1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2003 Jana Saout <jana@saout.de> 4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> 5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. 6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> 7 * 8 * This file is released under the GPL. 9 */ 10 11 #include <linux/completion.h> 12 #include <linux/err.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/key.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-integrity.h> 20 #include <linux/mempool.h> 21 #include <linux/slab.h> 22 #include <linux/crypto.h> 23 #include <linux/workqueue.h> 24 #include <linux/kthread.h> 25 #include <linux/backing-dev.h> 26 #include <linux/atomic.h> 27 #include <linux/scatterlist.h> 28 #include <linux/rbtree.h> 29 #include <linux/ctype.h> 30 #include <asm/page.h> 31 #include <asm/unaligned.h> 32 #include <crypto/hash.h> 33 #include <crypto/md5.h> 34 #include <crypto/skcipher.h> 35 #include <crypto/aead.h> 36 #include <crypto/authenc.h> 37 #include <crypto/utils.h> 38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ 39 #include <linux/key-type.h> 40 #include <keys/user-type.h> 41 #include <keys/encrypted-type.h> 42 #include <keys/trusted-type.h> 43 44 #include <linux/device-mapper.h> 45 46 #include "dm-audit.h" 47 48 #define DM_MSG_PREFIX "crypt" 49 50 static DEFINE_IDA(workqueue_ida); 51 52 /* 53 * context holding the current state of a multi-part conversion 54 */ 55 struct convert_context { 56 struct completion restart; 57 struct bio *bio_in; 58 struct bvec_iter iter_in; 59 struct bio *bio_out; 60 struct bvec_iter iter_out; 61 atomic_t cc_pending; 62 u64 cc_sector; 63 union { 64 struct skcipher_request *req; 65 struct aead_request *req_aead; 66 } r; 67 bool aead_recheck; 68 bool aead_failed; 69 70 }; 71 72 /* 73 * per bio private data 74 */ 75 struct dm_crypt_io { 76 struct crypt_config *cc; 77 struct bio *base_bio; 78 u8 *integrity_metadata; 79 bool integrity_metadata_from_pool:1; 80 81 struct work_struct work; 82 83 struct convert_context ctx; 84 85 atomic_t io_pending; 86 blk_status_t error; 87 sector_t sector; 88 89 struct bvec_iter saved_bi_iter; 90 91 struct rb_node rb_node; 92 } CRYPTO_MINALIGN_ATTR; 93 94 struct dm_crypt_request { 95 struct convert_context *ctx; 96 struct scatterlist sg_in[4]; 97 struct scatterlist sg_out[4]; 98 u64 iv_sector; 99 }; 100 101 struct crypt_config; 102 103 struct crypt_iv_operations { 104 int (*ctr)(struct crypt_config *cc, struct dm_target *ti, 105 const char *opts); 106 void (*dtr)(struct crypt_config *cc); 107 int (*init)(struct crypt_config *cc); 108 int (*wipe)(struct crypt_config *cc); 109 int (*generator)(struct crypt_config *cc, u8 *iv, 110 struct dm_crypt_request *dmreq); 111 int (*post)(struct crypt_config *cc, u8 *iv, 112 struct dm_crypt_request *dmreq); 113 }; 114 115 struct iv_benbi_private { 116 int shift; 117 }; 118 119 #define LMK_SEED_SIZE 64 /* hash + 0 */ 120 struct iv_lmk_private { 121 struct crypto_shash *hash_tfm; 122 u8 *seed; 123 }; 124 125 #define TCW_WHITENING_SIZE 16 126 struct iv_tcw_private { 127 struct crypto_shash *crc32_tfm; 128 u8 *iv_seed; 129 u8 *whitening; 130 }; 131 132 #define ELEPHANT_MAX_KEY_SIZE 32 133 struct iv_elephant_private { 134 struct crypto_skcipher *tfm; 135 }; 136 137 /* 138 * Crypt: maps a linear range of a block device 139 * and encrypts / decrypts at the same time. 140 */ 141 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, 142 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY, 143 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE, 144 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE }; 145 146 enum cipher_flags { 147 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */ 148 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */ 149 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */ 150 }; 151 152 /* 153 * The fields in here must be read only after initialization. 154 */ 155 struct crypt_config { 156 struct dm_dev *dev; 157 sector_t start; 158 159 struct percpu_counter n_allocated_pages; 160 161 struct workqueue_struct *io_queue; 162 struct workqueue_struct *crypt_queue; 163 164 spinlock_t write_thread_lock; 165 struct task_struct *write_thread; 166 struct rb_root write_tree; 167 168 char *cipher_string; 169 char *cipher_auth; 170 char *key_string; 171 172 const struct crypt_iv_operations *iv_gen_ops; 173 union { 174 struct iv_benbi_private benbi; 175 struct iv_lmk_private lmk; 176 struct iv_tcw_private tcw; 177 struct iv_elephant_private elephant; 178 } iv_gen_private; 179 u64 iv_offset; 180 unsigned int iv_size; 181 unsigned short sector_size; 182 unsigned char sector_shift; 183 184 union { 185 struct crypto_skcipher **tfms; 186 struct crypto_aead **tfms_aead; 187 } cipher_tfm; 188 unsigned int tfms_count; 189 int workqueue_id; 190 unsigned long cipher_flags; 191 192 /* 193 * Layout of each crypto request: 194 * 195 * struct skcipher_request 196 * context 197 * padding 198 * struct dm_crypt_request 199 * padding 200 * IV 201 * 202 * The padding is added so that dm_crypt_request and the IV are 203 * correctly aligned. 204 */ 205 unsigned int dmreq_start; 206 207 unsigned int per_bio_data_size; 208 209 unsigned long flags; 210 unsigned int key_size; 211 unsigned int key_parts; /* independent parts in key buffer */ 212 unsigned int key_extra_size; /* additional keys length */ 213 unsigned int key_mac_size; /* MAC key size for authenc(...) */ 214 215 unsigned int integrity_tag_size; 216 unsigned int integrity_iv_size; 217 unsigned int used_tag_size; 218 unsigned int tuple_size; 219 220 /* 221 * pool for per bio private data, crypto requests, 222 * encryption requeusts/buffer pages and integrity tags 223 */ 224 unsigned int tag_pool_max_sectors; 225 mempool_t tag_pool; 226 mempool_t req_pool; 227 mempool_t page_pool; 228 229 struct bio_set bs; 230 struct mutex bio_alloc_lock; 231 232 u8 *authenc_key; /* space for keys in authenc() format (if used) */ 233 u8 key[] __counted_by(key_size); 234 }; 235 236 #define MIN_IOS 64 237 #define MAX_TAG_SIZE 480 238 #define POOL_ENTRY_SIZE 512 239 240 static DEFINE_SPINLOCK(dm_crypt_clients_lock); 241 static unsigned int dm_crypt_clients_n; 242 static volatile unsigned long dm_crypt_pages_per_client; 243 #define DM_CRYPT_MEMORY_PERCENT 2 244 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16) 245 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072 246 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072 247 248 static unsigned int max_read_size = 0; 249 module_param(max_read_size, uint, 0644); 250 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request"); 251 static unsigned int max_write_size = 0; 252 module_param(max_write_size, uint, 0644); 253 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request"); 254 static unsigned get_max_request_size(struct crypt_config *cc, bool wrt) 255 { 256 unsigned val, sector_align; 257 val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size); 258 if (likely(!val)) 259 val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE; 260 if (wrt || cc->used_tag_size) { 261 if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT)) 262 val = BIO_MAX_VECS << PAGE_SHIFT; 263 } 264 sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size); 265 val = round_down(val, sector_align); 266 if (unlikely(!val)) 267 val = sector_align; 268 return val >> SECTOR_SHIFT; 269 } 270 271 static void crypt_endio(struct bio *clone); 272 static void kcryptd_queue_crypt(struct dm_crypt_io *io); 273 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 274 struct scatterlist *sg); 275 276 static bool crypt_integrity_aead(struct crypt_config *cc); 277 278 /* 279 * Use this to access cipher attributes that are independent of the key. 280 */ 281 static struct crypto_skcipher *any_tfm(struct crypt_config *cc) 282 { 283 return cc->cipher_tfm.tfms[0]; 284 } 285 286 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) 287 { 288 return cc->cipher_tfm.tfms_aead[0]; 289 } 290 291 /* 292 * Different IV generation algorithms: 293 * 294 * plain: the initial vector is the 32-bit little-endian version of the sector 295 * number, padded with zeros if necessary. 296 * 297 * plain64: the initial vector is the 64-bit little-endian version of the sector 298 * number, padded with zeros if necessary. 299 * 300 * plain64be: the initial vector is the 64-bit big-endian version of the sector 301 * number, padded with zeros if necessary. 302 * 303 * essiv: "encrypted sector|salt initial vector", the sector number is 304 * encrypted with the bulk cipher using a salt as key. The salt 305 * should be derived from the bulk cipher's key via hashing. 306 * 307 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 308 * (needed for LRW-32-AES and possible other narrow block modes) 309 * 310 * null: the initial vector is always zero. Provides compatibility with 311 * obsolete loop_fish2 devices. Do not use for new devices. 312 * 313 * lmk: Compatible implementation of the block chaining mode used 314 * by the Loop-AES block device encryption system 315 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ 316 * It operates on full 512 byte sectors and uses CBC 317 * with an IV derived from the sector number, the data and 318 * optionally extra IV seed. 319 * This means that after decryption the first block 320 * of sector must be tweaked according to decrypted data. 321 * Loop-AES can use three encryption schemes: 322 * version 1: is plain aes-cbc mode 323 * version 2: uses 64 multikey scheme with lmk IV generator 324 * version 3: the same as version 2 with additional IV seed 325 * (it uses 65 keys, last key is used as IV seed) 326 * 327 * tcw: Compatible implementation of the block chaining mode used 328 * by the TrueCrypt device encryption system (prior to version 4.1). 329 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat 330 * It operates on full 512 byte sectors and uses CBC 331 * with an IV derived from initial key and the sector number. 332 * In addition, whitening value is applied on every sector, whitening 333 * is calculated from initial key, sector number and mixed using CRC32. 334 * Note that this encryption scheme is vulnerable to watermarking attacks 335 * and should be used for old compatible containers access only. 336 * 337 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) 338 * The IV is encrypted little-endian byte-offset (with the same key 339 * and cipher as the volume). 340 * 341 * elephant: The extended version of eboiv with additional Elephant diffuser 342 * used with Bitlocker CBC mode. 343 * This mode was used in older Windows systems 344 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf 345 */ 346 347 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, 348 struct dm_crypt_request *dmreq) 349 { 350 memset(iv, 0, cc->iv_size); 351 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); 352 353 return 0; 354 } 355 356 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, 357 struct dm_crypt_request *dmreq) 358 { 359 memset(iv, 0, cc->iv_size); 360 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 361 362 return 0; 363 } 364 365 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, 366 struct dm_crypt_request *dmreq) 367 { 368 memset(iv, 0, cc->iv_size); 369 /* iv_size is at least of size u64; usually it is 16 bytes */ 370 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); 371 372 return 0; 373 } 374 375 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, 376 struct dm_crypt_request *dmreq) 377 { 378 /* 379 * ESSIV encryption of the IV is now handled by the crypto API, 380 * so just pass the plain sector number here. 381 */ 382 memset(iv, 0, cc->iv_size); 383 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); 384 385 return 0; 386 } 387 388 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, 389 const char *opts) 390 { 391 unsigned int bs; 392 int log; 393 394 if (crypt_integrity_aead(cc)) 395 bs = crypto_aead_blocksize(any_tfm_aead(cc)); 396 else 397 bs = crypto_skcipher_blocksize(any_tfm(cc)); 398 log = ilog2(bs); 399 400 /* 401 * We need to calculate how far we must shift the sector count 402 * to get the cipher block count, we use this shift in _gen. 403 */ 404 if (1 << log != bs) { 405 ti->error = "cypher blocksize is not a power of 2"; 406 return -EINVAL; 407 } 408 409 if (log > 9) { 410 ti->error = "cypher blocksize is > 512"; 411 return -EINVAL; 412 } 413 414 cc->iv_gen_private.benbi.shift = 9 - log; 415 416 return 0; 417 } 418 419 static void crypt_iv_benbi_dtr(struct crypt_config *cc) 420 { 421 } 422 423 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, 424 struct dm_crypt_request *dmreq) 425 { 426 __be64 val; 427 428 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ 429 430 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); 431 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); 432 433 return 0; 434 } 435 436 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, 437 struct dm_crypt_request *dmreq) 438 { 439 memset(iv, 0, cc->iv_size); 440 441 return 0; 442 } 443 444 static void crypt_iv_lmk_dtr(struct crypt_config *cc) 445 { 446 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 447 448 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm)) 449 crypto_free_shash(lmk->hash_tfm); 450 lmk->hash_tfm = NULL; 451 452 kfree_sensitive(lmk->seed); 453 lmk->seed = NULL; 454 } 455 456 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, 457 const char *opts) 458 { 459 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 460 461 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 462 ti->error = "Unsupported sector size for LMK"; 463 return -EINVAL; 464 } 465 466 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 467 CRYPTO_ALG_ALLOCATES_MEMORY); 468 if (IS_ERR(lmk->hash_tfm)) { 469 ti->error = "Error initializing LMK hash"; 470 return PTR_ERR(lmk->hash_tfm); 471 } 472 473 /* No seed in LMK version 2 */ 474 if (cc->key_parts == cc->tfms_count) { 475 lmk->seed = NULL; 476 return 0; 477 } 478 479 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); 480 if (!lmk->seed) { 481 crypt_iv_lmk_dtr(cc); 482 ti->error = "Error kmallocing seed storage in LMK"; 483 return -ENOMEM; 484 } 485 486 return 0; 487 } 488 489 static int crypt_iv_lmk_init(struct crypt_config *cc) 490 { 491 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 492 int subkey_size = cc->key_size / cc->key_parts; 493 494 /* LMK seed is on the position of LMK_KEYS + 1 key */ 495 if (lmk->seed) 496 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), 497 crypto_shash_digestsize(lmk->hash_tfm)); 498 499 return 0; 500 } 501 502 static int crypt_iv_lmk_wipe(struct crypt_config *cc) 503 { 504 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 505 506 if (lmk->seed) 507 memset(lmk->seed, 0, LMK_SEED_SIZE); 508 509 return 0; 510 } 511 512 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, 513 struct dm_crypt_request *dmreq, 514 u8 *data) 515 { 516 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; 517 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); 518 struct md5_state md5state; 519 __le32 buf[4]; 520 int i, r; 521 522 desc->tfm = lmk->hash_tfm; 523 524 r = crypto_shash_init(desc); 525 if (r) 526 return r; 527 528 if (lmk->seed) { 529 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE); 530 if (r) 531 return r; 532 } 533 534 /* Sector is always 512B, block size 16, add data of blocks 1-31 */ 535 r = crypto_shash_update(desc, data + 16, 16 * 31); 536 if (r) 537 return r; 538 539 /* Sector is cropped to 56 bits here */ 540 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); 541 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); 542 buf[2] = cpu_to_le32(4024); 543 buf[3] = 0; 544 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf)); 545 if (r) 546 return r; 547 548 /* No MD5 padding here */ 549 r = crypto_shash_export(desc, &md5state); 550 if (r) 551 return r; 552 553 for (i = 0; i < MD5_HASH_WORDS; i++) 554 __cpu_to_le32s(&md5state.hash[i]); 555 memcpy(iv, &md5state.hash, cc->iv_size); 556 557 return 0; 558 } 559 560 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, 561 struct dm_crypt_request *dmreq) 562 { 563 struct scatterlist *sg; 564 u8 *src; 565 int r = 0; 566 567 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 568 sg = crypt_get_sg_data(cc, dmreq->sg_in); 569 src = kmap_local_page(sg_page(sg)); 570 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset); 571 kunmap_local(src); 572 } else 573 memset(iv, 0, cc->iv_size); 574 575 return r; 576 } 577 578 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, 579 struct dm_crypt_request *dmreq) 580 { 581 struct scatterlist *sg; 582 u8 *dst; 583 int r; 584 585 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) 586 return 0; 587 588 sg = crypt_get_sg_data(cc, dmreq->sg_out); 589 dst = kmap_local_page(sg_page(sg)); 590 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset); 591 592 /* Tweak the first block of plaintext sector */ 593 if (!r) 594 crypto_xor(dst + sg->offset, iv, cc->iv_size); 595 596 kunmap_local(dst); 597 return r; 598 } 599 600 static void crypt_iv_tcw_dtr(struct crypt_config *cc) 601 { 602 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 603 604 kfree_sensitive(tcw->iv_seed); 605 tcw->iv_seed = NULL; 606 kfree_sensitive(tcw->whitening); 607 tcw->whitening = NULL; 608 609 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) 610 crypto_free_shash(tcw->crc32_tfm); 611 tcw->crc32_tfm = NULL; 612 } 613 614 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, 615 const char *opts) 616 { 617 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 618 619 if (cc->sector_size != (1 << SECTOR_SHIFT)) { 620 ti->error = "Unsupported sector size for TCW"; 621 return -EINVAL; 622 } 623 624 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { 625 ti->error = "Wrong key size for TCW"; 626 return -EINVAL; 627 } 628 629 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 630 CRYPTO_ALG_ALLOCATES_MEMORY); 631 if (IS_ERR(tcw->crc32_tfm)) { 632 ti->error = "Error initializing CRC32 in TCW"; 633 return PTR_ERR(tcw->crc32_tfm); 634 } 635 636 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); 637 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); 638 if (!tcw->iv_seed || !tcw->whitening) { 639 crypt_iv_tcw_dtr(cc); 640 ti->error = "Error allocating seed storage in TCW"; 641 return -ENOMEM; 642 } 643 644 return 0; 645 } 646 647 static int crypt_iv_tcw_init(struct crypt_config *cc) 648 { 649 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 650 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; 651 652 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); 653 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], 654 TCW_WHITENING_SIZE); 655 656 return 0; 657 } 658 659 static int crypt_iv_tcw_wipe(struct crypt_config *cc) 660 { 661 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 662 663 memset(tcw->iv_seed, 0, cc->iv_size); 664 memset(tcw->whitening, 0, TCW_WHITENING_SIZE); 665 666 return 0; 667 } 668 669 static int crypt_iv_tcw_whitening(struct crypt_config *cc, 670 struct dm_crypt_request *dmreq, 671 u8 *data) 672 { 673 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 674 __le64 sector = cpu_to_le64(dmreq->iv_sector); 675 u8 buf[TCW_WHITENING_SIZE]; 676 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm); 677 int i, r; 678 679 /* xor whitening with sector number */ 680 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8); 681 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8); 682 683 /* calculate crc32 for every 32bit part and xor it */ 684 desc->tfm = tcw->crc32_tfm; 685 for (i = 0; i < 4; i++) { 686 r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]); 687 if (r) 688 goto out; 689 } 690 crypto_xor(&buf[0], &buf[12], 4); 691 crypto_xor(&buf[4], &buf[8], 4); 692 693 /* apply whitening (8 bytes) to whole sector */ 694 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) 695 crypto_xor(data + i * 8, buf, 8); 696 out: 697 memzero_explicit(buf, sizeof(buf)); 698 return r; 699 } 700 701 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, 702 struct dm_crypt_request *dmreq) 703 { 704 struct scatterlist *sg; 705 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; 706 __le64 sector = cpu_to_le64(dmreq->iv_sector); 707 u8 *src; 708 int r = 0; 709 710 /* Remove whitening from ciphertext */ 711 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 712 sg = crypt_get_sg_data(cc, dmreq->sg_in); 713 src = kmap_local_page(sg_page(sg)); 714 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset); 715 kunmap_local(src); 716 } 717 718 /* Calculate IV */ 719 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8); 720 if (cc->iv_size > 8) 721 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or, 722 cc->iv_size - 8); 723 724 return r; 725 } 726 727 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, 728 struct dm_crypt_request *dmreq) 729 { 730 struct scatterlist *sg; 731 u8 *dst; 732 int r; 733 734 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 735 return 0; 736 737 /* Apply whitening on ciphertext */ 738 sg = crypt_get_sg_data(cc, dmreq->sg_out); 739 dst = kmap_local_page(sg_page(sg)); 740 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset); 741 kunmap_local(dst); 742 743 return r; 744 } 745 746 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, 747 struct dm_crypt_request *dmreq) 748 { 749 /* Used only for writes, there must be an additional space to store IV */ 750 get_random_bytes(iv, cc->iv_size); 751 return 0; 752 } 753 754 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, 755 const char *opts) 756 { 757 if (crypt_integrity_aead(cc)) { 758 ti->error = "AEAD transforms not supported for EBOIV"; 759 return -EINVAL; 760 } 761 762 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) { 763 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher"; 764 return -EINVAL; 765 } 766 767 return 0; 768 } 769 770 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, 771 struct dm_crypt_request *dmreq) 772 { 773 struct crypto_skcipher *tfm = any_tfm(cc); 774 struct skcipher_request *req; 775 struct scatterlist src, dst; 776 DECLARE_CRYPTO_WAIT(wait); 777 unsigned int reqsize; 778 int err; 779 u8 *buf; 780 781 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm); 782 reqsize = ALIGN(reqsize, __alignof__(__le64)); 783 784 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO); 785 if (!req) 786 return -ENOMEM; 787 788 skcipher_request_set_tfm(req, tfm); 789 790 buf = (u8 *)req + reqsize; 791 memset(buf, 0, cc->iv_size); 792 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 793 794 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); 795 sg_init_one(&dst, iv, cc->iv_size); 796 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf); 797 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 798 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 799 kfree_sensitive(req); 800 801 return err; 802 } 803 804 static void crypt_iv_elephant_dtr(struct crypt_config *cc) 805 { 806 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 807 808 crypto_free_skcipher(elephant->tfm); 809 elephant->tfm = NULL; 810 } 811 812 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, 813 const char *opts) 814 { 815 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 816 int r; 817 818 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0, 819 CRYPTO_ALG_ALLOCATES_MEMORY); 820 if (IS_ERR(elephant->tfm)) { 821 r = PTR_ERR(elephant->tfm); 822 elephant->tfm = NULL; 823 return r; 824 } 825 826 r = crypt_iv_eboiv_ctr(cc, ti, NULL); 827 if (r) 828 crypt_iv_elephant_dtr(cc); 829 return r; 830 } 831 832 static void diffuser_disk_to_cpu(u32 *d, size_t n) 833 { 834 #ifndef __LITTLE_ENDIAN 835 int i; 836 837 for (i = 0; i < n; i++) 838 d[i] = le32_to_cpu((__le32)d[i]); 839 #endif 840 } 841 842 static void diffuser_cpu_to_disk(__le32 *d, size_t n) 843 { 844 #ifndef __LITTLE_ENDIAN 845 int i; 846 847 for (i = 0; i < n; i++) 848 d[i] = cpu_to_le32((u32)d[i]); 849 #endif 850 } 851 852 static void diffuser_a_decrypt(u32 *d, size_t n) 853 { 854 int i, i1, i2, i3; 855 856 for (i = 0; i < 5; i++) { 857 i1 = 0; 858 i2 = n - 2; 859 i3 = n - 5; 860 861 while (i1 < (n - 1)) { 862 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 863 i1++; i2++; i3++; 864 865 if (i3 >= n) 866 i3 -= n; 867 868 d[i1] += d[i2] ^ d[i3]; 869 i1++; i2++; i3++; 870 871 if (i2 >= n) 872 i2 -= n; 873 874 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 875 i1++; i2++; i3++; 876 877 d[i1] += d[i2] ^ d[i3]; 878 i1++; i2++; i3++; 879 } 880 } 881 } 882 883 static void diffuser_a_encrypt(u32 *d, size_t n) 884 { 885 int i, i1, i2, i3; 886 887 for (i = 0; i < 5; i++) { 888 i1 = n - 1; 889 i2 = n - 2 - 1; 890 i3 = n - 5 - 1; 891 892 while (i1 > 0) { 893 d[i1] -= d[i2] ^ d[i3]; 894 i1--; i2--; i3--; 895 896 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); 897 i1--; i2--; i3--; 898 899 if (i2 < 0) 900 i2 += n; 901 902 d[i1] -= d[i2] ^ d[i3]; 903 i1--; i2--; i3--; 904 905 if (i3 < 0) 906 i3 += n; 907 908 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); 909 i1--; i2--; i3--; 910 } 911 } 912 } 913 914 static void diffuser_b_decrypt(u32 *d, size_t n) 915 { 916 int i, i1, i2, i3; 917 918 for (i = 0; i < 3; i++) { 919 i1 = 0; 920 i2 = 2; 921 i3 = 5; 922 923 while (i1 < (n - 1)) { 924 d[i1] += d[i2] ^ d[i3]; 925 i1++; i2++; i3++; 926 927 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 928 i1++; i2++; i3++; 929 930 if (i2 >= n) 931 i2 -= n; 932 933 d[i1] += d[i2] ^ d[i3]; 934 i1++; i2++; i3++; 935 936 if (i3 >= n) 937 i3 -= n; 938 939 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 940 i1++; i2++; i3++; 941 } 942 } 943 } 944 945 static void diffuser_b_encrypt(u32 *d, size_t n) 946 { 947 int i, i1, i2, i3; 948 949 for (i = 0; i < 3; i++) { 950 i1 = n - 1; 951 i2 = 2 - 1; 952 i3 = 5 - 1; 953 954 while (i1 > 0) { 955 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); 956 i1--; i2--; i3--; 957 958 if (i3 < 0) 959 i3 += n; 960 961 d[i1] -= d[i2] ^ d[i3]; 962 i1--; i2--; i3--; 963 964 if (i2 < 0) 965 i2 += n; 966 967 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); 968 i1--; i2--; i3--; 969 970 d[i1] -= d[i2] ^ d[i3]; 971 i1--; i2--; i3--; 972 } 973 } 974 } 975 976 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) 977 { 978 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 979 u8 *es, *ks, *data, *data2, *data_offset; 980 struct skcipher_request *req; 981 struct scatterlist *sg, *sg2, src, dst; 982 DECLARE_CRYPTO_WAIT(wait); 983 int i, r; 984 985 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); 986 es = kzalloc(16, GFP_NOIO); /* Key for AES */ 987 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ 988 989 if (!req || !es || !ks) { 990 r = -ENOMEM; 991 goto out; 992 } 993 994 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); 995 996 /* E(Ks, e(s)) */ 997 sg_init_one(&src, es, 16); 998 sg_init_one(&dst, ks, 16); 999 skcipher_request_set_crypt(req, &src, &dst, 16, NULL); 1000 skcipher_request_set_callback(req, 0, crypto_req_done, &wait); 1001 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 1002 if (r) 1003 goto out; 1004 1005 /* E(Ks, e'(s)) */ 1006 es[15] = 0x80; 1007 sg_init_one(&dst, &ks[16], 16); 1008 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); 1009 if (r) 1010 goto out; 1011 1012 sg = crypt_get_sg_data(cc, dmreq->sg_out); 1013 data = kmap_local_page(sg_page(sg)); 1014 data_offset = data + sg->offset; 1015 1016 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */ 1017 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1018 sg2 = crypt_get_sg_data(cc, dmreq->sg_in); 1019 data2 = kmap_local_page(sg_page(sg2)); 1020 memcpy(data_offset, data2 + sg2->offset, cc->sector_size); 1021 kunmap_local(data2); 1022 } 1023 1024 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { 1025 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1026 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1027 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1028 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1029 } 1030 1031 for (i = 0; i < (cc->sector_size / 32); i++) 1032 crypto_xor(data_offset + i * 32, ks, 32); 1033 1034 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1035 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1036 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1037 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32)); 1038 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32)); 1039 } 1040 1041 kunmap_local(data); 1042 out: 1043 kfree_sensitive(ks); 1044 kfree_sensitive(es); 1045 skcipher_request_free(req); 1046 return r; 1047 } 1048 1049 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, 1050 struct dm_crypt_request *dmreq) 1051 { 1052 int r; 1053 1054 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { 1055 r = crypt_iv_elephant(cc, dmreq); 1056 if (r) 1057 return r; 1058 } 1059 1060 return crypt_iv_eboiv_gen(cc, iv, dmreq); 1061 } 1062 1063 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, 1064 struct dm_crypt_request *dmreq) 1065 { 1066 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) 1067 return crypt_iv_elephant(cc, dmreq); 1068 1069 return 0; 1070 } 1071 1072 static int crypt_iv_elephant_init(struct crypt_config *cc) 1073 { 1074 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1075 int key_offset = cc->key_size - cc->key_extra_size; 1076 1077 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size); 1078 } 1079 1080 static int crypt_iv_elephant_wipe(struct crypt_config *cc) 1081 { 1082 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; 1083 u8 key[ELEPHANT_MAX_KEY_SIZE]; 1084 1085 memset(key, 0, cc->key_extra_size); 1086 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size); 1087 } 1088 1089 static const struct crypt_iv_operations crypt_iv_plain_ops = { 1090 .generator = crypt_iv_plain_gen 1091 }; 1092 1093 static const struct crypt_iv_operations crypt_iv_plain64_ops = { 1094 .generator = crypt_iv_plain64_gen 1095 }; 1096 1097 static const struct crypt_iv_operations crypt_iv_plain64be_ops = { 1098 .generator = crypt_iv_plain64be_gen 1099 }; 1100 1101 static const struct crypt_iv_operations crypt_iv_essiv_ops = { 1102 .generator = crypt_iv_essiv_gen 1103 }; 1104 1105 static const struct crypt_iv_operations crypt_iv_benbi_ops = { 1106 .ctr = crypt_iv_benbi_ctr, 1107 .dtr = crypt_iv_benbi_dtr, 1108 .generator = crypt_iv_benbi_gen 1109 }; 1110 1111 static const struct crypt_iv_operations crypt_iv_null_ops = { 1112 .generator = crypt_iv_null_gen 1113 }; 1114 1115 static const struct crypt_iv_operations crypt_iv_lmk_ops = { 1116 .ctr = crypt_iv_lmk_ctr, 1117 .dtr = crypt_iv_lmk_dtr, 1118 .init = crypt_iv_lmk_init, 1119 .wipe = crypt_iv_lmk_wipe, 1120 .generator = crypt_iv_lmk_gen, 1121 .post = crypt_iv_lmk_post 1122 }; 1123 1124 static const struct crypt_iv_operations crypt_iv_tcw_ops = { 1125 .ctr = crypt_iv_tcw_ctr, 1126 .dtr = crypt_iv_tcw_dtr, 1127 .init = crypt_iv_tcw_init, 1128 .wipe = crypt_iv_tcw_wipe, 1129 .generator = crypt_iv_tcw_gen, 1130 .post = crypt_iv_tcw_post 1131 }; 1132 1133 static const struct crypt_iv_operations crypt_iv_random_ops = { 1134 .generator = crypt_iv_random_gen 1135 }; 1136 1137 static const struct crypt_iv_operations crypt_iv_eboiv_ops = { 1138 .ctr = crypt_iv_eboiv_ctr, 1139 .generator = crypt_iv_eboiv_gen 1140 }; 1141 1142 static const struct crypt_iv_operations crypt_iv_elephant_ops = { 1143 .ctr = crypt_iv_elephant_ctr, 1144 .dtr = crypt_iv_elephant_dtr, 1145 .init = crypt_iv_elephant_init, 1146 .wipe = crypt_iv_elephant_wipe, 1147 .generator = crypt_iv_elephant_gen, 1148 .post = crypt_iv_elephant_post 1149 }; 1150 1151 /* 1152 * Integrity extensions 1153 */ 1154 static bool crypt_integrity_aead(struct crypt_config *cc) 1155 { 1156 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 1157 } 1158 1159 static bool crypt_integrity_hmac(struct crypt_config *cc) 1160 { 1161 return crypt_integrity_aead(cc) && cc->key_mac_size; 1162 } 1163 1164 /* Get sg containing data */ 1165 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, 1166 struct scatterlist *sg) 1167 { 1168 if (unlikely(crypt_integrity_aead(cc))) 1169 return &sg[2]; 1170 1171 return sg; 1172 } 1173 1174 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) 1175 { 1176 struct bio_integrity_payload *bip; 1177 unsigned int tag_len; 1178 int ret; 1179 1180 if (!bio_sectors(bio) || !io->cc->tuple_size) 1181 return 0; 1182 1183 bip = bio_integrity_alloc(bio, GFP_NOIO, 1); 1184 if (IS_ERR(bip)) 1185 return PTR_ERR(bip); 1186 1187 tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift); 1188 1189 bip->bip_iter.bi_sector = io->cc->start + io->sector; 1190 1191 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), 1192 tag_len, offset_in_page(io->integrity_metadata)); 1193 if (unlikely(ret != tag_len)) 1194 return -ENOMEM; 1195 1196 return 0; 1197 } 1198 1199 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) 1200 { 1201 #ifdef CONFIG_BLK_DEV_INTEGRITY 1202 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk); 1203 struct mapped_device *md = dm_table_get_md(ti->table); 1204 1205 /* We require an underlying device with non-PI metadata */ 1206 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { 1207 ti->error = "Integrity profile not supported."; 1208 return -EINVAL; 1209 } 1210 1211 if (bi->tuple_size < cc->used_tag_size) { 1212 ti->error = "Integrity profile tag size mismatch."; 1213 return -EINVAL; 1214 } 1215 cc->tuple_size = bi->tuple_size; 1216 if (1 << bi->interval_exp != cc->sector_size) { 1217 ti->error = "Integrity profile sector size mismatch."; 1218 return -EINVAL; 1219 } 1220 1221 if (crypt_integrity_aead(cc)) { 1222 cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size; 1223 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md), 1224 cc->integrity_tag_size, cc->integrity_iv_size); 1225 1226 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) { 1227 ti->error = "Integrity AEAD auth tag size is not supported."; 1228 return -EINVAL; 1229 } 1230 } else if (cc->integrity_iv_size) 1231 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md), 1232 cc->integrity_iv_size); 1233 1234 if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) { 1235 ti->error = "Not enough space for integrity tag in the profile."; 1236 return -EINVAL; 1237 } 1238 1239 return 0; 1240 #else 1241 ti->error = "Integrity profile not supported."; 1242 return -EINVAL; 1243 #endif 1244 } 1245 1246 static void crypt_convert_init(struct crypt_config *cc, 1247 struct convert_context *ctx, 1248 struct bio *bio_out, struct bio *bio_in, 1249 sector_t sector) 1250 { 1251 ctx->bio_in = bio_in; 1252 ctx->bio_out = bio_out; 1253 if (bio_in) 1254 ctx->iter_in = bio_in->bi_iter; 1255 if (bio_out) 1256 ctx->iter_out = bio_out->bi_iter; 1257 ctx->cc_sector = sector + cc->iv_offset; 1258 init_completion(&ctx->restart); 1259 } 1260 1261 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, 1262 void *req) 1263 { 1264 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); 1265 } 1266 1267 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) 1268 { 1269 return (void *)((char *)dmreq - cc->dmreq_start); 1270 } 1271 1272 static u8 *iv_of_dmreq(struct crypt_config *cc, 1273 struct dm_crypt_request *dmreq) 1274 { 1275 if (crypt_integrity_aead(cc)) 1276 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1277 crypto_aead_alignmask(any_tfm_aead(cc)) + 1); 1278 else 1279 return (u8 *)ALIGN((unsigned long)(dmreq + 1), 1280 crypto_skcipher_alignmask(any_tfm(cc)) + 1); 1281 } 1282 1283 static u8 *org_iv_of_dmreq(struct crypt_config *cc, 1284 struct dm_crypt_request *dmreq) 1285 { 1286 return iv_of_dmreq(cc, dmreq) + cc->iv_size; 1287 } 1288 1289 static __le64 *org_sector_of_dmreq(struct crypt_config *cc, 1290 struct dm_crypt_request *dmreq) 1291 { 1292 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; 1293 1294 return (__le64 *) ptr; 1295 } 1296 1297 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, 1298 struct dm_crypt_request *dmreq) 1299 { 1300 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + 1301 cc->iv_size + sizeof(uint64_t); 1302 1303 return (unsigned int *)ptr; 1304 } 1305 1306 static void *tag_from_dmreq(struct crypt_config *cc, 1307 struct dm_crypt_request *dmreq) 1308 { 1309 struct convert_context *ctx = dmreq->ctx; 1310 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 1311 1312 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * 1313 cc->tuple_size]; 1314 } 1315 1316 static void *iv_tag_from_dmreq(struct crypt_config *cc, 1317 struct dm_crypt_request *dmreq) 1318 { 1319 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; 1320 } 1321 1322 static int crypt_convert_block_aead(struct crypt_config *cc, 1323 struct convert_context *ctx, 1324 struct aead_request *req, 1325 unsigned int tag_offset) 1326 { 1327 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1328 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1329 struct dm_crypt_request *dmreq; 1330 u8 *iv, *org_iv, *tag_iv, *tag; 1331 __le64 *sector; 1332 int r = 0; 1333 1334 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); 1335 1336 /* Reject unexpected unaligned bio. */ 1337 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1338 return -EIO; 1339 1340 dmreq = dmreq_of_req(cc, req); 1341 dmreq->iv_sector = ctx->cc_sector; 1342 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1343 dmreq->iv_sector >>= cc->sector_shift; 1344 dmreq->ctx = ctx; 1345 1346 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1347 1348 sector = org_sector_of_dmreq(cc, dmreq); 1349 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1350 1351 iv = iv_of_dmreq(cc, dmreq); 1352 org_iv = org_iv_of_dmreq(cc, dmreq); 1353 tag = tag_from_dmreq(cc, dmreq); 1354 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1355 1356 /* AEAD request: 1357 * |----- AAD -------|------ DATA -------|-- AUTH TAG --| 1358 * | (authenticated) | (auth+encryption) | | 1359 * | sector_LE | IV | sector in/out | tag in/out | 1360 */ 1361 sg_init_table(dmreq->sg_in, 4); 1362 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t)); 1363 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size); 1364 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1365 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size); 1366 1367 sg_init_table(dmreq->sg_out, 4); 1368 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t)); 1369 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size); 1370 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1371 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size); 1372 1373 if (cc->iv_gen_ops) { 1374 /* For READs use IV stored in integrity metadata */ 1375 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1376 memcpy(org_iv, tag_iv, cc->iv_size); 1377 } else { 1378 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1379 if (r < 0) 1380 return r; 1381 /* Store generated IV in integrity metadata */ 1382 if (cc->integrity_iv_size) 1383 memcpy(tag_iv, org_iv, cc->iv_size); 1384 } 1385 /* Working copy of IV, to be modified in crypto API */ 1386 memcpy(iv, org_iv, cc->iv_size); 1387 } 1388 1389 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size); 1390 if (bio_data_dir(ctx->bio_in) == WRITE) { 1391 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1392 cc->sector_size, iv); 1393 r = crypto_aead_encrypt(req); 1394 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size) 1395 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, 1396 cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size)); 1397 } else { 1398 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out, 1399 cc->sector_size + cc->integrity_tag_size, iv); 1400 r = crypto_aead_decrypt(req); 1401 } 1402 1403 if (r == -EBADMSG) { 1404 sector_t s = le64_to_cpu(*sector); 1405 1406 ctx->aead_failed = true; 1407 if (ctx->aead_recheck) { 1408 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 1409 ctx->bio_in->bi_bdev, s); 1410 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 1411 ctx->bio_in, s, 0); 1412 } 1413 } 1414 1415 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1416 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1417 1418 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1419 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1420 1421 return r; 1422 } 1423 1424 static int crypt_convert_block_skcipher(struct crypt_config *cc, 1425 struct convert_context *ctx, 1426 struct skcipher_request *req, 1427 unsigned int tag_offset) 1428 { 1429 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); 1430 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); 1431 struct scatterlist *sg_in, *sg_out; 1432 struct dm_crypt_request *dmreq; 1433 u8 *iv, *org_iv, *tag_iv; 1434 __le64 *sector; 1435 int r = 0; 1436 1437 /* Reject unexpected unaligned bio. */ 1438 if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) 1439 return -EIO; 1440 1441 dmreq = dmreq_of_req(cc, req); 1442 dmreq->iv_sector = ctx->cc_sector; 1443 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 1444 dmreq->iv_sector >>= cc->sector_shift; 1445 dmreq->ctx = ctx; 1446 1447 *org_tag_of_dmreq(cc, dmreq) = tag_offset; 1448 1449 iv = iv_of_dmreq(cc, dmreq); 1450 org_iv = org_iv_of_dmreq(cc, dmreq); 1451 tag_iv = iv_tag_from_dmreq(cc, dmreq); 1452 1453 sector = org_sector_of_dmreq(cc, dmreq); 1454 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); 1455 1456 /* For skcipher we use only the first sg item */ 1457 sg_in = &dmreq->sg_in[0]; 1458 sg_out = &dmreq->sg_out[0]; 1459 1460 sg_init_table(sg_in, 1); 1461 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset); 1462 1463 sg_init_table(sg_out, 1); 1464 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset); 1465 1466 if (cc->iv_gen_ops) { 1467 /* For READs use IV stored in integrity metadata */ 1468 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { 1469 memcpy(org_iv, tag_iv, cc->integrity_iv_size); 1470 } else { 1471 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); 1472 if (r < 0) 1473 return r; 1474 /* Data can be already preprocessed in generator */ 1475 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) 1476 sg_in = sg_out; 1477 /* Store generated IV in integrity metadata */ 1478 if (cc->integrity_iv_size) 1479 memcpy(tag_iv, org_iv, cc->integrity_iv_size); 1480 } 1481 /* Working copy of IV, to be modified in crypto API */ 1482 memcpy(iv, org_iv, cc->iv_size); 1483 } 1484 1485 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv); 1486 1487 if (bio_data_dir(ctx->bio_in) == WRITE) 1488 r = crypto_skcipher_encrypt(req); 1489 else 1490 r = crypto_skcipher_decrypt(req); 1491 1492 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) 1493 r = cc->iv_gen_ops->post(cc, org_iv, dmreq); 1494 1495 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size); 1496 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size); 1497 1498 return r; 1499 } 1500 1501 static void kcryptd_async_done(void *async_req, int error); 1502 1503 static int crypt_alloc_req_skcipher(struct crypt_config *cc, 1504 struct convert_context *ctx) 1505 { 1506 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); 1507 1508 if (!ctx->r.req) { 1509 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1510 if (!ctx->r.req) 1511 return -ENOMEM; 1512 } 1513 1514 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]); 1515 1516 /* 1517 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1518 * requests if driver request queue is full. 1519 */ 1520 skcipher_request_set_callback(ctx->r.req, 1521 CRYPTO_TFM_REQ_MAY_BACKLOG, 1522 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req)); 1523 1524 return 0; 1525 } 1526 1527 static int crypt_alloc_req_aead(struct crypt_config *cc, 1528 struct convert_context *ctx) 1529 { 1530 if (!ctx->r.req_aead) { 1531 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); 1532 if (!ctx->r.req_aead) 1533 return -ENOMEM; 1534 } 1535 1536 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]); 1537 1538 /* 1539 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs 1540 * requests if driver request queue is full. 1541 */ 1542 aead_request_set_callback(ctx->r.req_aead, 1543 CRYPTO_TFM_REQ_MAY_BACKLOG, 1544 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead)); 1545 1546 return 0; 1547 } 1548 1549 static int crypt_alloc_req(struct crypt_config *cc, 1550 struct convert_context *ctx) 1551 { 1552 if (crypt_integrity_aead(cc)) 1553 return crypt_alloc_req_aead(cc, ctx); 1554 else 1555 return crypt_alloc_req_skcipher(cc, ctx); 1556 } 1557 1558 static void crypt_free_req_skcipher(struct crypt_config *cc, 1559 struct skcipher_request *req, struct bio *base_bio) 1560 { 1561 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1562 1563 if ((struct skcipher_request *)(io + 1) != req) 1564 mempool_free(req, &cc->req_pool); 1565 } 1566 1567 static void crypt_free_req_aead(struct crypt_config *cc, 1568 struct aead_request *req, struct bio *base_bio) 1569 { 1570 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size); 1571 1572 if ((struct aead_request *)(io + 1) != req) 1573 mempool_free(req, &cc->req_pool); 1574 } 1575 1576 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) 1577 { 1578 if (crypt_integrity_aead(cc)) 1579 crypt_free_req_aead(cc, req, base_bio); 1580 else 1581 crypt_free_req_skcipher(cc, req, base_bio); 1582 } 1583 1584 /* 1585 * Encrypt / decrypt data from one bio to another one (can be the same one) 1586 */ 1587 static blk_status_t crypt_convert(struct crypt_config *cc, 1588 struct convert_context *ctx, bool atomic, bool reset_pending) 1589 { 1590 unsigned int tag_offset = 0; 1591 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; 1592 int r; 1593 1594 /* 1595 * if reset_pending is set we are dealing with the bio for the first time, 1596 * else we're continuing to work on the previous bio, so don't mess with 1597 * the cc_pending counter 1598 */ 1599 if (reset_pending) 1600 atomic_set(&ctx->cc_pending, 1); 1601 1602 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { 1603 1604 r = crypt_alloc_req(cc, ctx); 1605 if (r) { 1606 complete(&ctx->restart); 1607 return BLK_STS_DEV_RESOURCE; 1608 } 1609 1610 atomic_inc(&ctx->cc_pending); 1611 1612 if (crypt_integrity_aead(cc)) 1613 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset); 1614 else 1615 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset); 1616 1617 switch (r) { 1618 /* 1619 * The request was queued by a crypto driver 1620 * but the driver request queue is full, let's wait. 1621 */ 1622 case -EBUSY: 1623 if (in_interrupt()) { 1624 if (try_wait_for_completion(&ctx->restart)) { 1625 /* 1626 * we don't have to block to wait for completion, 1627 * so proceed 1628 */ 1629 } else { 1630 /* 1631 * we can't wait for completion without blocking 1632 * exit and continue processing in a workqueue 1633 */ 1634 ctx->r.req = NULL; 1635 ctx->cc_sector += sector_step; 1636 tag_offset++; 1637 return BLK_STS_DEV_RESOURCE; 1638 } 1639 } else { 1640 wait_for_completion(&ctx->restart); 1641 } 1642 reinit_completion(&ctx->restart); 1643 fallthrough; 1644 /* 1645 * The request is queued and processed asynchronously, 1646 * completion function kcryptd_async_done() will be called. 1647 */ 1648 case -EINPROGRESS: 1649 ctx->r.req = NULL; 1650 ctx->cc_sector += sector_step; 1651 tag_offset++; 1652 continue; 1653 /* 1654 * The request was already processed (synchronously). 1655 */ 1656 case 0: 1657 atomic_dec(&ctx->cc_pending); 1658 ctx->cc_sector += sector_step; 1659 tag_offset++; 1660 if (!atomic) 1661 cond_resched(); 1662 continue; 1663 /* 1664 * There was a data integrity error. 1665 */ 1666 case -EBADMSG: 1667 atomic_dec(&ctx->cc_pending); 1668 return BLK_STS_PROTECTION; 1669 /* 1670 * There was an error while processing the request. 1671 */ 1672 default: 1673 atomic_dec(&ctx->cc_pending); 1674 return BLK_STS_IOERR; 1675 } 1676 } 1677 1678 return 0; 1679 } 1680 1681 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); 1682 1683 /* 1684 * Generate a new unfragmented bio with the given size 1685 * This should never violate the device limitations (but if it did then block 1686 * core should split the bio as needed). 1687 * 1688 * This function may be called concurrently. If we allocate from the mempool 1689 * concurrently, there is a possibility of deadlock. For example, if we have 1690 * mempool of 256 pages, two processes, each wanting 256, pages allocate from 1691 * the mempool concurrently, it may deadlock in a situation where both processes 1692 * have allocated 128 pages and the mempool is exhausted. 1693 * 1694 * In order to avoid this scenario we allocate the pages under a mutex. 1695 * 1696 * In order to not degrade performance with excessive locking, we try 1697 * non-blocking allocations without a mutex first but on failure we fallback 1698 * to blocking allocations with a mutex. 1699 * 1700 * In order to reduce allocation overhead, we try to allocate compound pages in 1701 * the first pass. If they are not available, we fall back to the mempool. 1702 */ 1703 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) 1704 { 1705 struct crypt_config *cc = io->cc; 1706 struct bio *clone; 1707 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1708 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; 1709 unsigned int remaining_size; 1710 unsigned int order = MAX_PAGE_ORDER; 1711 1712 retry: 1713 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1714 mutex_lock(&cc->bio_alloc_lock); 1715 1716 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf, 1717 GFP_NOIO, &cc->bs); 1718 clone->bi_private = io; 1719 clone->bi_end_io = crypt_endio; 1720 clone->bi_ioprio = io->base_bio->bi_ioprio; 1721 1722 remaining_size = size; 1723 1724 while (remaining_size) { 1725 struct page *pages; 1726 unsigned size_to_add; 1727 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT); 1728 order = min(order, remaining_order); 1729 1730 while (order > 0) { 1731 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) + 1732 (1 << order) > dm_crypt_pages_per_client)) 1733 goto decrease_order; 1734 pages = alloc_pages(gfp_mask 1735 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP, 1736 order); 1737 if (likely(pages != NULL)) { 1738 percpu_counter_add(&cc->n_allocated_pages, 1 << order); 1739 goto have_pages; 1740 } 1741 decrease_order: 1742 order--; 1743 } 1744 1745 pages = mempool_alloc(&cc->page_pool, gfp_mask); 1746 if (!pages) { 1747 crypt_free_buffer_pages(cc, clone); 1748 bio_put(clone); 1749 gfp_mask |= __GFP_DIRECT_RECLAIM; 1750 order = 0; 1751 goto retry; 1752 } 1753 1754 have_pages: 1755 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size); 1756 __bio_add_page(clone, pages, size_to_add, 0); 1757 remaining_size -= size_to_add; 1758 } 1759 1760 /* Allocate space for integrity tags */ 1761 if (dm_crypt_integrity_io_alloc(io, clone)) { 1762 crypt_free_buffer_pages(cc, clone); 1763 bio_put(clone); 1764 clone = NULL; 1765 } 1766 1767 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) 1768 mutex_unlock(&cc->bio_alloc_lock); 1769 1770 return clone; 1771 } 1772 1773 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) 1774 { 1775 struct folio_iter fi; 1776 1777 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */ 1778 bio_for_each_folio_all(fi, clone) { 1779 if (folio_test_large(fi.folio)) { 1780 percpu_counter_sub(&cc->n_allocated_pages, 1781 1 << folio_order(fi.folio)); 1782 folio_put(fi.folio); 1783 } else { 1784 mempool_free(&fi.folio->page, &cc->page_pool); 1785 } 1786 } 1787 } 1788 } 1789 1790 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, 1791 struct bio *bio, sector_t sector) 1792 { 1793 io->cc = cc; 1794 io->base_bio = bio; 1795 io->sector = sector; 1796 io->error = 0; 1797 io->ctx.aead_recheck = false; 1798 io->ctx.aead_failed = false; 1799 io->ctx.r.req = NULL; 1800 io->integrity_metadata = NULL; 1801 io->integrity_metadata_from_pool = false; 1802 atomic_set(&io->io_pending, 0); 1803 } 1804 1805 static void crypt_inc_pending(struct dm_crypt_io *io) 1806 { 1807 atomic_inc(&io->io_pending); 1808 } 1809 1810 static void kcryptd_queue_read(struct dm_crypt_io *io); 1811 1812 /* 1813 * One of the bios was finished. Check for completion of 1814 * the whole request and correctly clean up the buffer. 1815 */ 1816 static void crypt_dec_pending(struct dm_crypt_io *io) 1817 { 1818 struct crypt_config *cc = io->cc; 1819 struct bio *base_bio = io->base_bio; 1820 blk_status_t error = io->error; 1821 1822 if (!atomic_dec_and_test(&io->io_pending)) 1823 return; 1824 1825 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && 1826 cc->used_tag_size && bio_data_dir(base_bio) == READ) { 1827 io->ctx.aead_recheck = true; 1828 io->ctx.aead_failed = false; 1829 io->error = 0; 1830 kcryptd_queue_read(io); 1831 return; 1832 } 1833 1834 if (io->ctx.r.req) 1835 crypt_free_req(cc, io->ctx.r.req, base_bio); 1836 1837 if (unlikely(io->integrity_metadata_from_pool)) 1838 mempool_free(io->integrity_metadata, &io->cc->tag_pool); 1839 else 1840 kfree(io->integrity_metadata); 1841 1842 base_bio->bi_status = error; 1843 1844 bio_endio(base_bio); 1845 } 1846 1847 /* 1848 * kcryptd/kcryptd_io: 1849 * 1850 * Needed because it would be very unwise to do decryption in an 1851 * interrupt context. 1852 * 1853 * kcryptd performs the actual encryption or decryption. 1854 * 1855 * kcryptd_io performs the IO submission. 1856 * 1857 * They must be separated as otherwise the final stages could be 1858 * starved by new requests which can block in the first stages due 1859 * to memory allocation. 1860 * 1861 * The work is done per CPU global for all dm-crypt instances. 1862 * They should not depend on each other and do not block. 1863 */ 1864 static void crypt_endio(struct bio *clone) 1865 { 1866 struct dm_crypt_io *io = clone->bi_private; 1867 struct crypt_config *cc = io->cc; 1868 unsigned int rw = bio_data_dir(clone); 1869 blk_status_t error = clone->bi_status; 1870 1871 if (io->ctx.aead_recheck && !error) { 1872 kcryptd_queue_crypt(io); 1873 return; 1874 } 1875 1876 /* 1877 * free the processed pages 1878 */ 1879 if (rw == WRITE || io->ctx.aead_recheck) 1880 crypt_free_buffer_pages(cc, clone); 1881 1882 bio_put(clone); 1883 1884 if (rw == READ && !error) { 1885 kcryptd_queue_crypt(io); 1886 return; 1887 } 1888 1889 if (unlikely(error)) 1890 io->error = error; 1891 1892 crypt_dec_pending(io); 1893 } 1894 1895 #define CRYPT_MAP_READ_GFP GFP_NOWAIT 1896 1897 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) 1898 { 1899 struct crypt_config *cc = io->cc; 1900 struct bio *clone; 1901 1902 if (io->ctx.aead_recheck) { 1903 if (!(gfp & __GFP_DIRECT_RECLAIM)) 1904 return 1; 1905 crypt_inc_pending(io); 1906 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 1907 if (unlikely(!clone)) { 1908 crypt_dec_pending(io); 1909 return 1; 1910 } 1911 clone->bi_iter.bi_sector = cc->start + io->sector; 1912 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector); 1913 io->saved_bi_iter = clone->bi_iter; 1914 dm_submit_bio_remap(io->base_bio, clone); 1915 return 0; 1916 } 1917 1918 /* 1919 * We need the original biovec array in order to decrypt the whole bio 1920 * data *afterwards* -- thanks to immutable biovecs we don't need to 1921 * worry about the block layer modifying the biovec array; so leverage 1922 * bio_alloc_clone(). 1923 */ 1924 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs); 1925 if (!clone) 1926 return 1; 1927 clone->bi_private = io; 1928 clone->bi_end_io = crypt_endio; 1929 1930 crypt_inc_pending(io); 1931 1932 clone->bi_iter.bi_sector = cc->start + io->sector; 1933 1934 if (dm_crypt_integrity_io_alloc(io, clone)) { 1935 crypt_dec_pending(io); 1936 bio_put(clone); 1937 return 1; 1938 } 1939 1940 dm_submit_bio_remap(io->base_bio, clone); 1941 return 0; 1942 } 1943 1944 static void kcryptd_io_read_work(struct work_struct *work) 1945 { 1946 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 1947 1948 crypt_inc_pending(io); 1949 if (kcryptd_io_read(io, GFP_NOIO)) 1950 io->error = BLK_STS_RESOURCE; 1951 crypt_dec_pending(io); 1952 } 1953 1954 static void kcryptd_queue_read(struct dm_crypt_io *io) 1955 { 1956 struct crypt_config *cc = io->cc; 1957 1958 INIT_WORK(&io->work, kcryptd_io_read_work); 1959 queue_work(cc->io_queue, &io->work); 1960 } 1961 1962 static void kcryptd_io_write(struct dm_crypt_io *io) 1963 { 1964 struct bio *clone = io->ctx.bio_out; 1965 1966 dm_submit_bio_remap(io->base_bio, clone); 1967 } 1968 1969 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) 1970 1971 static int dmcrypt_write(void *data) 1972 { 1973 struct crypt_config *cc = data; 1974 struct dm_crypt_io *io; 1975 1976 while (1) { 1977 struct rb_root write_tree; 1978 struct blk_plug plug; 1979 1980 spin_lock_irq(&cc->write_thread_lock); 1981 continue_locked: 1982 1983 if (!RB_EMPTY_ROOT(&cc->write_tree)) 1984 goto pop_from_list; 1985 1986 set_current_state(TASK_INTERRUPTIBLE); 1987 1988 spin_unlock_irq(&cc->write_thread_lock); 1989 1990 if (unlikely(kthread_should_stop())) { 1991 set_current_state(TASK_RUNNING); 1992 break; 1993 } 1994 1995 schedule(); 1996 1997 spin_lock_irq(&cc->write_thread_lock); 1998 goto continue_locked; 1999 2000 pop_from_list: 2001 write_tree = cc->write_tree; 2002 cc->write_tree = RB_ROOT; 2003 spin_unlock_irq(&cc->write_thread_lock); 2004 2005 BUG_ON(rb_parent(write_tree.rb_node)); 2006 2007 /* 2008 * Note: we cannot walk the tree here with rb_next because 2009 * the structures may be freed when kcryptd_io_write is called. 2010 */ 2011 blk_start_plug(&plug); 2012 do { 2013 io = crypt_io_from_node(rb_first(&write_tree)); 2014 rb_erase(&io->rb_node, &write_tree); 2015 kcryptd_io_write(io); 2016 cond_resched(); 2017 } while (!RB_EMPTY_ROOT(&write_tree)); 2018 blk_finish_plug(&plug); 2019 } 2020 return 0; 2021 } 2022 2023 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) 2024 { 2025 struct bio *clone = io->ctx.bio_out; 2026 struct crypt_config *cc = io->cc; 2027 unsigned long flags; 2028 sector_t sector; 2029 struct rb_node **rbp, *parent; 2030 2031 if (unlikely(io->error)) { 2032 crypt_free_buffer_pages(cc, clone); 2033 bio_put(clone); 2034 crypt_dec_pending(io); 2035 return; 2036 } 2037 2038 /* crypt_convert should have filled the clone bio */ 2039 BUG_ON(io->ctx.iter_out.bi_size); 2040 2041 clone->bi_iter.bi_sector = cc->start + io->sector; 2042 2043 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || 2044 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { 2045 dm_submit_bio_remap(io->base_bio, clone); 2046 return; 2047 } 2048 2049 spin_lock_irqsave(&cc->write_thread_lock, flags); 2050 if (RB_EMPTY_ROOT(&cc->write_tree)) 2051 wake_up_process(cc->write_thread); 2052 rbp = &cc->write_tree.rb_node; 2053 parent = NULL; 2054 sector = io->sector; 2055 while (*rbp) { 2056 parent = *rbp; 2057 if (sector < crypt_io_from_node(parent)->sector) 2058 rbp = &(*rbp)->rb_left; 2059 else 2060 rbp = &(*rbp)->rb_right; 2061 } 2062 rb_link_node(&io->rb_node, parent, rbp); 2063 rb_insert_color(&io->rb_node, &cc->write_tree); 2064 spin_unlock_irqrestore(&cc->write_thread_lock, flags); 2065 } 2066 2067 static bool kcryptd_crypt_write_inline(struct crypt_config *cc, 2068 struct convert_context *ctx) 2069 2070 { 2071 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) 2072 return false; 2073 2074 /* 2075 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering 2076 * constraints so they do not need to be issued inline by 2077 * kcryptd_crypt_write_convert(). 2078 */ 2079 switch (bio_op(ctx->bio_in)) { 2080 case REQ_OP_WRITE: 2081 case REQ_OP_WRITE_ZEROES: 2082 return true; 2083 default: 2084 return false; 2085 } 2086 } 2087 2088 static void kcryptd_crypt_write_continue(struct work_struct *work) 2089 { 2090 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2091 struct crypt_config *cc = io->cc; 2092 struct convert_context *ctx = &io->ctx; 2093 int crypt_finished; 2094 sector_t sector = io->sector; 2095 blk_status_t r; 2096 2097 wait_for_completion(&ctx->restart); 2098 reinit_completion(&ctx->restart); 2099 2100 r = crypt_convert(cc, &io->ctx, true, false); 2101 if (r) 2102 io->error = r; 2103 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2104 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2105 /* Wait for completion signaled by kcryptd_async_done() */ 2106 wait_for_completion(&ctx->restart); 2107 crypt_finished = 1; 2108 } 2109 2110 /* Encryption was already finished, submit io now */ 2111 if (crypt_finished) { 2112 kcryptd_crypt_write_io_submit(io, 0); 2113 io->sector = sector; 2114 } 2115 2116 crypt_dec_pending(io); 2117 } 2118 2119 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) 2120 { 2121 struct crypt_config *cc = io->cc; 2122 struct convert_context *ctx = &io->ctx; 2123 struct bio *clone; 2124 int crypt_finished; 2125 sector_t sector = io->sector; 2126 blk_status_t r; 2127 2128 /* 2129 * Prevent io from disappearing until this function completes. 2130 */ 2131 crypt_inc_pending(io); 2132 crypt_convert_init(cc, ctx, NULL, io->base_bio, sector); 2133 2134 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size); 2135 if (unlikely(!clone)) { 2136 io->error = BLK_STS_IOERR; 2137 goto dec; 2138 } 2139 2140 io->ctx.bio_out = clone; 2141 io->ctx.iter_out = clone->bi_iter; 2142 2143 if (crypt_integrity_aead(cc)) { 2144 bio_copy_data(clone, io->base_bio); 2145 io->ctx.bio_in = clone; 2146 io->ctx.iter_in = clone->bi_iter; 2147 } 2148 2149 sector += bio_sectors(clone); 2150 2151 crypt_inc_pending(io); 2152 r = crypt_convert(cc, ctx, 2153 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true); 2154 /* 2155 * Crypto API backlogged the request, because its queue was full 2156 * and we're in softirq context, so continue from a workqueue 2157 * (TODO: is it actually possible to be in softirq in the write path?) 2158 */ 2159 if (r == BLK_STS_DEV_RESOURCE) { 2160 INIT_WORK(&io->work, kcryptd_crypt_write_continue); 2161 queue_work(cc->crypt_queue, &io->work); 2162 return; 2163 } 2164 if (r) 2165 io->error = r; 2166 crypt_finished = atomic_dec_and_test(&ctx->cc_pending); 2167 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { 2168 /* Wait for completion signaled by kcryptd_async_done() */ 2169 wait_for_completion(&ctx->restart); 2170 crypt_finished = 1; 2171 } 2172 2173 /* Encryption was already finished, submit io now */ 2174 if (crypt_finished) { 2175 kcryptd_crypt_write_io_submit(io, 0); 2176 io->sector = sector; 2177 } 2178 2179 dec: 2180 crypt_dec_pending(io); 2181 } 2182 2183 static void kcryptd_crypt_read_done(struct dm_crypt_io *io) 2184 { 2185 if (io->ctx.aead_recheck) { 2186 if (!io->error) { 2187 io->ctx.bio_in->bi_iter = io->saved_bi_iter; 2188 bio_copy_data(io->base_bio, io->ctx.bio_in); 2189 } 2190 crypt_free_buffer_pages(io->cc, io->ctx.bio_in); 2191 bio_put(io->ctx.bio_in); 2192 } 2193 crypt_dec_pending(io); 2194 } 2195 2196 static void kcryptd_crypt_read_continue(struct work_struct *work) 2197 { 2198 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2199 struct crypt_config *cc = io->cc; 2200 blk_status_t r; 2201 2202 wait_for_completion(&io->ctx.restart); 2203 reinit_completion(&io->ctx.restart); 2204 2205 r = crypt_convert(cc, &io->ctx, true, false); 2206 if (r) 2207 io->error = r; 2208 2209 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2210 kcryptd_crypt_read_done(io); 2211 2212 crypt_dec_pending(io); 2213 } 2214 2215 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) 2216 { 2217 struct crypt_config *cc = io->cc; 2218 blk_status_t r; 2219 2220 crypt_inc_pending(io); 2221 2222 if (io->ctx.aead_recheck) { 2223 io->ctx.cc_sector = io->sector + cc->iv_offset; 2224 r = crypt_convert(cc, &io->ctx, 2225 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2226 } else { 2227 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, 2228 io->sector); 2229 2230 r = crypt_convert(cc, &io->ctx, 2231 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true); 2232 } 2233 /* 2234 * Crypto API backlogged the request, because its queue was full 2235 * and we're in softirq context, so continue from a workqueue 2236 */ 2237 if (r == BLK_STS_DEV_RESOURCE) { 2238 INIT_WORK(&io->work, kcryptd_crypt_read_continue); 2239 queue_work(cc->crypt_queue, &io->work); 2240 return; 2241 } 2242 if (r) 2243 io->error = r; 2244 2245 if (atomic_dec_and_test(&io->ctx.cc_pending)) 2246 kcryptd_crypt_read_done(io); 2247 2248 crypt_dec_pending(io); 2249 } 2250 2251 static void kcryptd_async_done(void *data, int error) 2252 { 2253 struct dm_crypt_request *dmreq = data; 2254 struct convert_context *ctx = dmreq->ctx; 2255 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); 2256 struct crypt_config *cc = io->cc; 2257 2258 /* 2259 * A request from crypto driver backlog is going to be processed now, 2260 * finish the completion and continue in crypt_convert(). 2261 * (Callback will be called for the second time for this request.) 2262 */ 2263 if (error == -EINPROGRESS) { 2264 complete(&ctx->restart); 2265 return; 2266 } 2267 2268 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) 2269 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); 2270 2271 if (error == -EBADMSG) { 2272 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); 2273 2274 ctx->aead_failed = true; 2275 if (ctx->aead_recheck) { 2276 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", 2277 ctx->bio_in->bi_bdev, s); 2278 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead", 2279 ctx->bio_in, s, 0); 2280 } 2281 io->error = BLK_STS_PROTECTION; 2282 } else if (error < 0) 2283 io->error = BLK_STS_IOERR; 2284 2285 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio); 2286 2287 if (!atomic_dec_and_test(&ctx->cc_pending)) 2288 return; 2289 2290 /* 2291 * The request is fully completed: for inline writes, let 2292 * kcryptd_crypt_write_convert() do the IO submission. 2293 */ 2294 if (bio_data_dir(io->base_bio) == READ) { 2295 kcryptd_crypt_read_done(io); 2296 return; 2297 } 2298 2299 if (kcryptd_crypt_write_inline(cc, ctx)) { 2300 complete(&ctx->restart); 2301 return; 2302 } 2303 2304 kcryptd_crypt_write_io_submit(io, 1); 2305 } 2306 2307 static void kcryptd_crypt(struct work_struct *work) 2308 { 2309 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); 2310 2311 if (bio_data_dir(io->base_bio) == READ) 2312 kcryptd_crypt_read_convert(io); 2313 else 2314 kcryptd_crypt_write_convert(io); 2315 } 2316 2317 static void kcryptd_queue_crypt(struct dm_crypt_io *io) 2318 { 2319 struct crypt_config *cc = io->cc; 2320 2321 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || 2322 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { 2323 /* 2324 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. 2325 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but 2326 * it is being executed with irqs disabled. 2327 */ 2328 if (in_hardirq() || irqs_disabled()) { 2329 INIT_WORK(&io->work, kcryptd_crypt); 2330 queue_work(system_bh_wq, &io->work); 2331 return; 2332 } else { 2333 kcryptd_crypt(&io->work); 2334 return; 2335 } 2336 } 2337 2338 INIT_WORK(&io->work, kcryptd_crypt); 2339 queue_work(cc->crypt_queue, &io->work); 2340 } 2341 2342 static void crypt_free_tfms_aead(struct crypt_config *cc) 2343 { 2344 if (!cc->cipher_tfm.tfms_aead) 2345 return; 2346 2347 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2348 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]); 2349 cc->cipher_tfm.tfms_aead[0] = NULL; 2350 } 2351 2352 kfree(cc->cipher_tfm.tfms_aead); 2353 cc->cipher_tfm.tfms_aead = NULL; 2354 } 2355 2356 static void crypt_free_tfms_skcipher(struct crypt_config *cc) 2357 { 2358 unsigned int i; 2359 2360 if (!cc->cipher_tfm.tfms) 2361 return; 2362 2363 for (i = 0; i < cc->tfms_count; i++) 2364 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) { 2365 crypto_free_skcipher(cc->cipher_tfm.tfms[i]); 2366 cc->cipher_tfm.tfms[i] = NULL; 2367 } 2368 2369 kfree(cc->cipher_tfm.tfms); 2370 cc->cipher_tfm.tfms = NULL; 2371 } 2372 2373 static void crypt_free_tfms(struct crypt_config *cc) 2374 { 2375 if (crypt_integrity_aead(cc)) 2376 crypt_free_tfms_aead(cc); 2377 else 2378 crypt_free_tfms_skcipher(cc); 2379 } 2380 2381 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) 2382 { 2383 unsigned int i; 2384 int err; 2385 2386 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, 2387 sizeof(struct crypto_skcipher *), 2388 GFP_KERNEL); 2389 if (!cc->cipher_tfm.tfms) 2390 return -ENOMEM; 2391 2392 for (i = 0; i < cc->tfms_count; i++) { 2393 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 2394 CRYPTO_ALG_ALLOCATES_MEMORY); 2395 if (IS_ERR(cc->cipher_tfm.tfms[i])) { 2396 err = PTR_ERR(cc->cipher_tfm.tfms[i]); 2397 crypt_free_tfms(cc); 2398 return err; 2399 } 2400 } 2401 2402 /* 2403 * dm-crypt performance can vary greatly depending on which crypto 2404 * algorithm implementation is used. Help people debug performance 2405 * problems by logging the ->cra_driver_name. 2406 */ 2407 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2408 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); 2409 return 0; 2410 } 2411 2412 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) 2413 { 2414 int err; 2415 2416 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); 2417 if (!cc->cipher_tfm.tfms) 2418 return -ENOMEM; 2419 2420 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 2421 CRYPTO_ALG_ALLOCATES_MEMORY); 2422 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) { 2423 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]); 2424 crypt_free_tfms(cc); 2425 return err; 2426 } 2427 2428 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, 2429 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); 2430 return 0; 2431 } 2432 2433 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) 2434 { 2435 if (crypt_integrity_aead(cc)) 2436 return crypt_alloc_tfms_aead(cc, ciphermode); 2437 else 2438 return crypt_alloc_tfms_skcipher(cc, ciphermode); 2439 } 2440 2441 static unsigned int crypt_subkey_size(struct crypt_config *cc) 2442 { 2443 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); 2444 } 2445 2446 static unsigned int crypt_authenckey_size(struct crypt_config *cc) 2447 { 2448 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); 2449 } 2450 2451 /* 2452 * If AEAD is composed like authenc(hmac(sha256),xts(aes)), 2453 * the key must be for some reason in special format. 2454 * This funcion converts cc->key to this special format. 2455 */ 2456 static void crypt_copy_authenckey(char *p, const void *key, 2457 unsigned int enckeylen, unsigned int authkeylen) 2458 { 2459 struct crypto_authenc_key_param *param; 2460 struct rtattr *rta; 2461 2462 rta = (struct rtattr *)p; 2463 param = RTA_DATA(rta); 2464 param->enckeylen = cpu_to_be32(enckeylen); 2465 rta->rta_len = RTA_LENGTH(sizeof(*param)); 2466 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; 2467 p += RTA_SPACE(sizeof(*param)); 2468 memcpy(p, key + enckeylen, authkeylen); 2469 p += authkeylen; 2470 memcpy(p, key, enckeylen); 2471 } 2472 2473 static int crypt_setkey(struct crypt_config *cc) 2474 { 2475 unsigned int subkey_size; 2476 int err = 0, i, r; 2477 2478 /* Ignore extra keys (which are used for IV etc) */ 2479 subkey_size = crypt_subkey_size(cc); 2480 2481 if (crypt_integrity_hmac(cc)) { 2482 if (subkey_size < cc->key_mac_size) 2483 return -EINVAL; 2484 2485 crypt_copy_authenckey(cc->authenc_key, cc->key, 2486 subkey_size - cc->key_mac_size, 2487 cc->key_mac_size); 2488 } 2489 2490 for (i = 0; i < cc->tfms_count; i++) { 2491 if (crypt_integrity_hmac(cc)) 2492 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2493 cc->authenc_key, crypt_authenckey_size(cc)); 2494 else if (crypt_integrity_aead(cc)) 2495 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i], 2496 cc->key + (i * subkey_size), 2497 subkey_size); 2498 else 2499 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i], 2500 cc->key + (i * subkey_size), 2501 subkey_size); 2502 if (r) 2503 err = r; 2504 } 2505 2506 if (crypt_integrity_hmac(cc)) 2507 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc)); 2508 2509 return err; 2510 } 2511 2512 #ifdef CONFIG_KEYS 2513 2514 static bool contains_whitespace(const char *str) 2515 { 2516 while (*str) 2517 if (isspace(*str++)) 2518 return true; 2519 return false; 2520 } 2521 2522 static int set_key_user(struct crypt_config *cc, struct key *key) 2523 { 2524 const struct user_key_payload *ukp; 2525 2526 ukp = user_key_payload_locked(key); 2527 if (!ukp) 2528 return -EKEYREVOKED; 2529 2530 if (cc->key_size != ukp->datalen) 2531 return -EINVAL; 2532 2533 memcpy(cc->key, ukp->data, cc->key_size); 2534 2535 return 0; 2536 } 2537 2538 static int set_key_encrypted(struct crypt_config *cc, struct key *key) 2539 { 2540 const struct encrypted_key_payload *ekp; 2541 2542 ekp = key->payload.data[0]; 2543 if (!ekp) 2544 return -EKEYREVOKED; 2545 2546 if (cc->key_size != ekp->decrypted_datalen) 2547 return -EINVAL; 2548 2549 memcpy(cc->key, ekp->decrypted_data, cc->key_size); 2550 2551 return 0; 2552 } 2553 2554 static int set_key_trusted(struct crypt_config *cc, struct key *key) 2555 { 2556 const struct trusted_key_payload *tkp; 2557 2558 tkp = key->payload.data[0]; 2559 if (!tkp) 2560 return -EKEYREVOKED; 2561 2562 if (cc->key_size != tkp->key_len) 2563 return -EINVAL; 2564 2565 memcpy(cc->key, tkp->key, cc->key_size); 2566 2567 return 0; 2568 } 2569 2570 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2571 { 2572 char *new_key_string, *key_desc; 2573 int ret; 2574 struct key_type *type; 2575 struct key *key; 2576 int (*set_key)(struct crypt_config *cc, struct key *key); 2577 2578 /* 2579 * Reject key_string with whitespace. dm core currently lacks code for 2580 * proper whitespace escaping in arguments on DM_TABLE_STATUS path. 2581 */ 2582 if (contains_whitespace(key_string)) { 2583 DMERR("whitespace chars not allowed in key string"); 2584 return -EINVAL; 2585 } 2586 2587 /* look for next ':' separating key_type from key_description */ 2588 key_desc = strchr(key_string, ':'); 2589 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) 2590 return -EINVAL; 2591 2592 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) { 2593 type = &key_type_logon; 2594 set_key = set_key_user; 2595 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) { 2596 type = &key_type_user; 2597 set_key = set_key_user; 2598 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && 2599 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) { 2600 type = &key_type_encrypted; 2601 set_key = set_key_encrypted; 2602 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && 2603 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) { 2604 type = &key_type_trusted; 2605 set_key = set_key_trusted; 2606 } else { 2607 return -EINVAL; 2608 } 2609 2610 new_key_string = kstrdup(key_string, GFP_KERNEL); 2611 if (!new_key_string) 2612 return -ENOMEM; 2613 2614 key = request_key(type, key_desc + 1, NULL); 2615 if (IS_ERR(key)) { 2616 kfree_sensitive(new_key_string); 2617 return PTR_ERR(key); 2618 } 2619 2620 down_read(&key->sem); 2621 2622 ret = set_key(cc, key); 2623 if (ret < 0) { 2624 up_read(&key->sem); 2625 key_put(key); 2626 kfree_sensitive(new_key_string); 2627 return ret; 2628 } 2629 2630 up_read(&key->sem); 2631 key_put(key); 2632 2633 /* clear the flag since following operations may invalidate previously valid key */ 2634 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2635 2636 ret = crypt_setkey(cc); 2637 2638 if (!ret) { 2639 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2640 kfree_sensitive(cc->key_string); 2641 cc->key_string = new_key_string; 2642 } else 2643 kfree_sensitive(new_key_string); 2644 2645 return ret; 2646 } 2647 2648 static int get_key_size(char **key_string) 2649 { 2650 char *colon, dummy; 2651 int ret; 2652 2653 if (*key_string[0] != ':') 2654 return strlen(*key_string) >> 1; 2655 2656 /* look for next ':' in key string */ 2657 colon = strpbrk(*key_string + 1, ":"); 2658 if (!colon) 2659 return -EINVAL; 2660 2661 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') 2662 return -EINVAL; 2663 2664 *key_string = colon; 2665 2666 /* remaining key string should be :<logon|user>:<key_desc> */ 2667 2668 return ret; 2669 } 2670 2671 #else 2672 2673 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) 2674 { 2675 return -EINVAL; 2676 } 2677 2678 static int get_key_size(char **key_string) 2679 { 2680 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); 2681 } 2682 2683 #endif /* CONFIG_KEYS */ 2684 2685 static int crypt_set_key(struct crypt_config *cc, char *key) 2686 { 2687 int r = -EINVAL; 2688 int key_string_len = strlen(key); 2689 2690 /* Hyphen (which gives a key_size of zero) means there is no key. */ 2691 if (!cc->key_size && strcmp(key, "-")) 2692 goto out; 2693 2694 /* ':' means the key is in kernel keyring, short-circuit normal key processing */ 2695 if (key[0] == ':') { 2696 r = crypt_set_keyring_key(cc, key + 1); 2697 goto out; 2698 } 2699 2700 /* clear the flag since following operations may invalidate previously valid key */ 2701 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2702 2703 /* wipe references to any kernel keyring key */ 2704 kfree_sensitive(cc->key_string); 2705 cc->key_string = NULL; 2706 2707 /* Decode key from its hex representation. */ 2708 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0) 2709 goto out; 2710 2711 r = crypt_setkey(cc); 2712 if (!r) 2713 set_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2714 2715 out: 2716 /* Hex key string not needed after here, so wipe it. */ 2717 memset(key, '0', key_string_len); 2718 2719 return r; 2720 } 2721 2722 static int crypt_wipe_key(struct crypt_config *cc) 2723 { 2724 int r; 2725 2726 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); 2727 get_random_bytes(&cc->key, cc->key_size); 2728 2729 /* Wipe IV private keys */ 2730 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { 2731 r = cc->iv_gen_ops->wipe(cc); 2732 if (r) 2733 return r; 2734 } 2735 2736 kfree_sensitive(cc->key_string); 2737 cc->key_string = NULL; 2738 r = crypt_setkey(cc); 2739 memset(&cc->key, 0, cc->key_size * sizeof(u8)); 2740 2741 return r; 2742 } 2743 2744 static void crypt_calculate_pages_per_client(void) 2745 { 2746 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; 2747 2748 if (!dm_crypt_clients_n) 2749 return; 2750 2751 pages /= dm_crypt_clients_n; 2752 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) 2753 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; 2754 dm_crypt_pages_per_client = pages; 2755 } 2756 2757 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) 2758 { 2759 struct crypt_config *cc = pool_data; 2760 struct page *page; 2761 2762 /* 2763 * Note, percpu_counter_read_positive() may over (and under) estimate 2764 * the current usage by at most (batch - 1) * num_online_cpus() pages, 2765 * but avoids potential spinlock contention of an exact result. 2766 */ 2767 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && 2768 likely(gfp_mask & __GFP_NORETRY)) 2769 return NULL; 2770 2771 page = alloc_page(gfp_mask); 2772 if (likely(page != NULL)) 2773 percpu_counter_add(&cc->n_allocated_pages, 1); 2774 2775 return page; 2776 } 2777 2778 static void crypt_page_free(void *page, void *pool_data) 2779 { 2780 struct crypt_config *cc = pool_data; 2781 2782 __free_page(page); 2783 percpu_counter_sub(&cc->n_allocated_pages, 1); 2784 } 2785 2786 static void crypt_dtr(struct dm_target *ti) 2787 { 2788 struct crypt_config *cc = ti->private; 2789 2790 ti->private = NULL; 2791 2792 if (!cc) 2793 return; 2794 2795 if (cc->write_thread) 2796 kthread_stop(cc->write_thread); 2797 2798 if (cc->io_queue) 2799 destroy_workqueue(cc->io_queue); 2800 if (cc->crypt_queue) 2801 destroy_workqueue(cc->crypt_queue); 2802 2803 if (cc->workqueue_id) 2804 ida_free(&workqueue_ida, cc->workqueue_id); 2805 2806 crypt_free_tfms(cc); 2807 2808 bioset_exit(&cc->bs); 2809 2810 mempool_exit(&cc->page_pool); 2811 mempool_exit(&cc->req_pool); 2812 mempool_exit(&cc->tag_pool); 2813 2814 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); 2815 percpu_counter_destroy(&cc->n_allocated_pages); 2816 2817 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) 2818 cc->iv_gen_ops->dtr(cc); 2819 2820 if (cc->dev) 2821 dm_put_device(ti, cc->dev); 2822 2823 kfree_sensitive(cc->cipher_string); 2824 kfree_sensitive(cc->key_string); 2825 kfree_sensitive(cc->cipher_auth); 2826 kfree_sensitive(cc->authenc_key); 2827 2828 mutex_destroy(&cc->bio_alloc_lock); 2829 2830 /* Must zero key material before freeing */ 2831 kfree_sensitive(cc); 2832 2833 spin_lock(&dm_crypt_clients_lock); 2834 WARN_ON(!dm_crypt_clients_n); 2835 dm_crypt_clients_n--; 2836 crypt_calculate_pages_per_client(); 2837 spin_unlock(&dm_crypt_clients_lock); 2838 2839 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 2840 } 2841 2842 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) 2843 { 2844 struct crypt_config *cc = ti->private; 2845 2846 if (crypt_integrity_aead(cc)) 2847 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 2848 else 2849 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 2850 2851 if (cc->iv_size) 2852 /* at least a 64 bit sector number should fit in our buffer */ 2853 cc->iv_size = max(cc->iv_size, 2854 (unsigned int)(sizeof(u64) / sizeof(u8))); 2855 else if (ivmode) { 2856 DMWARN("Selected cipher does not support IVs"); 2857 ivmode = NULL; 2858 } 2859 2860 /* Choose ivmode, see comments at iv code. */ 2861 if (ivmode == NULL) 2862 cc->iv_gen_ops = NULL; 2863 else if (strcmp(ivmode, "plain") == 0) 2864 cc->iv_gen_ops = &crypt_iv_plain_ops; 2865 else if (strcmp(ivmode, "plain64") == 0) 2866 cc->iv_gen_ops = &crypt_iv_plain64_ops; 2867 else if (strcmp(ivmode, "plain64be") == 0) 2868 cc->iv_gen_ops = &crypt_iv_plain64be_ops; 2869 else if (strcmp(ivmode, "essiv") == 0) 2870 cc->iv_gen_ops = &crypt_iv_essiv_ops; 2871 else if (strcmp(ivmode, "benbi") == 0) 2872 cc->iv_gen_ops = &crypt_iv_benbi_ops; 2873 else if (strcmp(ivmode, "null") == 0) 2874 cc->iv_gen_ops = &crypt_iv_null_ops; 2875 else if (strcmp(ivmode, "eboiv") == 0) 2876 cc->iv_gen_ops = &crypt_iv_eboiv_ops; 2877 else if (strcmp(ivmode, "elephant") == 0) { 2878 cc->iv_gen_ops = &crypt_iv_elephant_ops; 2879 cc->key_parts = 2; 2880 cc->key_extra_size = cc->key_size / 2; 2881 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) 2882 return -EINVAL; 2883 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags); 2884 } else if (strcmp(ivmode, "lmk") == 0) { 2885 cc->iv_gen_ops = &crypt_iv_lmk_ops; 2886 /* 2887 * Version 2 and 3 is recognised according 2888 * to length of provided multi-key string. 2889 * If present (version 3), last key is used as IV seed. 2890 * All keys (including IV seed) are always the same size. 2891 */ 2892 if (cc->key_size % cc->key_parts) { 2893 cc->key_parts++; 2894 cc->key_extra_size = cc->key_size / cc->key_parts; 2895 } 2896 } else if (strcmp(ivmode, "tcw") == 0) { 2897 cc->iv_gen_ops = &crypt_iv_tcw_ops; 2898 cc->key_parts += 2; /* IV + whitening */ 2899 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; 2900 } else if (strcmp(ivmode, "random") == 0) { 2901 cc->iv_gen_ops = &crypt_iv_random_ops; 2902 /* Need storage space in integrity fields. */ 2903 cc->integrity_iv_size = cc->iv_size; 2904 } else { 2905 ti->error = "Invalid IV mode"; 2906 return -EINVAL; 2907 } 2908 2909 return 0; 2910 } 2911 2912 /* 2913 * Workaround to parse HMAC algorithm from AEAD crypto API spec. 2914 * The HMAC is needed to calculate tag size (HMAC digest size). 2915 * This should be probably done by crypto-api calls (once available...) 2916 */ 2917 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) 2918 { 2919 char *start, *end, *mac_alg = NULL; 2920 struct crypto_ahash *mac; 2921 2922 if (!strstarts(cipher_api, "authenc(")) 2923 return 0; 2924 2925 start = strchr(cipher_api, '('); 2926 end = strchr(cipher_api, ','); 2927 if (!start || !end || ++start > end) 2928 return -EINVAL; 2929 2930 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL); 2931 if (!mac_alg) 2932 return -ENOMEM; 2933 2934 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY); 2935 kfree(mac_alg); 2936 2937 if (IS_ERR(mac)) 2938 return PTR_ERR(mac); 2939 2940 cc->key_mac_size = crypto_ahash_digestsize(mac); 2941 crypto_free_ahash(mac); 2942 2943 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); 2944 if (!cc->authenc_key) 2945 return -ENOMEM; 2946 2947 return 0; 2948 } 2949 2950 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, 2951 char **ivmode, char **ivopts) 2952 { 2953 struct crypt_config *cc = ti->private; 2954 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; 2955 int ret = -EINVAL; 2956 2957 cc->tfms_count = 1; 2958 2959 /* 2960 * New format (capi: prefix) 2961 * capi:cipher_api_spec-iv:ivopts 2962 */ 2963 tmp = &cipher_in[strlen("capi:")]; 2964 2965 /* Separate IV options if present, it can contain another '-' in hash name */ 2966 *ivopts = strrchr(tmp, ':'); 2967 if (*ivopts) { 2968 **ivopts = '\0'; 2969 (*ivopts)++; 2970 } 2971 /* Parse IV mode */ 2972 *ivmode = strrchr(tmp, '-'); 2973 if (*ivmode) { 2974 **ivmode = '\0'; 2975 (*ivmode)++; 2976 } 2977 /* The rest is crypto API spec */ 2978 cipher_api = tmp; 2979 2980 /* Alloc AEAD, can be used only in new format. */ 2981 if (crypt_integrity_aead(cc)) { 2982 ret = crypt_ctr_auth_cipher(cc, cipher_api); 2983 if (ret < 0) { 2984 ti->error = "Invalid AEAD cipher spec"; 2985 return ret; 2986 } 2987 } 2988 2989 if (*ivmode && !strcmp(*ivmode, "lmk")) 2990 cc->tfms_count = 64; 2991 2992 if (*ivmode && !strcmp(*ivmode, "essiv")) { 2993 if (!*ivopts) { 2994 ti->error = "Digest algorithm missing for ESSIV mode"; 2995 return -EINVAL; 2996 } 2997 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)", 2998 cipher_api, *ivopts); 2999 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 3000 ti->error = "Cannot allocate cipher string"; 3001 return -ENOMEM; 3002 } 3003 cipher_api = buf; 3004 } 3005 3006 cc->key_parts = cc->tfms_count; 3007 3008 /* Allocate cipher */ 3009 ret = crypt_alloc_tfms(cc, cipher_api); 3010 if (ret < 0) { 3011 ti->error = "Error allocating crypto tfm"; 3012 return ret; 3013 } 3014 3015 if (crypt_integrity_aead(cc)) 3016 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc)); 3017 else 3018 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc)); 3019 3020 return 0; 3021 } 3022 3023 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, 3024 char **ivmode, char **ivopts) 3025 { 3026 struct crypt_config *cc = ti->private; 3027 char *tmp, *cipher, *chainmode, *keycount; 3028 char *cipher_api = NULL; 3029 int ret = -EINVAL; 3030 char dummy; 3031 3032 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { 3033 ti->error = "Bad cipher specification"; 3034 return -EINVAL; 3035 } 3036 3037 /* 3038 * Legacy dm-crypt cipher specification 3039 * cipher[:keycount]-mode-iv:ivopts 3040 */ 3041 tmp = cipher_in; 3042 keycount = strsep(&tmp, "-"); 3043 cipher = strsep(&keycount, ":"); 3044 3045 if (!keycount) 3046 cc->tfms_count = 1; 3047 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || 3048 !is_power_of_2(cc->tfms_count)) { 3049 ti->error = "Bad cipher key count specification"; 3050 return -EINVAL; 3051 } 3052 cc->key_parts = cc->tfms_count; 3053 3054 chainmode = strsep(&tmp, "-"); 3055 *ivmode = strsep(&tmp, ":"); 3056 *ivopts = tmp; 3057 3058 /* 3059 * For compatibility with the original dm-crypt mapping format, if 3060 * only the cipher name is supplied, use cbc-plain. 3061 */ 3062 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { 3063 chainmode = "cbc"; 3064 *ivmode = "plain"; 3065 } 3066 3067 if (strcmp(chainmode, "ecb") && !*ivmode) { 3068 ti->error = "IV mechanism required"; 3069 return -EINVAL; 3070 } 3071 3072 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); 3073 if (!cipher_api) 3074 goto bad_mem; 3075 3076 if (*ivmode && !strcmp(*ivmode, "essiv")) { 3077 if (!*ivopts) { 3078 ti->error = "Digest algorithm missing for ESSIV mode"; 3079 kfree(cipher_api); 3080 return -EINVAL; 3081 } 3082 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3083 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts); 3084 } else { 3085 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME, 3086 "%s(%s)", chainmode, cipher); 3087 } 3088 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { 3089 kfree(cipher_api); 3090 goto bad_mem; 3091 } 3092 3093 /* Allocate cipher */ 3094 ret = crypt_alloc_tfms(cc, cipher_api); 3095 if (ret < 0) { 3096 ti->error = "Error allocating crypto tfm"; 3097 kfree(cipher_api); 3098 return ret; 3099 } 3100 kfree(cipher_api); 3101 3102 return 0; 3103 bad_mem: 3104 ti->error = "Cannot allocate cipher strings"; 3105 return -ENOMEM; 3106 } 3107 3108 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) 3109 { 3110 struct crypt_config *cc = ti->private; 3111 char *ivmode = NULL, *ivopts = NULL; 3112 int ret; 3113 3114 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL); 3115 if (!cc->cipher_string) { 3116 ti->error = "Cannot allocate cipher strings"; 3117 return -ENOMEM; 3118 } 3119 3120 if (strstarts(cipher_in, "capi:")) 3121 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts); 3122 else 3123 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts); 3124 if (ret) 3125 return ret; 3126 3127 /* Initialize IV */ 3128 ret = crypt_ctr_ivmode(ti, ivmode); 3129 if (ret < 0) 3130 return ret; 3131 3132 /* Initialize and set key */ 3133 ret = crypt_set_key(cc, key); 3134 if (ret < 0) { 3135 ti->error = "Error decoding and setting key"; 3136 return ret; 3137 } 3138 3139 /* Allocate IV */ 3140 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { 3141 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); 3142 if (ret < 0) { 3143 ti->error = "Error creating IV"; 3144 return ret; 3145 } 3146 } 3147 3148 /* Initialize IV (set keys for ESSIV etc) */ 3149 if (cc->iv_gen_ops && cc->iv_gen_ops->init) { 3150 ret = cc->iv_gen_ops->init(cc); 3151 if (ret < 0) { 3152 ti->error = "Error initialising IV"; 3153 return ret; 3154 } 3155 } 3156 3157 /* wipe the kernel key payload copy */ 3158 if (cc->key_string) 3159 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3160 3161 return ret; 3162 } 3163 3164 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) 3165 { 3166 struct crypt_config *cc = ti->private; 3167 struct dm_arg_set as; 3168 static const struct dm_arg _args[] = { 3169 {0, 9, "Invalid number of feature args"}, 3170 }; 3171 unsigned int opt_params, val; 3172 const char *opt_string, *sval; 3173 char dummy; 3174 int ret; 3175 3176 /* Optional parameters */ 3177 as.argc = argc; 3178 as.argv = argv; 3179 3180 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error); 3181 if (ret) 3182 return ret; 3183 3184 while (opt_params--) { 3185 opt_string = dm_shift_arg(&as); 3186 if (!opt_string) { 3187 ti->error = "Not enough feature arguments"; 3188 return -EINVAL; 3189 } 3190 3191 if (!strcasecmp(opt_string, "allow_discards")) 3192 ti->num_discard_bios = 1; 3193 3194 else if (!strcasecmp(opt_string, "same_cpu_crypt")) 3195 set_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3196 else if (!strcasecmp(opt_string, "high_priority")) 3197 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3198 3199 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus")) 3200 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3201 else if (!strcasecmp(opt_string, "no_read_workqueue")) 3202 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3203 else if (!strcasecmp(opt_string, "no_write_workqueue")) 3204 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3205 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { 3206 if (val == 0 || val > MAX_TAG_SIZE) { 3207 ti->error = "Invalid integrity arguments"; 3208 return -EINVAL; 3209 } 3210 cc->used_tag_size = val; 3211 sval = strchr(opt_string + strlen("integrity:"), ':') + 1; 3212 if (!strcasecmp(sval, "aead")) { 3213 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); 3214 } else if (strcasecmp(sval, "none")) { 3215 ti->error = "Unknown integrity profile"; 3216 return -EINVAL; 3217 } 3218 3219 cc->cipher_auth = kstrdup(sval, GFP_KERNEL); 3220 if (!cc->cipher_auth) 3221 return -ENOMEM; 3222 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { 3223 if (cc->sector_size < (1 << SECTOR_SHIFT) || 3224 cc->sector_size > 4096 || 3225 (cc->sector_size & (cc->sector_size - 1))) { 3226 ti->error = "Invalid feature value for sector_size"; 3227 return -EINVAL; 3228 } 3229 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { 3230 ti->error = "Device size is not multiple of sector_size feature"; 3231 return -EINVAL; 3232 } 3233 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; 3234 } else if (!strcasecmp(opt_string, "iv_large_sectors")) 3235 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3236 else { 3237 ti->error = "Invalid feature arguments"; 3238 return -EINVAL; 3239 } 3240 } 3241 3242 return 0; 3243 } 3244 3245 #ifdef CONFIG_BLK_DEV_ZONED 3246 static int crypt_report_zones(struct dm_target *ti, 3247 struct dm_report_zones_args *args, unsigned int nr_zones) 3248 { 3249 struct crypt_config *cc = ti->private; 3250 3251 return dm_report_zones(cc->dev->bdev, cc->start, 3252 cc->start + dm_target_offset(ti, args->next_sector), 3253 args, nr_zones); 3254 } 3255 #else 3256 #define crypt_report_zones NULL 3257 #endif 3258 3259 /* 3260 * Construct an encryption mapping: 3261 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> 3262 */ 3263 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3264 { 3265 struct crypt_config *cc; 3266 const char *devname = dm_table_device_name(ti->table); 3267 int key_size, wq_id; 3268 unsigned int align_mask; 3269 unsigned int common_wq_flags; 3270 unsigned long long tmpll; 3271 int ret; 3272 size_t iv_size_padding, additional_req_size; 3273 char dummy; 3274 3275 if (argc < 5) { 3276 ti->error = "Not enough arguments"; 3277 return -EINVAL; 3278 } 3279 3280 key_size = get_key_size(&argv[1]); 3281 if (key_size < 0) { 3282 ti->error = "Cannot parse key size"; 3283 return -EINVAL; 3284 } 3285 3286 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); 3287 if (!cc) { 3288 ti->error = "Cannot allocate encryption context"; 3289 return -ENOMEM; 3290 } 3291 cc->key_size = key_size; 3292 cc->sector_size = (1 << SECTOR_SHIFT); 3293 cc->sector_shift = 0; 3294 3295 ti->private = cc; 3296 3297 spin_lock(&dm_crypt_clients_lock); 3298 dm_crypt_clients_n++; 3299 crypt_calculate_pages_per_client(); 3300 spin_unlock(&dm_crypt_clients_lock); 3301 3302 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); 3303 if (ret < 0) 3304 goto bad; 3305 3306 /* Optional parameters need to be read before cipher constructor */ 3307 if (argc > 5) { 3308 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]); 3309 if (ret) 3310 goto bad; 3311 } 3312 3313 ret = crypt_ctr_cipher(ti, argv[0], argv[1]); 3314 if (ret < 0) 3315 goto bad; 3316 3317 if (crypt_integrity_aead(cc)) { 3318 cc->dmreq_start = sizeof(struct aead_request); 3319 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc)); 3320 align_mask = crypto_aead_alignmask(any_tfm_aead(cc)); 3321 } else { 3322 cc->dmreq_start = sizeof(struct skcipher_request); 3323 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc)); 3324 align_mask = crypto_skcipher_alignmask(any_tfm(cc)); 3325 } 3326 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); 3327 3328 if (align_mask < CRYPTO_MINALIGN) { 3329 /* Allocate the padding exactly */ 3330 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) 3331 & align_mask; 3332 } else { 3333 /* 3334 * If the cipher requires greater alignment than kmalloc 3335 * alignment, we don't know the exact position of the 3336 * initialization vector. We must assume worst case. 3337 */ 3338 iv_size_padding = align_mask; 3339 } 3340 3341 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */ 3342 additional_req_size = sizeof(struct dm_crypt_request) + 3343 iv_size_padding + cc->iv_size + 3344 cc->iv_size + 3345 sizeof(uint64_t) + 3346 sizeof(unsigned int); 3347 3348 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); 3349 if (ret) { 3350 ti->error = "Cannot allocate crypt request mempool"; 3351 goto bad; 3352 } 3353 3354 cc->per_bio_data_size = ti->per_io_data_size = 3355 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, 3356 ARCH_DMA_MINALIGN); 3357 3358 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); 3359 if (ret) { 3360 ti->error = "Cannot allocate page mempool"; 3361 goto bad; 3362 } 3363 3364 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS); 3365 if (ret) { 3366 ti->error = "Cannot allocate crypt bioset"; 3367 goto bad; 3368 } 3369 3370 mutex_init(&cc->bio_alloc_lock); 3371 3372 ret = -EINVAL; 3373 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || 3374 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { 3375 ti->error = "Invalid iv_offset sector"; 3376 goto bad; 3377 } 3378 cc->iv_offset = tmpll; 3379 3380 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev); 3381 if (ret) { 3382 ti->error = "Device lookup failed"; 3383 goto bad; 3384 } 3385 3386 ret = -EINVAL; 3387 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { 3388 ti->error = "Invalid device sector"; 3389 goto bad; 3390 } 3391 cc->start = tmpll; 3392 3393 if (bdev_is_zoned(cc->dev->bdev)) { 3394 /* 3395 * For zoned block devices, we need to preserve the issuer write 3396 * ordering. To do so, disable write workqueues and force inline 3397 * encryption completion. 3398 */ 3399 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3400 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags); 3401 3402 /* 3403 * All zone append writes to a zone of a zoned block device will 3404 * have the same BIO sector, the start of the zone. When the 3405 * cypher IV mode uses sector values, all data targeting a 3406 * zone will be encrypted using the first sector numbers of the 3407 * zone. This will not result in write errors but will 3408 * cause most reads to fail as reads will use the sector values 3409 * for the actual data locations, resulting in IV mismatch. 3410 * To avoid this problem, ask DM core to emulate zone append 3411 * operations with regular writes. 3412 */ 3413 DMDEBUG("Zone append operations will be emulated"); 3414 ti->emulate_zone_append = true; 3415 } 3416 3417 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { 3418 ret = crypt_integrity_ctr(cc, ti); 3419 if (ret) 3420 goto bad; 3421 3422 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size; 3423 if (!cc->tag_pool_max_sectors) 3424 cc->tag_pool_max_sectors = 1; 3425 3426 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, 3427 cc->tag_pool_max_sectors * cc->tuple_size); 3428 if (ret) { 3429 ti->error = "Cannot allocate integrity tags mempool"; 3430 goto bad; 3431 } 3432 3433 cc->tag_pool_max_sectors <<= cc->sector_shift; 3434 } 3435 3436 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL); 3437 if (wq_id < 0) { 3438 ti->error = "Couldn't get workqueue id"; 3439 ret = wq_id; 3440 goto bad; 3441 } 3442 cc->workqueue_id = wq_id; 3443 3444 ret = -ENOMEM; 3445 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS; 3446 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3447 common_wq_flags |= WQ_HIGHPRI; 3448 3449 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id); 3450 if (!cc->io_queue) { 3451 ti->error = "Couldn't create kcryptd io queue"; 3452 goto bad; 3453 } 3454 3455 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) { 3456 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3457 common_wq_flags | WQ_CPU_INTENSIVE, 3458 1, devname, wq_id); 3459 } else { 3460 /* 3461 * While crypt_queue is certainly CPU intensive, the use of 3462 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND. 3463 */ 3464 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d", 3465 common_wq_flags | WQ_UNBOUND, 3466 num_online_cpus(), devname, wq_id); 3467 } 3468 if (!cc->crypt_queue) { 3469 ti->error = "Couldn't create kcryptd queue"; 3470 goto bad; 3471 } 3472 3473 spin_lock_init(&cc->write_thread_lock); 3474 cc->write_tree = RB_ROOT; 3475 3476 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname); 3477 if (IS_ERR(cc->write_thread)) { 3478 ret = PTR_ERR(cc->write_thread); 3479 cc->write_thread = NULL; 3480 ti->error = "Couldn't spawn write thread"; 3481 goto bad; 3482 } 3483 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3484 set_user_nice(cc->write_thread, MIN_NICE); 3485 3486 ti->num_flush_bios = 1; 3487 ti->limit_swap_bios = true; 3488 ti->accounts_remapped_io = true; 3489 3490 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 3491 return 0; 3492 3493 bad: 3494 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 3495 crypt_dtr(ti); 3496 return ret; 3497 } 3498 3499 static int crypt_map(struct dm_target *ti, struct bio *bio) 3500 { 3501 struct dm_crypt_io *io; 3502 struct crypt_config *cc = ti->private; 3503 unsigned max_sectors; 3504 3505 /* 3506 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. 3507 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight 3508 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters 3509 */ 3510 if (unlikely(bio->bi_opf & REQ_PREFLUSH || 3511 bio_op(bio) == REQ_OP_DISCARD)) { 3512 bio_set_dev(bio, cc->dev->bdev); 3513 if (bio_sectors(bio)) 3514 bio->bi_iter.bi_sector = cc->start + 3515 dm_target_offset(ti, bio->bi_iter.bi_sector); 3516 return DM_MAPIO_REMAPPED; 3517 } 3518 3519 /* 3520 * Check if bio is too large, split as needed. 3521 */ 3522 max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE); 3523 if (unlikely(bio_sectors(bio) > max_sectors)) 3524 dm_accept_partial_bio(bio, max_sectors); 3525 3526 /* 3527 * Ensure that bio is a multiple of internal sector encryption size 3528 * and is aligned to this size as defined in IO hints. 3529 */ 3530 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) 3531 return DM_MAPIO_KILL; 3532 3533 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) 3534 return DM_MAPIO_KILL; 3535 3536 io = dm_per_bio_data(bio, cc->per_bio_data_size); 3537 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); 3538 3539 if (cc->tuple_size) { 3540 unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift); 3541 3542 if (unlikely(tag_len > KMALLOC_MAX_SIZE)) 3543 io->integrity_metadata = NULL; 3544 else 3545 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3546 3547 if (unlikely(!io->integrity_metadata)) { 3548 if (bio_sectors(bio) > cc->tag_pool_max_sectors) 3549 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors); 3550 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); 3551 io->integrity_metadata_from_pool = true; 3552 } 3553 } 3554 3555 if (crypt_integrity_aead(cc)) 3556 io->ctx.r.req_aead = (struct aead_request *)(io + 1); 3557 else 3558 io->ctx.r.req = (struct skcipher_request *)(io + 1); 3559 3560 if (bio_data_dir(io->base_bio) == READ) { 3561 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) 3562 kcryptd_queue_read(io); 3563 } else 3564 kcryptd_queue_crypt(io); 3565 3566 return DM_MAPIO_SUBMITTED; 3567 } 3568 3569 static char hex2asc(unsigned char c) 3570 { 3571 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); 3572 } 3573 3574 static void crypt_status(struct dm_target *ti, status_type_t type, 3575 unsigned int status_flags, char *result, unsigned int maxlen) 3576 { 3577 struct crypt_config *cc = ti->private; 3578 unsigned int i, sz = 0; 3579 int num_feature_args = 0; 3580 3581 switch (type) { 3582 case STATUSTYPE_INFO: 3583 result[0] = '\0'; 3584 break; 3585 3586 case STATUSTYPE_TABLE: 3587 DMEMIT("%s ", cc->cipher_string); 3588 3589 if (cc->key_size > 0) { 3590 if (cc->key_string) 3591 DMEMIT(":%u:%s", cc->key_size, cc->key_string); 3592 else { 3593 for (i = 0; i < cc->key_size; i++) { 3594 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4), 3595 hex2asc(cc->key[i] & 0xf)); 3596 } 3597 } 3598 } else 3599 DMEMIT("-"); 3600 3601 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, 3602 cc->dev->name, (unsigned long long)cc->start); 3603 3604 num_feature_args += !!ti->num_discard_bios; 3605 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); 3606 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); 3607 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); 3608 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); 3609 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); 3610 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); 3611 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); 3612 if (cc->used_tag_size) 3613 num_feature_args++; 3614 if (num_feature_args) { 3615 DMEMIT(" %d", num_feature_args); 3616 if (ti->num_discard_bios) 3617 DMEMIT(" allow_discards"); 3618 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) 3619 DMEMIT(" same_cpu_crypt"); 3620 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) 3621 DMEMIT(" high_priority"); 3622 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) 3623 DMEMIT(" submit_from_crypt_cpus"); 3624 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) 3625 DMEMIT(" no_read_workqueue"); 3626 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) 3627 DMEMIT(" no_write_workqueue"); 3628 if (cc->used_tag_size) 3629 DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth); 3630 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3631 DMEMIT(" sector_size:%d", cc->sector_size); 3632 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) 3633 DMEMIT(" iv_large_sectors"); 3634 } 3635 break; 3636 3637 case STATUSTYPE_IMA: 3638 DMEMIT_TARGET_NAME_VERSION(ti->type); 3639 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n'); 3640 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); 3641 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n'); 3642 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? 3643 'y' : 'n'); 3644 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? 3645 'y' : 'n'); 3646 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? 3647 'y' : 'n'); 3648 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? 3649 'y' : 'n'); 3650 3651 if (cc->used_tag_size) 3652 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s", 3653 cc->used_tag_size, cc->cipher_auth); 3654 if (cc->sector_size != (1 << SECTOR_SHIFT)) 3655 DMEMIT(",sector_size=%d", cc->sector_size); 3656 if (cc->cipher_string) 3657 DMEMIT(",cipher_string=%s", cc->cipher_string); 3658 3659 DMEMIT(",key_size=%u", cc->key_size); 3660 DMEMIT(",key_parts=%u", cc->key_parts); 3661 DMEMIT(",key_extra_size=%u", cc->key_extra_size); 3662 DMEMIT(",key_mac_size=%u", cc->key_mac_size); 3663 DMEMIT(";"); 3664 break; 3665 } 3666 } 3667 3668 static void crypt_postsuspend(struct dm_target *ti) 3669 { 3670 struct crypt_config *cc = ti->private; 3671 3672 set_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3673 } 3674 3675 static int crypt_preresume(struct dm_target *ti) 3676 { 3677 struct crypt_config *cc = ti->private; 3678 3679 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { 3680 DMERR("aborting resume - crypt key is not set."); 3681 return -EAGAIN; 3682 } 3683 3684 return 0; 3685 } 3686 3687 static void crypt_resume(struct dm_target *ti) 3688 { 3689 struct crypt_config *cc = ti->private; 3690 3691 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); 3692 } 3693 3694 /* Message interface 3695 * key set <key> 3696 * key wipe 3697 */ 3698 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, 3699 char *result, unsigned int maxlen) 3700 { 3701 struct crypt_config *cc = ti->private; 3702 int key_size, ret = -EINVAL; 3703 3704 if (argc < 2) 3705 goto error; 3706 3707 if (!strcasecmp(argv[0], "key")) { 3708 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { 3709 DMWARN("not suspended during key manipulation."); 3710 return -EINVAL; 3711 } 3712 if (argc == 3 && !strcasecmp(argv[1], "set")) { 3713 /* The key size may not be changed. */ 3714 key_size = get_key_size(&argv[2]); 3715 if (key_size < 0 || cc->key_size != key_size) { 3716 memset(argv[2], '0', strlen(argv[2])); 3717 return -EINVAL; 3718 } 3719 3720 ret = crypt_set_key(cc, argv[2]); 3721 if (ret) 3722 return ret; 3723 if (cc->iv_gen_ops && cc->iv_gen_ops->init) 3724 ret = cc->iv_gen_ops->init(cc); 3725 /* wipe the kernel key payload copy */ 3726 if (cc->key_string) 3727 memset(cc->key, 0, cc->key_size * sizeof(u8)); 3728 return ret; 3729 } 3730 if (argc == 2 && !strcasecmp(argv[1], "wipe")) 3731 return crypt_wipe_key(cc); 3732 } 3733 3734 error: 3735 DMWARN("unrecognised message received."); 3736 return -EINVAL; 3737 } 3738 3739 static int crypt_iterate_devices(struct dm_target *ti, 3740 iterate_devices_callout_fn fn, void *data) 3741 { 3742 struct crypt_config *cc = ti->private; 3743 3744 return fn(ti, cc->dev, cc->start, ti->len, data); 3745 } 3746 3747 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) 3748 { 3749 struct crypt_config *cc = ti->private; 3750 3751 limits->logical_block_size = 3752 max_t(unsigned int, limits->logical_block_size, cc->sector_size); 3753 limits->physical_block_size = 3754 max_t(unsigned int, limits->physical_block_size, cc->sector_size); 3755 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); 3756 limits->dma_alignment = limits->logical_block_size - 1; 3757 } 3758 3759 static struct target_type crypt_target = { 3760 .name = "crypt", 3761 .version = {1, 27, 0}, 3762 .module = THIS_MODULE, 3763 .ctr = crypt_ctr, 3764 .dtr = crypt_dtr, 3765 .features = DM_TARGET_ZONED_HM, 3766 .report_zones = crypt_report_zones, 3767 .map = crypt_map, 3768 .status = crypt_status, 3769 .postsuspend = crypt_postsuspend, 3770 .preresume = crypt_preresume, 3771 .resume = crypt_resume, 3772 .message = crypt_message, 3773 .iterate_devices = crypt_iterate_devices, 3774 .io_hints = crypt_io_hints, 3775 }; 3776 module_dm(crypt); 3777 3778 MODULE_AUTHOR("Jana Saout <jana@saout.de>"); 3779 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); 3780 MODULE_LICENSE("GPL"); 3781