xref: /linux/drivers/md/dm-cache-target.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 
22 #define DM_MSG_PREFIX "cache"
23 
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 	"A percentage of time allocated for copying to and/or from cache");
26 
27 /*----------------------------------------------------------------*/
28 
29 /*
30  * Glossary:
31  *
32  * oblock: index of an origin block
33  * cblock: index of a cache block
34  * promotion: movement of a block from origin to cache
35  * demotion: movement of a block from cache to origin
36  * migration: movement of a block between the origin and cache device,
37  *	      either direction
38  */
39 
40 /*----------------------------------------------------------------*/
41 
42 struct io_tracker {
43 	spinlock_t lock;
44 
45 	/*
46 	 * Sectors of in-flight IO.
47 	 */
48 	sector_t in_flight;
49 
50 	/*
51 	 * The time, in jiffies, when this device became idle (if it is
52 	 * indeed idle).
53 	 */
54 	unsigned long idle_time;
55 	unsigned long last_update_time;
56 };
57 
58 static void iot_init(struct io_tracker *iot)
59 {
60 	spin_lock_init(&iot->lock);
61 	iot->in_flight = 0ul;
62 	iot->idle_time = 0ul;
63 	iot->last_update_time = jiffies;
64 }
65 
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 	if (iot->in_flight)
69 		return false;
70 
71 	return time_after(jiffies, iot->idle_time + jifs);
72 }
73 
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 	bool r;
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&iot->lock, flags);
80 	r = __iot_idle_for(iot, jifs);
81 	spin_unlock_irqrestore(&iot->lock, flags);
82 
83 	return r;
84 }
85 
86 static void iot_io_begin(struct io_tracker *iot, sector_t len)
87 {
88 	unsigned long flags;
89 
90 	spin_lock_irqsave(&iot->lock, flags);
91 	iot->in_flight += len;
92 	spin_unlock_irqrestore(&iot->lock, flags);
93 }
94 
95 static void __iot_io_end(struct io_tracker *iot, sector_t len)
96 {
97 	if (!len)
98 		return;
99 
100 	iot->in_flight -= len;
101 	if (!iot->in_flight)
102 		iot->idle_time = jiffies;
103 }
104 
105 static void iot_io_end(struct io_tracker *iot, sector_t len)
106 {
107 	unsigned long flags;
108 
109 	spin_lock_irqsave(&iot->lock, flags);
110 	__iot_io_end(iot, len);
111 	spin_unlock_irqrestore(&iot->lock, flags);
112 }
113 
114 /*----------------------------------------------------------------*/
115 
116 /*
117  * Represents a chunk of future work.  'input' allows continuations to pass
118  * values between themselves, typically error values.
119  */
120 struct continuation {
121 	struct work_struct ws;
122 	int input;
123 };
124 
125 static inline void init_continuation(struct continuation *k,
126 				     void (*fn)(struct work_struct *))
127 {
128 	INIT_WORK(&k->ws, fn);
129 	k->input = 0;
130 }
131 
132 static inline void queue_continuation(struct workqueue_struct *wq,
133 				      struct continuation *k)
134 {
135 	queue_work(wq, &k->ws);
136 }
137 
138 /*----------------------------------------------------------------*/
139 
140 /*
141  * The batcher collects together pieces of work that need a particular
142  * operation to occur before they can proceed (typically a commit).
143  */
144 struct batcher {
145 	/*
146 	 * The operation that everyone is waiting for.
147 	 */
148 	int (*commit_op)(void *context);
149 	void *commit_context;
150 
151 	/*
152 	 * This is how bios should be issued once the commit op is complete
153 	 * (accounted_request).
154 	 */
155 	void (*issue_op)(struct bio *bio, void *context);
156 	void *issue_context;
157 
158 	/*
159 	 * Queued work gets put on here after commit.
160 	 */
161 	struct workqueue_struct *wq;
162 
163 	spinlock_t lock;
164 	struct list_head work_items;
165 	struct bio_list bios;
166 	struct work_struct commit_work;
167 
168 	bool commit_scheduled;
169 };
170 
171 static void __commit(struct work_struct *_ws)
172 {
173 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
174 
175 	int r;
176 	unsigned long flags;
177 	struct list_head work_items;
178 	struct work_struct *ws, *tmp;
179 	struct continuation *k;
180 	struct bio *bio;
181 	struct bio_list bios;
182 
183 	INIT_LIST_HEAD(&work_items);
184 	bio_list_init(&bios);
185 
186 	/*
187 	 * We have to grab these before the commit_op to avoid a race
188 	 * condition.
189 	 */
190 	spin_lock_irqsave(&b->lock, flags);
191 	list_splice_init(&b->work_items, &work_items);
192 	bio_list_merge(&bios, &b->bios);
193 	bio_list_init(&b->bios);
194 	b->commit_scheduled = false;
195 	spin_unlock_irqrestore(&b->lock, flags);
196 
197 	r = b->commit_op(b->commit_context);
198 
199 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
200 		k = container_of(ws, struct continuation, ws);
201 		k->input = r;
202 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
203 		queue_work(b->wq, ws);
204 	}
205 
206 	while ((bio = bio_list_pop(&bios))) {
207 		if (r) {
208 			bio->bi_error = r;
209 			bio_endio(bio);
210 		} else
211 			b->issue_op(bio, b->issue_context);
212 	}
213 }
214 
215 static void batcher_init(struct batcher *b,
216 			 int (*commit_op)(void *),
217 			 void *commit_context,
218 			 void (*issue_op)(struct bio *bio, void *),
219 			 void *issue_context,
220 			 struct workqueue_struct *wq)
221 {
222 	b->commit_op = commit_op;
223 	b->commit_context = commit_context;
224 	b->issue_op = issue_op;
225 	b->issue_context = issue_context;
226 	b->wq = wq;
227 
228 	spin_lock_init(&b->lock);
229 	INIT_LIST_HEAD(&b->work_items);
230 	bio_list_init(&b->bios);
231 	INIT_WORK(&b->commit_work, __commit);
232 	b->commit_scheduled = false;
233 }
234 
235 static void async_commit(struct batcher *b)
236 {
237 	queue_work(b->wq, &b->commit_work);
238 }
239 
240 static void continue_after_commit(struct batcher *b, struct continuation *k)
241 {
242 	unsigned long flags;
243 	bool commit_scheduled;
244 
245 	spin_lock_irqsave(&b->lock, flags);
246 	commit_scheduled = b->commit_scheduled;
247 	list_add_tail(&k->ws.entry, &b->work_items);
248 	spin_unlock_irqrestore(&b->lock, flags);
249 
250 	if (commit_scheduled)
251 		async_commit(b);
252 }
253 
254 /*
255  * Bios are errored if commit failed.
256  */
257 static void issue_after_commit(struct batcher *b, struct bio *bio)
258 {
259        unsigned long flags;
260        bool commit_scheduled;
261 
262        spin_lock_irqsave(&b->lock, flags);
263        commit_scheduled = b->commit_scheduled;
264        bio_list_add(&b->bios, bio);
265        spin_unlock_irqrestore(&b->lock, flags);
266 
267        if (commit_scheduled)
268 	       async_commit(b);
269 }
270 
271 /*
272  * Call this if some urgent work is waiting for the commit to complete.
273  */
274 static void schedule_commit(struct batcher *b)
275 {
276 	bool immediate;
277 	unsigned long flags;
278 
279 	spin_lock_irqsave(&b->lock, flags);
280 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
281 	b->commit_scheduled = true;
282 	spin_unlock_irqrestore(&b->lock, flags);
283 
284 	if (immediate)
285 		async_commit(b);
286 }
287 
288 /*
289  * There are a couple of places where we let a bio run, but want to do some
290  * work before calling its endio function.  We do this by temporarily
291  * changing the endio fn.
292  */
293 struct dm_hook_info {
294 	bio_end_io_t *bi_end_io;
295 };
296 
297 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
298 			bio_end_io_t *bi_end_io, void *bi_private)
299 {
300 	h->bi_end_io = bio->bi_end_io;
301 
302 	bio->bi_end_io = bi_end_io;
303 	bio->bi_private = bi_private;
304 }
305 
306 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
307 {
308 	bio->bi_end_io = h->bi_end_io;
309 }
310 
311 /*----------------------------------------------------------------*/
312 
313 #define MIGRATION_POOL_SIZE 128
314 #define COMMIT_PERIOD HZ
315 #define MIGRATION_COUNT_WINDOW 10
316 
317 /*
318  * The block size of the device holding cache data must be
319  * between 32KB and 1GB.
320  */
321 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
322 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
323 
324 enum cache_metadata_mode {
325 	CM_WRITE,		/* metadata may be changed */
326 	CM_READ_ONLY,		/* metadata may not be changed */
327 	CM_FAIL
328 };
329 
330 enum cache_io_mode {
331 	/*
332 	 * Data is written to cached blocks only.  These blocks are marked
333 	 * dirty.  If you lose the cache device you will lose data.
334 	 * Potential performance increase for both reads and writes.
335 	 */
336 	CM_IO_WRITEBACK,
337 
338 	/*
339 	 * Data is written to both cache and origin.  Blocks are never
340 	 * dirty.  Potential performance benfit for reads only.
341 	 */
342 	CM_IO_WRITETHROUGH,
343 
344 	/*
345 	 * A degraded mode useful for various cache coherency situations
346 	 * (eg, rolling back snapshots).  Reads and writes always go to the
347 	 * origin.  If a write goes to a cached oblock, then the cache
348 	 * block is invalidated.
349 	 */
350 	CM_IO_PASSTHROUGH
351 };
352 
353 struct cache_features {
354 	enum cache_metadata_mode mode;
355 	enum cache_io_mode io_mode;
356 	unsigned metadata_version;
357 };
358 
359 struct cache_stats {
360 	atomic_t read_hit;
361 	atomic_t read_miss;
362 	atomic_t write_hit;
363 	atomic_t write_miss;
364 	atomic_t demotion;
365 	atomic_t promotion;
366 	atomic_t writeback;
367 	atomic_t copies_avoided;
368 	atomic_t cache_cell_clash;
369 	atomic_t commit_count;
370 	atomic_t discard_count;
371 };
372 
373 struct cache {
374 	struct dm_target *ti;
375 	struct dm_target_callbacks callbacks;
376 
377 	struct dm_cache_metadata *cmd;
378 
379 	/*
380 	 * Metadata is written to this device.
381 	 */
382 	struct dm_dev *metadata_dev;
383 
384 	/*
385 	 * The slower of the two data devices.  Typically a spindle.
386 	 */
387 	struct dm_dev *origin_dev;
388 
389 	/*
390 	 * The faster of the two data devices.  Typically an SSD.
391 	 */
392 	struct dm_dev *cache_dev;
393 
394 	/*
395 	 * Size of the origin device in _complete_ blocks and native sectors.
396 	 */
397 	dm_oblock_t origin_blocks;
398 	sector_t origin_sectors;
399 
400 	/*
401 	 * Size of the cache device in blocks.
402 	 */
403 	dm_cblock_t cache_size;
404 
405 	/*
406 	 * Fields for converting from sectors to blocks.
407 	 */
408 	sector_t sectors_per_block;
409 	int sectors_per_block_shift;
410 
411 	spinlock_t lock;
412 	struct list_head deferred_cells;
413 	struct bio_list deferred_bios;
414 	struct bio_list deferred_writethrough_bios;
415 	sector_t migration_threshold;
416 	wait_queue_head_t migration_wait;
417 	atomic_t nr_allocated_migrations;
418 
419 	/*
420 	 * The number of in flight migrations that are performing
421 	 * background io. eg, promotion, writeback.
422 	 */
423 	atomic_t nr_io_migrations;
424 
425 	struct rw_semaphore quiesce_lock;
426 
427 	/*
428 	 * cache_size entries, dirty if set
429 	 */
430 	atomic_t nr_dirty;
431 	unsigned long *dirty_bitset;
432 
433 	/*
434 	 * origin_blocks entries, discarded if set.
435 	 */
436 	dm_dblock_t discard_nr_blocks;
437 	unsigned long *discard_bitset;
438 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
439 
440 	/*
441 	 * Rather than reconstructing the table line for the status we just
442 	 * save it and regurgitate.
443 	 */
444 	unsigned nr_ctr_args;
445 	const char **ctr_args;
446 
447 	struct dm_kcopyd_client *copier;
448 	struct workqueue_struct *wq;
449 	struct work_struct deferred_bio_worker;
450 	struct work_struct deferred_writethrough_worker;
451 	struct work_struct migration_worker;
452 	struct delayed_work waker;
453 	struct dm_bio_prison_v2 *prison;
454 
455 	mempool_t *migration_pool;
456 
457 	struct dm_cache_policy *policy;
458 	unsigned policy_nr_args;
459 
460 	bool need_tick_bio:1;
461 	bool sized:1;
462 	bool invalidate:1;
463 	bool commit_requested:1;
464 	bool loaded_mappings:1;
465 	bool loaded_discards:1;
466 
467 	/*
468 	 * Cache features such as write-through.
469 	 */
470 	struct cache_features features;
471 
472 	struct cache_stats stats;
473 
474 	/*
475 	 * Invalidation fields.
476 	 */
477 	spinlock_t invalidation_lock;
478 	struct list_head invalidation_requests;
479 
480 	struct io_tracker tracker;
481 
482 	struct work_struct commit_ws;
483 	struct batcher committer;
484 
485 	struct rw_semaphore background_work_lock;
486 };
487 
488 struct per_bio_data {
489 	bool tick:1;
490 	unsigned req_nr:2;
491 	struct dm_bio_prison_cell_v2 *cell;
492 	struct dm_hook_info hook_info;
493 	sector_t len;
494 
495 	/*
496 	 * writethrough fields.  These MUST remain at the end of this
497 	 * structure and the 'cache' member must be the first as it
498 	 * is used to determine the offset of the writethrough fields.
499 	 */
500 	struct cache *cache;
501 	dm_cblock_t cblock;
502 	struct dm_bio_details bio_details;
503 };
504 
505 struct dm_cache_migration {
506 	struct continuation k;
507 	struct cache *cache;
508 
509 	struct policy_work *op;
510 	struct bio *overwrite_bio;
511 	struct dm_bio_prison_cell_v2 *cell;
512 
513 	dm_cblock_t invalidate_cblock;
514 	dm_oblock_t invalidate_oblock;
515 };
516 
517 /*----------------------------------------------------------------*/
518 
519 static bool writethrough_mode(struct cache_features *f)
520 {
521 	return f->io_mode == CM_IO_WRITETHROUGH;
522 }
523 
524 static bool writeback_mode(struct cache_features *f)
525 {
526 	return f->io_mode == CM_IO_WRITEBACK;
527 }
528 
529 static inline bool passthrough_mode(struct cache_features *f)
530 {
531 	return unlikely(f->io_mode == CM_IO_PASSTHROUGH);
532 }
533 
534 /*----------------------------------------------------------------*/
535 
536 static void wake_deferred_bio_worker(struct cache *cache)
537 {
538 	queue_work(cache->wq, &cache->deferred_bio_worker);
539 }
540 
541 static void wake_deferred_writethrough_worker(struct cache *cache)
542 {
543 	queue_work(cache->wq, &cache->deferred_writethrough_worker);
544 }
545 
546 static void wake_migration_worker(struct cache *cache)
547 {
548 	if (passthrough_mode(&cache->features))
549 		return;
550 
551 	queue_work(cache->wq, &cache->migration_worker);
552 }
553 
554 /*----------------------------------------------------------------*/
555 
556 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
557 {
558 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
559 }
560 
561 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
562 {
563 	dm_bio_prison_free_cell_v2(cache->prison, cell);
564 }
565 
566 static struct dm_cache_migration *alloc_migration(struct cache *cache)
567 {
568 	struct dm_cache_migration *mg;
569 
570 	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
571 	if (mg) {
572 		mg->cache = cache;
573 		atomic_inc(&mg->cache->nr_allocated_migrations);
574 	}
575 
576 	return mg;
577 }
578 
579 static void free_migration(struct dm_cache_migration *mg)
580 {
581 	struct cache *cache = mg->cache;
582 
583 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
584 		wake_up(&cache->migration_wait);
585 
586 	mempool_free(mg, cache->migration_pool);
587 }
588 
589 /*----------------------------------------------------------------*/
590 
591 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
592 {
593 	return to_oblock(from_oblock(b) + 1ull);
594 }
595 
596 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
597 {
598 	key->virtual = 0;
599 	key->dev = 0;
600 	key->block_begin = from_oblock(begin);
601 	key->block_end = from_oblock(end);
602 }
603 
604 /*
605  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
606  * level 1 which prevents *both* READs and WRITEs.
607  */
608 #define WRITE_LOCK_LEVEL 0
609 #define READ_WRITE_LOCK_LEVEL 1
610 
611 static unsigned lock_level(struct bio *bio)
612 {
613 	return bio_data_dir(bio) == WRITE ?
614 		WRITE_LOCK_LEVEL :
615 		READ_WRITE_LOCK_LEVEL;
616 }
617 
618 /*----------------------------------------------------------------
619  * Per bio data
620  *--------------------------------------------------------------*/
621 
622 /*
623  * If using writeback, leave out struct per_bio_data's writethrough fields.
624  */
625 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
626 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
627 
628 static size_t get_per_bio_data_size(struct cache *cache)
629 {
630 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
631 }
632 
633 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
634 {
635 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
636 	BUG_ON(!pb);
637 	return pb;
638 }
639 
640 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
641 {
642 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
643 
644 	pb->tick = false;
645 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
646 	pb->cell = NULL;
647 	pb->len = 0;
648 
649 	return pb;
650 }
651 
652 /*----------------------------------------------------------------*/
653 
654 static void defer_bio(struct cache *cache, struct bio *bio)
655 {
656 	unsigned long flags;
657 
658 	spin_lock_irqsave(&cache->lock, flags);
659 	bio_list_add(&cache->deferred_bios, bio);
660 	spin_unlock_irqrestore(&cache->lock, flags);
661 
662 	wake_deferred_bio_worker(cache);
663 }
664 
665 static void defer_bios(struct cache *cache, struct bio_list *bios)
666 {
667 	unsigned long flags;
668 
669 	spin_lock_irqsave(&cache->lock, flags);
670 	bio_list_merge(&cache->deferred_bios, bios);
671 	bio_list_init(bios);
672 	spin_unlock_irqrestore(&cache->lock, flags);
673 
674 	wake_deferred_bio_worker(cache);
675 }
676 
677 /*----------------------------------------------------------------*/
678 
679 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
680 {
681 	bool r;
682 	size_t pb_size;
683 	struct per_bio_data *pb;
684 	struct dm_cell_key_v2 key;
685 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
686 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
687 
688 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
689 	if (!cell_prealloc) {
690 		defer_bio(cache, bio);
691 		return false;
692 	}
693 
694 	build_key(oblock, end, &key);
695 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
696 	if (!r) {
697 		/*
698 		 * Failed to get the lock.
699 		 */
700 		free_prison_cell(cache, cell_prealloc);
701 		return r;
702 	}
703 
704 	if (cell != cell_prealloc)
705 		free_prison_cell(cache, cell_prealloc);
706 
707 	pb_size = get_per_bio_data_size(cache);
708 	pb = get_per_bio_data(bio, pb_size);
709 	pb->cell = cell;
710 
711 	return r;
712 }
713 
714 /*----------------------------------------------------------------*/
715 
716 static bool is_dirty(struct cache *cache, dm_cblock_t b)
717 {
718 	return test_bit(from_cblock(b), cache->dirty_bitset);
719 }
720 
721 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
722 {
723 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
724 		atomic_inc(&cache->nr_dirty);
725 		policy_set_dirty(cache->policy, cblock);
726 	}
727 }
728 
729 /*
730  * These two are called when setting after migrations to force the policy
731  * and dirty bitset to be in sync.
732  */
733 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
734 {
735 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
736 		atomic_inc(&cache->nr_dirty);
737 	policy_set_dirty(cache->policy, cblock);
738 }
739 
740 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
741 {
742 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
743 		if (atomic_dec_return(&cache->nr_dirty) == 0)
744 			dm_table_event(cache->ti->table);
745 	}
746 
747 	policy_clear_dirty(cache->policy, cblock);
748 }
749 
750 /*----------------------------------------------------------------*/
751 
752 static bool block_size_is_power_of_two(struct cache *cache)
753 {
754 	return cache->sectors_per_block_shift >= 0;
755 }
756 
757 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
758 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
759 __always_inline
760 #endif
761 static dm_block_t block_div(dm_block_t b, uint32_t n)
762 {
763 	do_div(b, n);
764 
765 	return b;
766 }
767 
768 static dm_block_t oblocks_per_dblock(struct cache *cache)
769 {
770 	dm_block_t oblocks = cache->discard_block_size;
771 
772 	if (block_size_is_power_of_two(cache))
773 		oblocks >>= cache->sectors_per_block_shift;
774 	else
775 		oblocks = block_div(oblocks, cache->sectors_per_block);
776 
777 	return oblocks;
778 }
779 
780 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
781 {
782 	return to_dblock(block_div(from_oblock(oblock),
783 				   oblocks_per_dblock(cache)));
784 }
785 
786 static void set_discard(struct cache *cache, dm_dblock_t b)
787 {
788 	unsigned long flags;
789 
790 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
791 	atomic_inc(&cache->stats.discard_count);
792 
793 	spin_lock_irqsave(&cache->lock, flags);
794 	set_bit(from_dblock(b), cache->discard_bitset);
795 	spin_unlock_irqrestore(&cache->lock, flags);
796 }
797 
798 static void clear_discard(struct cache *cache, dm_dblock_t b)
799 {
800 	unsigned long flags;
801 
802 	spin_lock_irqsave(&cache->lock, flags);
803 	clear_bit(from_dblock(b), cache->discard_bitset);
804 	spin_unlock_irqrestore(&cache->lock, flags);
805 }
806 
807 static bool is_discarded(struct cache *cache, dm_dblock_t b)
808 {
809 	int r;
810 	unsigned long flags;
811 
812 	spin_lock_irqsave(&cache->lock, flags);
813 	r = test_bit(from_dblock(b), cache->discard_bitset);
814 	spin_unlock_irqrestore(&cache->lock, flags);
815 
816 	return r;
817 }
818 
819 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
820 {
821 	int r;
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(&cache->lock, flags);
825 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
826 		     cache->discard_bitset);
827 	spin_unlock_irqrestore(&cache->lock, flags);
828 
829 	return r;
830 }
831 
832 /*----------------------------------------------------------------
833  * Remapping
834  *--------------------------------------------------------------*/
835 static void remap_to_origin(struct cache *cache, struct bio *bio)
836 {
837 	bio->bi_bdev = cache->origin_dev->bdev;
838 }
839 
840 static void remap_to_cache(struct cache *cache, struct bio *bio,
841 			   dm_cblock_t cblock)
842 {
843 	sector_t bi_sector = bio->bi_iter.bi_sector;
844 	sector_t block = from_cblock(cblock);
845 
846 	bio->bi_bdev = cache->cache_dev->bdev;
847 	if (!block_size_is_power_of_two(cache))
848 		bio->bi_iter.bi_sector =
849 			(block * cache->sectors_per_block) +
850 			sector_div(bi_sector, cache->sectors_per_block);
851 	else
852 		bio->bi_iter.bi_sector =
853 			(block << cache->sectors_per_block_shift) |
854 			(bi_sector & (cache->sectors_per_block - 1));
855 }
856 
857 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
858 {
859 	unsigned long flags;
860 	size_t pb_data_size = get_per_bio_data_size(cache);
861 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
862 
863 	spin_lock_irqsave(&cache->lock, flags);
864 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
865 	    bio_op(bio) != REQ_OP_DISCARD) {
866 		pb->tick = true;
867 		cache->need_tick_bio = false;
868 	}
869 	spin_unlock_irqrestore(&cache->lock, flags);
870 }
871 
872 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
873 					  dm_oblock_t oblock)
874 {
875 	// FIXME: this is called way too much.
876 	check_if_tick_bio_needed(cache, bio);
877 	remap_to_origin(cache, bio);
878 	if (bio_data_dir(bio) == WRITE)
879 		clear_discard(cache, oblock_to_dblock(cache, oblock));
880 }
881 
882 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
883 				 dm_oblock_t oblock, dm_cblock_t cblock)
884 {
885 	check_if_tick_bio_needed(cache, bio);
886 	remap_to_cache(cache, bio, cblock);
887 	if (bio_data_dir(bio) == WRITE) {
888 		set_dirty(cache, cblock);
889 		clear_discard(cache, oblock_to_dblock(cache, oblock));
890 	}
891 }
892 
893 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
894 {
895 	sector_t block_nr = bio->bi_iter.bi_sector;
896 
897 	if (!block_size_is_power_of_two(cache))
898 		(void) sector_div(block_nr, cache->sectors_per_block);
899 	else
900 		block_nr >>= cache->sectors_per_block_shift;
901 
902 	return to_oblock(block_nr);
903 }
904 
905 static bool accountable_bio(struct cache *cache, struct bio *bio)
906 {
907 	return bio_op(bio) != REQ_OP_DISCARD;
908 }
909 
910 static void accounted_begin(struct cache *cache, struct bio *bio)
911 {
912 	size_t pb_data_size = get_per_bio_data_size(cache);
913 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
914 
915 	if (accountable_bio(cache, bio)) {
916 		pb->len = bio_sectors(bio);
917 		iot_io_begin(&cache->tracker, pb->len);
918 	}
919 }
920 
921 static void accounted_complete(struct cache *cache, struct bio *bio)
922 {
923 	size_t pb_data_size = get_per_bio_data_size(cache);
924 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
925 
926 	iot_io_end(&cache->tracker, pb->len);
927 }
928 
929 static void accounted_request(struct cache *cache, struct bio *bio)
930 {
931 	accounted_begin(cache, bio);
932 	generic_make_request(bio);
933 }
934 
935 static void issue_op(struct bio *bio, void *context)
936 {
937 	struct cache *cache = context;
938 	accounted_request(cache, bio);
939 }
940 
941 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
942 {
943 	unsigned long flags;
944 
945 	spin_lock_irqsave(&cache->lock, flags);
946 	bio_list_add(&cache->deferred_writethrough_bios, bio);
947 	spin_unlock_irqrestore(&cache->lock, flags);
948 
949 	wake_deferred_writethrough_worker(cache);
950 }
951 
952 static void writethrough_endio(struct bio *bio)
953 {
954 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
955 
956 	dm_unhook_bio(&pb->hook_info, bio);
957 
958 	if (bio->bi_error) {
959 		bio_endio(bio);
960 		return;
961 	}
962 
963 	dm_bio_restore(&pb->bio_details, bio);
964 	remap_to_cache(pb->cache, bio, pb->cblock);
965 
966 	/*
967 	 * We can't issue this bio directly, since we're in interrupt
968 	 * context.  So it gets put on a bio list for processing by the
969 	 * worker thread.
970 	 */
971 	defer_writethrough_bio(pb->cache, bio);
972 }
973 
974 /*
975  * FIXME: send in parallel, huge latency as is.
976  * When running in writethrough mode we need to send writes to clean blocks
977  * to both the cache and origin devices.  In future we'd like to clone the
978  * bio and send them in parallel, but for now we're doing them in
979  * series as this is easier.
980  */
981 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
982 				       dm_oblock_t oblock, dm_cblock_t cblock)
983 {
984 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
985 
986 	pb->cache = cache;
987 	pb->cblock = cblock;
988 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
989 	dm_bio_record(&pb->bio_details, bio);
990 
991 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
992 }
993 
994 /*----------------------------------------------------------------
995  * Failure modes
996  *--------------------------------------------------------------*/
997 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
998 {
999 	return cache->features.mode;
1000 }
1001 
1002 static const char *cache_device_name(struct cache *cache)
1003 {
1004 	return dm_device_name(dm_table_get_md(cache->ti->table));
1005 }
1006 
1007 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
1008 {
1009 	const char *descs[] = {
1010 		"write",
1011 		"read-only",
1012 		"fail"
1013 	};
1014 
1015 	dm_table_event(cache->ti->table);
1016 	DMINFO("%s: switching cache to %s mode",
1017 	       cache_device_name(cache), descs[(int)mode]);
1018 }
1019 
1020 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
1021 {
1022 	bool needs_check;
1023 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
1024 
1025 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
1026 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
1027 		      cache_device_name(cache));
1028 		new_mode = CM_FAIL;
1029 	}
1030 
1031 	if (new_mode == CM_WRITE && needs_check) {
1032 		DMERR("%s: unable to switch cache to write mode until repaired.",
1033 		      cache_device_name(cache));
1034 		if (old_mode != new_mode)
1035 			new_mode = old_mode;
1036 		else
1037 			new_mode = CM_READ_ONLY;
1038 	}
1039 
1040 	/* Never move out of fail mode */
1041 	if (old_mode == CM_FAIL)
1042 		new_mode = CM_FAIL;
1043 
1044 	switch (new_mode) {
1045 	case CM_FAIL:
1046 	case CM_READ_ONLY:
1047 		dm_cache_metadata_set_read_only(cache->cmd);
1048 		break;
1049 
1050 	case CM_WRITE:
1051 		dm_cache_metadata_set_read_write(cache->cmd);
1052 		break;
1053 	}
1054 
1055 	cache->features.mode = new_mode;
1056 
1057 	if (new_mode != old_mode)
1058 		notify_mode_switch(cache, new_mode);
1059 }
1060 
1061 static void abort_transaction(struct cache *cache)
1062 {
1063 	const char *dev_name = cache_device_name(cache);
1064 
1065 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1066 		return;
1067 
1068 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1069 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1070 		set_cache_mode(cache, CM_FAIL);
1071 	}
1072 
1073 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1074 	if (dm_cache_metadata_abort(cache->cmd)) {
1075 		DMERR("%s: failed to abort metadata transaction", dev_name);
1076 		set_cache_mode(cache, CM_FAIL);
1077 	}
1078 }
1079 
1080 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1081 {
1082 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1083 		    cache_device_name(cache), op, r);
1084 	abort_transaction(cache);
1085 	set_cache_mode(cache, CM_READ_ONLY);
1086 }
1087 
1088 /*----------------------------------------------------------------*/
1089 
1090 static void load_stats(struct cache *cache)
1091 {
1092 	struct dm_cache_statistics stats;
1093 
1094 	dm_cache_metadata_get_stats(cache->cmd, &stats);
1095 	atomic_set(&cache->stats.read_hit, stats.read_hits);
1096 	atomic_set(&cache->stats.read_miss, stats.read_misses);
1097 	atomic_set(&cache->stats.write_hit, stats.write_hits);
1098 	atomic_set(&cache->stats.write_miss, stats.write_misses);
1099 }
1100 
1101 static void save_stats(struct cache *cache)
1102 {
1103 	struct dm_cache_statistics stats;
1104 
1105 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1106 		return;
1107 
1108 	stats.read_hits = atomic_read(&cache->stats.read_hit);
1109 	stats.read_misses = atomic_read(&cache->stats.read_miss);
1110 	stats.write_hits = atomic_read(&cache->stats.write_hit);
1111 	stats.write_misses = atomic_read(&cache->stats.write_miss);
1112 
1113 	dm_cache_metadata_set_stats(cache->cmd, &stats);
1114 }
1115 
1116 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1117 {
1118 	switch (op) {
1119 	case POLICY_PROMOTE:
1120 		atomic_inc(&stats->promotion);
1121 		break;
1122 
1123 	case POLICY_DEMOTE:
1124 		atomic_inc(&stats->demotion);
1125 		break;
1126 
1127 	case POLICY_WRITEBACK:
1128 		atomic_inc(&stats->writeback);
1129 		break;
1130 	}
1131 }
1132 
1133 /*----------------------------------------------------------------
1134  * Migration processing
1135  *
1136  * Migration covers moving data from the origin device to the cache, or
1137  * vice versa.
1138  *--------------------------------------------------------------*/
1139 
1140 static void inc_io_migrations(struct cache *cache)
1141 {
1142 	atomic_inc(&cache->nr_io_migrations);
1143 }
1144 
1145 static void dec_io_migrations(struct cache *cache)
1146 {
1147 	atomic_dec(&cache->nr_io_migrations);
1148 }
1149 
1150 static bool discard_or_flush(struct bio *bio)
1151 {
1152 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1153 }
1154 
1155 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1156 				     dm_dblock_t *b, dm_dblock_t *e)
1157 {
1158 	sector_t sb = bio->bi_iter.bi_sector;
1159 	sector_t se = bio_end_sector(bio);
1160 
1161 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1162 
1163 	if (se - sb < cache->discard_block_size)
1164 		*e = *b;
1165 	else
1166 		*e = to_dblock(block_div(se, cache->discard_block_size));
1167 }
1168 
1169 /*----------------------------------------------------------------*/
1170 
1171 static void prevent_background_work(struct cache *cache)
1172 {
1173 	lockdep_off();
1174 	down_write(&cache->background_work_lock);
1175 	lockdep_on();
1176 }
1177 
1178 static void allow_background_work(struct cache *cache)
1179 {
1180 	lockdep_off();
1181 	up_write(&cache->background_work_lock);
1182 	lockdep_on();
1183 }
1184 
1185 static bool background_work_begin(struct cache *cache)
1186 {
1187 	bool r;
1188 
1189 	lockdep_off();
1190 	r = down_read_trylock(&cache->background_work_lock);
1191 	lockdep_on();
1192 
1193 	return r;
1194 }
1195 
1196 static void background_work_end(struct cache *cache)
1197 {
1198 	lockdep_off();
1199 	up_read(&cache->background_work_lock);
1200 	lockdep_on();
1201 }
1202 
1203 /*----------------------------------------------------------------*/
1204 
1205 static void quiesce(struct dm_cache_migration *mg,
1206 		    void (*continuation)(struct work_struct *))
1207 {
1208 	init_continuation(&mg->k, continuation);
1209 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1210 }
1211 
1212 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1213 {
1214 	struct continuation *k = container_of(ws, struct continuation, ws);
1215 	return container_of(k, struct dm_cache_migration, k);
1216 }
1217 
1218 static void copy_complete(int read_err, unsigned long write_err, void *context)
1219 {
1220 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1221 
1222 	if (read_err || write_err)
1223 		mg->k.input = -EIO;
1224 
1225 	queue_continuation(mg->cache->wq, &mg->k);
1226 }
1227 
1228 static int copy(struct dm_cache_migration *mg, bool promote)
1229 {
1230 	int r;
1231 	struct dm_io_region o_region, c_region;
1232 	struct cache *cache = mg->cache;
1233 
1234 	o_region.bdev = cache->origin_dev->bdev;
1235 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1236 	o_region.count = cache->sectors_per_block;
1237 
1238 	c_region.bdev = cache->cache_dev->bdev;
1239 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1240 	c_region.count = cache->sectors_per_block;
1241 
1242 	if (promote)
1243 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1244 	else
1245 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1246 
1247 	return r;
1248 }
1249 
1250 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1251 {
1252 	size_t pb_data_size = get_per_bio_data_size(cache);
1253 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1254 
1255 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1256 		free_prison_cell(cache, pb->cell);
1257 	pb->cell = NULL;
1258 }
1259 
1260 static void overwrite_endio(struct bio *bio)
1261 {
1262 	struct dm_cache_migration *mg = bio->bi_private;
1263 	struct cache *cache = mg->cache;
1264 	size_t pb_data_size = get_per_bio_data_size(cache);
1265 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1266 
1267 	dm_unhook_bio(&pb->hook_info, bio);
1268 
1269 	if (bio->bi_error)
1270 		mg->k.input = bio->bi_error;
1271 
1272 	queue_continuation(mg->cache->wq, &mg->k);
1273 }
1274 
1275 static void overwrite(struct dm_cache_migration *mg,
1276 		      void (*continuation)(struct work_struct *))
1277 {
1278 	struct bio *bio = mg->overwrite_bio;
1279 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1280 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1281 
1282 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1283 
1284 	/*
1285 	 * The overwrite bio is part of the copy operation, as such it does
1286 	 * not set/clear discard or dirty flags.
1287 	 */
1288 	if (mg->op->op == POLICY_PROMOTE)
1289 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1290 	else
1291 		remap_to_origin(mg->cache, bio);
1292 
1293 	init_continuation(&mg->k, continuation);
1294 	accounted_request(mg->cache, bio);
1295 }
1296 
1297 /*
1298  * Migration steps:
1299  *
1300  * 1) exclusive lock preventing WRITEs
1301  * 2) quiesce
1302  * 3) copy or issue overwrite bio
1303  * 4) upgrade to exclusive lock preventing READs and WRITEs
1304  * 5) quiesce
1305  * 6) update metadata and commit
1306  * 7) unlock
1307  */
1308 static void mg_complete(struct dm_cache_migration *mg, bool success)
1309 {
1310 	struct bio_list bios;
1311 	struct cache *cache = mg->cache;
1312 	struct policy_work *op = mg->op;
1313 	dm_cblock_t cblock = op->cblock;
1314 
1315 	if (success)
1316 		update_stats(&cache->stats, op->op);
1317 
1318 	switch (op->op) {
1319 	case POLICY_PROMOTE:
1320 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1321 		policy_complete_background_work(cache->policy, op, success);
1322 
1323 		if (mg->overwrite_bio) {
1324 			if (success)
1325 				force_set_dirty(cache, cblock);
1326 			else
1327 				mg->overwrite_bio->bi_error = (mg->k.input ? : -EIO);
1328 			bio_endio(mg->overwrite_bio);
1329 		} else {
1330 			if (success)
1331 				force_clear_dirty(cache, cblock);
1332 			dec_io_migrations(cache);
1333 		}
1334 		break;
1335 
1336 	case POLICY_DEMOTE:
1337 		/*
1338 		 * We clear dirty here to update the nr_dirty counter.
1339 		 */
1340 		if (success)
1341 			force_clear_dirty(cache, cblock);
1342 		policy_complete_background_work(cache->policy, op, success);
1343 		dec_io_migrations(cache);
1344 		break;
1345 
1346 	case POLICY_WRITEBACK:
1347 		if (success)
1348 			force_clear_dirty(cache, cblock);
1349 		policy_complete_background_work(cache->policy, op, success);
1350 		dec_io_migrations(cache);
1351 		break;
1352 	}
1353 
1354 	bio_list_init(&bios);
1355 	if (mg->cell) {
1356 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1357 			free_prison_cell(cache, mg->cell);
1358 	}
1359 
1360 	free_migration(mg);
1361 	defer_bios(cache, &bios);
1362 	wake_migration_worker(cache);
1363 
1364 	background_work_end(cache);
1365 }
1366 
1367 static void mg_success(struct work_struct *ws)
1368 {
1369 	struct dm_cache_migration *mg = ws_to_mg(ws);
1370 	mg_complete(mg, mg->k.input == 0);
1371 }
1372 
1373 static void mg_update_metadata(struct work_struct *ws)
1374 {
1375 	int r;
1376 	struct dm_cache_migration *mg = ws_to_mg(ws);
1377 	struct cache *cache = mg->cache;
1378 	struct policy_work *op = mg->op;
1379 
1380 	switch (op->op) {
1381 	case POLICY_PROMOTE:
1382 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1383 		if (r) {
1384 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1385 				    cache_device_name(cache));
1386 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1387 
1388 			mg_complete(mg, false);
1389 			return;
1390 		}
1391 		mg_complete(mg, true);
1392 		break;
1393 
1394 	case POLICY_DEMOTE:
1395 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1396 		if (r) {
1397 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1398 				    cache_device_name(cache));
1399 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1400 
1401 			mg_complete(mg, false);
1402 			return;
1403 		}
1404 
1405 		/*
1406 		 * It would be nice if we only had to commit when a REQ_FLUSH
1407 		 * comes through.  But there's one scenario that we have to
1408 		 * look out for:
1409 		 *
1410 		 * - vblock x in a cache block
1411 		 * - domotion occurs
1412 		 * - cache block gets reallocated and over written
1413 		 * - crash
1414 		 *
1415 		 * When we recover, because there was no commit the cache will
1416 		 * rollback to having the data for vblock x in the cache block.
1417 		 * But the cache block has since been overwritten, so it'll end
1418 		 * up pointing to data that was never in 'x' during the history
1419 		 * of the device.
1420 		 *
1421 		 * To avoid this issue we require a commit as part of the
1422 		 * demotion operation.
1423 		 */
1424 		init_continuation(&mg->k, mg_success);
1425 		continue_after_commit(&cache->committer, &mg->k);
1426 		schedule_commit(&cache->committer);
1427 		break;
1428 
1429 	case POLICY_WRITEBACK:
1430 		mg_complete(mg, true);
1431 		break;
1432 	}
1433 }
1434 
1435 static void mg_update_metadata_after_copy(struct work_struct *ws)
1436 {
1437 	struct dm_cache_migration *mg = ws_to_mg(ws);
1438 
1439 	/*
1440 	 * Did the copy succeed?
1441 	 */
1442 	if (mg->k.input)
1443 		mg_complete(mg, false);
1444 	else
1445 		mg_update_metadata(ws);
1446 }
1447 
1448 static void mg_upgrade_lock(struct work_struct *ws)
1449 {
1450 	int r;
1451 	struct dm_cache_migration *mg = ws_to_mg(ws);
1452 
1453 	/*
1454 	 * Did the copy succeed?
1455 	 */
1456 	if (mg->k.input)
1457 		mg_complete(mg, false);
1458 
1459 	else {
1460 		/*
1461 		 * Now we want the lock to prevent both reads and writes.
1462 		 */
1463 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1464 					    READ_WRITE_LOCK_LEVEL);
1465 		if (r < 0)
1466 			mg_complete(mg, false);
1467 
1468 		else if (r)
1469 			quiesce(mg, mg_update_metadata);
1470 
1471 		else
1472 			mg_update_metadata(ws);
1473 	}
1474 }
1475 
1476 static void mg_copy(struct work_struct *ws)
1477 {
1478 	int r;
1479 	struct dm_cache_migration *mg = ws_to_mg(ws);
1480 
1481 	if (mg->overwrite_bio) {
1482 		/*
1483 		 * It's safe to do this here, even though it's new data
1484 		 * because all IO has been locked out of the block.
1485 		 *
1486 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1487 		 * so _not_ using mg_upgrade_lock() as continutation.
1488 		 */
1489 		overwrite(mg, mg_update_metadata_after_copy);
1490 
1491 	} else {
1492 		struct cache *cache = mg->cache;
1493 		struct policy_work *op = mg->op;
1494 		bool is_policy_promote = (op->op == POLICY_PROMOTE);
1495 
1496 		if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1497 		    is_discarded_oblock(cache, op->oblock)) {
1498 			mg_upgrade_lock(ws);
1499 			return;
1500 		}
1501 
1502 		init_continuation(&mg->k, mg_upgrade_lock);
1503 
1504 		r = copy(mg, is_policy_promote);
1505 		if (r) {
1506 			DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1507 			mg->k.input = -EIO;
1508 			mg_complete(mg, false);
1509 		}
1510 	}
1511 }
1512 
1513 static int mg_lock_writes(struct dm_cache_migration *mg)
1514 {
1515 	int r;
1516 	struct dm_cell_key_v2 key;
1517 	struct cache *cache = mg->cache;
1518 	struct dm_bio_prison_cell_v2 *prealloc;
1519 
1520 	prealloc = alloc_prison_cell(cache);
1521 	if (!prealloc) {
1522 		DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1523 		mg_complete(mg, false);
1524 		return -ENOMEM;
1525 	}
1526 
1527 	/*
1528 	 * Prevent writes to the block, but allow reads to continue.
1529 	 * Unless we're using an overwrite bio, in which case we lock
1530 	 * everything.
1531 	 */
1532 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1533 	r = dm_cell_lock_v2(cache->prison, &key,
1534 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1535 			    prealloc, &mg->cell);
1536 	if (r < 0) {
1537 		free_prison_cell(cache, prealloc);
1538 		mg_complete(mg, false);
1539 		return r;
1540 	}
1541 
1542 	if (mg->cell != prealloc)
1543 		free_prison_cell(cache, prealloc);
1544 
1545 	if (r == 0)
1546 		mg_copy(&mg->k.ws);
1547 	else
1548 		quiesce(mg, mg_copy);
1549 
1550 	return 0;
1551 }
1552 
1553 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1554 {
1555 	struct dm_cache_migration *mg;
1556 
1557 	if (!background_work_begin(cache)) {
1558 		policy_complete_background_work(cache->policy, op, false);
1559 		return -EPERM;
1560 	}
1561 
1562 	mg = alloc_migration(cache);
1563 	if (!mg) {
1564 		policy_complete_background_work(cache->policy, op, false);
1565 		background_work_end(cache);
1566 		return -ENOMEM;
1567 	}
1568 
1569 	memset(mg, 0, sizeof(*mg));
1570 
1571 	mg->cache = cache;
1572 	mg->op = op;
1573 	mg->overwrite_bio = bio;
1574 
1575 	if (!bio)
1576 		inc_io_migrations(cache);
1577 
1578 	return mg_lock_writes(mg);
1579 }
1580 
1581 /*----------------------------------------------------------------
1582  * invalidation processing
1583  *--------------------------------------------------------------*/
1584 
1585 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1586 {
1587 	struct bio_list bios;
1588 	struct cache *cache = mg->cache;
1589 
1590 	bio_list_init(&bios);
1591 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1592 		free_prison_cell(cache, mg->cell);
1593 
1594 	if (!success && mg->overwrite_bio)
1595 		bio_io_error(mg->overwrite_bio);
1596 
1597 	free_migration(mg);
1598 	defer_bios(cache, &bios);
1599 
1600 	background_work_end(cache);
1601 }
1602 
1603 static void invalidate_completed(struct work_struct *ws)
1604 {
1605 	struct dm_cache_migration *mg = ws_to_mg(ws);
1606 	invalidate_complete(mg, !mg->k.input);
1607 }
1608 
1609 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1610 {
1611 	int r = policy_invalidate_mapping(cache->policy, cblock);
1612 	if (!r) {
1613 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1614 		if (r) {
1615 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1616 				    cache_device_name(cache));
1617 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1618 		}
1619 
1620 	} else if (r == -ENODATA) {
1621 		/*
1622 		 * Harmless, already unmapped.
1623 		 */
1624 		r = 0;
1625 
1626 	} else
1627 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1628 
1629 	return r;
1630 }
1631 
1632 static void invalidate_remove(struct work_struct *ws)
1633 {
1634 	int r;
1635 	struct dm_cache_migration *mg = ws_to_mg(ws);
1636 	struct cache *cache = mg->cache;
1637 
1638 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1639 	if (r) {
1640 		invalidate_complete(mg, false);
1641 		return;
1642 	}
1643 
1644 	init_continuation(&mg->k, invalidate_completed);
1645 	continue_after_commit(&cache->committer, &mg->k);
1646 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1647 	mg->overwrite_bio = NULL;
1648 	schedule_commit(&cache->committer);
1649 }
1650 
1651 static int invalidate_lock(struct dm_cache_migration *mg)
1652 {
1653 	int r;
1654 	struct dm_cell_key_v2 key;
1655 	struct cache *cache = mg->cache;
1656 	struct dm_bio_prison_cell_v2 *prealloc;
1657 
1658 	prealloc = alloc_prison_cell(cache);
1659 	if (!prealloc) {
1660 		invalidate_complete(mg, false);
1661 		return -ENOMEM;
1662 	}
1663 
1664 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1665 	r = dm_cell_lock_v2(cache->prison, &key,
1666 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1667 	if (r < 0) {
1668 		free_prison_cell(cache, prealloc);
1669 		invalidate_complete(mg, false);
1670 		return r;
1671 	}
1672 
1673 	if (mg->cell != prealloc)
1674 		free_prison_cell(cache, prealloc);
1675 
1676 	if (r)
1677 		quiesce(mg, invalidate_remove);
1678 
1679 	else {
1680 		/*
1681 		 * We can't call invalidate_remove() directly here because we
1682 		 * might still be in request context.
1683 		 */
1684 		init_continuation(&mg->k, invalidate_remove);
1685 		queue_work(cache->wq, &mg->k.ws);
1686 	}
1687 
1688 	return 0;
1689 }
1690 
1691 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1692 			    dm_oblock_t oblock, struct bio *bio)
1693 {
1694 	struct dm_cache_migration *mg;
1695 
1696 	if (!background_work_begin(cache))
1697 		return -EPERM;
1698 
1699 	mg = alloc_migration(cache);
1700 	if (!mg) {
1701 		background_work_end(cache);
1702 		return -ENOMEM;
1703 	}
1704 
1705 	memset(mg, 0, sizeof(*mg));
1706 
1707 	mg->cache = cache;
1708 	mg->overwrite_bio = bio;
1709 	mg->invalidate_cblock = cblock;
1710 	mg->invalidate_oblock = oblock;
1711 
1712 	return invalidate_lock(mg);
1713 }
1714 
1715 /*----------------------------------------------------------------
1716  * bio processing
1717  *--------------------------------------------------------------*/
1718 
1719 enum busy {
1720 	IDLE,
1721 	BUSY
1722 };
1723 
1724 static enum busy spare_migration_bandwidth(struct cache *cache)
1725 {
1726 	bool idle = iot_idle_for(&cache->tracker, HZ);
1727 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1728 		cache->sectors_per_block;
1729 
1730 	if (idle && current_volume <= cache->migration_threshold)
1731 		return IDLE;
1732 	else
1733 		return BUSY;
1734 }
1735 
1736 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1737 {
1738 	atomic_inc(bio_data_dir(bio) == READ ?
1739 		   &cache->stats.read_hit : &cache->stats.write_hit);
1740 }
1741 
1742 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1743 {
1744 	atomic_inc(bio_data_dir(bio) == READ ?
1745 		   &cache->stats.read_miss : &cache->stats.write_miss);
1746 }
1747 
1748 /*----------------------------------------------------------------*/
1749 
1750 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1751 {
1752 	return (bio_data_dir(bio) == WRITE) &&
1753 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1754 }
1755 
1756 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1757 {
1758 	return writeback_mode(&cache->features) &&
1759 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1760 }
1761 
1762 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1763 		   bool *commit_needed)
1764 {
1765 	int r, data_dir;
1766 	bool rb, background_queued;
1767 	dm_cblock_t cblock;
1768 	size_t pb_data_size = get_per_bio_data_size(cache);
1769 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1770 
1771 	*commit_needed = false;
1772 
1773 	rb = bio_detain_shared(cache, block, bio);
1774 	if (!rb) {
1775 		/*
1776 		 * An exclusive lock is held for this block, so we have to
1777 		 * wait.  We set the commit_needed flag so the current
1778 		 * transaction will be committed asap, allowing this lock
1779 		 * to be dropped.
1780 		 */
1781 		*commit_needed = true;
1782 		return DM_MAPIO_SUBMITTED;
1783 	}
1784 
1785 	data_dir = bio_data_dir(bio);
1786 
1787 	if (optimisable_bio(cache, bio, block)) {
1788 		struct policy_work *op = NULL;
1789 
1790 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1791 		if (unlikely(r && r != -ENOENT)) {
1792 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1793 				    cache_device_name(cache), r);
1794 			bio_io_error(bio);
1795 			return DM_MAPIO_SUBMITTED;
1796 		}
1797 
1798 		if (r == -ENOENT && op) {
1799 			bio_drop_shared_lock(cache, bio);
1800 			BUG_ON(op->op != POLICY_PROMOTE);
1801 			mg_start(cache, op, bio);
1802 			return DM_MAPIO_SUBMITTED;
1803 		}
1804 	} else {
1805 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1806 		if (unlikely(r && r != -ENOENT)) {
1807 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1808 				    cache_device_name(cache), r);
1809 			bio_io_error(bio);
1810 			return DM_MAPIO_SUBMITTED;
1811 		}
1812 
1813 		if (background_queued)
1814 			wake_migration_worker(cache);
1815 	}
1816 
1817 	if (r == -ENOENT) {
1818 		/*
1819 		 * Miss.
1820 		 */
1821 		inc_miss_counter(cache, bio);
1822 		if (pb->req_nr == 0) {
1823 			accounted_begin(cache, bio);
1824 			remap_to_origin_clear_discard(cache, bio, block);
1825 
1826 		} else {
1827 			/*
1828 			 * This is a duplicate writethrough io that is no
1829 			 * longer needed because the block has been demoted.
1830 			 */
1831 			bio_endio(bio);
1832 			return DM_MAPIO_SUBMITTED;
1833 		}
1834 	} else {
1835 		/*
1836 		 * Hit.
1837 		 */
1838 		inc_hit_counter(cache, bio);
1839 
1840 		/*
1841 		 * Passthrough always maps to the origin, invalidating any
1842 		 * cache blocks that are written to.
1843 		 */
1844 		if (passthrough_mode(&cache->features)) {
1845 			if (bio_data_dir(bio) == WRITE) {
1846 				bio_drop_shared_lock(cache, bio);
1847 				atomic_inc(&cache->stats.demotion);
1848 				invalidate_start(cache, cblock, block, bio);
1849 			} else
1850 				remap_to_origin_clear_discard(cache, bio, block);
1851 
1852 		} else {
1853 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
1854 			    !is_dirty(cache, cblock)) {
1855 				remap_to_origin_then_cache(cache, bio, block, cblock);
1856 				accounted_begin(cache, bio);
1857 			} else
1858 				remap_to_cache_dirty(cache, bio, block, cblock);
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1864 	 */
1865 	if (bio->bi_opf & REQ_FUA) {
1866 		/*
1867 		 * issue_after_commit will call accounted_begin a second time.  So
1868 		 * we call accounted_complete() to avoid double accounting.
1869 		 */
1870 		accounted_complete(cache, bio);
1871 		issue_after_commit(&cache->committer, bio);
1872 		*commit_needed = true;
1873 		return DM_MAPIO_SUBMITTED;
1874 	}
1875 
1876 	return DM_MAPIO_REMAPPED;
1877 }
1878 
1879 static bool process_bio(struct cache *cache, struct bio *bio)
1880 {
1881 	bool commit_needed;
1882 
1883 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1884 		generic_make_request(bio);
1885 
1886 	return commit_needed;
1887 }
1888 
1889 /*
1890  * A non-zero return indicates read_only or fail_io mode.
1891  */
1892 static int commit(struct cache *cache, bool clean_shutdown)
1893 {
1894 	int r;
1895 
1896 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1897 		return -EINVAL;
1898 
1899 	atomic_inc(&cache->stats.commit_count);
1900 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1901 	if (r)
1902 		metadata_operation_failed(cache, "dm_cache_commit", r);
1903 
1904 	return r;
1905 }
1906 
1907 /*
1908  * Used by the batcher.
1909  */
1910 static int commit_op(void *context)
1911 {
1912 	struct cache *cache = context;
1913 
1914 	if (dm_cache_changed_this_transaction(cache->cmd))
1915 		return commit(cache, false);
1916 
1917 	return 0;
1918 }
1919 
1920 /*----------------------------------------------------------------*/
1921 
1922 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1923 {
1924 	size_t pb_data_size = get_per_bio_data_size(cache);
1925 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1926 
1927 	if (!pb->req_nr)
1928 		remap_to_origin(cache, bio);
1929 	else
1930 		remap_to_cache(cache, bio, 0);
1931 
1932 	issue_after_commit(&cache->committer, bio);
1933 	return true;
1934 }
1935 
1936 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1937 {
1938 	dm_dblock_t b, e;
1939 
1940 	// FIXME: do we need to lock the region?  Or can we just assume the
1941 	// user wont be so foolish as to issue discard concurrently with
1942 	// other IO?
1943 	calc_discard_block_range(cache, bio, &b, &e);
1944 	while (b != e) {
1945 		set_discard(cache, b);
1946 		b = to_dblock(from_dblock(b) + 1);
1947 	}
1948 
1949 	bio_endio(bio);
1950 
1951 	return false;
1952 }
1953 
1954 static void process_deferred_bios(struct work_struct *ws)
1955 {
1956 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1957 
1958 	unsigned long flags;
1959 	bool commit_needed = false;
1960 	struct bio_list bios;
1961 	struct bio *bio;
1962 
1963 	bio_list_init(&bios);
1964 
1965 	spin_lock_irqsave(&cache->lock, flags);
1966 	bio_list_merge(&bios, &cache->deferred_bios);
1967 	bio_list_init(&cache->deferred_bios);
1968 	spin_unlock_irqrestore(&cache->lock, flags);
1969 
1970 	while ((bio = bio_list_pop(&bios))) {
1971 		if (bio->bi_opf & REQ_PREFLUSH)
1972 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1973 
1974 		else if (bio_op(bio) == REQ_OP_DISCARD)
1975 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1976 
1977 		else
1978 			commit_needed = process_bio(cache, bio) || commit_needed;
1979 	}
1980 
1981 	if (commit_needed)
1982 		schedule_commit(&cache->committer);
1983 }
1984 
1985 static void process_deferred_writethrough_bios(struct work_struct *ws)
1986 {
1987 	struct cache *cache = container_of(ws, struct cache, deferred_writethrough_worker);
1988 
1989 	unsigned long flags;
1990 	struct bio_list bios;
1991 	struct bio *bio;
1992 
1993 	bio_list_init(&bios);
1994 
1995 	spin_lock_irqsave(&cache->lock, flags);
1996 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1997 	bio_list_init(&cache->deferred_writethrough_bios);
1998 	spin_unlock_irqrestore(&cache->lock, flags);
1999 
2000 	/*
2001 	 * These bios have already been through accounted_begin()
2002 	 */
2003 	while ((bio = bio_list_pop(&bios)))
2004 		generic_make_request(bio);
2005 }
2006 
2007 /*----------------------------------------------------------------
2008  * Main worker loop
2009  *--------------------------------------------------------------*/
2010 
2011 static void requeue_deferred_bios(struct cache *cache)
2012 {
2013 	struct bio *bio;
2014 	struct bio_list bios;
2015 
2016 	bio_list_init(&bios);
2017 	bio_list_merge(&bios, &cache->deferred_bios);
2018 	bio_list_init(&cache->deferred_bios);
2019 
2020 	while ((bio = bio_list_pop(&bios))) {
2021 		bio->bi_error = DM_ENDIO_REQUEUE;
2022 		bio_endio(bio);
2023 	}
2024 }
2025 
2026 /*
2027  * We want to commit periodically so that not too much
2028  * unwritten metadata builds up.
2029  */
2030 static void do_waker(struct work_struct *ws)
2031 {
2032 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2033 
2034 	policy_tick(cache->policy, true);
2035 	wake_migration_worker(cache);
2036 	schedule_commit(&cache->committer);
2037 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2038 }
2039 
2040 static void check_migrations(struct work_struct *ws)
2041 {
2042 	int r;
2043 	struct policy_work *op;
2044 	struct cache *cache = container_of(ws, struct cache, migration_worker);
2045 	enum busy b;
2046 
2047 	for (;;) {
2048 		b = spare_migration_bandwidth(cache);
2049 
2050 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
2051 		if (r == -ENODATA)
2052 			break;
2053 
2054 		if (r) {
2055 			DMERR_LIMIT("%s: policy_background_work failed",
2056 				    cache_device_name(cache));
2057 			break;
2058 		}
2059 
2060 		r = mg_start(cache, op, NULL);
2061 		if (r)
2062 			break;
2063 	}
2064 }
2065 
2066 /*----------------------------------------------------------------
2067  * Target methods
2068  *--------------------------------------------------------------*/
2069 
2070 /*
2071  * This function gets called on the error paths of the constructor, so we
2072  * have to cope with a partially initialised struct.
2073  */
2074 static void destroy(struct cache *cache)
2075 {
2076 	unsigned i;
2077 
2078 	mempool_destroy(cache->migration_pool);
2079 
2080 	if (cache->prison)
2081 		dm_bio_prison_destroy_v2(cache->prison);
2082 
2083 	if (cache->wq)
2084 		destroy_workqueue(cache->wq);
2085 
2086 	if (cache->dirty_bitset)
2087 		free_bitset(cache->dirty_bitset);
2088 
2089 	if (cache->discard_bitset)
2090 		free_bitset(cache->discard_bitset);
2091 
2092 	if (cache->copier)
2093 		dm_kcopyd_client_destroy(cache->copier);
2094 
2095 	if (cache->cmd)
2096 		dm_cache_metadata_close(cache->cmd);
2097 
2098 	if (cache->metadata_dev)
2099 		dm_put_device(cache->ti, cache->metadata_dev);
2100 
2101 	if (cache->origin_dev)
2102 		dm_put_device(cache->ti, cache->origin_dev);
2103 
2104 	if (cache->cache_dev)
2105 		dm_put_device(cache->ti, cache->cache_dev);
2106 
2107 	if (cache->policy)
2108 		dm_cache_policy_destroy(cache->policy);
2109 
2110 	for (i = 0; i < cache->nr_ctr_args ; i++)
2111 		kfree(cache->ctr_args[i]);
2112 	kfree(cache->ctr_args);
2113 
2114 	kfree(cache);
2115 }
2116 
2117 static void cache_dtr(struct dm_target *ti)
2118 {
2119 	struct cache *cache = ti->private;
2120 
2121 	destroy(cache);
2122 }
2123 
2124 static sector_t get_dev_size(struct dm_dev *dev)
2125 {
2126 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2127 }
2128 
2129 /*----------------------------------------------------------------*/
2130 
2131 /*
2132  * Construct a cache device mapping.
2133  *
2134  * cache <metadata dev> <cache dev> <origin dev> <block size>
2135  *       <#feature args> [<feature arg>]*
2136  *       <policy> <#policy args> [<policy arg>]*
2137  *
2138  * metadata dev    : fast device holding the persistent metadata
2139  * cache dev	   : fast device holding cached data blocks
2140  * origin dev	   : slow device holding original data blocks
2141  * block size	   : cache unit size in sectors
2142  *
2143  * #feature args   : number of feature arguments passed
2144  * feature args    : writethrough.  (The default is writeback.)
2145  *
2146  * policy	   : the replacement policy to use
2147  * #policy args    : an even number of policy arguments corresponding
2148  *		     to key/value pairs passed to the policy
2149  * policy args	   : key/value pairs passed to the policy
2150  *		     E.g. 'sequential_threshold 1024'
2151  *		     See cache-policies.txt for details.
2152  *
2153  * Optional feature arguments are:
2154  *   writethrough  : write through caching that prohibits cache block
2155  *		     content from being different from origin block content.
2156  *		     Without this argument, the default behaviour is to write
2157  *		     back cache block contents later for performance reasons,
2158  *		     so they may differ from the corresponding origin blocks.
2159  */
2160 struct cache_args {
2161 	struct dm_target *ti;
2162 
2163 	struct dm_dev *metadata_dev;
2164 
2165 	struct dm_dev *cache_dev;
2166 	sector_t cache_sectors;
2167 
2168 	struct dm_dev *origin_dev;
2169 	sector_t origin_sectors;
2170 
2171 	uint32_t block_size;
2172 
2173 	const char *policy_name;
2174 	int policy_argc;
2175 	const char **policy_argv;
2176 
2177 	struct cache_features features;
2178 };
2179 
2180 static void destroy_cache_args(struct cache_args *ca)
2181 {
2182 	if (ca->metadata_dev)
2183 		dm_put_device(ca->ti, ca->metadata_dev);
2184 
2185 	if (ca->cache_dev)
2186 		dm_put_device(ca->ti, ca->cache_dev);
2187 
2188 	if (ca->origin_dev)
2189 		dm_put_device(ca->ti, ca->origin_dev);
2190 
2191 	kfree(ca);
2192 }
2193 
2194 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2195 {
2196 	if (!as->argc) {
2197 		*error = "Insufficient args";
2198 		return false;
2199 	}
2200 
2201 	return true;
2202 }
2203 
2204 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2205 			      char **error)
2206 {
2207 	int r;
2208 	sector_t metadata_dev_size;
2209 	char b[BDEVNAME_SIZE];
2210 
2211 	if (!at_least_one_arg(as, error))
2212 		return -EINVAL;
2213 
2214 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2215 			  &ca->metadata_dev);
2216 	if (r) {
2217 		*error = "Error opening metadata device";
2218 		return r;
2219 	}
2220 
2221 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2222 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2223 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2224 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2225 
2226 	return 0;
2227 }
2228 
2229 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2230 			   char **error)
2231 {
2232 	int r;
2233 
2234 	if (!at_least_one_arg(as, error))
2235 		return -EINVAL;
2236 
2237 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2238 			  &ca->cache_dev);
2239 	if (r) {
2240 		*error = "Error opening cache device";
2241 		return r;
2242 	}
2243 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2244 
2245 	return 0;
2246 }
2247 
2248 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2249 			    char **error)
2250 {
2251 	int r;
2252 
2253 	if (!at_least_one_arg(as, error))
2254 		return -EINVAL;
2255 
2256 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2257 			  &ca->origin_dev);
2258 	if (r) {
2259 		*error = "Error opening origin device";
2260 		return r;
2261 	}
2262 
2263 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2264 	if (ca->ti->len > ca->origin_sectors) {
2265 		*error = "Device size larger than cached device";
2266 		return -EINVAL;
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2273 			    char **error)
2274 {
2275 	unsigned long block_size;
2276 
2277 	if (!at_least_one_arg(as, error))
2278 		return -EINVAL;
2279 
2280 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2281 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2282 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2283 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2284 		*error = "Invalid data block size";
2285 		return -EINVAL;
2286 	}
2287 
2288 	if (block_size > ca->cache_sectors) {
2289 		*error = "Data block size is larger than the cache device";
2290 		return -EINVAL;
2291 	}
2292 
2293 	ca->block_size = block_size;
2294 
2295 	return 0;
2296 }
2297 
2298 static void init_features(struct cache_features *cf)
2299 {
2300 	cf->mode = CM_WRITE;
2301 	cf->io_mode = CM_IO_WRITEBACK;
2302 	cf->metadata_version = 1;
2303 }
2304 
2305 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2306 			  char **error)
2307 {
2308 	static struct dm_arg _args[] = {
2309 		{0, 2, "Invalid number of cache feature arguments"},
2310 	};
2311 
2312 	int r;
2313 	unsigned argc;
2314 	const char *arg;
2315 	struct cache_features *cf = &ca->features;
2316 
2317 	init_features(cf);
2318 
2319 	r = dm_read_arg_group(_args, as, &argc, error);
2320 	if (r)
2321 		return -EINVAL;
2322 
2323 	while (argc--) {
2324 		arg = dm_shift_arg(as);
2325 
2326 		if (!strcasecmp(arg, "writeback"))
2327 			cf->io_mode = CM_IO_WRITEBACK;
2328 
2329 		else if (!strcasecmp(arg, "writethrough"))
2330 			cf->io_mode = CM_IO_WRITETHROUGH;
2331 
2332 		else if (!strcasecmp(arg, "passthrough"))
2333 			cf->io_mode = CM_IO_PASSTHROUGH;
2334 
2335 		else if (!strcasecmp(arg, "metadata2"))
2336 			cf->metadata_version = 2;
2337 
2338 		else {
2339 			*error = "Unrecognised cache feature requested";
2340 			return -EINVAL;
2341 		}
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2348 			char **error)
2349 {
2350 	static struct dm_arg _args[] = {
2351 		{0, 1024, "Invalid number of policy arguments"},
2352 	};
2353 
2354 	int r;
2355 
2356 	if (!at_least_one_arg(as, error))
2357 		return -EINVAL;
2358 
2359 	ca->policy_name = dm_shift_arg(as);
2360 
2361 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2362 	if (r)
2363 		return -EINVAL;
2364 
2365 	ca->policy_argv = (const char **)as->argv;
2366 	dm_consume_args(as, ca->policy_argc);
2367 
2368 	return 0;
2369 }
2370 
2371 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2372 			    char **error)
2373 {
2374 	int r;
2375 	struct dm_arg_set as;
2376 
2377 	as.argc = argc;
2378 	as.argv = argv;
2379 
2380 	r = parse_metadata_dev(ca, &as, error);
2381 	if (r)
2382 		return r;
2383 
2384 	r = parse_cache_dev(ca, &as, error);
2385 	if (r)
2386 		return r;
2387 
2388 	r = parse_origin_dev(ca, &as, error);
2389 	if (r)
2390 		return r;
2391 
2392 	r = parse_block_size(ca, &as, error);
2393 	if (r)
2394 		return r;
2395 
2396 	r = parse_features(ca, &as, error);
2397 	if (r)
2398 		return r;
2399 
2400 	r = parse_policy(ca, &as, error);
2401 	if (r)
2402 		return r;
2403 
2404 	return 0;
2405 }
2406 
2407 /*----------------------------------------------------------------*/
2408 
2409 static struct kmem_cache *migration_cache;
2410 
2411 #define NOT_CORE_OPTION 1
2412 
2413 static int process_config_option(struct cache *cache, const char *key, const char *value)
2414 {
2415 	unsigned long tmp;
2416 
2417 	if (!strcasecmp(key, "migration_threshold")) {
2418 		if (kstrtoul(value, 10, &tmp))
2419 			return -EINVAL;
2420 
2421 		cache->migration_threshold = tmp;
2422 		return 0;
2423 	}
2424 
2425 	return NOT_CORE_OPTION;
2426 }
2427 
2428 static int set_config_value(struct cache *cache, const char *key, const char *value)
2429 {
2430 	int r = process_config_option(cache, key, value);
2431 
2432 	if (r == NOT_CORE_OPTION)
2433 		r = policy_set_config_value(cache->policy, key, value);
2434 
2435 	if (r)
2436 		DMWARN("bad config value for %s: %s", key, value);
2437 
2438 	return r;
2439 }
2440 
2441 static int set_config_values(struct cache *cache, int argc, const char **argv)
2442 {
2443 	int r = 0;
2444 
2445 	if (argc & 1) {
2446 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2447 		return -EINVAL;
2448 	}
2449 
2450 	while (argc) {
2451 		r = set_config_value(cache, argv[0], argv[1]);
2452 		if (r)
2453 			break;
2454 
2455 		argc -= 2;
2456 		argv += 2;
2457 	}
2458 
2459 	return r;
2460 }
2461 
2462 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2463 			       char **error)
2464 {
2465 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2466 							   cache->cache_size,
2467 							   cache->origin_sectors,
2468 							   cache->sectors_per_block);
2469 	if (IS_ERR(p)) {
2470 		*error = "Error creating cache's policy";
2471 		return PTR_ERR(p);
2472 	}
2473 	cache->policy = p;
2474 	BUG_ON(!cache->policy);
2475 
2476 	return 0;
2477 }
2478 
2479 /*
2480  * We want the discard block size to be at least the size of the cache
2481  * block size and have no more than 2^14 discard blocks across the origin.
2482  */
2483 #define MAX_DISCARD_BLOCKS (1 << 14)
2484 
2485 static bool too_many_discard_blocks(sector_t discard_block_size,
2486 				    sector_t origin_size)
2487 {
2488 	(void) sector_div(origin_size, discard_block_size);
2489 
2490 	return origin_size > MAX_DISCARD_BLOCKS;
2491 }
2492 
2493 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2494 					     sector_t origin_size)
2495 {
2496 	sector_t discard_block_size = cache_block_size;
2497 
2498 	if (origin_size)
2499 		while (too_many_discard_blocks(discard_block_size, origin_size))
2500 			discard_block_size *= 2;
2501 
2502 	return discard_block_size;
2503 }
2504 
2505 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2506 {
2507 	dm_block_t nr_blocks = from_cblock(size);
2508 
2509 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2510 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2511 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2512 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2513 			     (unsigned long long) nr_blocks);
2514 
2515 	cache->cache_size = size;
2516 }
2517 
2518 static int is_congested(struct dm_dev *dev, int bdi_bits)
2519 {
2520 	struct request_queue *q = bdev_get_queue(dev->bdev);
2521 	return bdi_congested(q->backing_dev_info, bdi_bits);
2522 }
2523 
2524 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2525 {
2526 	struct cache *cache = container_of(cb, struct cache, callbacks);
2527 
2528 	return is_congested(cache->origin_dev, bdi_bits) ||
2529 		is_congested(cache->cache_dev, bdi_bits);
2530 }
2531 
2532 #define DEFAULT_MIGRATION_THRESHOLD 2048
2533 
2534 static int cache_create(struct cache_args *ca, struct cache **result)
2535 {
2536 	int r = 0;
2537 	char **error = &ca->ti->error;
2538 	struct cache *cache;
2539 	struct dm_target *ti = ca->ti;
2540 	dm_block_t origin_blocks;
2541 	struct dm_cache_metadata *cmd;
2542 	bool may_format = ca->features.mode == CM_WRITE;
2543 
2544 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2545 	if (!cache)
2546 		return -ENOMEM;
2547 
2548 	cache->ti = ca->ti;
2549 	ti->private = cache;
2550 	ti->num_flush_bios = 2;
2551 	ti->flush_supported = true;
2552 
2553 	ti->num_discard_bios = 1;
2554 	ti->discards_supported = true;
2555 	ti->split_discard_bios = false;
2556 
2557 	cache->features = ca->features;
2558 	ti->per_io_data_size = get_per_bio_data_size(cache);
2559 
2560 	cache->callbacks.congested_fn = cache_is_congested;
2561 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2562 
2563 	cache->metadata_dev = ca->metadata_dev;
2564 	cache->origin_dev = ca->origin_dev;
2565 	cache->cache_dev = ca->cache_dev;
2566 
2567 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2568 
2569 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2570 	origin_blocks = block_div(origin_blocks, ca->block_size);
2571 	cache->origin_blocks = to_oblock(origin_blocks);
2572 
2573 	cache->sectors_per_block = ca->block_size;
2574 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2575 		r = -EINVAL;
2576 		goto bad;
2577 	}
2578 
2579 	if (ca->block_size & (ca->block_size - 1)) {
2580 		dm_block_t cache_size = ca->cache_sectors;
2581 
2582 		cache->sectors_per_block_shift = -1;
2583 		cache_size = block_div(cache_size, ca->block_size);
2584 		set_cache_size(cache, to_cblock(cache_size));
2585 	} else {
2586 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2587 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2588 	}
2589 
2590 	r = create_cache_policy(cache, ca, error);
2591 	if (r)
2592 		goto bad;
2593 
2594 	cache->policy_nr_args = ca->policy_argc;
2595 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2596 
2597 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2598 	if (r) {
2599 		*error = "Error setting cache policy's config values";
2600 		goto bad;
2601 	}
2602 
2603 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2604 				     ca->block_size, may_format,
2605 				     dm_cache_policy_get_hint_size(cache->policy),
2606 				     ca->features.metadata_version);
2607 	if (IS_ERR(cmd)) {
2608 		*error = "Error creating metadata object";
2609 		r = PTR_ERR(cmd);
2610 		goto bad;
2611 	}
2612 	cache->cmd = cmd;
2613 	set_cache_mode(cache, CM_WRITE);
2614 	if (get_cache_mode(cache) != CM_WRITE) {
2615 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2616 		r = -EINVAL;
2617 		goto bad;
2618 	}
2619 
2620 	if (passthrough_mode(&cache->features)) {
2621 		bool all_clean;
2622 
2623 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2624 		if (r) {
2625 			*error = "dm_cache_metadata_all_clean() failed";
2626 			goto bad;
2627 		}
2628 
2629 		if (!all_clean) {
2630 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2631 			r = -EINVAL;
2632 			goto bad;
2633 		}
2634 
2635 		policy_allow_migrations(cache->policy, false);
2636 	}
2637 
2638 	spin_lock_init(&cache->lock);
2639 	INIT_LIST_HEAD(&cache->deferred_cells);
2640 	bio_list_init(&cache->deferred_bios);
2641 	bio_list_init(&cache->deferred_writethrough_bios);
2642 	atomic_set(&cache->nr_allocated_migrations, 0);
2643 	atomic_set(&cache->nr_io_migrations, 0);
2644 	init_waitqueue_head(&cache->migration_wait);
2645 
2646 	r = -ENOMEM;
2647 	atomic_set(&cache->nr_dirty, 0);
2648 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2649 	if (!cache->dirty_bitset) {
2650 		*error = "could not allocate dirty bitset";
2651 		goto bad;
2652 	}
2653 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2654 
2655 	cache->discard_block_size =
2656 		calculate_discard_block_size(cache->sectors_per_block,
2657 					     cache->origin_sectors);
2658 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2659 							      cache->discard_block_size));
2660 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2661 	if (!cache->discard_bitset) {
2662 		*error = "could not allocate discard bitset";
2663 		goto bad;
2664 	}
2665 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2666 
2667 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2668 	if (IS_ERR(cache->copier)) {
2669 		*error = "could not create kcopyd client";
2670 		r = PTR_ERR(cache->copier);
2671 		goto bad;
2672 	}
2673 
2674 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2675 	if (!cache->wq) {
2676 		*error = "could not create workqueue for metadata object";
2677 		goto bad;
2678 	}
2679 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2680 	INIT_WORK(&cache->deferred_writethrough_worker,
2681 		  process_deferred_writethrough_bios);
2682 	INIT_WORK(&cache->migration_worker, check_migrations);
2683 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2684 
2685 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2686 	if (!cache->prison) {
2687 		*error = "could not create bio prison";
2688 		goto bad;
2689 	}
2690 
2691 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2692 							 migration_cache);
2693 	if (!cache->migration_pool) {
2694 		*error = "Error creating cache's migration mempool";
2695 		goto bad;
2696 	}
2697 
2698 	cache->need_tick_bio = true;
2699 	cache->sized = false;
2700 	cache->invalidate = false;
2701 	cache->commit_requested = false;
2702 	cache->loaded_mappings = false;
2703 	cache->loaded_discards = false;
2704 
2705 	load_stats(cache);
2706 
2707 	atomic_set(&cache->stats.demotion, 0);
2708 	atomic_set(&cache->stats.promotion, 0);
2709 	atomic_set(&cache->stats.copies_avoided, 0);
2710 	atomic_set(&cache->stats.cache_cell_clash, 0);
2711 	atomic_set(&cache->stats.commit_count, 0);
2712 	atomic_set(&cache->stats.discard_count, 0);
2713 
2714 	spin_lock_init(&cache->invalidation_lock);
2715 	INIT_LIST_HEAD(&cache->invalidation_requests);
2716 
2717 	batcher_init(&cache->committer, commit_op, cache,
2718 		     issue_op, cache, cache->wq);
2719 	iot_init(&cache->tracker);
2720 
2721 	init_rwsem(&cache->background_work_lock);
2722 	prevent_background_work(cache);
2723 
2724 	*result = cache;
2725 	return 0;
2726 bad:
2727 	destroy(cache);
2728 	return r;
2729 }
2730 
2731 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2732 {
2733 	unsigned i;
2734 	const char **copy;
2735 
2736 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2737 	if (!copy)
2738 		return -ENOMEM;
2739 	for (i = 0; i < argc; i++) {
2740 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2741 		if (!copy[i]) {
2742 			while (i--)
2743 				kfree(copy[i]);
2744 			kfree(copy);
2745 			return -ENOMEM;
2746 		}
2747 	}
2748 
2749 	cache->nr_ctr_args = argc;
2750 	cache->ctr_args = copy;
2751 
2752 	return 0;
2753 }
2754 
2755 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2756 {
2757 	int r = -EINVAL;
2758 	struct cache_args *ca;
2759 	struct cache *cache = NULL;
2760 
2761 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2762 	if (!ca) {
2763 		ti->error = "Error allocating memory for cache";
2764 		return -ENOMEM;
2765 	}
2766 	ca->ti = ti;
2767 
2768 	r = parse_cache_args(ca, argc, argv, &ti->error);
2769 	if (r)
2770 		goto out;
2771 
2772 	r = cache_create(ca, &cache);
2773 	if (r)
2774 		goto out;
2775 
2776 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2777 	if (r) {
2778 		destroy(cache);
2779 		goto out;
2780 	}
2781 
2782 	ti->private = cache;
2783 out:
2784 	destroy_cache_args(ca);
2785 	return r;
2786 }
2787 
2788 /*----------------------------------------------------------------*/
2789 
2790 static int cache_map(struct dm_target *ti, struct bio *bio)
2791 {
2792 	struct cache *cache = ti->private;
2793 
2794 	int r;
2795 	bool commit_needed;
2796 	dm_oblock_t block = get_bio_block(cache, bio);
2797 	size_t pb_data_size = get_per_bio_data_size(cache);
2798 
2799 	init_per_bio_data(bio, pb_data_size);
2800 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2801 		/*
2802 		 * This can only occur if the io goes to a partial block at
2803 		 * the end of the origin device.  We don't cache these.
2804 		 * Just remap to the origin and carry on.
2805 		 */
2806 		remap_to_origin(cache, bio);
2807 		accounted_begin(cache, bio);
2808 		return DM_MAPIO_REMAPPED;
2809 	}
2810 
2811 	if (discard_or_flush(bio)) {
2812 		defer_bio(cache, bio);
2813 		return DM_MAPIO_SUBMITTED;
2814 	}
2815 
2816 	r = map_bio(cache, bio, block, &commit_needed);
2817 	if (commit_needed)
2818 		schedule_commit(&cache->committer);
2819 
2820 	return r;
2821 }
2822 
2823 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2824 {
2825 	struct cache *cache = ti->private;
2826 	unsigned long flags;
2827 	size_t pb_data_size = get_per_bio_data_size(cache);
2828 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2829 
2830 	if (pb->tick) {
2831 		policy_tick(cache->policy, false);
2832 
2833 		spin_lock_irqsave(&cache->lock, flags);
2834 		cache->need_tick_bio = true;
2835 		spin_unlock_irqrestore(&cache->lock, flags);
2836 	}
2837 
2838 	bio_drop_shared_lock(cache, bio);
2839 	accounted_complete(cache, bio);
2840 
2841 	return 0;
2842 }
2843 
2844 static int write_dirty_bitset(struct cache *cache)
2845 {
2846 	int r;
2847 
2848 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2849 		return -EINVAL;
2850 
2851 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2852 	if (r)
2853 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2854 
2855 	return r;
2856 }
2857 
2858 static int write_discard_bitset(struct cache *cache)
2859 {
2860 	unsigned i, r;
2861 
2862 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2863 		return -EINVAL;
2864 
2865 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2866 					   cache->discard_nr_blocks);
2867 	if (r) {
2868 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2869 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2870 		return r;
2871 	}
2872 
2873 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2874 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2875 					 is_discarded(cache, to_dblock(i)));
2876 		if (r) {
2877 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2878 			return r;
2879 		}
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 static int write_hints(struct cache *cache)
2886 {
2887 	int r;
2888 
2889 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2890 		return -EINVAL;
2891 
2892 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2893 	if (r) {
2894 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2895 		return r;
2896 	}
2897 
2898 	return 0;
2899 }
2900 
2901 /*
2902  * returns true on success
2903  */
2904 static bool sync_metadata(struct cache *cache)
2905 {
2906 	int r1, r2, r3, r4;
2907 
2908 	r1 = write_dirty_bitset(cache);
2909 	if (r1)
2910 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2911 
2912 	r2 = write_discard_bitset(cache);
2913 	if (r2)
2914 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2915 
2916 	save_stats(cache);
2917 
2918 	r3 = write_hints(cache);
2919 	if (r3)
2920 		DMERR("%s: could not write hints", cache_device_name(cache));
2921 
2922 	/*
2923 	 * If writing the above metadata failed, we still commit, but don't
2924 	 * set the clean shutdown flag.  This will effectively force every
2925 	 * dirty bit to be set on reload.
2926 	 */
2927 	r4 = commit(cache, !r1 && !r2 && !r3);
2928 	if (r4)
2929 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2930 
2931 	return !r1 && !r2 && !r3 && !r4;
2932 }
2933 
2934 static void cache_postsuspend(struct dm_target *ti)
2935 {
2936 	struct cache *cache = ti->private;
2937 
2938 	prevent_background_work(cache);
2939 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2940 
2941 	cancel_delayed_work(&cache->waker);
2942 	flush_workqueue(cache->wq);
2943 	WARN_ON(cache->tracker.in_flight);
2944 
2945 	/*
2946 	 * If it's a flush suspend there won't be any deferred bios, so this
2947 	 * call is harmless.
2948 	 */
2949 	requeue_deferred_bios(cache);
2950 
2951 	if (get_cache_mode(cache) == CM_WRITE)
2952 		(void) sync_metadata(cache);
2953 }
2954 
2955 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2956 			bool dirty, uint32_t hint, bool hint_valid)
2957 {
2958 	int r;
2959 	struct cache *cache = context;
2960 
2961 	if (dirty) {
2962 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2963 		atomic_inc(&cache->nr_dirty);
2964 	} else
2965 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2966 
2967 	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2968 	if (r)
2969 		return r;
2970 
2971 	return 0;
2972 }
2973 
2974 /*
2975  * The discard block size in the on disk metadata is not
2976  * neccessarily the same as we're currently using.  So we have to
2977  * be careful to only set the discarded attribute if we know it
2978  * covers a complete block of the new size.
2979  */
2980 struct discard_load_info {
2981 	struct cache *cache;
2982 
2983 	/*
2984 	 * These blocks are sized using the on disk dblock size, rather
2985 	 * than the current one.
2986 	 */
2987 	dm_block_t block_size;
2988 	dm_block_t discard_begin, discard_end;
2989 };
2990 
2991 static void discard_load_info_init(struct cache *cache,
2992 				   struct discard_load_info *li)
2993 {
2994 	li->cache = cache;
2995 	li->discard_begin = li->discard_end = 0;
2996 }
2997 
2998 static void set_discard_range(struct discard_load_info *li)
2999 {
3000 	sector_t b, e;
3001 
3002 	if (li->discard_begin == li->discard_end)
3003 		return;
3004 
3005 	/*
3006 	 * Convert to sectors.
3007 	 */
3008 	b = li->discard_begin * li->block_size;
3009 	e = li->discard_end * li->block_size;
3010 
3011 	/*
3012 	 * Then convert back to the current dblock size.
3013 	 */
3014 	b = dm_sector_div_up(b, li->cache->discard_block_size);
3015 	sector_div(e, li->cache->discard_block_size);
3016 
3017 	/*
3018 	 * The origin may have shrunk, so we need to check we're still in
3019 	 * bounds.
3020 	 */
3021 	if (e > from_dblock(li->cache->discard_nr_blocks))
3022 		e = from_dblock(li->cache->discard_nr_blocks);
3023 
3024 	for (; b < e; b++)
3025 		set_discard(li->cache, to_dblock(b));
3026 }
3027 
3028 static int load_discard(void *context, sector_t discard_block_size,
3029 			dm_dblock_t dblock, bool discard)
3030 {
3031 	struct discard_load_info *li = context;
3032 
3033 	li->block_size = discard_block_size;
3034 
3035 	if (discard) {
3036 		if (from_dblock(dblock) == li->discard_end)
3037 			/*
3038 			 * We're already in a discard range, just extend it.
3039 			 */
3040 			li->discard_end = li->discard_end + 1ULL;
3041 
3042 		else {
3043 			/*
3044 			 * Emit the old range and start a new one.
3045 			 */
3046 			set_discard_range(li);
3047 			li->discard_begin = from_dblock(dblock);
3048 			li->discard_end = li->discard_begin + 1ULL;
3049 		}
3050 	} else {
3051 		set_discard_range(li);
3052 		li->discard_begin = li->discard_end = 0;
3053 	}
3054 
3055 	return 0;
3056 }
3057 
3058 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3059 {
3060 	sector_t size = get_dev_size(cache->cache_dev);
3061 	(void) sector_div(size, cache->sectors_per_block);
3062 	return to_cblock(size);
3063 }
3064 
3065 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3066 {
3067 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3068 		return true;
3069 
3070 	/*
3071 	 * We can't drop a dirty block when shrinking the cache.
3072 	 */
3073 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3074 		new_size = to_cblock(from_cblock(new_size) + 1);
3075 		if (is_dirty(cache, new_size)) {
3076 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3077 			      cache_device_name(cache),
3078 			      (unsigned long long) from_cblock(new_size));
3079 			return false;
3080 		}
3081 	}
3082 
3083 	return true;
3084 }
3085 
3086 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3087 {
3088 	int r;
3089 
3090 	r = dm_cache_resize(cache->cmd, new_size);
3091 	if (r) {
3092 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3093 		metadata_operation_failed(cache, "dm_cache_resize", r);
3094 		return r;
3095 	}
3096 
3097 	set_cache_size(cache, new_size);
3098 
3099 	return 0;
3100 }
3101 
3102 static int cache_preresume(struct dm_target *ti)
3103 {
3104 	int r = 0;
3105 	struct cache *cache = ti->private;
3106 	dm_cblock_t csize = get_cache_dev_size(cache);
3107 
3108 	/*
3109 	 * Check to see if the cache has resized.
3110 	 */
3111 	if (!cache->sized) {
3112 		r = resize_cache_dev(cache, csize);
3113 		if (r)
3114 			return r;
3115 
3116 		cache->sized = true;
3117 
3118 	} else if (csize != cache->cache_size) {
3119 		if (!can_resize(cache, csize))
3120 			return -EINVAL;
3121 
3122 		r = resize_cache_dev(cache, csize);
3123 		if (r)
3124 			return r;
3125 	}
3126 
3127 	if (!cache->loaded_mappings) {
3128 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3129 					   load_mapping, cache);
3130 		if (r) {
3131 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3132 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3133 			return r;
3134 		}
3135 
3136 		cache->loaded_mappings = true;
3137 	}
3138 
3139 	if (!cache->loaded_discards) {
3140 		struct discard_load_info li;
3141 
3142 		/*
3143 		 * The discard bitset could have been resized, or the
3144 		 * discard block size changed.  To be safe we start by
3145 		 * setting every dblock to not discarded.
3146 		 */
3147 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3148 
3149 		discard_load_info_init(cache, &li);
3150 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3151 		if (r) {
3152 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3153 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3154 			return r;
3155 		}
3156 		set_discard_range(&li);
3157 
3158 		cache->loaded_discards = true;
3159 	}
3160 
3161 	return r;
3162 }
3163 
3164 static void cache_resume(struct dm_target *ti)
3165 {
3166 	struct cache *cache = ti->private;
3167 
3168 	cache->need_tick_bio = true;
3169 	allow_background_work(cache);
3170 	do_waker(&cache->waker.work);
3171 }
3172 
3173 /*
3174  * Status format:
3175  *
3176  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3177  * <cache block size> <#used cache blocks>/<#total cache blocks>
3178  * <#read hits> <#read misses> <#write hits> <#write misses>
3179  * <#demotions> <#promotions> <#dirty>
3180  * <#features> <features>*
3181  * <#core args> <core args>
3182  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3183  */
3184 static void cache_status(struct dm_target *ti, status_type_t type,
3185 			 unsigned status_flags, char *result, unsigned maxlen)
3186 {
3187 	int r = 0;
3188 	unsigned i;
3189 	ssize_t sz = 0;
3190 	dm_block_t nr_free_blocks_metadata = 0;
3191 	dm_block_t nr_blocks_metadata = 0;
3192 	char buf[BDEVNAME_SIZE];
3193 	struct cache *cache = ti->private;
3194 	dm_cblock_t residency;
3195 	bool needs_check;
3196 
3197 	switch (type) {
3198 	case STATUSTYPE_INFO:
3199 		if (get_cache_mode(cache) == CM_FAIL) {
3200 			DMEMIT("Fail");
3201 			break;
3202 		}
3203 
3204 		/* Commit to ensure statistics aren't out-of-date */
3205 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3206 			(void) commit(cache, false);
3207 
3208 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3209 		if (r) {
3210 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3211 			      cache_device_name(cache), r);
3212 			goto err;
3213 		}
3214 
3215 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3216 		if (r) {
3217 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3218 			      cache_device_name(cache), r);
3219 			goto err;
3220 		}
3221 
3222 		residency = policy_residency(cache->policy);
3223 
3224 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3225 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3226 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3227 		       (unsigned long long)nr_blocks_metadata,
3228 		       (unsigned long long)cache->sectors_per_block,
3229 		       (unsigned long long) from_cblock(residency),
3230 		       (unsigned long long) from_cblock(cache->cache_size),
3231 		       (unsigned) atomic_read(&cache->stats.read_hit),
3232 		       (unsigned) atomic_read(&cache->stats.read_miss),
3233 		       (unsigned) atomic_read(&cache->stats.write_hit),
3234 		       (unsigned) atomic_read(&cache->stats.write_miss),
3235 		       (unsigned) atomic_read(&cache->stats.demotion),
3236 		       (unsigned) atomic_read(&cache->stats.promotion),
3237 		       (unsigned long) atomic_read(&cache->nr_dirty));
3238 
3239 		if (cache->features.metadata_version == 2)
3240 			DMEMIT("2 metadata2 ");
3241 		else
3242 			DMEMIT("1 ");
3243 
3244 		if (writethrough_mode(&cache->features))
3245 			DMEMIT("writethrough ");
3246 
3247 		else if (passthrough_mode(&cache->features))
3248 			DMEMIT("passthrough ");
3249 
3250 		else if (writeback_mode(&cache->features))
3251 			DMEMIT("writeback ");
3252 
3253 		else {
3254 			DMERR("%s: internal error: unknown io mode: %d",
3255 			      cache_device_name(cache), (int) cache->features.io_mode);
3256 			goto err;
3257 		}
3258 
3259 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3260 
3261 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3262 		if (sz < maxlen) {
3263 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3264 			if (r)
3265 				DMERR("%s: policy_emit_config_values returned %d",
3266 				      cache_device_name(cache), r);
3267 		}
3268 
3269 		if (get_cache_mode(cache) == CM_READ_ONLY)
3270 			DMEMIT("ro ");
3271 		else
3272 			DMEMIT("rw ");
3273 
3274 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3275 
3276 		if (r || needs_check)
3277 			DMEMIT("needs_check ");
3278 		else
3279 			DMEMIT("- ");
3280 
3281 		break;
3282 
3283 	case STATUSTYPE_TABLE:
3284 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3285 		DMEMIT("%s ", buf);
3286 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3287 		DMEMIT("%s ", buf);
3288 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3289 		DMEMIT("%s", buf);
3290 
3291 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3292 			DMEMIT(" %s", cache->ctr_args[i]);
3293 		if (cache->nr_ctr_args)
3294 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3295 	}
3296 
3297 	return;
3298 
3299 err:
3300 	DMEMIT("Error");
3301 }
3302 
3303 /*
3304  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3305  * the one-past-the-end value.
3306  */
3307 struct cblock_range {
3308 	dm_cblock_t begin;
3309 	dm_cblock_t end;
3310 };
3311 
3312 /*
3313  * A cache block range can take two forms:
3314  *
3315  * i) A single cblock, eg. '3456'
3316  * ii) A begin and end cblock with a dash between, eg. 123-234
3317  */
3318 static int parse_cblock_range(struct cache *cache, const char *str,
3319 			      struct cblock_range *result)
3320 {
3321 	char dummy;
3322 	uint64_t b, e;
3323 	int r;
3324 
3325 	/*
3326 	 * Try and parse form (ii) first.
3327 	 */
3328 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3329 	if (r < 0)
3330 		return r;
3331 
3332 	if (r == 2) {
3333 		result->begin = to_cblock(b);
3334 		result->end = to_cblock(e);
3335 		return 0;
3336 	}
3337 
3338 	/*
3339 	 * That didn't work, try form (i).
3340 	 */
3341 	r = sscanf(str, "%llu%c", &b, &dummy);
3342 	if (r < 0)
3343 		return r;
3344 
3345 	if (r == 1) {
3346 		result->begin = to_cblock(b);
3347 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3348 		return 0;
3349 	}
3350 
3351 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3352 	return -EINVAL;
3353 }
3354 
3355 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3356 {
3357 	uint64_t b = from_cblock(range->begin);
3358 	uint64_t e = from_cblock(range->end);
3359 	uint64_t n = from_cblock(cache->cache_size);
3360 
3361 	if (b >= n) {
3362 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3363 		      cache_device_name(cache), b, n);
3364 		return -EINVAL;
3365 	}
3366 
3367 	if (e > n) {
3368 		DMERR("%s: end cblock out of range: %llu > %llu",
3369 		      cache_device_name(cache), e, n);
3370 		return -EINVAL;
3371 	}
3372 
3373 	if (b >= e) {
3374 		DMERR("%s: invalid cblock range: %llu >= %llu",
3375 		      cache_device_name(cache), b, e);
3376 		return -EINVAL;
3377 	}
3378 
3379 	return 0;
3380 }
3381 
3382 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3383 {
3384 	return to_cblock(from_cblock(b) + 1);
3385 }
3386 
3387 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3388 {
3389 	int r = 0;
3390 
3391 	/*
3392 	 * We don't need to do any locking here because we know we're in
3393 	 * passthrough mode.  There's is potential for a race between an
3394 	 * invalidation triggered by an io and an invalidation message.  This
3395 	 * is harmless, we must not worry if the policy call fails.
3396 	 */
3397 	while (range->begin != range->end) {
3398 		r = invalidate_cblock(cache, range->begin);
3399 		if (r)
3400 			return r;
3401 
3402 		range->begin = cblock_succ(range->begin);
3403 	}
3404 
3405 	cache->commit_requested = true;
3406 	return r;
3407 }
3408 
3409 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3410 					      const char **cblock_ranges)
3411 {
3412 	int r = 0;
3413 	unsigned i;
3414 	struct cblock_range range;
3415 
3416 	if (!passthrough_mode(&cache->features)) {
3417 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3418 		      cache_device_name(cache));
3419 		return -EPERM;
3420 	}
3421 
3422 	for (i = 0; i < count; i++) {
3423 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3424 		if (r)
3425 			break;
3426 
3427 		r = validate_cblock_range(cache, &range);
3428 		if (r)
3429 			break;
3430 
3431 		/*
3432 		 * Pass begin and end origin blocks to the worker and wake it.
3433 		 */
3434 		r = request_invalidation(cache, &range);
3435 		if (r)
3436 			break;
3437 	}
3438 
3439 	return r;
3440 }
3441 
3442 /*
3443  * Supports
3444  *	"<key> <value>"
3445  * and
3446  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3447  *
3448  * The key migration_threshold is supported by the cache target core.
3449  */
3450 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3451 {
3452 	struct cache *cache = ti->private;
3453 
3454 	if (!argc)
3455 		return -EINVAL;
3456 
3457 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3458 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3459 		      cache_device_name(cache));
3460 		return -EOPNOTSUPP;
3461 	}
3462 
3463 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3464 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3465 
3466 	if (argc != 2)
3467 		return -EINVAL;
3468 
3469 	return set_config_value(cache, argv[0], argv[1]);
3470 }
3471 
3472 static int cache_iterate_devices(struct dm_target *ti,
3473 				 iterate_devices_callout_fn fn, void *data)
3474 {
3475 	int r = 0;
3476 	struct cache *cache = ti->private;
3477 
3478 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3479 	if (!r)
3480 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3481 
3482 	return r;
3483 }
3484 
3485 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3486 {
3487 	/*
3488 	 * FIXME: these limits may be incompatible with the cache device
3489 	 */
3490 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3491 					    cache->origin_sectors);
3492 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3493 }
3494 
3495 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3496 {
3497 	struct cache *cache = ti->private;
3498 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3499 
3500 	/*
3501 	 * If the system-determined stacked limits are compatible with the
3502 	 * cache's blocksize (io_opt is a factor) do not override them.
3503 	 */
3504 	if (io_opt_sectors < cache->sectors_per_block ||
3505 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3506 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3507 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3508 	}
3509 	set_discard_limits(cache, limits);
3510 }
3511 
3512 /*----------------------------------------------------------------*/
3513 
3514 static struct target_type cache_target = {
3515 	.name = "cache",
3516 	.version = {2, 0, 0},
3517 	.module = THIS_MODULE,
3518 	.ctr = cache_ctr,
3519 	.dtr = cache_dtr,
3520 	.map = cache_map,
3521 	.end_io = cache_end_io,
3522 	.postsuspend = cache_postsuspend,
3523 	.preresume = cache_preresume,
3524 	.resume = cache_resume,
3525 	.status = cache_status,
3526 	.message = cache_message,
3527 	.iterate_devices = cache_iterate_devices,
3528 	.io_hints = cache_io_hints,
3529 };
3530 
3531 static int __init dm_cache_init(void)
3532 {
3533 	int r;
3534 
3535 	r = dm_register_target(&cache_target);
3536 	if (r) {
3537 		DMERR("cache target registration failed: %d", r);
3538 		return r;
3539 	}
3540 
3541 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3542 	if (!migration_cache) {
3543 		dm_unregister_target(&cache_target);
3544 		return -ENOMEM;
3545 	}
3546 
3547 	return 0;
3548 }
3549 
3550 static void __exit dm_cache_exit(void)
3551 {
3552 	dm_unregister_target(&cache_target);
3553 	kmem_cache_destroy(migration_cache);
3554 }
3555 
3556 module_init(dm_cache_init);
3557 module_exit(dm_cache_exit);
3558 
3559 MODULE_DESCRIPTION(DM_NAME " cache target");
3560 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3561 MODULE_LICENSE("GPL");
3562