xref: /linux/drivers/md/dm-crypt.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/mempool.h>
14 #include <linux/slab.h>
15 #include <linux/crypto.h>
16 #include <linux/workqueue.h>
17 #include <asm/atomic.h>
18 #include <asm/scatterlist.h>
19 #include <asm/page.h>
20 
21 #include "dm.h"
22 
23 #define PFX	"crypt: "
24 
25 /*
26  * per bio private data
27  */
28 struct crypt_io {
29 	struct dm_target *target;
30 	struct bio *bio;
31 	struct bio *first_clone;
32 	struct work_struct work;
33 	atomic_t pending;
34 	int error;
35 };
36 
37 /*
38  * context holding the current state of a multi-part conversion
39  */
40 struct convert_context {
41 	struct bio *bio_in;
42 	struct bio *bio_out;
43 	unsigned int offset_in;
44 	unsigned int offset_out;
45 	unsigned int idx_in;
46 	unsigned int idx_out;
47 	sector_t sector;
48 	int write;
49 };
50 
51 struct crypt_config;
52 
53 struct crypt_iv_operations {
54 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
55 	           const char *opts);
56 	void (*dtr)(struct crypt_config *cc);
57 	const char *(*status)(struct crypt_config *cc);
58 	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
59 };
60 
61 /*
62  * Crypt: maps a linear range of a block device
63  * and encrypts / decrypts at the same time.
64  */
65 struct crypt_config {
66 	struct dm_dev *dev;
67 	sector_t start;
68 
69 	/*
70 	 * pool for per bio private data and
71 	 * for encryption buffer pages
72 	 */
73 	mempool_t *io_pool;
74 	mempool_t *page_pool;
75 
76 	/*
77 	 * crypto related data
78 	 */
79 	struct crypt_iv_operations *iv_gen_ops;
80 	char *iv_mode;
81 	void *iv_gen_private;
82 	sector_t iv_offset;
83 	unsigned int iv_size;
84 
85 	struct crypto_tfm *tfm;
86 	unsigned int key_size;
87 	u8 key[0];
88 };
89 
90 #define MIN_IOS        256
91 #define MIN_POOL_PAGES 32
92 #define MIN_BIO_PAGES  8
93 
94 static kmem_cache_t *_crypt_io_pool;
95 
96 /*
97  * Mempool alloc and free functions for the page
98  */
99 static void *mempool_alloc_page(unsigned int __nocast gfp_mask, void *data)
100 {
101 	return alloc_page(gfp_mask);
102 }
103 
104 static void mempool_free_page(void *page, void *data)
105 {
106 	__free_page(page);
107 }
108 
109 
110 /*
111  * Different IV generation algorithms:
112  *
113  * plain: the initial vector is the 32-bit low-endian version of the sector
114  *        number, padded with zeros if neccessary.
115  *
116  * ess_iv: "encrypted sector|salt initial vector", the sector number is
117  *         encrypted with the bulk cipher using a salt as key. The salt
118  *         should be derived from the bulk cipher's key via hashing.
119  *
120  * plumb: unimplemented, see:
121  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
122  */
123 
124 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
125 {
126 	memset(iv, 0, cc->iv_size);
127 	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
128 
129 	return 0;
130 }
131 
132 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
133 	                      const char *opts)
134 {
135 	struct crypto_tfm *essiv_tfm;
136 	struct crypto_tfm *hash_tfm;
137 	struct scatterlist sg;
138 	unsigned int saltsize;
139 	u8 *salt;
140 
141 	if (opts == NULL) {
142 		ti->error = PFX "Digest algorithm missing for ESSIV mode";
143 		return -EINVAL;
144 	}
145 
146 	/* Hash the cipher key with the given hash algorithm */
147 	hash_tfm = crypto_alloc_tfm(opts, CRYPTO_TFM_REQ_MAY_SLEEP);
148 	if (hash_tfm == NULL) {
149 		ti->error = PFX "Error initializing ESSIV hash";
150 		return -EINVAL;
151 	}
152 
153 	if (crypto_tfm_alg_type(hash_tfm) != CRYPTO_ALG_TYPE_DIGEST) {
154 		ti->error = PFX "Expected digest algorithm for ESSIV hash";
155 		crypto_free_tfm(hash_tfm);
156 		return -EINVAL;
157 	}
158 
159 	saltsize = crypto_tfm_alg_digestsize(hash_tfm);
160 	salt = kmalloc(saltsize, GFP_KERNEL);
161 	if (salt == NULL) {
162 		ti->error = PFX "Error kmallocing salt storage in ESSIV";
163 		crypto_free_tfm(hash_tfm);
164 		return -ENOMEM;
165 	}
166 
167 	sg.page = virt_to_page(cc->key);
168 	sg.offset = offset_in_page(cc->key);
169 	sg.length = cc->key_size;
170 	crypto_digest_digest(hash_tfm, &sg, 1, salt);
171 	crypto_free_tfm(hash_tfm);
172 
173 	/* Setup the essiv_tfm with the given salt */
174 	essiv_tfm = crypto_alloc_tfm(crypto_tfm_alg_name(cc->tfm),
175 	                             CRYPTO_TFM_MODE_ECB |
176 	                             CRYPTO_TFM_REQ_MAY_SLEEP);
177 	if (essiv_tfm == NULL) {
178 		ti->error = PFX "Error allocating crypto tfm for ESSIV";
179 		kfree(salt);
180 		return -EINVAL;
181 	}
182 	if (crypto_tfm_alg_blocksize(essiv_tfm)
183 	    != crypto_tfm_alg_ivsize(cc->tfm)) {
184 		ti->error = PFX "Block size of ESSIV cipher does "
185 			        "not match IV size of block cipher";
186 		crypto_free_tfm(essiv_tfm);
187 		kfree(salt);
188 		return -EINVAL;
189 	}
190 	if (crypto_cipher_setkey(essiv_tfm, salt, saltsize) < 0) {
191 		ti->error = PFX "Failed to set key for ESSIV cipher";
192 		crypto_free_tfm(essiv_tfm);
193 		kfree(salt);
194 		return -EINVAL;
195 	}
196 	kfree(salt);
197 
198 	cc->iv_gen_private = (void *)essiv_tfm;
199 	return 0;
200 }
201 
202 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
203 {
204 	crypto_free_tfm((struct crypto_tfm *)cc->iv_gen_private);
205 	cc->iv_gen_private = NULL;
206 }
207 
208 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
209 {
210 	struct scatterlist sg = { NULL, };
211 
212 	memset(iv, 0, cc->iv_size);
213 	*(u64 *)iv = cpu_to_le64(sector);
214 
215 	sg.page = virt_to_page(iv);
216 	sg.offset = offset_in_page(iv);
217 	sg.length = cc->iv_size;
218 	crypto_cipher_encrypt((struct crypto_tfm *)cc->iv_gen_private,
219 	                      &sg, &sg, cc->iv_size);
220 
221 	return 0;
222 }
223 
224 static struct crypt_iv_operations crypt_iv_plain_ops = {
225 	.generator = crypt_iv_plain_gen
226 };
227 
228 static struct crypt_iv_operations crypt_iv_essiv_ops = {
229 	.ctr       = crypt_iv_essiv_ctr,
230 	.dtr       = crypt_iv_essiv_dtr,
231 	.generator = crypt_iv_essiv_gen
232 };
233 
234 
235 static inline int
236 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
237                           struct scatterlist *in, unsigned int length,
238                           int write, sector_t sector)
239 {
240 	u8 iv[cc->iv_size];
241 	int r;
242 
243 	if (cc->iv_gen_ops) {
244 		r = cc->iv_gen_ops->generator(cc, iv, sector);
245 		if (r < 0)
246 			return r;
247 
248 		if (write)
249 			r = crypto_cipher_encrypt_iv(cc->tfm, out, in, length, iv);
250 		else
251 			r = crypto_cipher_decrypt_iv(cc->tfm, out, in, length, iv);
252 	} else {
253 		if (write)
254 			r = crypto_cipher_encrypt(cc->tfm, out, in, length);
255 		else
256 			r = crypto_cipher_decrypt(cc->tfm, out, in, length);
257 	}
258 
259 	return r;
260 }
261 
262 static void
263 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
264                    struct bio *bio_out, struct bio *bio_in,
265                    sector_t sector, int write)
266 {
267 	ctx->bio_in = bio_in;
268 	ctx->bio_out = bio_out;
269 	ctx->offset_in = 0;
270 	ctx->offset_out = 0;
271 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
272 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
273 	ctx->sector = sector + cc->iv_offset;
274 	ctx->write = write;
275 }
276 
277 /*
278  * Encrypt / decrypt data from one bio to another one (can be the same one)
279  */
280 static int crypt_convert(struct crypt_config *cc,
281                          struct convert_context *ctx)
282 {
283 	int r = 0;
284 
285 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
286 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
287 		struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
288 		struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
289 		struct scatterlist sg_in = {
290 			.page = bv_in->bv_page,
291 			.offset = bv_in->bv_offset + ctx->offset_in,
292 			.length = 1 << SECTOR_SHIFT
293 		};
294 		struct scatterlist sg_out = {
295 			.page = bv_out->bv_page,
296 			.offset = bv_out->bv_offset + ctx->offset_out,
297 			.length = 1 << SECTOR_SHIFT
298 		};
299 
300 		ctx->offset_in += sg_in.length;
301 		if (ctx->offset_in >= bv_in->bv_len) {
302 			ctx->offset_in = 0;
303 			ctx->idx_in++;
304 		}
305 
306 		ctx->offset_out += sg_out.length;
307 		if (ctx->offset_out >= bv_out->bv_len) {
308 			ctx->offset_out = 0;
309 			ctx->idx_out++;
310 		}
311 
312 		r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
313 		                              ctx->write, ctx->sector);
314 		if (r < 0)
315 			break;
316 
317 		ctx->sector++;
318 	}
319 
320 	return r;
321 }
322 
323 /*
324  * Generate a new unfragmented bio with the given size
325  * This should never violate the device limitations
326  * May return a smaller bio when running out of pages
327  */
328 static struct bio *
329 crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
330                    struct bio *base_bio, unsigned int *bio_vec_idx)
331 {
332 	struct bio *bio;
333 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 	int gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
335 	unsigned int i;
336 
337 	/*
338 	 * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and
339 	 * to fail earlier.  This is not necessary but increases throughput.
340 	 * FIXME: Is this really intelligent?
341 	 */
342 	if (base_bio)
343 		bio = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC);
344 	else
345 		bio = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs);
346 	if (!bio)
347 		return NULL;
348 
349 	/* if the last bio was not complete, continue where that one ended */
350 	bio->bi_idx = *bio_vec_idx;
351 	bio->bi_vcnt = *bio_vec_idx;
352 	bio->bi_size = 0;
353 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
354 
355 	/* bio->bi_idx pages have already been allocated */
356 	size -= bio->bi_idx * PAGE_SIZE;
357 
358 	for(i = bio->bi_idx; i < nr_iovecs; i++) {
359 		struct bio_vec *bv = bio_iovec_idx(bio, i);
360 
361 		bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
362 		if (!bv->bv_page)
363 			break;
364 
365 		/*
366 		 * if additional pages cannot be allocated without waiting,
367 		 * return a partially allocated bio, the caller will then try
368 		 * to allocate additional bios while submitting this partial bio
369 		 */
370 		if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1))
371 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
372 
373 		bv->bv_offset = 0;
374 		if (size > PAGE_SIZE)
375 			bv->bv_len = PAGE_SIZE;
376 		else
377 			bv->bv_len = size;
378 
379 		bio->bi_size += bv->bv_len;
380 		bio->bi_vcnt++;
381 		size -= bv->bv_len;
382 	}
383 
384 	if (!bio->bi_size) {
385 		bio_put(bio);
386 		return NULL;
387 	}
388 
389 	/*
390 	 * Remember the last bio_vec allocated to be able
391 	 * to correctly continue after the splitting.
392 	 */
393 	*bio_vec_idx = bio->bi_vcnt;
394 
395 	return bio;
396 }
397 
398 static void crypt_free_buffer_pages(struct crypt_config *cc,
399                                     struct bio *bio, unsigned int bytes)
400 {
401 	unsigned int i, start, end;
402 	struct bio_vec *bv;
403 
404 	/*
405 	 * This is ugly, but Jens Axboe thinks that using bi_idx in the
406 	 * endio function is too dangerous at the moment, so I calculate the
407 	 * correct position using bi_vcnt and bi_size.
408 	 * The bv_offset and bv_len fields might already be modified but we
409 	 * know that we always allocated whole pages.
410 	 * A fix to the bi_idx issue in the kernel is in the works, so
411 	 * we will hopefully be able to revert to the cleaner solution soon.
412 	 */
413 	i = bio->bi_vcnt - 1;
414 	bv = bio_iovec_idx(bio, i);
415 	end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size;
416 	start = end - bytes;
417 
418 	start >>= PAGE_SHIFT;
419 	if (!bio->bi_size)
420 		end = bio->bi_vcnt;
421 	else
422 		end >>= PAGE_SHIFT;
423 
424 	for(i = start; i < end; i++) {
425 		bv = bio_iovec_idx(bio, i);
426 		BUG_ON(!bv->bv_page);
427 		mempool_free(bv->bv_page, cc->page_pool);
428 		bv->bv_page = NULL;
429 	}
430 }
431 
432 /*
433  * One of the bios was finished. Check for completion of
434  * the whole request and correctly clean up the buffer.
435  */
436 static void dec_pending(struct crypt_io *io, int error)
437 {
438 	struct crypt_config *cc = (struct crypt_config *) io->target->private;
439 
440 	if (error < 0)
441 		io->error = error;
442 
443 	if (!atomic_dec_and_test(&io->pending))
444 		return;
445 
446 	if (io->first_clone)
447 		bio_put(io->first_clone);
448 
449 	bio_endio(io->bio, io->bio->bi_size, io->error);
450 
451 	mempool_free(io, cc->io_pool);
452 }
453 
454 /*
455  * kcryptd:
456  *
457  * Needed because it would be very unwise to do decryption in an
458  * interrupt context, so bios returning from read requests get
459  * queued here.
460  */
461 static struct workqueue_struct *_kcryptd_workqueue;
462 
463 static void kcryptd_do_work(void *data)
464 {
465 	struct crypt_io *io = (struct crypt_io *) data;
466 	struct crypt_config *cc = (struct crypt_config *) io->target->private;
467 	struct convert_context ctx;
468 	int r;
469 
470 	crypt_convert_init(cc, &ctx, io->bio, io->bio,
471 	                   io->bio->bi_sector - io->target->begin, 0);
472 	r = crypt_convert(cc, &ctx);
473 
474 	dec_pending(io, r);
475 }
476 
477 static void kcryptd_queue_io(struct crypt_io *io)
478 {
479 	INIT_WORK(&io->work, kcryptd_do_work, io);
480 	queue_work(_kcryptd_workqueue, &io->work);
481 }
482 
483 /*
484  * Decode key from its hex representation
485  */
486 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
487 {
488 	char buffer[3];
489 	char *endp;
490 	unsigned int i;
491 
492 	buffer[2] = '\0';
493 
494 	for(i = 0; i < size; i++) {
495 		buffer[0] = *hex++;
496 		buffer[1] = *hex++;
497 
498 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
499 
500 		if (endp != &buffer[2])
501 			return -EINVAL;
502 	}
503 
504 	if (*hex != '\0')
505 		return -EINVAL;
506 
507 	return 0;
508 }
509 
510 /*
511  * Encode key into its hex representation
512  */
513 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
514 {
515 	unsigned int i;
516 
517 	for(i = 0; i < size; i++) {
518 		sprintf(hex, "%02x", *key);
519 		hex += 2;
520 		key++;
521 	}
522 }
523 
524 /*
525  * Construct an encryption mapping:
526  * <cipher> <key> <iv_offset> <dev_path> <start>
527  */
528 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
529 {
530 	struct crypt_config *cc;
531 	struct crypto_tfm *tfm;
532 	char *tmp;
533 	char *cipher;
534 	char *chainmode;
535 	char *ivmode;
536 	char *ivopts;
537 	unsigned int crypto_flags;
538 	unsigned int key_size;
539 
540 	if (argc != 5) {
541 		ti->error = PFX "Not enough arguments";
542 		return -EINVAL;
543 	}
544 
545 	tmp = argv[0];
546 	cipher = strsep(&tmp, "-");
547 	chainmode = strsep(&tmp, "-");
548 	ivopts = strsep(&tmp, "-");
549 	ivmode = strsep(&ivopts, ":");
550 
551 	if (tmp)
552 		DMWARN(PFX "Unexpected additional cipher options");
553 
554 	key_size = strlen(argv[1]) >> 1;
555 
556 	cc = kmalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
557 	if (cc == NULL) {
558 		ti->error =
559 			PFX "Cannot allocate transparent encryption context";
560 		return -ENOMEM;
561 	}
562 
563 	cc->key_size = key_size;
564 	if ((!key_size && strcmp(argv[1], "-") != 0) ||
565 	    (key_size && crypt_decode_key(cc->key, argv[1], key_size) < 0)) {
566 		ti->error = PFX "Error decoding key";
567 		goto bad1;
568 	}
569 
570 	/* Compatiblity mode for old dm-crypt cipher strings */
571 	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
572 		chainmode = "cbc";
573 		ivmode = "plain";
574 	}
575 
576 	/* Choose crypto_flags according to chainmode */
577 	if (strcmp(chainmode, "cbc") == 0)
578 		crypto_flags = CRYPTO_TFM_MODE_CBC;
579 	else if (strcmp(chainmode, "ecb") == 0)
580 		crypto_flags = CRYPTO_TFM_MODE_ECB;
581 	else {
582 		ti->error = PFX "Unknown chaining mode";
583 		goto bad1;
584 	}
585 
586 	if (crypto_flags != CRYPTO_TFM_MODE_ECB && !ivmode) {
587 		ti->error = PFX "This chaining mode requires an IV mechanism";
588 		goto bad1;
589 	}
590 
591 	tfm = crypto_alloc_tfm(cipher, crypto_flags | CRYPTO_TFM_REQ_MAY_SLEEP);
592 	if (!tfm) {
593 		ti->error = PFX "Error allocating crypto tfm";
594 		goto bad1;
595 	}
596 	if (crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER) {
597 		ti->error = PFX "Expected cipher algorithm";
598 		goto bad2;
599 	}
600 
601 	cc->tfm = tfm;
602 
603 	/*
604 	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
605 	 * See comments at iv code
606 	 */
607 
608 	if (ivmode == NULL)
609 		cc->iv_gen_ops = NULL;
610 	else if (strcmp(ivmode, "plain") == 0)
611 		cc->iv_gen_ops = &crypt_iv_plain_ops;
612 	else if (strcmp(ivmode, "essiv") == 0)
613 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
614 	else {
615 		ti->error = PFX "Invalid IV mode";
616 		goto bad2;
617 	}
618 
619 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
620 	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
621 		goto bad2;
622 
623 	if (tfm->crt_cipher.cit_decrypt_iv && tfm->crt_cipher.cit_encrypt_iv)
624 		/* at least a 64 bit sector number should fit in our buffer */
625 		cc->iv_size = max(crypto_tfm_alg_ivsize(tfm),
626 		                  (unsigned int)(sizeof(u64) / sizeof(u8)));
627 	else {
628 		cc->iv_size = 0;
629 		if (cc->iv_gen_ops) {
630 			DMWARN(PFX "Selected cipher does not support IVs");
631 			if (cc->iv_gen_ops->dtr)
632 				cc->iv_gen_ops->dtr(cc);
633 			cc->iv_gen_ops = NULL;
634 		}
635 	}
636 
637 	cc->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
638 				     mempool_free_slab, _crypt_io_pool);
639 	if (!cc->io_pool) {
640 		ti->error = PFX "Cannot allocate crypt io mempool";
641 		goto bad3;
642 	}
643 
644 	cc->page_pool = mempool_create(MIN_POOL_PAGES, mempool_alloc_page,
645 				       mempool_free_page, NULL);
646 	if (!cc->page_pool) {
647 		ti->error = PFX "Cannot allocate page mempool";
648 		goto bad4;
649 	}
650 
651 	if (tfm->crt_cipher.cit_setkey(tfm, cc->key, key_size) < 0) {
652 		ti->error = PFX "Error setting key";
653 		goto bad5;
654 	}
655 
656 	if (sscanf(argv[2], SECTOR_FORMAT, &cc->iv_offset) != 1) {
657 		ti->error = PFX "Invalid iv_offset sector";
658 		goto bad5;
659 	}
660 
661 	if (sscanf(argv[4], SECTOR_FORMAT, &cc->start) != 1) {
662 		ti->error = PFX "Invalid device sector";
663 		goto bad5;
664 	}
665 
666 	if (dm_get_device(ti, argv[3], cc->start, ti->len,
667 	                  dm_table_get_mode(ti->table), &cc->dev)) {
668 		ti->error = PFX "Device lookup failed";
669 		goto bad5;
670 	}
671 
672 	if (ivmode && cc->iv_gen_ops) {
673 		if (ivopts)
674 			*(ivopts - 1) = ':';
675 		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
676 		if (!cc->iv_mode) {
677 			ti->error = PFX "Error kmallocing iv_mode string";
678 			goto bad5;
679 		}
680 		strcpy(cc->iv_mode, ivmode);
681 	} else
682 		cc->iv_mode = NULL;
683 
684 	ti->private = cc;
685 	return 0;
686 
687 bad5:
688 	mempool_destroy(cc->page_pool);
689 bad4:
690 	mempool_destroy(cc->io_pool);
691 bad3:
692 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
693 		cc->iv_gen_ops->dtr(cc);
694 bad2:
695 	crypto_free_tfm(tfm);
696 bad1:
697 	kfree(cc);
698 	return -EINVAL;
699 }
700 
701 static void crypt_dtr(struct dm_target *ti)
702 {
703 	struct crypt_config *cc = (struct crypt_config *) ti->private;
704 
705 	mempool_destroy(cc->page_pool);
706 	mempool_destroy(cc->io_pool);
707 
708 	kfree(cc->iv_mode);
709 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
710 		cc->iv_gen_ops->dtr(cc);
711 	crypto_free_tfm(cc->tfm);
712 	dm_put_device(ti, cc->dev);
713 	kfree(cc);
714 }
715 
716 static int crypt_endio(struct bio *bio, unsigned int done, int error)
717 {
718 	struct crypt_io *io = (struct crypt_io *) bio->bi_private;
719 	struct crypt_config *cc = (struct crypt_config *) io->target->private;
720 
721 	if (bio_data_dir(bio) == WRITE) {
722 		/*
723 		 * free the processed pages, even if
724 		 * it's only a partially completed write
725 		 */
726 		crypt_free_buffer_pages(cc, bio, done);
727 	}
728 
729 	if (bio->bi_size)
730 		return 1;
731 
732 	bio_put(bio);
733 
734 	/*
735 	 * successful reads are decrypted by the worker thread
736 	 */
737 	if ((bio_data_dir(bio) == READ)
738 	    && bio_flagged(bio, BIO_UPTODATE)) {
739 		kcryptd_queue_io(io);
740 		return 0;
741 	}
742 
743 	dec_pending(io, error);
744 	return error;
745 }
746 
747 static inline struct bio *
748 crypt_clone(struct crypt_config *cc, struct crypt_io *io, struct bio *bio,
749             sector_t sector, unsigned int *bvec_idx,
750             struct convert_context *ctx)
751 {
752 	struct bio *clone;
753 
754 	if (bio_data_dir(bio) == WRITE) {
755 		clone = crypt_alloc_buffer(cc, bio->bi_size,
756                                  io->first_clone, bvec_idx);
757 		if (clone) {
758 			ctx->bio_out = clone;
759 			if (crypt_convert(cc, ctx) < 0) {
760 				crypt_free_buffer_pages(cc, clone,
761 				                        clone->bi_size);
762 				bio_put(clone);
763 				return NULL;
764 			}
765 		}
766 	} else {
767 		/*
768 		 * The block layer might modify the bvec array, so always
769 		 * copy the required bvecs because we need the original
770 		 * one in order to decrypt the whole bio data *afterwards*.
771 		 */
772 		clone = bio_alloc(GFP_NOIO, bio_segments(bio));
773 		if (clone) {
774 			clone->bi_idx = 0;
775 			clone->bi_vcnt = bio_segments(bio);
776 			clone->bi_size = bio->bi_size;
777 			memcpy(clone->bi_io_vec, bio_iovec(bio),
778 			       sizeof(struct bio_vec) * clone->bi_vcnt);
779 		}
780 	}
781 
782 	if (!clone)
783 		return NULL;
784 
785 	clone->bi_private = io;
786 	clone->bi_end_io = crypt_endio;
787 	clone->bi_bdev = cc->dev->bdev;
788 	clone->bi_sector = cc->start + sector;
789 	clone->bi_rw = bio->bi_rw;
790 
791 	return clone;
792 }
793 
794 static int crypt_map(struct dm_target *ti, struct bio *bio,
795 		     union map_info *map_context)
796 {
797 	struct crypt_config *cc = (struct crypt_config *) ti->private;
798 	struct crypt_io *io = mempool_alloc(cc->io_pool, GFP_NOIO);
799 	struct convert_context ctx;
800 	struct bio *clone;
801 	unsigned int remaining = bio->bi_size;
802 	sector_t sector = bio->bi_sector - ti->begin;
803 	unsigned int bvec_idx = 0;
804 
805 	io->target = ti;
806 	io->bio = bio;
807 	io->first_clone = NULL;
808 	io->error = 0;
809 	atomic_set(&io->pending, 1); /* hold a reference */
810 
811 	if (bio_data_dir(bio) == WRITE)
812 		crypt_convert_init(cc, &ctx, NULL, bio, sector, 1);
813 
814 	/*
815 	 * The allocated buffers can be smaller than the whole bio,
816 	 * so repeat the whole process until all the data can be handled.
817 	 */
818 	while (remaining) {
819 		clone = crypt_clone(cc, io, bio, sector, &bvec_idx, &ctx);
820 		if (!clone)
821 			goto cleanup;
822 
823 		if (!io->first_clone) {
824 			/*
825 			 * hold a reference to the first clone, because it
826 			 * holds the bio_vec array and that can't be freed
827 			 * before all other clones are released
828 			 */
829 			bio_get(clone);
830 			io->first_clone = clone;
831 		}
832 		atomic_inc(&io->pending);
833 
834 		remaining -= clone->bi_size;
835 		sector += bio_sectors(clone);
836 
837 		generic_make_request(clone);
838 
839 		/* out of memory -> run queues */
840 		if (remaining)
841 			blk_congestion_wait(bio_data_dir(clone), HZ/100);
842 	}
843 
844 	/* drop reference, clones could have returned before we reach this */
845 	dec_pending(io, 0);
846 	return 0;
847 
848 cleanup:
849 	if (io->first_clone) {
850 		dec_pending(io, -ENOMEM);
851 		return 0;
852 	}
853 
854 	/* if no bio has been dispatched yet, we can directly return the error */
855 	mempool_free(io, cc->io_pool);
856 	return -ENOMEM;
857 }
858 
859 static int crypt_status(struct dm_target *ti, status_type_t type,
860 			char *result, unsigned int maxlen)
861 {
862 	struct crypt_config *cc = (struct crypt_config *) ti->private;
863 	const char *cipher;
864 	const char *chainmode = NULL;
865 	unsigned int sz = 0;
866 
867 	switch (type) {
868 	case STATUSTYPE_INFO:
869 		result[0] = '\0';
870 		break;
871 
872 	case STATUSTYPE_TABLE:
873 		cipher = crypto_tfm_alg_name(cc->tfm);
874 
875 		switch(cc->tfm->crt_cipher.cit_mode) {
876 		case CRYPTO_TFM_MODE_CBC:
877 			chainmode = "cbc";
878 			break;
879 		case CRYPTO_TFM_MODE_ECB:
880 			chainmode = "ecb";
881 			break;
882 		default:
883 			BUG();
884 		}
885 
886 		if (cc->iv_mode)
887 			DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode);
888 		else
889 			DMEMIT("%s-%s ", cipher, chainmode);
890 
891 		if (cc->key_size > 0) {
892 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
893 				return -ENOMEM;
894 
895 			crypt_encode_key(result + sz, cc->key, cc->key_size);
896 			sz += cc->key_size << 1;
897 		} else {
898 			if (sz >= maxlen)
899 				return -ENOMEM;
900 			result[sz++] = '-';
901 		}
902 
903 		DMEMIT(" " SECTOR_FORMAT " %s " SECTOR_FORMAT,
904 		       cc->iv_offset, cc->dev->name, cc->start);
905 		break;
906 	}
907 	return 0;
908 }
909 
910 static struct target_type crypt_target = {
911 	.name   = "crypt",
912 	.version= {1, 1, 0},
913 	.module = THIS_MODULE,
914 	.ctr    = crypt_ctr,
915 	.dtr    = crypt_dtr,
916 	.map    = crypt_map,
917 	.status = crypt_status,
918 };
919 
920 static int __init dm_crypt_init(void)
921 {
922 	int r;
923 
924 	_crypt_io_pool = kmem_cache_create("dm-crypt_io",
925 	                                   sizeof(struct crypt_io),
926 	                                   0, 0, NULL, NULL);
927 	if (!_crypt_io_pool)
928 		return -ENOMEM;
929 
930 	_kcryptd_workqueue = create_workqueue("kcryptd");
931 	if (!_kcryptd_workqueue) {
932 		r = -ENOMEM;
933 		DMERR(PFX "couldn't create kcryptd");
934 		goto bad1;
935 	}
936 
937 	r = dm_register_target(&crypt_target);
938 	if (r < 0) {
939 		DMERR(PFX "register failed %d", r);
940 		goto bad2;
941 	}
942 
943 	return 0;
944 
945 bad2:
946 	destroy_workqueue(_kcryptd_workqueue);
947 bad1:
948 	kmem_cache_destroy(_crypt_io_pool);
949 	return r;
950 }
951 
952 static void __exit dm_crypt_exit(void)
953 {
954 	int r = dm_unregister_target(&crypt_target);
955 
956 	if (r < 0)
957 		DMERR(PFX "unregister failed %d", r);
958 
959 	destroy_workqueue(_kcryptd_workqueue);
960 	kmem_cache_destroy(_crypt_io_pool);
961 }
962 
963 module_init(dm_crypt_init);
964 module_exit(dm_crypt_exit);
965 
966 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
967 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
968 MODULE_LICENSE("GPL");
969