume(struct dm_target *ti)
3595 {
3596 	struct crypt_config *cc = ti->private;
3597 
3598 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3599 }
3600 
3601 /* Message interface
3602  *	key set <key>
3603  *	key wipe
3604  */
3605 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3606 			 char *result, unsigned int maxlen)
3607 {
3608 	struct crypt_config *cc = ti->private;
3609 	int key_size, ret = -EINVAL;
3610 
3611 	if (argc < 2)
3612 		goto error;
3613 
3614 	if (!strcasecmp(argv[0], "key")) {
3615 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3616 			DMWARN("not suspended during key manipulation.");
3617 			return -EINVAL;
3618 		}
3619 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3620 			/* The key size may not be changed. */
3621 			key_size = get_key_size(&argv[2]);
3622 			if (key_size < 0 || cc->key_size != key_size) {
3623 				memset(argv[2], '0', strlen(argv[2]));
3624 				return -EINVAL;
3625 			}
3626 
3627 			ret = crypt_set_key(cc, argv[2]);
3628 			if (ret)
3629 				return ret;
3630 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3631 				ret = cc->iv_gen_ops->init(cc);
3632 			/* wipe the kernel key payload copy */
3633 			if (cc->key_string)
3634 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3635 			return ret;
3636 		}
3637 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3638 			return crypt_wipe_key(cc);
3639 	}
3640 
3641 error:
3642 	DMWARN("unrecognised message received.");
3643 	return -EINVAL;
3644 }
3645 
3646 static int crypt_iterate_devices(struct dm_target *ti,
3647 				 iterate_devices_callout_fn fn, void *data)
3648 {
3649 	struct crypt_config *cc = ti->private;
3650 
3651 	return fn(ti, cc->dev, cc->start, ti->len, data);
3652 }
3653 
3654 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3655 {
3656 	struct crypt_config *cc = ti->private;
3657 
3658 	/*
3659 	 * Unfortunate constraint that is required to avoid the potential
3660 	 * for exceeding underlying device's max_segments limits -- due to
3661 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3662 	 * bio that are not as physically contiguous as the original bio.
3663 	 */
3664 	limits->max_segment_size = PAGE_SIZE;
3665 
3666 	limits->logical_block_size =
3667 		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3668 	limits->physical_block_size =
3669 		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3670 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3671 	limits->dma_alignment = limits->logical_block_size - 1;
3672 }
3673 
3674 static struct target_type crypt_target = {
3675 	.name   = "crypt",
3676 	.version = {1, 24, 0},
3677 	.module = THIS_MODULE,
3678 	.ctr    = crypt_ctr,
3679 	.dtr    = crypt_dtr,
3680 	.features = DM_TARGET_ZONED_HM,
3681 	.report_zones = crypt_report_zones,
3682 	.map    = crypt_map,
3683 	.status = crypt_status,
3684 	.postsuspend = crypt_postsuspend,
3685 	.preresume = crypt_preresume,
3686 	.resume = crypt_resume,
3687 	.message = crypt_message,
3688 	.iterate_devices = crypt_iterate_devices,
3689 	.io_hints = crypt_io_hints,
3690 };
3691 module_dm(crypt);
3692 
3693 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3694 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3695 MODULE_LICENSE("GPL");
3696