xref: /linux/drivers/md/dm-cache-target.c (revision f683c9b134f2b0cb5d917296a142db1211468a78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-prison-v2.h"
10 #include "dm-bio-record.h"
11 #include "dm-cache-metadata.h"
12 #include "dm-io-tracker.h"
13 
14 #include <linux/dm-io.h>
15 #include <linux/dm-kcopyd.h>
16 #include <linux/jiffies.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/rwsem.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 
24 #define DM_MSG_PREFIX "cache"
25 
26 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
27 	"A percentage of time allocated for copying to and/or from cache");
28 
29 /*----------------------------------------------------------------*/
30 
31 /*
32  * Glossary:
33  *
34  * oblock: index of an origin block
35  * cblock: index of a cache block
36  * promotion: movement of a block from origin to cache
37  * demotion: movement of a block from cache to origin
38  * migration: movement of a block between the origin and cache device,
39  *	      either direction
40  */
41 
42 /*----------------------------------------------------------------*/
43 
44 /*
45  * Represents a chunk of future work.  'input' allows continuations to pass
46  * values between themselves, typically error values.
47  */
48 struct continuation {
49 	struct work_struct ws;
50 	blk_status_t input;
51 };
52 
53 static inline void init_continuation(struct continuation *k,
54 				     void (*fn)(struct work_struct *))
55 {
56 	INIT_WORK(&k->ws, fn);
57 	k->input = 0;
58 }
59 
60 static inline void queue_continuation(struct workqueue_struct *wq,
61 				      struct continuation *k)
62 {
63 	queue_work(wq, &k->ws);
64 }
65 
66 /*----------------------------------------------------------------*/
67 
68 /*
69  * The batcher collects together pieces of work that need a particular
70  * operation to occur before they can proceed (typically a commit).
71  */
72 struct batcher {
73 	/*
74 	 * The operation that everyone is waiting for.
75 	 */
76 	blk_status_t (*commit_op)(void *context);
77 	void *commit_context;
78 
79 	/*
80 	 * This is how bios should be issued once the commit op is complete
81 	 * (accounted_request).
82 	 */
83 	void (*issue_op)(struct bio *bio, void *context);
84 	void *issue_context;
85 
86 	/*
87 	 * Queued work gets put on here after commit.
88 	 */
89 	struct workqueue_struct *wq;
90 
91 	spinlock_t lock;
92 	struct list_head work_items;
93 	struct bio_list bios;
94 	struct work_struct commit_work;
95 
96 	bool commit_scheduled;
97 };
98 
99 static void __commit(struct work_struct *_ws)
100 {
101 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
102 	blk_status_t r;
103 	struct list_head work_items;
104 	struct work_struct *ws, *tmp;
105 	struct continuation *k;
106 	struct bio *bio;
107 	struct bio_list bios;
108 
109 	INIT_LIST_HEAD(&work_items);
110 	bio_list_init(&bios);
111 
112 	/*
113 	 * We have to grab these before the commit_op to avoid a race
114 	 * condition.
115 	 */
116 	spin_lock_irq(&b->lock);
117 	list_splice_init(&b->work_items, &work_items);
118 	bio_list_merge_init(&bios, &b->bios);
119 	b->commit_scheduled = false;
120 	spin_unlock_irq(&b->lock);
121 
122 	r = b->commit_op(b->commit_context);
123 
124 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125 		k = container_of(ws, struct continuation, ws);
126 		k->input = r;
127 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128 		queue_work(b->wq, ws);
129 	}
130 
131 	while ((bio = bio_list_pop(&bios))) {
132 		if (r) {
133 			bio->bi_status = r;
134 			bio_endio(bio);
135 		} else
136 			b->issue_op(bio, b->issue_context);
137 	}
138 }
139 
140 static void batcher_init(struct batcher *b,
141 			 blk_status_t (*commit_op)(void *),
142 			 void *commit_context,
143 			 void (*issue_op)(struct bio *bio, void *),
144 			 void *issue_context,
145 			 struct workqueue_struct *wq)
146 {
147 	b->commit_op = commit_op;
148 	b->commit_context = commit_context;
149 	b->issue_op = issue_op;
150 	b->issue_context = issue_context;
151 	b->wq = wq;
152 
153 	spin_lock_init(&b->lock);
154 	INIT_LIST_HEAD(&b->work_items);
155 	bio_list_init(&b->bios);
156 	INIT_WORK(&b->commit_work, __commit);
157 	b->commit_scheduled = false;
158 }
159 
160 static void async_commit(struct batcher *b)
161 {
162 	queue_work(b->wq, &b->commit_work);
163 }
164 
165 static void continue_after_commit(struct batcher *b, struct continuation *k)
166 {
167 	bool commit_scheduled;
168 
169 	spin_lock_irq(&b->lock);
170 	commit_scheduled = b->commit_scheduled;
171 	list_add_tail(&k->ws.entry, &b->work_items);
172 	spin_unlock_irq(&b->lock);
173 
174 	if (commit_scheduled)
175 		async_commit(b);
176 }
177 
178 /*
179  * Bios are errored if commit failed.
180  */
181 static void issue_after_commit(struct batcher *b, struct bio *bio)
182 {
183 	bool commit_scheduled;
184 
185 	spin_lock_irq(&b->lock);
186 	commit_scheduled = b->commit_scheduled;
187 	bio_list_add(&b->bios, bio);
188 	spin_unlock_irq(&b->lock);
189 
190 	if (commit_scheduled)
191 		async_commit(b);
192 }
193 
194 /*
195  * Call this if some urgent work is waiting for the commit to complete.
196  */
197 static void schedule_commit(struct batcher *b)
198 {
199 	bool immediate;
200 
201 	spin_lock_irq(&b->lock);
202 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203 	b->commit_scheduled = true;
204 	spin_unlock_irq(&b->lock);
205 
206 	if (immediate)
207 		async_commit(b);
208 }
209 
210 /*
211  * There are a couple of places where we let a bio run, but want to do some
212  * work before calling its endio function.  We do this by temporarily
213  * changing the endio fn.
214  */
215 struct dm_hook_info {
216 	bio_end_io_t *bi_end_io;
217 };
218 
219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220 			bio_end_io_t *bi_end_io, void *bi_private)
221 {
222 	h->bi_end_io = bio->bi_end_io;
223 
224 	bio->bi_end_io = bi_end_io;
225 	bio->bi_private = bi_private;
226 }
227 
228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229 {
230 	bio->bi_end_io = h->bi_end_io;
231 }
232 
233 /*----------------------------------------------------------------*/
234 
235 #define MIGRATION_POOL_SIZE 128
236 #define COMMIT_PERIOD HZ
237 #define MIGRATION_COUNT_WINDOW 10
238 
239 /*
240  * The block size of the device holding cache data must be
241  * between 32KB and 1GB.
242  */
243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
245 
246 enum cache_metadata_mode {
247 	CM_WRITE,		/* metadata may be changed */
248 	CM_READ_ONLY,		/* metadata may not be changed */
249 	CM_FAIL
250 };
251 
252 enum cache_io_mode {
253 	/*
254 	 * Data is written to cached blocks only.  These blocks are marked
255 	 * dirty.  If you lose the cache device you will lose data.
256 	 * Potential performance increase for both reads and writes.
257 	 */
258 	CM_IO_WRITEBACK,
259 
260 	/*
261 	 * Data is written to both cache and origin.  Blocks are never
262 	 * dirty.  Potential performance benfit for reads only.
263 	 */
264 	CM_IO_WRITETHROUGH,
265 
266 	/*
267 	 * A degraded mode useful for various cache coherency situations
268 	 * (eg, rolling back snapshots).  Reads and writes always go to the
269 	 * origin.  If a write goes to a cached oblock, then the cache
270 	 * block is invalidated.
271 	 */
272 	CM_IO_PASSTHROUGH
273 };
274 
275 struct cache_features {
276 	enum cache_metadata_mode mode;
277 	enum cache_io_mode io_mode;
278 	unsigned int metadata_version;
279 	bool discard_passdown:1;
280 };
281 
282 struct cache_stats {
283 	atomic_t read_hit;
284 	atomic_t read_miss;
285 	atomic_t write_hit;
286 	atomic_t write_miss;
287 	atomic_t demotion;
288 	atomic_t promotion;
289 	atomic_t writeback;
290 	atomic_t copies_avoided;
291 	atomic_t cache_cell_clash;
292 	atomic_t commit_count;
293 	atomic_t discard_count;
294 };
295 
296 struct cache {
297 	struct dm_target *ti;
298 	spinlock_t lock;
299 
300 	/*
301 	 * Fields for converting from sectors to blocks.
302 	 */
303 	int sectors_per_block_shift;
304 	sector_t sectors_per_block;
305 
306 	struct dm_cache_metadata *cmd;
307 
308 	/*
309 	 * Metadata is written to this device.
310 	 */
311 	struct dm_dev *metadata_dev;
312 
313 	/*
314 	 * The slower of the two data devices.  Typically a spindle.
315 	 */
316 	struct dm_dev *origin_dev;
317 
318 	/*
319 	 * The faster of the two data devices.  Typically an SSD.
320 	 */
321 	struct dm_dev *cache_dev;
322 
323 	/*
324 	 * Size of the origin device in _complete_ blocks and native sectors.
325 	 */
326 	dm_oblock_t origin_blocks;
327 	sector_t origin_sectors;
328 
329 	/*
330 	 * Size of the cache device in blocks.
331 	 */
332 	dm_cblock_t cache_size;
333 
334 	/*
335 	 * Invalidation fields.
336 	 */
337 	spinlock_t invalidation_lock;
338 	struct list_head invalidation_requests;
339 
340 	sector_t migration_threshold;
341 	wait_queue_head_t migration_wait;
342 	atomic_t nr_allocated_migrations;
343 
344 	/*
345 	 * The number of in flight migrations that are performing
346 	 * background io. eg, promotion, writeback.
347 	 */
348 	atomic_t nr_io_migrations;
349 
350 	struct bio_list deferred_bios;
351 
352 	struct rw_semaphore quiesce_lock;
353 
354 	/*
355 	 * origin_blocks entries, discarded if set.
356 	 */
357 	dm_dblock_t discard_nr_blocks;
358 	unsigned long *discard_bitset;
359 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
360 
361 	/*
362 	 * Rather than reconstructing the table line for the status we just
363 	 * save it and regurgitate.
364 	 */
365 	unsigned int nr_ctr_args;
366 	const char **ctr_args;
367 
368 	struct dm_kcopyd_client *copier;
369 	struct work_struct deferred_bio_worker;
370 	struct work_struct migration_worker;
371 	struct workqueue_struct *wq;
372 	struct delayed_work waker;
373 	struct dm_bio_prison_v2 *prison;
374 
375 	/*
376 	 * cache_size entries, dirty if set
377 	 */
378 	unsigned long *dirty_bitset;
379 	atomic_t nr_dirty;
380 
381 	unsigned int policy_nr_args;
382 	struct dm_cache_policy *policy;
383 
384 	/*
385 	 * Cache features such as write-through.
386 	 */
387 	struct cache_features features;
388 
389 	struct cache_stats stats;
390 
391 	bool need_tick_bio:1;
392 	bool sized:1;
393 	bool invalidate:1;
394 	bool commit_requested:1;
395 	bool loaded_mappings:1;
396 	bool loaded_discards:1;
397 
398 	struct rw_semaphore background_work_lock;
399 
400 	struct batcher committer;
401 	struct work_struct commit_ws;
402 
403 	struct dm_io_tracker tracker;
404 
405 	mempool_t migration_pool;
406 
407 	struct bio_set bs;
408 };
409 
410 struct per_bio_data {
411 	bool tick:1;
412 	unsigned int req_nr:2;
413 	struct dm_bio_prison_cell_v2 *cell;
414 	struct dm_hook_info hook_info;
415 	sector_t len;
416 };
417 
418 struct dm_cache_migration {
419 	struct continuation k;
420 	struct cache *cache;
421 
422 	struct policy_work *op;
423 	struct bio *overwrite_bio;
424 	struct dm_bio_prison_cell_v2 *cell;
425 
426 	dm_cblock_t invalidate_cblock;
427 	dm_oblock_t invalidate_oblock;
428 };
429 
430 /*----------------------------------------------------------------*/
431 
432 static bool writethrough_mode(struct cache *cache)
433 {
434 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
435 }
436 
437 static bool writeback_mode(struct cache *cache)
438 {
439 	return cache->features.io_mode == CM_IO_WRITEBACK;
440 }
441 
442 static inline bool passthrough_mode(struct cache *cache)
443 {
444 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
445 }
446 
447 /*----------------------------------------------------------------*/
448 
449 static void wake_deferred_bio_worker(struct cache *cache)
450 {
451 	queue_work(cache->wq, &cache->deferred_bio_worker);
452 }
453 
454 static void wake_migration_worker(struct cache *cache)
455 {
456 	if (passthrough_mode(cache))
457 		return;
458 
459 	queue_work(cache->wq, &cache->migration_worker);
460 }
461 
462 /*----------------------------------------------------------------*/
463 
464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
465 {
466 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
467 }
468 
469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
470 {
471 	dm_bio_prison_free_cell_v2(cache->prison, cell);
472 }
473 
474 static struct dm_cache_migration *alloc_migration(struct cache *cache)
475 {
476 	struct dm_cache_migration *mg;
477 
478 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
479 
480 	memset(mg, 0, sizeof(*mg));
481 
482 	mg->cache = cache;
483 	atomic_inc(&cache->nr_allocated_migrations);
484 
485 	return mg;
486 }
487 
488 static void free_migration(struct dm_cache_migration *mg)
489 {
490 	struct cache *cache = mg->cache;
491 
492 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493 		wake_up(&cache->migration_wait);
494 
495 	mempool_free(mg, &cache->migration_pool);
496 }
497 
498 /*----------------------------------------------------------------*/
499 
500 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
501 {
502 	return to_oblock(from_oblock(b) + 1ull);
503 }
504 
505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
506 {
507 	key->virtual = 0;
508 	key->dev = 0;
509 	key->block_begin = from_oblock(begin);
510 	key->block_end = from_oblock(end);
511 }
512 
513 /*
514  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
515  * level 1 which prevents *both* READs and WRITEs.
516  */
517 #define WRITE_LOCK_LEVEL 0
518 #define READ_WRITE_LOCK_LEVEL 1
519 
520 static unsigned int lock_level(struct bio *bio)
521 {
522 	return bio_data_dir(bio) == WRITE ?
523 		WRITE_LOCK_LEVEL :
524 		READ_WRITE_LOCK_LEVEL;
525 }
526 
527 /*
528  *--------------------------------------------------------------
529  * Per bio data
530  *--------------------------------------------------------------
531  */
532 
533 static struct per_bio_data *get_per_bio_data(struct bio *bio)
534 {
535 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
536 
537 	BUG_ON(!pb);
538 	return pb;
539 }
540 
541 static struct per_bio_data *init_per_bio_data(struct bio *bio)
542 {
543 	struct per_bio_data *pb = get_per_bio_data(bio);
544 
545 	pb->tick = false;
546 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
547 	pb->cell = NULL;
548 	pb->len = 0;
549 
550 	return pb;
551 }
552 
553 /*----------------------------------------------------------------*/
554 
555 static void defer_bio(struct cache *cache, struct bio *bio)
556 {
557 	spin_lock_irq(&cache->lock);
558 	bio_list_add(&cache->deferred_bios, bio);
559 	spin_unlock_irq(&cache->lock);
560 
561 	wake_deferred_bio_worker(cache);
562 }
563 
564 static void defer_bios(struct cache *cache, struct bio_list *bios)
565 {
566 	spin_lock_irq(&cache->lock);
567 	bio_list_merge_init(&cache->deferred_bios, bios);
568 	spin_unlock_irq(&cache->lock);
569 
570 	wake_deferred_bio_worker(cache);
571 }
572 
573 /*----------------------------------------------------------------*/
574 
575 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
576 {
577 	bool r;
578 	struct per_bio_data *pb;
579 	struct dm_cell_key_v2 key;
580 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
581 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
582 
583 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
584 
585 	build_key(oblock, end, &key);
586 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
587 	if (!r) {
588 		/*
589 		 * Failed to get the lock.
590 		 */
591 		free_prison_cell(cache, cell_prealloc);
592 		return r;
593 	}
594 
595 	if (cell != cell_prealloc)
596 		free_prison_cell(cache, cell_prealloc);
597 
598 	pb = get_per_bio_data(bio);
599 	pb->cell = cell;
600 
601 	return r;
602 }
603 
604 /*----------------------------------------------------------------*/
605 
606 static bool is_dirty(struct cache *cache, dm_cblock_t b)
607 {
608 	return test_bit(from_cblock(b), cache->dirty_bitset);
609 }
610 
611 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
612 {
613 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
614 		atomic_inc(&cache->nr_dirty);
615 		policy_set_dirty(cache->policy, cblock);
616 	}
617 }
618 
619 /*
620  * These two are called when setting after migrations to force the policy
621  * and dirty bitset to be in sync.
622  */
623 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
624 {
625 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
626 		atomic_inc(&cache->nr_dirty);
627 	policy_set_dirty(cache->policy, cblock);
628 }
629 
630 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
631 {
632 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
633 		if (atomic_dec_return(&cache->nr_dirty) == 0)
634 			dm_table_event(cache->ti->table);
635 	}
636 
637 	policy_clear_dirty(cache->policy, cblock);
638 }
639 
640 /*----------------------------------------------------------------*/
641 
642 static bool block_size_is_power_of_two(struct cache *cache)
643 {
644 	return cache->sectors_per_block_shift >= 0;
645 }
646 
647 static dm_block_t block_div(dm_block_t b, uint32_t n)
648 {
649 	do_div(b, n);
650 
651 	return b;
652 }
653 
654 static dm_block_t oblocks_per_dblock(struct cache *cache)
655 {
656 	dm_block_t oblocks = cache->discard_block_size;
657 
658 	if (block_size_is_power_of_two(cache))
659 		oblocks >>= cache->sectors_per_block_shift;
660 	else
661 		oblocks = block_div(oblocks, cache->sectors_per_block);
662 
663 	return oblocks;
664 }
665 
666 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
667 {
668 	return to_dblock(block_div(from_oblock(oblock),
669 				   oblocks_per_dblock(cache)));
670 }
671 
672 static void set_discard(struct cache *cache, dm_dblock_t b)
673 {
674 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
675 	atomic_inc(&cache->stats.discard_count);
676 
677 	spin_lock_irq(&cache->lock);
678 	set_bit(from_dblock(b), cache->discard_bitset);
679 	spin_unlock_irq(&cache->lock);
680 }
681 
682 static void clear_discard(struct cache *cache, dm_dblock_t b)
683 {
684 	spin_lock_irq(&cache->lock);
685 	clear_bit(from_dblock(b), cache->discard_bitset);
686 	spin_unlock_irq(&cache->lock);
687 }
688 
689 static bool is_discarded(struct cache *cache, dm_dblock_t b)
690 {
691 	int r;
692 
693 	spin_lock_irq(&cache->lock);
694 	r = test_bit(from_dblock(b), cache->discard_bitset);
695 	spin_unlock_irq(&cache->lock);
696 
697 	return r;
698 }
699 
700 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
701 {
702 	int r;
703 
704 	spin_lock_irq(&cache->lock);
705 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
706 		     cache->discard_bitset);
707 	spin_unlock_irq(&cache->lock);
708 
709 	return r;
710 }
711 
712 /*
713  * -------------------------------------------------------------
714  * Remapping
715  *--------------------------------------------------------------
716  */
717 static void remap_to_origin(struct cache *cache, struct bio *bio)
718 {
719 	bio_set_dev(bio, cache->origin_dev->bdev);
720 }
721 
722 static void remap_to_cache(struct cache *cache, struct bio *bio,
723 			   dm_cblock_t cblock)
724 {
725 	sector_t bi_sector = bio->bi_iter.bi_sector;
726 	sector_t block = from_cblock(cblock);
727 
728 	bio_set_dev(bio, cache->cache_dev->bdev);
729 	if (!block_size_is_power_of_two(cache))
730 		bio->bi_iter.bi_sector =
731 			(block * cache->sectors_per_block) +
732 			sector_div(bi_sector, cache->sectors_per_block);
733 	else
734 		bio->bi_iter.bi_sector =
735 			(block << cache->sectors_per_block_shift) |
736 			(bi_sector & (cache->sectors_per_block - 1));
737 }
738 
739 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
740 {
741 	struct per_bio_data *pb;
742 
743 	spin_lock_irq(&cache->lock);
744 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
745 	    bio_op(bio) != REQ_OP_DISCARD) {
746 		pb = get_per_bio_data(bio);
747 		pb->tick = true;
748 		cache->need_tick_bio = false;
749 	}
750 	spin_unlock_irq(&cache->lock);
751 }
752 
753 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
754 					  dm_oblock_t oblock)
755 {
756 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
757 	check_if_tick_bio_needed(cache, bio);
758 	remap_to_origin(cache, bio);
759 	if (bio_data_dir(bio) == WRITE)
760 		clear_discard(cache, oblock_to_dblock(cache, oblock));
761 }
762 
763 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
764 				 dm_oblock_t oblock, dm_cblock_t cblock)
765 {
766 	check_if_tick_bio_needed(cache, bio);
767 	remap_to_cache(cache, bio, cblock);
768 	if (bio_data_dir(bio) == WRITE) {
769 		set_dirty(cache, cblock);
770 		clear_discard(cache, oblock_to_dblock(cache, oblock));
771 	}
772 }
773 
774 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
775 {
776 	sector_t block_nr = bio->bi_iter.bi_sector;
777 
778 	if (!block_size_is_power_of_two(cache))
779 		(void) sector_div(block_nr, cache->sectors_per_block);
780 	else
781 		block_nr >>= cache->sectors_per_block_shift;
782 
783 	return to_oblock(block_nr);
784 }
785 
786 static bool accountable_bio(struct cache *cache, struct bio *bio)
787 {
788 	return bio_op(bio) != REQ_OP_DISCARD;
789 }
790 
791 static void accounted_begin(struct cache *cache, struct bio *bio)
792 {
793 	struct per_bio_data *pb;
794 
795 	if (accountable_bio(cache, bio)) {
796 		pb = get_per_bio_data(bio);
797 		pb->len = bio_sectors(bio);
798 		dm_iot_io_begin(&cache->tracker, pb->len);
799 	}
800 }
801 
802 static void accounted_complete(struct cache *cache, struct bio *bio)
803 {
804 	struct per_bio_data *pb = get_per_bio_data(bio);
805 
806 	dm_iot_io_end(&cache->tracker, pb->len);
807 }
808 
809 static void accounted_request(struct cache *cache, struct bio *bio)
810 {
811 	accounted_begin(cache, bio);
812 	dm_submit_bio_remap(bio, NULL);
813 }
814 
815 static void issue_op(struct bio *bio, void *context)
816 {
817 	struct cache *cache = context;
818 
819 	accounted_request(cache, bio);
820 }
821 
822 /*
823  * When running in writethrough mode we need to send writes to clean blocks
824  * to both the cache and origin devices.  Clone the bio and send them in parallel.
825  */
826 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
827 				      dm_oblock_t oblock, dm_cblock_t cblock)
828 {
829 	struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
830 						 GFP_NOIO, &cache->bs);
831 
832 	BUG_ON(!origin_bio);
833 
834 	bio_chain(origin_bio, bio);
835 
836 	if (bio_data_dir(origin_bio) == WRITE)
837 		clear_discard(cache, oblock_to_dblock(cache, oblock));
838 	submit_bio(origin_bio);
839 
840 	remap_to_cache(cache, bio, cblock);
841 }
842 
843 /*
844  *--------------------------------------------------------------
845  * Failure modes
846  *--------------------------------------------------------------
847  */
848 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
849 {
850 	return cache->features.mode;
851 }
852 
853 static const char *cache_device_name(struct cache *cache)
854 {
855 	return dm_table_device_name(cache->ti->table);
856 }
857 
858 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
859 {
860 	static const char *descs[] = {
861 		"write",
862 		"read-only",
863 		"fail"
864 	};
865 
866 	dm_table_event(cache->ti->table);
867 	DMINFO("%s: switching cache to %s mode",
868 	       cache_device_name(cache), descs[(int)mode]);
869 }
870 
871 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
872 {
873 	bool needs_check;
874 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
875 
876 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
877 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
878 		      cache_device_name(cache));
879 		new_mode = CM_FAIL;
880 	}
881 
882 	if (new_mode == CM_WRITE && needs_check) {
883 		DMERR("%s: unable to switch cache to write mode until repaired.",
884 		      cache_device_name(cache));
885 		if (old_mode != new_mode)
886 			new_mode = old_mode;
887 		else
888 			new_mode = CM_READ_ONLY;
889 	}
890 
891 	/* Never move out of fail mode */
892 	if (old_mode == CM_FAIL)
893 		new_mode = CM_FAIL;
894 
895 	switch (new_mode) {
896 	case CM_FAIL:
897 	case CM_READ_ONLY:
898 		dm_cache_metadata_set_read_only(cache->cmd);
899 		break;
900 
901 	case CM_WRITE:
902 		dm_cache_metadata_set_read_write(cache->cmd);
903 		break;
904 	}
905 
906 	cache->features.mode = new_mode;
907 
908 	if (new_mode != old_mode)
909 		notify_mode_switch(cache, new_mode);
910 }
911 
912 static void abort_transaction(struct cache *cache)
913 {
914 	const char *dev_name = cache_device_name(cache);
915 
916 	if (get_cache_mode(cache) >= CM_READ_ONLY)
917 		return;
918 
919 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
920 	if (dm_cache_metadata_abort(cache->cmd)) {
921 		DMERR("%s: failed to abort metadata transaction", dev_name);
922 		set_cache_mode(cache, CM_FAIL);
923 	}
924 
925 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
926 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
927 		set_cache_mode(cache, CM_FAIL);
928 	}
929 }
930 
931 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
932 {
933 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
934 		    cache_device_name(cache), op, r);
935 	abort_transaction(cache);
936 	set_cache_mode(cache, CM_READ_ONLY);
937 }
938 
939 /*----------------------------------------------------------------*/
940 
941 static void load_stats(struct cache *cache)
942 {
943 	struct dm_cache_statistics stats;
944 
945 	dm_cache_metadata_get_stats(cache->cmd, &stats);
946 	atomic_set(&cache->stats.read_hit, stats.read_hits);
947 	atomic_set(&cache->stats.read_miss, stats.read_misses);
948 	atomic_set(&cache->stats.write_hit, stats.write_hits);
949 	atomic_set(&cache->stats.write_miss, stats.write_misses);
950 }
951 
952 static void save_stats(struct cache *cache)
953 {
954 	struct dm_cache_statistics stats;
955 
956 	if (get_cache_mode(cache) >= CM_READ_ONLY)
957 		return;
958 
959 	stats.read_hits = atomic_read(&cache->stats.read_hit);
960 	stats.read_misses = atomic_read(&cache->stats.read_miss);
961 	stats.write_hits = atomic_read(&cache->stats.write_hit);
962 	stats.write_misses = atomic_read(&cache->stats.write_miss);
963 
964 	dm_cache_metadata_set_stats(cache->cmd, &stats);
965 }
966 
967 static void update_stats(struct cache_stats *stats, enum policy_operation op)
968 {
969 	switch (op) {
970 	case POLICY_PROMOTE:
971 		atomic_inc(&stats->promotion);
972 		break;
973 
974 	case POLICY_DEMOTE:
975 		atomic_inc(&stats->demotion);
976 		break;
977 
978 	case POLICY_WRITEBACK:
979 		atomic_inc(&stats->writeback);
980 		break;
981 	}
982 }
983 
984 /*
985  *---------------------------------------------------------------------
986  * Migration processing
987  *
988  * Migration covers moving data from the origin device to the cache, or
989  * vice versa.
990  *---------------------------------------------------------------------
991  */
992 static void inc_io_migrations(struct cache *cache)
993 {
994 	atomic_inc(&cache->nr_io_migrations);
995 }
996 
997 static void dec_io_migrations(struct cache *cache)
998 {
999 	atomic_dec(&cache->nr_io_migrations);
1000 }
1001 
1002 static bool discard_or_flush(struct bio *bio)
1003 {
1004 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1005 }
1006 
1007 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1008 				     dm_dblock_t *b, dm_dblock_t *e)
1009 {
1010 	sector_t sb = bio->bi_iter.bi_sector;
1011 	sector_t se = bio_end_sector(bio);
1012 
1013 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1014 
1015 	if (se - sb < cache->discard_block_size)
1016 		*e = *b;
1017 	else
1018 		*e = to_dblock(block_div(se, cache->discard_block_size));
1019 }
1020 
1021 /*----------------------------------------------------------------*/
1022 
1023 static void prevent_background_work(struct cache *cache)
1024 {
1025 	lockdep_off();
1026 	down_write(&cache->background_work_lock);
1027 	lockdep_on();
1028 }
1029 
1030 static void allow_background_work(struct cache *cache)
1031 {
1032 	lockdep_off();
1033 	up_write(&cache->background_work_lock);
1034 	lockdep_on();
1035 }
1036 
1037 static bool background_work_begin(struct cache *cache)
1038 {
1039 	bool r;
1040 
1041 	lockdep_off();
1042 	r = down_read_trylock(&cache->background_work_lock);
1043 	lockdep_on();
1044 
1045 	return r;
1046 }
1047 
1048 static void background_work_end(struct cache *cache)
1049 {
1050 	lockdep_off();
1051 	up_read(&cache->background_work_lock);
1052 	lockdep_on();
1053 }
1054 
1055 /*----------------------------------------------------------------*/
1056 
1057 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1058 {
1059 	return (bio_data_dir(bio) == WRITE) &&
1060 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1061 }
1062 
1063 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1064 {
1065 	return writeback_mode(cache) &&
1066 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1067 }
1068 
1069 static void quiesce(struct dm_cache_migration *mg,
1070 		    void (*continuation)(struct work_struct *))
1071 {
1072 	init_continuation(&mg->k, continuation);
1073 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1074 }
1075 
1076 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1077 {
1078 	struct continuation *k = container_of(ws, struct continuation, ws);
1079 
1080 	return container_of(k, struct dm_cache_migration, k);
1081 }
1082 
1083 static void copy_complete(int read_err, unsigned long write_err, void *context)
1084 {
1085 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1086 
1087 	if (read_err || write_err)
1088 		mg->k.input = BLK_STS_IOERR;
1089 
1090 	queue_continuation(mg->cache->wq, &mg->k);
1091 }
1092 
1093 static void copy(struct dm_cache_migration *mg, bool promote)
1094 {
1095 	struct dm_io_region o_region, c_region;
1096 	struct cache *cache = mg->cache;
1097 
1098 	o_region.bdev = cache->origin_dev->bdev;
1099 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1100 	o_region.count = cache->sectors_per_block;
1101 
1102 	c_region.bdev = cache->cache_dev->bdev;
1103 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1104 	c_region.count = cache->sectors_per_block;
1105 
1106 	if (promote)
1107 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1108 	else
1109 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1110 }
1111 
1112 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1113 {
1114 	struct per_bio_data *pb = get_per_bio_data(bio);
1115 
1116 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1117 		free_prison_cell(cache, pb->cell);
1118 	pb->cell = NULL;
1119 }
1120 
1121 static void overwrite_endio(struct bio *bio)
1122 {
1123 	struct dm_cache_migration *mg = bio->bi_private;
1124 	struct cache *cache = mg->cache;
1125 	struct per_bio_data *pb = get_per_bio_data(bio);
1126 
1127 	dm_unhook_bio(&pb->hook_info, bio);
1128 
1129 	if (bio->bi_status)
1130 		mg->k.input = bio->bi_status;
1131 
1132 	queue_continuation(cache->wq, &mg->k);
1133 }
1134 
1135 static void overwrite(struct dm_cache_migration *mg,
1136 		      void (*continuation)(struct work_struct *))
1137 {
1138 	struct bio *bio = mg->overwrite_bio;
1139 	struct per_bio_data *pb = get_per_bio_data(bio);
1140 
1141 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1142 
1143 	/*
1144 	 * The overwrite bio is part of the copy operation, as such it does
1145 	 * not set/clear discard or dirty flags.
1146 	 */
1147 	if (mg->op->op == POLICY_PROMOTE)
1148 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1149 	else
1150 		remap_to_origin(mg->cache, bio);
1151 
1152 	init_continuation(&mg->k, continuation);
1153 	accounted_request(mg->cache, bio);
1154 }
1155 
1156 /*
1157  * Migration steps:
1158  *
1159  * 1) exclusive lock preventing WRITEs
1160  * 2) quiesce
1161  * 3) copy or issue overwrite bio
1162  * 4) upgrade to exclusive lock preventing READs and WRITEs
1163  * 5) quiesce
1164  * 6) update metadata and commit
1165  * 7) unlock
1166  */
1167 static void mg_complete(struct dm_cache_migration *mg, bool success)
1168 {
1169 	struct bio_list bios;
1170 	struct cache *cache = mg->cache;
1171 	struct policy_work *op = mg->op;
1172 	dm_cblock_t cblock = op->cblock;
1173 
1174 	if (success)
1175 		update_stats(&cache->stats, op->op);
1176 
1177 	switch (op->op) {
1178 	case POLICY_PROMOTE:
1179 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1180 		policy_complete_background_work(cache->policy, op, success);
1181 
1182 		if (mg->overwrite_bio) {
1183 			if (success)
1184 				force_set_dirty(cache, cblock);
1185 			else if (mg->k.input)
1186 				mg->overwrite_bio->bi_status = mg->k.input;
1187 			else
1188 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1189 			bio_endio(mg->overwrite_bio);
1190 		} else {
1191 			if (success)
1192 				force_clear_dirty(cache, cblock);
1193 			dec_io_migrations(cache);
1194 		}
1195 		break;
1196 
1197 	case POLICY_DEMOTE:
1198 		/*
1199 		 * We clear dirty here to update the nr_dirty counter.
1200 		 */
1201 		if (success)
1202 			force_clear_dirty(cache, cblock);
1203 		policy_complete_background_work(cache->policy, op, success);
1204 		dec_io_migrations(cache);
1205 		break;
1206 
1207 	case POLICY_WRITEBACK:
1208 		if (success)
1209 			force_clear_dirty(cache, cblock);
1210 		policy_complete_background_work(cache->policy, op, success);
1211 		dec_io_migrations(cache);
1212 		break;
1213 	}
1214 
1215 	bio_list_init(&bios);
1216 	if (mg->cell) {
1217 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1218 			free_prison_cell(cache, mg->cell);
1219 	}
1220 
1221 	free_migration(mg);
1222 	defer_bios(cache, &bios);
1223 	wake_migration_worker(cache);
1224 
1225 	background_work_end(cache);
1226 }
1227 
1228 static void mg_success(struct work_struct *ws)
1229 {
1230 	struct dm_cache_migration *mg = ws_to_mg(ws);
1231 
1232 	mg_complete(mg, mg->k.input == 0);
1233 }
1234 
1235 static void mg_update_metadata(struct work_struct *ws)
1236 {
1237 	int r;
1238 	struct dm_cache_migration *mg = ws_to_mg(ws);
1239 	struct cache *cache = mg->cache;
1240 	struct policy_work *op = mg->op;
1241 
1242 	switch (op->op) {
1243 	case POLICY_PROMOTE:
1244 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1245 		if (r) {
1246 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1247 				    cache_device_name(cache));
1248 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1249 
1250 			mg_complete(mg, false);
1251 			return;
1252 		}
1253 		mg_complete(mg, true);
1254 		break;
1255 
1256 	case POLICY_DEMOTE:
1257 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1258 		if (r) {
1259 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1260 				    cache_device_name(cache));
1261 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1262 
1263 			mg_complete(mg, false);
1264 			return;
1265 		}
1266 
1267 		/*
1268 		 * It would be nice if we only had to commit when a REQ_FLUSH
1269 		 * comes through.  But there's one scenario that we have to
1270 		 * look out for:
1271 		 *
1272 		 * - vblock x in a cache block
1273 		 * - domotion occurs
1274 		 * - cache block gets reallocated and over written
1275 		 * - crash
1276 		 *
1277 		 * When we recover, because there was no commit the cache will
1278 		 * rollback to having the data for vblock x in the cache block.
1279 		 * But the cache block has since been overwritten, so it'll end
1280 		 * up pointing to data that was never in 'x' during the history
1281 		 * of the device.
1282 		 *
1283 		 * To avoid this issue we require a commit as part of the
1284 		 * demotion operation.
1285 		 */
1286 		init_continuation(&mg->k, mg_success);
1287 		continue_after_commit(&cache->committer, &mg->k);
1288 		schedule_commit(&cache->committer);
1289 		break;
1290 
1291 	case POLICY_WRITEBACK:
1292 		mg_complete(mg, true);
1293 		break;
1294 	}
1295 }
1296 
1297 static void mg_update_metadata_after_copy(struct work_struct *ws)
1298 {
1299 	struct dm_cache_migration *mg = ws_to_mg(ws);
1300 
1301 	/*
1302 	 * Did the copy succeed?
1303 	 */
1304 	if (mg->k.input)
1305 		mg_complete(mg, false);
1306 	else
1307 		mg_update_metadata(ws);
1308 }
1309 
1310 static void mg_upgrade_lock(struct work_struct *ws)
1311 {
1312 	int r;
1313 	struct dm_cache_migration *mg = ws_to_mg(ws);
1314 
1315 	/*
1316 	 * Did the copy succeed?
1317 	 */
1318 	if (mg->k.input)
1319 		mg_complete(mg, false);
1320 
1321 	else {
1322 		/*
1323 		 * Now we want the lock to prevent both reads and writes.
1324 		 */
1325 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1326 					    READ_WRITE_LOCK_LEVEL);
1327 		if (r < 0)
1328 			mg_complete(mg, false);
1329 
1330 		else if (r)
1331 			quiesce(mg, mg_update_metadata);
1332 
1333 		else
1334 			mg_update_metadata(ws);
1335 	}
1336 }
1337 
1338 static void mg_full_copy(struct work_struct *ws)
1339 {
1340 	struct dm_cache_migration *mg = ws_to_mg(ws);
1341 	struct cache *cache = mg->cache;
1342 	struct policy_work *op = mg->op;
1343 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1344 
1345 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1346 	    is_discarded_oblock(cache, op->oblock)) {
1347 		mg_upgrade_lock(ws);
1348 		return;
1349 	}
1350 
1351 	init_continuation(&mg->k, mg_upgrade_lock);
1352 	copy(mg, is_policy_promote);
1353 }
1354 
1355 static void mg_copy(struct work_struct *ws)
1356 {
1357 	struct dm_cache_migration *mg = ws_to_mg(ws);
1358 
1359 	if (mg->overwrite_bio) {
1360 		/*
1361 		 * No exclusive lock was held when we last checked if the bio
1362 		 * was optimisable.  So we have to check again in case things
1363 		 * have changed (eg, the block may no longer be discarded).
1364 		 */
1365 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1366 			/*
1367 			 * Fallback to a real full copy after doing some tidying up.
1368 			 */
1369 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1370 
1371 			BUG_ON(rb); /* An exclusive lock must _not_ be held for this block */
1372 			mg->overwrite_bio = NULL;
1373 			inc_io_migrations(mg->cache);
1374 			mg_full_copy(ws);
1375 			return;
1376 		}
1377 
1378 		/*
1379 		 * It's safe to do this here, even though it's new data
1380 		 * because all IO has been locked out of the block.
1381 		 *
1382 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1383 		 * so _not_ using mg_upgrade_lock() as continutation.
1384 		 */
1385 		overwrite(mg, mg_update_metadata_after_copy);
1386 
1387 	} else
1388 		mg_full_copy(ws);
1389 }
1390 
1391 static int mg_lock_writes(struct dm_cache_migration *mg)
1392 {
1393 	int r;
1394 	struct dm_cell_key_v2 key;
1395 	struct cache *cache = mg->cache;
1396 	struct dm_bio_prison_cell_v2 *prealloc;
1397 
1398 	prealloc = alloc_prison_cell(cache);
1399 
1400 	/*
1401 	 * Prevent writes to the block, but allow reads to continue.
1402 	 * Unless we're using an overwrite bio, in which case we lock
1403 	 * everything.
1404 	 */
1405 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1406 	r = dm_cell_lock_v2(cache->prison, &key,
1407 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1408 			    prealloc, &mg->cell);
1409 	if (r < 0) {
1410 		free_prison_cell(cache, prealloc);
1411 		mg_complete(mg, false);
1412 		return r;
1413 	}
1414 
1415 	if (mg->cell != prealloc)
1416 		free_prison_cell(cache, prealloc);
1417 
1418 	if (r == 0)
1419 		mg_copy(&mg->k.ws);
1420 	else
1421 		quiesce(mg, mg_copy);
1422 
1423 	return 0;
1424 }
1425 
1426 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1427 {
1428 	struct dm_cache_migration *mg;
1429 
1430 	if (!background_work_begin(cache)) {
1431 		policy_complete_background_work(cache->policy, op, false);
1432 		return -EPERM;
1433 	}
1434 
1435 	mg = alloc_migration(cache);
1436 
1437 	mg->op = op;
1438 	mg->overwrite_bio = bio;
1439 
1440 	if (!bio)
1441 		inc_io_migrations(cache);
1442 
1443 	return mg_lock_writes(mg);
1444 }
1445 
1446 /*
1447  *--------------------------------------------------------------
1448  * invalidation processing
1449  *--------------------------------------------------------------
1450  */
1451 
1452 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1453 {
1454 	struct bio_list bios;
1455 	struct cache *cache = mg->cache;
1456 
1457 	bio_list_init(&bios);
1458 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1459 		free_prison_cell(cache, mg->cell);
1460 
1461 	if (!success && mg->overwrite_bio)
1462 		bio_io_error(mg->overwrite_bio);
1463 
1464 	free_migration(mg);
1465 	defer_bios(cache, &bios);
1466 
1467 	background_work_end(cache);
1468 }
1469 
1470 static void invalidate_completed(struct work_struct *ws)
1471 {
1472 	struct dm_cache_migration *mg = ws_to_mg(ws);
1473 
1474 	invalidate_complete(mg, !mg->k.input);
1475 }
1476 
1477 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1478 {
1479 	int r;
1480 
1481 	r = policy_invalidate_mapping(cache->policy, cblock);
1482 	if (!r) {
1483 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1484 		if (r) {
1485 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1486 				    cache_device_name(cache));
1487 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1488 		}
1489 
1490 	} else if (r == -ENODATA) {
1491 		/*
1492 		 * Harmless, already unmapped.
1493 		 */
1494 		r = 0;
1495 
1496 	} else
1497 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1498 
1499 	return r;
1500 }
1501 
1502 static void invalidate_remove(struct work_struct *ws)
1503 {
1504 	int r;
1505 	struct dm_cache_migration *mg = ws_to_mg(ws);
1506 	struct cache *cache = mg->cache;
1507 
1508 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1509 	if (r) {
1510 		invalidate_complete(mg, false);
1511 		return;
1512 	}
1513 
1514 	init_continuation(&mg->k, invalidate_completed);
1515 	continue_after_commit(&cache->committer, &mg->k);
1516 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1517 	mg->overwrite_bio = NULL;
1518 	schedule_commit(&cache->committer);
1519 }
1520 
1521 static int invalidate_lock(struct dm_cache_migration *mg)
1522 {
1523 	int r;
1524 	struct dm_cell_key_v2 key;
1525 	struct cache *cache = mg->cache;
1526 	struct dm_bio_prison_cell_v2 *prealloc;
1527 
1528 	prealloc = alloc_prison_cell(cache);
1529 
1530 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1531 	r = dm_cell_lock_v2(cache->prison, &key,
1532 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1533 	if (r < 0) {
1534 		free_prison_cell(cache, prealloc);
1535 		invalidate_complete(mg, false);
1536 		return r;
1537 	}
1538 
1539 	if (mg->cell != prealloc)
1540 		free_prison_cell(cache, prealloc);
1541 
1542 	if (r)
1543 		quiesce(mg, invalidate_remove);
1544 
1545 	else {
1546 		/*
1547 		 * We can't call invalidate_remove() directly here because we
1548 		 * might still be in request context.
1549 		 */
1550 		init_continuation(&mg->k, invalidate_remove);
1551 		queue_work(cache->wq, &mg->k.ws);
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1558 			    dm_oblock_t oblock, struct bio *bio)
1559 {
1560 	struct dm_cache_migration *mg;
1561 
1562 	if (!background_work_begin(cache))
1563 		return -EPERM;
1564 
1565 	mg = alloc_migration(cache);
1566 
1567 	mg->overwrite_bio = bio;
1568 	mg->invalidate_cblock = cblock;
1569 	mg->invalidate_oblock = oblock;
1570 
1571 	return invalidate_lock(mg);
1572 }
1573 
1574 /*
1575  *--------------------------------------------------------------
1576  * bio processing
1577  *--------------------------------------------------------------
1578  */
1579 
1580 enum busy {
1581 	IDLE,
1582 	BUSY
1583 };
1584 
1585 static enum busy spare_migration_bandwidth(struct cache *cache)
1586 {
1587 	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1588 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1589 		cache->sectors_per_block;
1590 
1591 	if (idle && current_volume <= cache->migration_threshold)
1592 		return IDLE;
1593 	else
1594 		return BUSY;
1595 }
1596 
1597 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1598 {
1599 	atomic_inc(bio_data_dir(bio) == READ ?
1600 		   &cache->stats.read_hit : &cache->stats.write_hit);
1601 }
1602 
1603 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1604 {
1605 	atomic_inc(bio_data_dir(bio) == READ ?
1606 		   &cache->stats.read_miss : &cache->stats.write_miss);
1607 }
1608 
1609 /*----------------------------------------------------------------*/
1610 
1611 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1612 		   bool *commit_needed)
1613 {
1614 	int r, data_dir;
1615 	bool rb, background_queued;
1616 	dm_cblock_t cblock;
1617 
1618 	*commit_needed = false;
1619 
1620 	rb = bio_detain_shared(cache, block, bio);
1621 	if (!rb) {
1622 		/*
1623 		 * An exclusive lock is held for this block, so we have to
1624 		 * wait.  We set the commit_needed flag so the current
1625 		 * transaction will be committed asap, allowing this lock
1626 		 * to be dropped.
1627 		 */
1628 		*commit_needed = true;
1629 		return DM_MAPIO_SUBMITTED;
1630 	}
1631 
1632 	data_dir = bio_data_dir(bio);
1633 
1634 	if (optimisable_bio(cache, bio, block)) {
1635 		struct policy_work *op = NULL;
1636 
1637 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1638 		if (unlikely(r && r != -ENOENT)) {
1639 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1640 				    cache_device_name(cache), r);
1641 			bio_io_error(bio);
1642 			return DM_MAPIO_SUBMITTED;
1643 		}
1644 
1645 		if (r == -ENOENT && op) {
1646 			bio_drop_shared_lock(cache, bio);
1647 			BUG_ON(op->op != POLICY_PROMOTE);
1648 			mg_start(cache, op, bio);
1649 			return DM_MAPIO_SUBMITTED;
1650 		}
1651 	} else {
1652 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1653 		if (unlikely(r && r != -ENOENT)) {
1654 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1655 				    cache_device_name(cache), r);
1656 			bio_io_error(bio);
1657 			return DM_MAPIO_SUBMITTED;
1658 		}
1659 
1660 		if (background_queued)
1661 			wake_migration_worker(cache);
1662 	}
1663 
1664 	if (r == -ENOENT) {
1665 		struct per_bio_data *pb = get_per_bio_data(bio);
1666 
1667 		/*
1668 		 * Miss.
1669 		 */
1670 		inc_miss_counter(cache, bio);
1671 		if (pb->req_nr == 0) {
1672 			accounted_begin(cache, bio);
1673 			remap_to_origin_clear_discard(cache, bio, block);
1674 		} else {
1675 			/*
1676 			 * This is a duplicate writethrough io that is no
1677 			 * longer needed because the block has been demoted.
1678 			 */
1679 			bio_endio(bio);
1680 			return DM_MAPIO_SUBMITTED;
1681 		}
1682 	} else {
1683 		/*
1684 		 * Hit.
1685 		 */
1686 		inc_hit_counter(cache, bio);
1687 
1688 		/*
1689 		 * Passthrough always maps to the origin, invalidating any
1690 		 * cache blocks that are written to.
1691 		 */
1692 		if (passthrough_mode(cache)) {
1693 			if (bio_data_dir(bio) == WRITE) {
1694 				bio_drop_shared_lock(cache, bio);
1695 				atomic_inc(&cache->stats.demotion);
1696 				invalidate_start(cache, cblock, block, bio);
1697 			} else
1698 				remap_to_origin_clear_discard(cache, bio, block);
1699 		} else {
1700 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1701 			    !is_dirty(cache, cblock)) {
1702 				remap_to_origin_and_cache(cache, bio, block, cblock);
1703 				accounted_begin(cache, bio);
1704 			} else
1705 				remap_to_cache_dirty(cache, bio, block, cblock);
1706 		}
1707 	}
1708 
1709 	/*
1710 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1711 	 */
1712 	if (bio->bi_opf & REQ_FUA) {
1713 		/*
1714 		 * issue_after_commit will call accounted_begin a second time.  So
1715 		 * we call accounted_complete() to avoid double accounting.
1716 		 */
1717 		accounted_complete(cache, bio);
1718 		issue_after_commit(&cache->committer, bio);
1719 		*commit_needed = true;
1720 		return DM_MAPIO_SUBMITTED;
1721 	}
1722 
1723 	return DM_MAPIO_REMAPPED;
1724 }
1725 
1726 static bool process_bio(struct cache *cache, struct bio *bio)
1727 {
1728 	bool commit_needed;
1729 
1730 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1731 		dm_submit_bio_remap(bio, NULL);
1732 
1733 	return commit_needed;
1734 }
1735 
1736 /*
1737  * A non-zero return indicates read_only or fail_io mode.
1738  */
1739 static int commit(struct cache *cache, bool clean_shutdown)
1740 {
1741 	int r;
1742 
1743 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1744 		return -EINVAL;
1745 
1746 	atomic_inc(&cache->stats.commit_count);
1747 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1748 	if (r)
1749 		metadata_operation_failed(cache, "dm_cache_commit", r);
1750 
1751 	return r;
1752 }
1753 
1754 /*
1755  * Used by the batcher.
1756  */
1757 static blk_status_t commit_op(void *context)
1758 {
1759 	struct cache *cache = context;
1760 
1761 	if (dm_cache_changed_this_transaction(cache->cmd))
1762 		return errno_to_blk_status(commit(cache, false));
1763 
1764 	return 0;
1765 }
1766 
1767 /*----------------------------------------------------------------*/
1768 
1769 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1770 {
1771 	struct per_bio_data *pb = get_per_bio_data(bio);
1772 
1773 	if (!pb->req_nr)
1774 		remap_to_origin(cache, bio);
1775 	else
1776 		remap_to_cache(cache, bio, 0);
1777 
1778 	issue_after_commit(&cache->committer, bio);
1779 	return true;
1780 }
1781 
1782 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1783 {
1784 	dm_dblock_t b, e;
1785 
1786 	/*
1787 	 * FIXME: do we need to lock the region?  Or can we just assume the
1788 	 * user wont be so foolish as to issue discard concurrently with
1789 	 * other IO?
1790 	 */
1791 	calc_discard_block_range(cache, bio, &b, &e);
1792 	while (b != e) {
1793 		set_discard(cache, b);
1794 		b = to_dblock(from_dblock(b) + 1);
1795 	}
1796 
1797 	if (cache->features.discard_passdown) {
1798 		remap_to_origin(cache, bio);
1799 		dm_submit_bio_remap(bio, NULL);
1800 	} else
1801 		bio_endio(bio);
1802 
1803 	return false;
1804 }
1805 
1806 static void process_deferred_bios(struct work_struct *ws)
1807 {
1808 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1809 
1810 	bool commit_needed = false;
1811 	struct bio_list bios;
1812 	struct bio *bio;
1813 
1814 	bio_list_init(&bios);
1815 
1816 	spin_lock_irq(&cache->lock);
1817 	bio_list_merge_init(&bios, &cache->deferred_bios);
1818 	spin_unlock_irq(&cache->lock);
1819 
1820 	while ((bio = bio_list_pop(&bios))) {
1821 		if (bio->bi_opf & REQ_PREFLUSH)
1822 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1823 
1824 		else if (bio_op(bio) == REQ_OP_DISCARD)
1825 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1826 
1827 		else
1828 			commit_needed = process_bio(cache, bio) || commit_needed;
1829 		cond_resched();
1830 	}
1831 
1832 	if (commit_needed)
1833 		schedule_commit(&cache->committer);
1834 }
1835 
1836 /*
1837  *--------------------------------------------------------------
1838  * Main worker loop
1839  *--------------------------------------------------------------
1840  */
1841 static void requeue_deferred_bios(struct cache *cache)
1842 {
1843 	struct bio *bio;
1844 	struct bio_list bios;
1845 
1846 	bio_list_init(&bios);
1847 	bio_list_merge_init(&bios, &cache->deferred_bios);
1848 
1849 	while ((bio = bio_list_pop(&bios))) {
1850 		bio->bi_status = BLK_STS_DM_REQUEUE;
1851 		bio_endio(bio);
1852 		cond_resched();
1853 	}
1854 }
1855 
1856 /*
1857  * We want to commit periodically so that not too much
1858  * unwritten metadata builds up.
1859  */
1860 static void do_waker(struct work_struct *ws)
1861 {
1862 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1863 
1864 	policy_tick(cache->policy, true);
1865 	wake_migration_worker(cache);
1866 	schedule_commit(&cache->committer);
1867 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1868 }
1869 
1870 static void check_migrations(struct work_struct *ws)
1871 {
1872 	int r;
1873 	struct policy_work *op;
1874 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1875 	enum busy b;
1876 
1877 	for (;;) {
1878 		b = spare_migration_bandwidth(cache);
1879 
1880 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1881 		if (r == -ENODATA)
1882 			break;
1883 
1884 		if (r) {
1885 			DMERR_LIMIT("%s: policy_background_work failed",
1886 				    cache_device_name(cache));
1887 			break;
1888 		}
1889 
1890 		r = mg_start(cache, op, NULL);
1891 		if (r)
1892 			break;
1893 
1894 		cond_resched();
1895 	}
1896 }
1897 
1898 /*
1899  *--------------------------------------------------------------
1900  * Target methods
1901  *--------------------------------------------------------------
1902  */
1903 
1904 /*
1905  * This function gets called on the error paths of the constructor, so we
1906  * have to cope with a partially initialised struct.
1907  */
1908 static void destroy(struct cache *cache)
1909 {
1910 	unsigned int i;
1911 
1912 	mempool_exit(&cache->migration_pool);
1913 
1914 	if (cache->prison)
1915 		dm_bio_prison_destroy_v2(cache->prison);
1916 
1917 	cancel_delayed_work_sync(&cache->waker);
1918 	if (cache->wq)
1919 		destroy_workqueue(cache->wq);
1920 
1921 	if (cache->dirty_bitset)
1922 		free_bitset(cache->dirty_bitset);
1923 
1924 	if (cache->discard_bitset)
1925 		free_bitset(cache->discard_bitset);
1926 
1927 	if (cache->copier)
1928 		dm_kcopyd_client_destroy(cache->copier);
1929 
1930 	if (cache->cmd)
1931 		dm_cache_metadata_close(cache->cmd);
1932 
1933 	if (cache->metadata_dev)
1934 		dm_put_device(cache->ti, cache->metadata_dev);
1935 
1936 	if (cache->origin_dev)
1937 		dm_put_device(cache->ti, cache->origin_dev);
1938 
1939 	if (cache->cache_dev)
1940 		dm_put_device(cache->ti, cache->cache_dev);
1941 
1942 	if (cache->policy)
1943 		dm_cache_policy_destroy(cache->policy);
1944 
1945 	for (i = 0; i < cache->nr_ctr_args ; i++)
1946 		kfree(cache->ctr_args[i]);
1947 	kfree(cache->ctr_args);
1948 
1949 	bioset_exit(&cache->bs);
1950 
1951 	kfree(cache);
1952 }
1953 
1954 static void cache_dtr(struct dm_target *ti)
1955 {
1956 	struct cache *cache = ti->private;
1957 
1958 	destroy(cache);
1959 }
1960 
1961 static sector_t get_dev_size(struct dm_dev *dev)
1962 {
1963 	return bdev_nr_sectors(dev->bdev);
1964 }
1965 
1966 /*----------------------------------------------------------------*/
1967 
1968 /*
1969  * Construct a cache device mapping.
1970  *
1971  * cache <metadata dev> <cache dev> <origin dev> <block size>
1972  *       <#feature args> [<feature arg>]*
1973  *       <policy> <#policy args> [<policy arg>]*
1974  *
1975  * metadata dev    : fast device holding the persistent metadata
1976  * cache dev	   : fast device holding cached data blocks
1977  * origin dev	   : slow device holding original data blocks
1978  * block size	   : cache unit size in sectors
1979  *
1980  * #feature args   : number of feature arguments passed
1981  * feature args    : writethrough.  (The default is writeback.)
1982  *
1983  * policy	   : the replacement policy to use
1984  * #policy args    : an even number of policy arguments corresponding
1985  *		     to key/value pairs passed to the policy
1986  * policy args	   : key/value pairs passed to the policy
1987  *		     E.g. 'sequential_threshold 1024'
1988  *		     See cache-policies.txt for details.
1989  *
1990  * Optional feature arguments are:
1991  *   writethrough  : write through caching that prohibits cache block
1992  *		     content from being different from origin block content.
1993  *		     Without this argument, the default behaviour is to write
1994  *		     back cache block contents later for performance reasons,
1995  *		     so they may differ from the corresponding origin blocks.
1996  */
1997 struct cache_args {
1998 	struct dm_target *ti;
1999 
2000 	struct dm_dev *metadata_dev;
2001 
2002 	struct dm_dev *cache_dev;
2003 	sector_t cache_sectors;
2004 
2005 	struct dm_dev *origin_dev;
2006 	sector_t origin_sectors;
2007 
2008 	uint32_t block_size;
2009 
2010 	const char *policy_name;
2011 	int policy_argc;
2012 	const char **policy_argv;
2013 
2014 	struct cache_features features;
2015 };
2016 
2017 static void destroy_cache_args(struct cache_args *ca)
2018 {
2019 	if (ca->metadata_dev)
2020 		dm_put_device(ca->ti, ca->metadata_dev);
2021 
2022 	if (ca->cache_dev)
2023 		dm_put_device(ca->ti, ca->cache_dev);
2024 
2025 	if (ca->origin_dev)
2026 		dm_put_device(ca->ti, ca->origin_dev);
2027 
2028 	kfree(ca);
2029 }
2030 
2031 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2032 {
2033 	if (!as->argc) {
2034 		*error = "Insufficient args";
2035 		return false;
2036 	}
2037 
2038 	return true;
2039 }
2040 
2041 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2042 			      char **error)
2043 {
2044 	int r;
2045 	sector_t metadata_dev_size;
2046 
2047 	if (!at_least_one_arg(as, error))
2048 		return -EINVAL;
2049 
2050 	r = dm_get_device(ca->ti, dm_shift_arg(as),
2051 			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2052 	if (r) {
2053 		*error = "Error opening metadata device";
2054 		return r;
2055 	}
2056 
2057 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2058 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2059 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2060 		       ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2061 
2062 	return 0;
2063 }
2064 
2065 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2066 			   char **error)
2067 {
2068 	int r;
2069 
2070 	if (!at_least_one_arg(as, error))
2071 		return -EINVAL;
2072 
2073 	r = dm_get_device(ca->ti, dm_shift_arg(as),
2074 			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2075 	if (r) {
2076 		*error = "Error opening cache device";
2077 		return r;
2078 	}
2079 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2080 
2081 	return 0;
2082 }
2083 
2084 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2085 			    char **error)
2086 {
2087 	int r;
2088 
2089 	if (!at_least_one_arg(as, error))
2090 		return -EINVAL;
2091 
2092 	r = dm_get_device(ca->ti, dm_shift_arg(as),
2093 			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2094 	if (r) {
2095 		*error = "Error opening origin device";
2096 		return r;
2097 	}
2098 
2099 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2100 	if (ca->ti->len > ca->origin_sectors) {
2101 		*error = "Device size larger than cached device";
2102 		return -EINVAL;
2103 	}
2104 
2105 	return 0;
2106 }
2107 
2108 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2109 			    char **error)
2110 {
2111 	unsigned long block_size;
2112 
2113 	if (!at_least_one_arg(as, error))
2114 		return -EINVAL;
2115 
2116 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2117 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2118 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2119 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2120 		*error = "Invalid data block size";
2121 		return -EINVAL;
2122 	}
2123 
2124 	if (block_size > ca->cache_sectors) {
2125 		*error = "Data block size is larger than the cache device";
2126 		return -EINVAL;
2127 	}
2128 
2129 	ca->block_size = block_size;
2130 
2131 	return 0;
2132 }
2133 
2134 static void init_features(struct cache_features *cf)
2135 {
2136 	cf->mode = CM_WRITE;
2137 	cf->io_mode = CM_IO_WRITEBACK;
2138 	cf->metadata_version = 1;
2139 	cf->discard_passdown = true;
2140 }
2141 
2142 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2143 			  char **error)
2144 {
2145 	static const struct dm_arg _args[] = {
2146 		{0, 3, "Invalid number of cache feature arguments"},
2147 	};
2148 
2149 	int r, mode_ctr = 0;
2150 	unsigned int argc;
2151 	const char *arg;
2152 	struct cache_features *cf = &ca->features;
2153 
2154 	init_features(cf);
2155 
2156 	r = dm_read_arg_group(_args, as, &argc, error);
2157 	if (r)
2158 		return -EINVAL;
2159 
2160 	while (argc--) {
2161 		arg = dm_shift_arg(as);
2162 
2163 		if (!strcasecmp(arg, "writeback")) {
2164 			cf->io_mode = CM_IO_WRITEBACK;
2165 			mode_ctr++;
2166 		}
2167 
2168 		else if (!strcasecmp(arg, "writethrough")) {
2169 			cf->io_mode = CM_IO_WRITETHROUGH;
2170 			mode_ctr++;
2171 		}
2172 
2173 		else if (!strcasecmp(arg, "passthrough")) {
2174 			cf->io_mode = CM_IO_PASSTHROUGH;
2175 			mode_ctr++;
2176 		}
2177 
2178 		else if (!strcasecmp(arg, "metadata2"))
2179 			cf->metadata_version = 2;
2180 
2181 		else if (!strcasecmp(arg, "no_discard_passdown"))
2182 			cf->discard_passdown = false;
2183 
2184 		else {
2185 			*error = "Unrecognised cache feature requested";
2186 			return -EINVAL;
2187 		}
2188 	}
2189 
2190 	if (mode_ctr > 1) {
2191 		*error = "Duplicate cache io_mode features requested";
2192 		return -EINVAL;
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2199 			char **error)
2200 {
2201 	static const struct dm_arg _args[] = {
2202 		{0, 1024, "Invalid number of policy arguments"},
2203 	};
2204 
2205 	int r;
2206 
2207 	if (!at_least_one_arg(as, error))
2208 		return -EINVAL;
2209 
2210 	ca->policy_name = dm_shift_arg(as);
2211 
2212 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2213 	if (r)
2214 		return -EINVAL;
2215 
2216 	ca->policy_argv = (const char **)as->argv;
2217 	dm_consume_args(as, ca->policy_argc);
2218 
2219 	return 0;
2220 }
2221 
2222 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2223 			    char **error)
2224 {
2225 	int r;
2226 	struct dm_arg_set as;
2227 
2228 	as.argc = argc;
2229 	as.argv = argv;
2230 
2231 	r = parse_metadata_dev(ca, &as, error);
2232 	if (r)
2233 		return r;
2234 
2235 	r = parse_cache_dev(ca, &as, error);
2236 	if (r)
2237 		return r;
2238 
2239 	r = parse_origin_dev(ca, &as, error);
2240 	if (r)
2241 		return r;
2242 
2243 	r = parse_block_size(ca, &as, error);
2244 	if (r)
2245 		return r;
2246 
2247 	r = parse_features(ca, &as, error);
2248 	if (r)
2249 		return r;
2250 
2251 	r = parse_policy(ca, &as, error);
2252 	if (r)
2253 		return r;
2254 
2255 	return 0;
2256 }
2257 
2258 /*----------------------------------------------------------------*/
2259 
2260 static struct kmem_cache *migration_cache;
2261 
2262 #define NOT_CORE_OPTION 1
2263 
2264 static int process_config_option(struct cache *cache, const char *key, const char *value)
2265 {
2266 	unsigned long tmp;
2267 
2268 	if (!strcasecmp(key, "migration_threshold")) {
2269 		if (kstrtoul(value, 10, &tmp))
2270 			return -EINVAL;
2271 
2272 		cache->migration_threshold = tmp;
2273 		return 0;
2274 	}
2275 
2276 	return NOT_CORE_OPTION;
2277 }
2278 
2279 static int set_config_value(struct cache *cache, const char *key, const char *value)
2280 {
2281 	int r = process_config_option(cache, key, value);
2282 
2283 	if (r == NOT_CORE_OPTION)
2284 		r = policy_set_config_value(cache->policy, key, value);
2285 
2286 	if (r)
2287 		DMWARN("bad config value for %s: %s", key, value);
2288 
2289 	return r;
2290 }
2291 
2292 static int set_config_values(struct cache *cache, int argc, const char **argv)
2293 {
2294 	int r = 0;
2295 
2296 	if (argc & 1) {
2297 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2298 		return -EINVAL;
2299 	}
2300 
2301 	while (argc) {
2302 		r = set_config_value(cache, argv[0], argv[1]);
2303 		if (r)
2304 			break;
2305 
2306 		argc -= 2;
2307 		argv += 2;
2308 	}
2309 
2310 	return r;
2311 }
2312 
2313 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2314 			       char **error)
2315 {
2316 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2317 							   cache->cache_size,
2318 							   cache->origin_sectors,
2319 							   cache->sectors_per_block);
2320 	if (IS_ERR(p)) {
2321 		*error = "Error creating cache's policy";
2322 		return PTR_ERR(p);
2323 	}
2324 	cache->policy = p;
2325 	BUG_ON(!cache->policy);
2326 
2327 	return 0;
2328 }
2329 
2330 /*
2331  * We want the discard block size to be at least the size of the cache
2332  * block size and have no more than 2^14 discard blocks across the origin.
2333  */
2334 #define MAX_DISCARD_BLOCKS (1 << 14)
2335 
2336 static bool too_many_discard_blocks(sector_t discard_block_size,
2337 				    sector_t origin_size)
2338 {
2339 	(void) sector_div(origin_size, discard_block_size);
2340 
2341 	return origin_size > MAX_DISCARD_BLOCKS;
2342 }
2343 
2344 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2345 					     sector_t origin_size)
2346 {
2347 	sector_t discard_block_size = cache_block_size;
2348 
2349 	if (origin_size)
2350 		while (too_many_discard_blocks(discard_block_size, origin_size))
2351 			discard_block_size *= 2;
2352 
2353 	return discard_block_size;
2354 }
2355 
2356 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2357 {
2358 	dm_block_t nr_blocks = from_cblock(size);
2359 
2360 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2361 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2362 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2363 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2364 			     (unsigned long long) nr_blocks);
2365 
2366 	cache->cache_size = size;
2367 }
2368 
2369 #define DEFAULT_MIGRATION_THRESHOLD 2048
2370 
2371 static int cache_create(struct cache_args *ca, struct cache **result)
2372 {
2373 	int r = 0;
2374 	char **error = &ca->ti->error;
2375 	struct cache *cache;
2376 	struct dm_target *ti = ca->ti;
2377 	dm_block_t origin_blocks;
2378 	struct dm_cache_metadata *cmd;
2379 	bool may_format = ca->features.mode == CM_WRITE;
2380 
2381 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2382 	if (!cache)
2383 		return -ENOMEM;
2384 
2385 	cache->ti = ca->ti;
2386 	ti->private = cache;
2387 	ti->accounts_remapped_io = true;
2388 	ti->num_flush_bios = 2;
2389 	ti->flush_supported = true;
2390 
2391 	ti->num_discard_bios = 1;
2392 	ti->discards_supported = true;
2393 
2394 	ti->per_io_data_size = sizeof(struct per_bio_data);
2395 
2396 	cache->features = ca->features;
2397 	if (writethrough_mode(cache)) {
2398 		/* Create bioset for writethrough bios issued to origin */
2399 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2400 		if (r)
2401 			goto bad;
2402 	}
2403 
2404 	cache->metadata_dev = ca->metadata_dev;
2405 	cache->origin_dev = ca->origin_dev;
2406 	cache->cache_dev = ca->cache_dev;
2407 
2408 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2409 
2410 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2411 	origin_blocks = block_div(origin_blocks, ca->block_size);
2412 	cache->origin_blocks = to_oblock(origin_blocks);
2413 
2414 	cache->sectors_per_block = ca->block_size;
2415 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2416 		r = -EINVAL;
2417 		goto bad;
2418 	}
2419 
2420 	if (ca->block_size & (ca->block_size - 1)) {
2421 		dm_block_t cache_size = ca->cache_sectors;
2422 
2423 		cache->sectors_per_block_shift = -1;
2424 		cache_size = block_div(cache_size, ca->block_size);
2425 		set_cache_size(cache, to_cblock(cache_size));
2426 	} else {
2427 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2428 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2429 	}
2430 
2431 	r = create_cache_policy(cache, ca, error);
2432 	if (r)
2433 		goto bad;
2434 
2435 	cache->policy_nr_args = ca->policy_argc;
2436 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2437 
2438 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2439 	if (r) {
2440 		*error = "Error setting cache policy's config values";
2441 		goto bad;
2442 	}
2443 
2444 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2445 				     ca->block_size, may_format,
2446 				     dm_cache_policy_get_hint_size(cache->policy),
2447 				     ca->features.metadata_version);
2448 	if (IS_ERR(cmd)) {
2449 		*error = "Error creating metadata object";
2450 		r = PTR_ERR(cmd);
2451 		goto bad;
2452 	}
2453 	cache->cmd = cmd;
2454 	set_cache_mode(cache, CM_WRITE);
2455 	if (get_cache_mode(cache) != CM_WRITE) {
2456 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2457 		r = -EINVAL;
2458 		goto bad;
2459 	}
2460 
2461 	if (passthrough_mode(cache)) {
2462 		bool all_clean;
2463 
2464 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2465 		if (r) {
2466 			*error = "dm_cache_metadata_all_clean() failed";
2467 			goto bad;
2468 		}
2469 
2470 		if (!all_clean) {
2471 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2472 			r = -EINVAL;
2473 			goto bad;
2474 		}
2475 
2476 		policy_allow_migrations(cache->policy, false);
2477 	}
2478 
2479 	spin_lock_init(&cache->lock);
2480 	bio_list_init(&cache->deferred_bios);
2481 	atomic_set(&cache->nr_allocated_migrations, 0);
2482 	atomic_set(&cache->nr_io_migrations, 0);
2483 	init_waitqueue_head(&cache->migration_wait);
2484 
2485 	r = -ENOMEM;
2486 	atomic_set(&cache->nr_dirty, 0);
2487 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2488 	if (!cache->dirty_bitset) {
2489 		*error = "could not allocate dirty bitset";
2490 		goto bad;
2491 	}
2492 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2493 
2494 	cache->discard_block_size =
2495 		calculate_discard_block_size(cache->sectors_per_block,
2496 					     cache->origin_sectors);
2497 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2498 							      cache->discard_block_size));
2499 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2500 	if (!cache->discard_bitset) {
2501 		*error = "could not allocate discard bitset";
2502 		goto bad;
2503 	}
2504 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2505 
2506 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2507 	if (IS_ERR(cache->copier)) {
2508 		*error = "could not create kcopyd client";
2509 		r = PTR_ERR(cache->copier);
2510 		goto bad;
2511 	}
2512 
2513 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2514 	if (!cache->wq) {
2515 		*error = "could not create workqueue for metadata object";
2516 		goto bad;
2517 	}
2518 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2519 	INIT_WORK(&cache->migration_worker, check_migrations);
2520 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2521 
2522 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2523 	if (!cache->prison) {
2524 		*error = "could not create bio prison";
2525 		goto bad;
2526 	}
2527 
2528 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2529 				   migration_cache);
2530 	if (r) {
2531 		*error = "Error creating cache's migration mempool";
2532 		goto bad;
2533 	}
2534 
2535 	cache->need_tick_bio = true;
2536 	cache->sized = false;
2537 	cache->invalidate = false;
2538 	cache->commit_requested = false;
2539 	cache->loaded_mappings = false;
2540 	cache->loaded_discards = false;
2541 
2542 	load_stats(cache);
2543 
2544 	atomic_set(&cache->stats.demotion, 0);
2545 	atomic_set(&cache->stats.promotion, 0);
2546 	atomic_set(&cache->stats.copies_avoided, 0);
2547 	atomic_set(&cache->stats.cache_cell_clash, 0);
2548 	atomic_set(&cache->stats.commit_count, 0);
2549 	atomic_set(&cache->stats.discard_count, 0);
2550 
2551 	spin_lock_init(&cache->invalidation_lock);
2552 	INIT_LIST_HEAD(&cache->invalidation_requests);
2553 
2554 	batcher_init(&cache->committer, commit_op, cache,
2555 		     issue_op, cache, cache->wq);
2556 	dm_iot_init(&cache->tracker);
2557 
2558 	init_rwsem(&cache->background_work_lock);
2559 	prevent_background_work(cache);
2560 
2561 	*result = cache;
2562 	return 0;
2563 bad:
2564 	destroy(cache);
2565 	return r;
2566 }
2567 
2568 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2569 {
2570 	unsigned int i;
2571 	const char **copy;
2572 
2573 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2574 	if (!copy)
2575 		return -ENOMEM;
2576 	for (i = 0; i < argc; i++) {
2577 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2578 		if (!copy[i]) {
2579 			while (i--)
2580 				kfree(copy[i]);
2581 			kfree(copy);
2582 			return -ENOMEM;
2583 		}
2584 	}
2585 
2586 	cache->nr_ctr_args = argc;
2587 	cache->ctr_args = copy;
2588 
2589 	return 0;
2590 }
2591 
2592 static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2593 {
2594 	int r = -EINVAL;
2595 	struct cache_args *ca;
2596 	struct cache *cache = NULL;
2597 
2598 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2599 	if (!ca) {
2600 		ti->error = "Error allocating memory for cache";
2601 		return -ENOMEM;
2602 	}
2603 	ca->ti = ti;
2604 
2605 	r = parse_cache_args(ca, argc, argv, &ti->error);
2606 	if (r)
2607 		goto out;
2608 
2609 	r = cache_create(ca, &cache);
2610 	if (r)
2611 		goto out;
2612 
2613 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2614 	if (r) {
2615 		destroy(cache);
2616 		goto out;
2617 	}
2618 
2619 	ti->private = cache;
2620 out:
2621 	destroy_cache_args(ca);
2622 	return r;
2623 }
2624 
2625 /*----------------------------------------------------------------*/
2626 
2627 static int cache_map(struct dm_target *ti, struct bio *bio)
2628 {
2629 	struct cache *cache = ti->private;
2630 
2631 	int r;
2632 	bool commit_needed;
2633 	dm_oblock_t block = get_bio_block(cache, bio);
2634 
2635 	init_per_bio_data(bio);
2636 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2637 		/*
2638 		 * This can only occur if the io goes to a partial block at
2639 		 * the end of the origin device.  We don't cache these.
2640 		 * Just remap to the origin and carry on.
2641 		 */
2642 		remap_to_origin(cache, bio);
2643 		accounted_begin(cache, bio);
2644 		return DM_MAPIO_REMAPPED;
2645 	}
2646 
2647 	if (discard_or_flush(bio)) {
2648 		defer_bio(cache, bio);
2649 		return DM_MAPIO_SUBMITTED;
2650 	}
2651 
2652 	r = map_bio(cache, bio, block, &commit_needed);
2653 	if (commit_needed)
2654 		schedule_commit(&cache->committer);
2655 
2656 	return r;
2657 }
2658 
2659 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2660 {
2661 	struct cache *cache = ti->private;
2662 	unsigned long flags;
2663 	struct per_bio_data *pb = get_per_bio_data(bio);
2664 
2665 	if (pb->tick) {
2666 		policy_tick(cache->policy, false);
2667 
2668 		spin_lock_irqsave(&cache->lock, flags);
2669 		cache->need_tick_bio = true;
2670 		spin_unlock_irqrestore(&cache->lock, flags);
2671 	}
2672 
2673 	bio_drop_shared_lock(cache, bio);
2674 	accounted_complete(cache, bio);
2675 
2676 	return DM_ENDIO_DONE;
2677 }
2678 
2679 static int write_dirty_bitset(struct cache *cache)
2680 {
2681 	int r;
2682 
2683 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2684 		return -EINVAL;
2685 
2686 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2687 	if (r)
2688 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2689 
2690 	return r;
2691 }
2692 
2693 static int write_discard_bitset(struct cache *cache)
2694 {
2695 	unsigned int i, r;
2696 
2697 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2698 		return -EINVAL;
2699 
2700 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2701 					   cache->discard_nr_blocks);
2702 	if (r) {
2703 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2704 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2705 		return r;
2706 	}
2707 
2708 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2709 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2710 					 is_discarded(cache, to_dblock(i)));
2711 		if (r) {
2712 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2713 			return r;
2714 		}
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 static int write_hints(struct cache *cache)
2721 {
2722 	int r;
2723 
2724 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2725 		return -EINVAL;
2726 
2727 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2728 	if (r) {
2729 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2730 		return r;
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 /*
2737  * returns true on success
2738  */
2739 static bool sync_metadata(struct cache *cache)
2740 {
2741 	int r1, r2, r3, r4;
2742 
2743 	r1 = write_dirty_bitset(cache);
2744 	if (r1)
2745 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2746 
2747 	r2 = write_discard_bitset(cache);
2748 	if (r2)
2749 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2750 
2751 	save_stats(cache);
2752 
2753 	r3 = write_hints(cache);
2754 	if (r3)
2755 		DMERR("%s: could not write hints", cache_device_name(cache));
2756 
2757 	/*
2758 	 * If writing the above metadata failed, we still commit, but don't
2759 	 * set the clean shutdown flag.  This will effectively force every
2760 	 * dirty bit to be set on reload.
2761 	 */
2762 	r4 = commit(cache, !r1 && !r2 && !r3);
2763 	if (r4)
2764 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2765 
2766 	return !r1 && !r2 && !r3 && !r4;
2767 }
2768 
2769 static void cache_postsuspend(struct dm_target *ti)
2770 {
2771 	struct cache *cache = ti->private;
2772 
2773 	prevent_background_work(cache);
2774 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2775 
2776 	cancel_delayed_work_sync(&cache->waker);
2777 	drain_workqueue(cache->wq);
2778 	WARN_ON(cache->tracker.in_flight);
2779 
2780 	/*
2781 	 * If it's a flush suspend there won't be any deferred bios, so this
2782 	 * call is harmless.
2783 	 */
2784 	requeue_deferred_bios(cache);
2785 
2786 	if (get_cache_mode(cache) == CM_WRITE)
2787 		(void) sync_metadata(cache);
2788 }
2789 
2790 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2791 			bool dirty, uint32_t hint, bool hint_valid)
2792 {
2793 	struct cache *cache = context;
2794 
2795 	if (dirty) {
2796 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2797 		atomic_inc(&cache->nr_dirty);
2798 	} else
2799 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2800 
2801 	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2802 }
2803 
2804 /*
2805  * The discard block size in the on disk metadata is not
2806  * necessarily the same as we're currently using.  So we have to
2807  * be careful to only set the discarded attribute if we know it
2808  * covers a complete block of the new size.
2809  */
2810 struct discard_load_info {
2811 	struct cache *cache;
2812 
2813 	/*
2814 	 * These blocks are sized using the on disk dblock size, rather
2815 	 * than the current one.
2816 	 */
2817 	dm_block_t block_size;
2818 	dm_block_t discard_begin, discard_end;
2819 };
2820 
2821 static void discard_load_info_init(struct cache *cache,
2822 				   struct discard_load_info *li)
2823 {
2824 	li->cache = cache;
2825 	li->discard_begin = li->discard_end = 0;
2826 }
2827 
2828 static void set_discard_range(struct discard_load_info *li)
2829 {
2830 	sector_t b, e;
2831 
2832 	if (li->discard_begin == li->discard_end)
2833 		return;
2834 
2835 	/*
2836 	 * Convert to sectors.
2837 	 */
2838 	b = li->discard_begin * li->block_size;
2839 	e = li->discard_end * li->block_size;
2840 
2841 	/*
2842 	 * Then convert back to the current dblock size.
2843 	 */
2844 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2845 	sector_div(e, li->cache->discard_block_size);
2846 
2847 	/*
2848 	 * The origin may have shrunk, so we need to check we're still in
2849 	 * bounds.
2850 	 */
2851 	if (e > from_dblock(li->cache->discard_nr_blocks))
2852 		e = from_dblock(li->cache->discard_nr_blocks);
2853 
2854 	for (; b < e; b++)
2855 		set_discard(li->cache, to_dblock(b));
2856 }
2857 
2858 static int load_discard(void *context, sector_t discard_block_size,
2859 			dm_dblock_t dblock, bool discard)
2860 {
2861 	struct discard_load_info *li = context;
2862 
2863 	li->block_size = discard_block_size;
2864 
2865 	if (discard) {
2866 		if (from_dblock(dblock) == li->discard_end)
2867 			/*
2868 			 * We're already in a discard range, just extend it.
2869 			 */
2870 			li->discard_end = li->discard_end + 1ULL;
2871 
2872 		else {
2873 			/*
2874 			 * Emit the old range and start a new one.
2875 			 */
2876 			set_discard_range(li);
2877 			li->discard_begin = from_dblock(dblock);
2878 			li->discard_end = li->discard_begin + 1ULL;
2879 		}
2880 	} else {
2881 		set_discard_range(li);
2882 		li->discard_begin = li->discard_end = 0;
2883 	}
2884 
2885 	return 0;
2886 }
2887 
2888 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2889 {
2890 	sector_t size = get_dev_size(cache->cache_dev);
2891 	(void) sector_div(size, cache->sectors_per_block);
2892 	return to_cblock(size);
2893 }
2894 
2895 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2896 {
2897 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2898 		if (cache->sized) {
2899 			DMERR("%s: unable to extend cache due to missing cache table reload",
2900 			      cache_device_name(cache));
2901 			return false;
2902 		}
2903 	}
2904 
2905 	/*
2906 	 * We can't drop a dirty block when shrinking the cache.
2907 	 */
2908 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2909 		new_size = to_cblock(from_cblock(new_size) + 1);
2910 		if (is_dirty(cache, new_size)) {
2911 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2912 			      cache_device_name(cache),
2913 			      (unsigned long long) from_cblock(new_size));
2914 			return false;
2915 		}
2916 	}
2917 
2918 	return true;
2919 }
2920 
2921 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2922 {
2923 	int r;
2924 
2925 	r = dm_cache_resize(cache->cmd, new_size);
2926 	if (r) {
2927 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2928 		metadata_operation_failed(cache, "dm_cache_resize", r);
2929 		return r;
2930 	}
2931 
2932 	set_cache_size(cache, new_size);
2933 
2934 	return 0;
2935 }
2936 
2937 static int cache_preresume(struct dm_target *ti)
2938 {
2939 	int r = 0;
2940 	struct cache *cache = ti->private;
2941 	dm_cblock_t csize = get_cache_dev_size(cache);
2942 
2943 	/*
2944 	 * Check to see if the cache has resized.
2945 	 */
2946 	if (!cache->sized) {
2947 		r = resize_cache_dev(cache, csize);
2948 		if (r)
2949 			return r;
2950 
2951 		cache->sized = true;
2952 
2953 	} else if (csize != cache->cache_size) {
2954 		if (!can_resize(cache, csize))
2955 			return -EINVAL;
2956 
2957 		r = resize_cache_dev(cache, csize);
2958 		if (r)
2959 			return r;
2960 	}
2961 
2962 	if (!cache->loaded_mappings) {
2963 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2964 					   load_mapping, cache);
2965 		if (r) {
2966 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2967 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2968 			return r;
2969 		}
2970 
2971 		cache->loaded_mappings = true;
2972 	}
2973 
2974 	if (!cache->loaded_discards) {
2975 		struct discard_load_info li;
2976 
2977 		/*
2978 		 * The discard bitset could have been resized, or the
2979 		 * discard block size changed.  To be safe we start by
2980 		 * setting every dblock to not discarded.
2981 		 */
2982 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2983 
2984 		discard_load_info_init(cache, &li);
2985 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2986 		if (r) {
2987 			DMERR("%s: could not load origin discards", cache_device_name(cache));
2988 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2989 			return r;
2990 		}
2991 		set_discard_range(&li);
2992 
2993 		cache->loaded_discards = true;
2994 	}
2995 
2996 	return r;
2997 }
2998 
2999 static void cache_resume(struct dm_target *ti)
3000 {
3001 	struct cache *cache = ti->private;
3002 
3003 	cache->need_tick_bio = true;
3004 	allow_background_work(cache);
3005 	do_waker(&cache->waker.work);
3006 }
3007 
3008 static void emit_flags(struct cache *cache, char *result,
3009 		       unsigned int maxlen, ssize_t *sz_ptr)
3010 {
3011 	ssize_t sz = *sz_ptr;
3012 	struct cache_features *cf = &cache->features;
3013 	unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3014 
3015 	DMEMIT("%u ", count);
3016 
3017 	if (cf->metadata_version == 2)
3018 		DMEMIT("metadata2 ");
3019 
3020 	if (writethrough_mode(cache))
3021 		DMEMIT("writethrough ");
3022 
3023 	else if (passthrough_mode(cache))
3024 		DMEMIT("passthrough ");
3025 
3026 	else if (writeback_mode(cache))
3027 		DMEMIT("writeback ");
3028 
3029 	else {
3030 		DMEMIT("unknown ");
3031 		DMERR("%s: internal error: unknown io mode: %d",
3032 		      cache_device_name(cache), (int) cf->io_mode);
3033 	}
3034 
3035 	if (!cf->discard_passdown)
3036 		DMEMIT("no_discard_passdown ");
3037 
3038 	*sz_ptr = sz;
3039 }
3040 
3041 /*
3042  * Status format:
3043  *
3044  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3045  * <cache block size> <#used cache blocks>/<#total cache blocks>
3046  * <#read hits> <#read misses> <#write hits> <#write misses>
3047  * <#demotions> <#promotions> <#dirty>
3048  * <#features> <features>*
3049  * <#core args> <core args>
3050  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3051  */
3052 static void cache_status(struct dm_target *ti, status_type_t type,
3053 			 unsigned int status_flags, char *result, unsigned int maxlen)
3054 {
3055 	int r = 0;
3056 	unsigned int i;
3057 	ssize_t sz = 0;
3058 	dm_block_t nr_free_blocks_metadata = 0;
3059 	dm_block_t nr_blocks_metadata = 0;
3060 	char buf[BDEVNAME_SIZE];
3061 	struct cache *cache = ti->private;
3062 	dm_cblock_t residency;
3063 	bool needs_check;
3064 
3065 	switch (type) {
3066 	case STATUSTYPE_INFO:
3067 		if (get_cache_mode(cache) == CM_FAIL) {
3068 			DMEMIT("Fail");
3069 			break;
3070 		}
3071 
3072 		/* Commit to ensure statistics aren't out-of-date */
3073 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3074 			(void) commit(cache, false);
3075 
3076 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3077 		if (r) {
3078 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3079 			      cache_device_name(cache), r);
3080 			goto err;
3081 		}
3082 
3083 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3084 		if (r) {
3085 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3086 			      cache_device_name(cache), r);
3087 			goto err;
3088 		}
3089 
3090 		residency = policy_residency(cache->policy);
3091 
3092 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3093 		       (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3094 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3095 		       (unsigned long long)nr_blocks_metadata,
3096 		       (unsigned long long)cache->sectors_per_block,
3097 		       (unsigned long long) from_cblock(residency),
3098 		       (unsigned long long) from_cblock(cache->cache_size),
3099 		       (unsigned int) atomic_read(&cache->stats.read_hit),
3100 		       (unsigned int) atomic_read(&cache->stats.read_miss),
3101 		       (unsigned int) atomic_read(&cache->stats.write_hit),
3102 		       (unsigned int) atomic_read(&cache->stats.write_miss),
3103 		       (unsigned int) atomic_read(&cache->stats.demotion),
3104 		       (unsigned int) atomic_read(&cache->stats.promotion),
3105 		       (unsigned long) atomic_read(&cache->nr_dirty));
3106 
3107 		emit_flags(cache, result, maxlen, &sz);
3108 
3109 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3110 
3111 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3112 		if (sz < maxlen) {
3113 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3114 			if (r)
3115 				DMERR("%s: policy_emit_config_values returned %d",
3116 				      cache_device_name(cache), r);
3117 		}
3118 
3119 		if (get_cache_mode(cache) == CM_READ_ONLY)
3120 			DMEMIT("ro ");
3121 		else
3122 			DMEMIT("rw ");
3123 
3124 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3125 
3126 		if (r || needs_check)
3127 			DMEMIT("needs_check ");
3128 		else
3129 			DMEMIT("- ");
3130 
3131 		break;
3132 
3133 	case STATUSTYPE_TABLE:
3134 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3135 		DMEMIT("%s ", buf);
3136 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3137 		DMEMIT("%s ", buf);
3138 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3139 		DMEMIT("%s", buf);
3140 
3141 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3142 			DMEMIT(" %s", cache->ctr_args[i]);
3143 		if (cache->nr_ctr_args)
3144 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3145 		break;
3146 
3147 	case STATUSTYPE_IMA:
3148 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3149 		if (get_cache_mode(cache) == CM_FAIL)
3150 			DMEMIT(",metadata_mode=fail");
3151 		else if (get_cache_mode(cache) == CM_READ_ONLY)
3152 			DMEMIT(",metadata_mode=ro");
3153 		else
3154 			DMEMIT(",metadata_mode=rw");
3155 
3156 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3157 		DMEMIT(",cache_metadata_device=%s", buf);
3158 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3159 		DMEMIT(",cache_device=%s", buf);
3160 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3161 		DMEMIT(",cache_origin_device=%s", buf);
3162 		DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3163 		DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3164 		DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3165 		DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3166 		DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3167 		DMEMIT(";");
3168 		break;
3169 	}
3170 
3171 	return;
3172 
3173 err:
3174 	DMEMIT("Error");
3175 }
3176 
3177 /*
3178  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3179  * the one-past-the-end value.
3180  */
3181 struct cblock_range {
3182 	dm_cblock_t begin;
3183 	dm_cblock_t end;
3184 };
3185 
3186 /*
3187  * A cache block range can take two forms:
3188  *
3189  * i) A single cblock, eg. '3456'
3190  * ii) A begin and end cblock with a dash between, eg. 123-234
3191  */
3192 static int parse_cblock_range(struct cache *cache, const char *str,
3193 			      struct cblock_range *result)
3194 {
3195 	char dummy;
3196 	uint64_t b, e;
3197 	int r;
3198 
3199 	/*
3200 	 * Try and parse form (ii) first.
3201 	 */
3202 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3203 
3204 	if (r == 2) {
3205 		result->begin = to_cblock(b);
3206 		result->end = to_cblock(e);
3207 		return 0;
3208 	}
3209 
3210 	/*
3211 	 * That didn't work, try form (i).
3212 	 */
3213 	r = sscanf(str, "%llu%c", &b, &dummy);
3214 
3215 	if (r == 1) {
3216 		result->begin = to_cblock(b);
3217 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3218 		return 0;
3219 	}
3220 
3221 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3222 	return -EINVAL;
3223 }
3224 
3225 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3226 {
3227 	uint64_t b = from_cblock(range->begin);
3228 	uint64_t e = from_cblock(range->end);
3229 	uint64_t n = from_cblock(cache->cache_size);
3230 
3231 	if (b >= n) {
3232 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3233 		      cache_device_name(cache), b, n);
3234 		return -EINVAL;
3235 	}
3236 
3237 	if (e > n) {
3238 		DMERR("%s: end cblock out of range: %llu > %llu",
3239 		      cache_device_name(cache), e, n);
3240 		return -EINVAL;
3241 	}
3242 
3243 	if (b >= e) {
3244 		DMERR("%s: invalid cblock range: %llu >= %llu",
3245 		      cache_device_name(cache), b, e);
3246 		return -EINVAL;
3247 	}
3248 
3249 	return 0;
3250 }
3251 
3252 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3253 {
3254 	return to_cblock(from_cblock(b) + 1);
3255 }
3256 
3257 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3258 {
3259 	int r = 0;
3260 
3261 	/*
3262 	 * We don't need to do any locking here because we know we're in
3263 	 * passthrough mode.  There's is potential for a race between an
3264 	 * invalidation triggered by an io and an invalidation message.  This
3265 	 * is harmless, we must not worry if the policy call fails.
3266 	 */
3267 	while (range->begin != range->end) {
3268 		r = invalidate_cblock(cache, range->begin);
3269 		if (r)
3270 			return r;
3271 
3272 		range->begin = cblock_succ(range->begin);
3273 	}
3274 
3275 	cache->commit_requested = true;
3276 	return r;
3277 }
3278 
3279 static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3280 					      const char **cblock_ranges)
3281 {
3282 	int r = 0;
3283 	unsigned int i;
3284 	struct cblock_range range;
3285 
3286 	if (!passthrough_mode(cache)) {
3287 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3288 		      cache_device_name(cache));
3289 		return -EPERM;
3290 	}
3291 
3292 	for (i = 0; i < count; i++) {
3293 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3294 		if (r)
3295 			break;
3296 
3297 		r = validate_cblock_range(cache, &range);
3298 		if (r)
3299 			break;
3300 
3301 		/*
3302 		 * Pass begin and end origin blocks to the worker and wake it.
3303 		 */
3304 		r = request_invalidation(cache, &range);
3305 		if (r)
3306 			break;
3307 	}
3308 
3309 	return r;
3310 }
3311 
3312 /*
3313  * Supports
3314  *	"<key> <value>"
3315  * and
3316  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3317  *
3318  * The key migration_threshold is supported by the cache target core.
3319  */
3320 static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3321 			 char *result, unsigned int maxlen)
3322 {
3323 	struct cache *cache = ti->private;
3324 
3325 	if (!argc)
3326 		return -EINVAL;
3327 
3328 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3329 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3330 		      cache_device_name(cache));
3331 		return -EOPNOTSUPP;
3332 	}
3333 
3334 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3335 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3336 
3337 	if (argc != 2)
3338 		return -EINVAL;
3339 
3340 	return set_config_value(cache, argv[0], argv[1]);
3341 }
3342 
3343 static int cache_iterate_devices(struct dm_target *ti,
3344 				 iterate_devices_callout_fn fn, void *data)
3345 {
3346 	int r = 0;
3347 	struct cache *cache = ti->private;
3348 
3349 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3350 	if (!r)
3351 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3352 
3353 	return r;
3354 }
3355 
3356 /*
3357  * If discard_passdown was enabled verify that the origin device
3358  * supports discards.  Disable discard_passdown if not.
3359  */
3360 static void disable_passdown_if_not_supported(struct cache *cache)
3361 {
3362 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3363 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3364 	const char *reason = NULL;
3365 
3366 	if (!cache->features.discard_passdown)
3367 		return;
3368 
3369 	if (!bdev_max_discard_sectors(origin_bdev))
3370 		reason = "discard unsupported";
3371 
3372 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3373 		reason = "max discard sectors smaller than a block";
3374 
3375 	if (reason) {
3376 		DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3377 		       origin_bdev, reason);
3378 		cache->features.discard_passdown = false;
3379 	}
3380 }
3381 
3382 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3383 {
3384 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3385 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3386 
3387 	if (!cache->features.discard_passdown) {
3388 		/* No passdown is done so setting own virtual limits */
3389 		limits->max_hw_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3390 						       cache->origin_sectors);
3391 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3392 		return;
3393 	}
3394 
3395 	/*
3396 	 * cache_iterate_devices() is stacking both origin and fast device limits
3397 	 * but discards aren't passed to fast device, so inherit origin's limits.
3398 	 */
3399 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3400 	limits->discard_granularity = origin_limits->discard_granularity;
3401 	limits->discard_alignment = origin_limits->discard_alignment;
3402 }
3403 
3404 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3405 {
3406 	struct cache *cache = ti->private;
3407 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3408 
3409 	/*
3410 	 * If the system-determined stacked limits are compatible with the
3411 	 * cache's blocksize (io_opt is a factor) do not override them.
3412 	 */
3413 	if (io_opt_sectors < cache->sectors_per_block ||
3414 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3415 		limits->io_min = cache->sectors_per_block << SECTOR_SHIFT;
3416 		limits->io_opt = cache->sectors_per_block << SECTOR_SHIFT;
3417 	}
3418 
3419 	disable_passdown_if_not_supported(cache);
3420 	set_discard_limits(cache, limits);
3421 }
3422 
3423 /*----------------------------------------------------------------*/
3424 
3425 static struct target_type cache_target = {
3426 	.name = "cache",
3427 	.version = {2, 2, 0},
3428 	.module = THIS_MODULE,
3429 	.ctr = cache_ctr,
3430 	.dtr = cache_dtr,
3431 	.map = cache_map,
3432 	.end_io = cache_end_io,
3433 	.postsuspend = cache_postsuspend,
3434 	.preresume = cache_preresume,
3435 	.resume = cache_resume,
3436 	.status = cache_status,
3437 	.message = cache_message,
3438 	.iterate_devices = cache_iterate_devices,
3439 	.io_hints = cache_io_hints,
3440 };
3441 
3442 static int __init dm_cache_init(void)
3443 {
3444 	int r;
3445 
3446 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3447 	if (!migration_cache)
3448 		return -ENOMEM;
3449 
3450 	r = dm_register_target(&cache_target);
3451 	if (r) {
3452 		kmem_cache_destroy(migration_cache);
3453 		return r;
3454 	}
3455 
3456 	return 0;
3457 }
3458 
3459 static void __exit dm_cache_exit(void)
3460 {
3461 	dm_unregister_target(&cache_target);
3462 	kmem_cache_destroy(migration_cache);
3463 }
3464 
3465 module_init(dm_cache_init);
3466 module_exit(dm_cache_exit);
3467 
3468 MODULE_DESCRIPTION(DM_NAME " cache target");
3469 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3470 MODULE_LICENSE("GPL");
3471