1 /* 2 * Copyright (C) 2012 Red Hat. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-prison-v2.h" 9 #include "dm-bio-record.h" 10 #include "dm-cache-metadata.h" 11 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/init.h> 16 #include <linux/mempool.h> 17 #include <linux/module.h> 18 #include <linux/rwsem.h> 19 #include <linux/slab.h> 20 #include <linux/vmalloc.h> 21 22 #define DM_MSG_PREFIX "cache" 23 24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, 25 "A percentage of time allocated for copying to and/or from cache"); 26 27 /*----------------------------------------------------------------*/ 28 29 /* 30 * Glossary: 31 * 32 * oblock: index of an origin block 33 * cblock: index of a cache block 34 * promotion: movement of a block from origin to cache 35 * demotion: movement of a block from cache to origin 36 * migration: movement of a block between the origin and cache device, 37 * either direction 38 */ 39 40 /*----------------------------------------------------------------*/ 41 42 struct io_tracker { 43 spinlock_t lock; 44 45 /* 46 * Sectors of in-flight IO. 47 */ 48 sector_t in_flight; 49 50 /* 51 * The time, in jiffies, when this device became idle (if it is 52 * indeed idle). 53 */ 54 unsigned long idle_time; 55 unsigned long last_update_time; 56 }; 57 58 static void iot_init(struct io_tracker *iot) 59 { 60 spin_lock_init(&iot->lock); 61 iot->in_flight = 0ul; 62 iot->idle_time = 0ul; 63 iot->last_update_time = jiffies; 64 } 65 66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs) 67 { 68 if (iot->in_flight) 69 return false; 70 71 return time_after(jiffies, iot->idle_time + jifs); 72 } 73 74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs) 75 { 76 bool r; 77 unsigned long flags; 78 79 spin_lock_irqsave(&iot->lock, flags); 80 r = __iot_idle_for(iot, jifs); 81 spin_unlock_irqrestore(&iot->lock, flags); 82 83 return r; 84 } 85 86 static void iot_io_begin(struct io_tracker *iot, sector_t len) 87 { 88 unsigned long flags; 89 90 spin_lock_irqsave(&iot->lock, flags); 91 iot->in_flight += len; 92 spin_unlock_irqrestore(&iot->lock, flags); 93 } 94 95 static void __iot_io_end(struct io_tracker *iot, sector_t len) 96 { 97 if (!len) 98 return; 99 100 iot->in_flight -= len; 101 if (!iot->in_flight) 102 iot->idle_time = jiffies; 103 } 104 105 static void iot_io_end(struct io_tracker *iot, sector_t len) 106 { 107 unsigned long flags; 108 109 spin_lock_irqsave(&iot->lock, flags); 110 __iot_io_end(iot, len); 111 spin_unlock_irqrestore(&iot->lock, flags); 112 } 113 114 /*----------------------------------------------------------------*/ 115 116 /* 117 * Represents a chunk of future work. 'input' allows continuations to pass 118 * values between themselves, typically error values. 119 */ 120 struct continuation { 121 struct work_struct ws; 122 int input; 123 }; 124 125 static inline void init_continuation(struct continuation *k, 126 void (*fn)(struct work_struct *)) 127 { 128 INIT_WORK(&k->ws, fn); 129 k->input = 0; 130 } 131 132 static inline void queue_continuation(struct workqueue_struct *wq, 133 struct continuation *k) 134 { 135 queue_work(wq, &k->ws); 136 } 137 138 /*----------------------------------------------------------------*/ 139 140 /* 141 * The batcher collects together pieces of work that need a particular 142 * operation to occur before they can proceed (typically a commit). 143 */ 144 struct batcher { 145 /* 146 * The operation that everyone is waiting for. 147 */ 148 int (*commit_op)(void *context); 149 void *commit_context; 150 151 /* 152 * This is how bios should be issued once the commit op is complete 153 * (accounted_request). 154 */ 155 void (*issue_op)(struct bio *bio, void *context); 156 void *issue_context; 157 158 /* 159 * Queued work gets put on here after commit. 160 */ 161 struct workqueue_struct *wq; 162 163 spinlock_t lock; 164 struct list_head work_items; 165 struct bio_list bios; 166 struct work_struct commit_work; 167 168 bool commit_scheduled; 169 }; 170 171 static void __commit(struct work_struct *_ws) 172 { 173 struct batcher *b = container_of(_ws, struct batcher, commit_work); 174 175 int r; 176 unsigned long flags; 177 struct list_head work_items; 178 struct work_struct *ws, *tmp; 179 struct continuation *k; 180 struct bio *bio; 181 struct bio_list bios; 182 183 INIT_LIST_HEAD(&work_items); 184 bio_list_init(&bios); 185 186 /* 187 * We have to grab these before the commit_op to avoid a race 188 * condition. 189 */ 190 spin_lock_irqsave(&b->lock, flags); 191 list_splice_init(&b->work_items, &work_items); 192 bio_list_merge(&bios, &b->bios); 193 bio_list_init(&b->bios); 194 b->commit_scheduled = false; 195 spin_unlock_irqrestore(&b->lock, flags); 196 197 r = b->commit_op(b->commit_context); 198 199 list_for_each_entry_safe(ws, tmp, &work_items, entry) { 200 k = container_of(ws, struct continuation, ws); 201 k->input = r; 202 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */ 203 queue_work(b->wq, ws); 204 } 205 206 while ((bio = bio_list_pop(&bios))) { 207 if (r) { 208 bio->bi_error = r; 209 bio_endio(bio); 210 } else 211 b->issue_op(bio, b->issue_context); 212 } 213 } 214 215 static void batcher_init(struct batcher *b, 216 int (*commit_op)(void *), 217 void *commit_context, 218 void (*issue_op)(struct bio *bio, void *), 219 void *issue_context, 220 struct workqueue_struct *wq) 221 { 222 b->commit_op = commit_op; 223 b->commit_context = commit_context; 224 b->issue_op = issue_op; 225 b->issue_context = issue_context; 226 b->wq = wq; 227 228 spin_lock_init(&b->lock); 229 INIT_LIST_HEAD(&b->work_items); 230 bio_list_init(&b->bios); 231 INIT_WORK(&b->commit_work, __commit); 232 b->commit_scheduled = false; 233 } 234 235 static void async_commit(struct batcher *b) 236 { 237 queue_work(b->wq, &b->commit_work); 238 } 239 240 static void continue_after_commit(struct batcher *b, struct continuation *k) 241 { 242 unsigned long flags; 243 bool commit_scheduled; 244 245 spin_lock_irqsave(&b->lock, flags); 246 commit_scheduled = b->commit_scheduled; 247 list_add_tail(&k->ws.entry, &b->work_items); 248 spin_unlock_irqrestore(&b->lock, flags); 249 250 if (commit_scheduled) 251 async_commit(b); 252 } 253 254 /* 255 * Bios are errored if commit failed. 256 */ 257 static void issue_after_commit(struct batcher *b, struct bio *bio) 258 { 259 unsigned long flags; 260 bool commit_scheduled; 261 262 spin_lock_irqsave(&b->lock, flags); 263 commit_scheduled = b->commit_scheduled; 264 bio_list_add(&b->bios, bio); 265 spin_unlock_irqrestore(&b->lock, flags); 266 267 if (commit_scheduled) 268 async_commit(b); 269 } 270 271 /* 272 * Call this if some urgent work is waiting for the commit to complete. 273 */ 274 static void schedule_commit(struct batcher *b) 275 { 276 bool immediate; 277 unsigned long flags; 278 279 spin_lock_irqsave(&b->lock, flags); 280 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios); 281 b->commit_scheduled = true; 282 spin_unlock_irqrestore(&b->lock, flags); 283 284 if (immediate) 285 async_commit(b); 286 } 287 288 /* 289 * There are a couple of places where we let a bio run, but want to do some 290 * work before calling its endio function. We do this by temporarily 291 * changing the endio fn. 292 */ 293 struct dm_hook_info { 294 bio_end_io_t *bi_end_io; 295 }; 296 297 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio, 298 bio_end_io_t *bi_end_io, void *bi_private) 299 { 300 h->bi_end_io = bio->bi_end_io; 301 302 bio->bi_end_io = bi_end_io; 303 bio->bi_private = bi_private; 304 } 305 306 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio) 307 { 308 bio->bi_end_io = h->bi_end_io; 309 } 310 311 /*----------------------------------------------------------------*/ 312 313 #define MIGRATION_POOL_SIZE 128 314 #define COMMIT_PERIOD HZ 315 #define MIGRATION_COUNT_WINDOW 10 316 317 /* 318 * The block size of the device holding cache data must be 319 * between 32KB and 1GB. 320 */ 321 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) 322 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 323 324 enum cache_metadata_mode { 325 CM_WRITE, /* metadata may be changed */ 326 CM_READ_ONLY, /* metadata may not be changed */ 327 CM_FAIL 328 }; 329 330 enum cache_io_mode { 331 /* 332 * Data is written to cached blocks only. These blocks are marked 333 * dirty. If you lose the cache device you will lose data. 334 * Potential performance increase for both reads and writes. 335 */ 336 CM_IO_WRITEBACK, 337 338 /* 339 * Data is written to both cache and origin. Blocks are never 340 * dirty. Potential performance benfit for reads only. 341 */ 342 CM_IO_WRITETHROUGH, 343 344 /* 345 * A degraded mode useful for various cache coherency situations 346 * (eg, rolling back snapshots). Reads and writes always go to the 347 * origin. If a write goes to a cached oblock, then the cache 348 * block is invalidated. 349 */ 350 CM_IO_PASSTHROUGH 351 }; 352 353 struct cache_features { 354 enum cache_metadata_mode mode; 355 enum cache_io_mode io_mode; 356 unsigned metadata_version; 357 }; 358 359 struct cache_stats { 360 atomic_t read_hit; 361 atomic_t read_miss; 362 atomic_t write_hit; 363 atomic_t write_miss; 364 atomic_t demotion; 365 atomic_t promotion; 366 atomic_t writeback; 367 atomic_t copies_avoided; 368 atomic_t cache_cell_clash; 369 atomic_t commit_count; 370 atomic_t discard_count; 371 }; 372 373 struct cache { 374 struct dm_target *ti; 375 struct dm_target_callbacks callbacks; 376 377 struct dm_cache_metadata *cmd; 378 379 /* 380 * Metadata is written to this device. 381 */ 382 struct dm_dev *metadata_dev; 383 384 /* 385 * The slower of the two data devices. Typically a spindle. 386 */ 387 struct dm_dev *origin_dev; 388 389 /* 390 * The faster of the two data devices. Typically an SSD. 391 */ 392 struct dm_dev *cache_dev; 393 394 /* 395 * Size of the origin device in _complete_ blocks and native sectors. 396 */ 397 dm_oblock_t origin_blocks; 398 sector_t origin_sectors; 399 400 /* 401 * Size of the cache device in blocks. 402 */ 403 dm_cblock_t cache_size; 404 405 /* 406 * Fields for converting from sectors to blocks. 407 */ 408 sector_t sectors_per_block; 409 int sectors_per_block_shift; 410 411 spinlock_t lock; 412 struct list_head deferred_cells; 413 struct bio_list deferred_bios; 414 struct bio_list deferred_writethrough_bios; 415 sector_t migration_threshold; 416 wait_queue_head_t migration_wait; 417 atomic_t nr_allocated_migrations; 418 419 /* 420 * The number of in flight migrations that are performing 421 * background io. eg, promotion, writeback. 422 */ 423 atomic_t nr_io_migrations; 424 425 struct rw_semaphore quiesce_lock; 426 427 /* 428 * cache_size entries, dirty if set 429 */ 430 atomic_t nr_dirty; 431 unsigned long *dirty_bitset; 432 433 /* 434 * origin_blocks entries, discarded if set. 435 */ 436 dm_dblock_t discard_nr_blocks; 437 unsigned long *discard_bitset; 438 uint32_t discard_block_size; /* a power of 2 times sectors per block */ 439 440 /* 441 * Rather than reconstructing the table line for the status we just 442 * save it and regurgitate. 443 */ 444 unsigned nr_ctr_args; 445 const char **ctr_args; 446 447 struct dm_kcopyd_client *copier; 448 struct workqueue_struct *wq; 449 struct work_struct deferred_bio_worker; 450 struct work_struct deferred_writethrough_worker; 451 struct work_struct migration_worker; 452 struct delayed_work waker; 453 struct dm_bio_prison_v2 *prison; 454 455 mempool_t *migration_pool; 456 457 struct dm_cache_policy *policy; 458 unsigned policy_nr_args; 459 460 bool need_tick_bio:1; 461 bool sized:1; 462 bool invalidate:1; 463 bool commit_requested:1; 464 bool loaded_mappings:1; 465 bool loaded_discards:1; 466 467 /* 468 * Cache features such as write-through. 469 */ 470 struct cache_features features; 471 472 struct cache_stats stats; 473 474 /* 475 * Invalidation fields. 476 */ 477 spinlock_t invalidation_lock; 478 struct list_head invalidation_requests; 479 480 struct io_tracker tracker; 481 482 struct work_struct commit_ws; 483 struct batcher committer; 484 485 struct rw_semaphore background_work_lock; 486 }; 487 488 struct per_bio_data { 489 bool tick:1; 490 unsigned req_nr:2; 491 struct dm_bio_prison_cell_v2 *cell; 492 struct dm_hook_info hook_info; 493 sector_t len; 494 495 /* 496 * writethrough fields. These MUST remain at the end of this 497 * structure and the 'cache' member must be the first as it 498 * is used to determine the offset of the writethrough fields. 499 */ 500 struct cache *cache; 501 dm_cblock_t cblock; 502 struct dm_bio_details bio_details; 503 }; 504 505 struct dm_cache_migration { 506 struct continuation k; 507 struct cache *cache; 508 509 struct policy_work *op; 510 struct bio *overwrite_bio; 511 struct dm_bio_prison_cell_v2 *cell; 512 513 dm_cblock_t invalidate_cblock; 514 dm_oblock_t invalidate_oblock; 515 }; 516 517 /*----------------------------------------------------------------*/ 518 519 static bool writethrough_mode(struct cache_features *f) 520 { 521 return f->io_mode == CM_IO_WRITETHROUGH; 522 } 523 524 static bool writeback_mode(struct cache_features *f) 525 { 526 return f->io_mode == CM_IO_WRITEBACK; 527 } 528 529 static inline bool passthrough_mode(struct cache_features *f) 530 { 531 return unlikely(f->io_mode == CM_IO_PASSTHROUGH); 532 } 533 534 /*----------------------------------------------------------------*/ 535 536 static void wake_deferred_bio_worker(struct cache *cache) 537 { 538 queue_work(cache->wq, &cache->deferred_bio_worker); 539 } 540 541 static void wake_deferred_writethrough_worker(struct cache *cache) 542 { 543 queue_work(cache->wq, &cache->deferred_writethrough_worker); 544 } 545 546 static void wake_migration_worker(struct cache *cache) 547 { 548 if (passthrough_mode(&cache->features)) 549 return; 550 551 queue_work(cache->wq, &cache->migration_worker); 552 } 553 554 /*----------------------------------------------------------------*/ 555 556 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache) 557 { 558 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT); 559 } 560 561 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell) 562 { 563 dm_bio_prison_free_cell_v2(cache->prison, cell); 564 } 565 566 static struct dm_cache_migration *alloc_migration(struct cache *cache) 567 { 568 struct dm_cache_migration *mg; 569 570 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT); 571 if (mg) { 572 mg->cache = cache; 573 atomic_inc(&mg->cache->nr_allocated_migrations); 574 } 575 576 return mg; 577 } 578 579 static void free_migration(struct dm_cache_migration *mg) 580 { 581 struct cache *cache = mg->cache; 582 583 if (atomic_dec_and_test(&cache->nr_allocated_migrations)) 584 wake_up(&cache->migration_wait); 585 586 mempool_free(mg, cache->migration_pool); 587 } 588 589 /*----------------------------------------------------------------*/ 590 591 static inline dm_oblock_t oblock_succ(dm_oblock_t b) 592 { 593 return to_oblock(from_oblock(b) + 1ull); 594 } 595 596 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key) 597 { 598 key->virtual = 0; 599 key->dev = 0; 600 key->block_begin = from_oblock(begin); 601 key->block_end = from_oblock(end); 602 } 603 604 /* 605 * We have two lock levels. Level 0, which is used to prevent WRITEs, and 606 * level 1 which prevents *both* READs and WRITEs. 607 */ 608 #define WRITE_LOCK_LEVEL 0 609 #define READ_WRITE_LOCK_LEVEL 1 610 611 static unsigned lock_level(struct bio *bio) 612 { 613 return bio_data_dir(bio) == WRITE ? 614 WRITE_LOCK_LEVEL : 615 READ_WRITE_LOCK_LEVEL; 616 } 617 618 /*---------------------------------------------------------------- 619 * Per bio data 620 *--------------------------------------------------------------*/ 621 622 /* 623 * If using writeback, leave out struct per_bio_data's writethrough fields. 624 */ 625 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache)) 626 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data)) 627 628 static size_t get_per_bio_data_size(struct cache *cache) 629 { 630 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB; 631 } 632 633 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size) 634 { 635 struct per_bio_data *pb = dm_per_bio_data(bio, data_size); 636 BUG_ON(!pb); 637 return pb; 638 } 639 640 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size) 641 { 642 struct per_bio_data *pb = get_per_bio_data(bio, data_size); 643 644 pb->tick = false; 645 pb->req_nr = dm_bio_get_target_bio_nr(bio); 646 pb->cell = NULL; 647 pb->len = 0; 648 649 return pb; 650 } 651 652 /*----------------------------------------------------------------*/ 653 654 static void defer_bio(struct cache *cache, struct bio *bio) 655 { 656 unsigned long flags; 657 658 spin_lock_irqsave(&cache->lock, flags); 659 bio_list_add(&cache->deferred_bios, bio); 660 spin_unlock_irqrestore(&cache->lock, flags); 661 662 wake_deferred_bio_worker(cache); 663 } 664 665 static void defer_bios(struct cache *cache, struct bio_list *bios) 666 { 667 unsigned long flags; 668 669 spin_lock_irqsave(&cache->lock, flags); 670 bio_list_merge(&cache->deferred_bios, bios); 671 bio_list_init(bios); 672 spin_unlock_irqrestore(&cache->lock, flags); 673 674 wake_deferred_bio_worker(cache); 675 } 676 677 /*----------------------------------------------------------------*/ 678 679 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio) 680 { 681 bool r; 682 size_t pb_size; 683 struct per_bio_data *pb; 684 struct dm_cell_key_v2 key; 685 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL); 686 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell; 687 688 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */ 689 if (!cell_prealloc) { 690 defer_bio(cache, bio); 691 return false; 692 } 693 694 build_key(oblock, end, &key); 695 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell); 696 if (!r) { 697 /* 698 * Failed to get the lock. 699 */ 700 free_prison_cell(cache, cell_prealloc); 701 return r; 702 } 703 704 if (cell != cell_prealloc) 705 free_prison_cell(cache, cell_prealloc); 706 707 pb_size = get_per_bio_data_size(cache); 708 pb = get_per_bio_data(bio, pb_size); 709 pb->cell = cell; 710 711 return r; 712 } 713 714 /*----------------------------------------------------------------*/ 715 716 static bool is_dirty(struct cache *cache, dm_cblock_t b) 717 { 718 return test_bit(from_cblock(b), cache->dirty_bitset); 719 } 720 721 static void set_dirty(struct cache *cache, dm_cblock_t cblock) 722 { 723 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { 724 atomic_inc(&cache->nr_dirty); 725 policy_set_dirty(cache->policy, cblock); 726 } 727 } 728 729 /* 730 * These two are called when setting after migrations to force the policy 731 * and dirty bitset to be in sync. 732 */ 733 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock) 734 { 735 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) 736 atomic_inc(&cache->nr_dirty); 737 policy_set_dirty(cache->policy, cblock); 738 } 739 740 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock) 741 { 742 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { 743 if (atomic_dec_return(&cache->nr_dirty) == 0) 744 dm_table_event(cache->ti->table); 745 } 746 747 policy_clear_dirty(cache->policy, cblock); 748 } 749 750 /*----------------------------------------------------------------*/ 751 752 static bool block_size_is_power_of_two(struct cache *cache) 753 { 754 return cache->sectors_per_block_shift >= 0; 755 } 756 757 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */ 758 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6 759 __always_inline 760 #endif 761 static dm_block_t block_div(dm_block_t b, uint32_t n) 762 { 763 do_div(b, n); 764 765 return b; 766 } 767 768 static dm_block_t oblocks_per_dblock(struct cache *cache) 769 { 770 dm_block_t oblocks = cache->discard_block_size; 771 772 if (block_size_is_power_of_two(cache)) 773 oblocks >>= cache->sectors_per_block_shift; 774 else 775 oblocks = block_div(oblocks, cache->sectors_per_block); 776 777 return oblocks; 778 } 779 780 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock) 781 { 782 return to_dblock(block_div(from_oblock(oblock), 783 oblocks_per_dblock(cache))); 784 } 785 786 static void set_discard(struct cache *cache, dm_dblock_t b) 787 { 788 unsigned long flags; 789 790 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks)); 791 atomic_inc(&cache->stats.discard_count); 792 793 spin_lock_irqsave(&cache->lock, flags); 794 set_bit(from_dblock(b), cache->discard_bitset); 795 spin_unlock_irqrestore(&cache->lock, flags); 796 } 797 798 static void clear_discard(struct cache *cache, dm_dblock_t b) 799 { 800 unsigned long flags; 801 802 spin_lock_irqsave(&cache->lock, flags); 803 clear_bit(from_dblock(b), cache->discard_bitset); 804 spin_unlock_irqrestore(&cache->lock, flags); 805 } 806 807 static bool is_discarded(struct cache *cache, dm_dblock_t b) 808 { 809 int r; 810 unsigned long flags; 811 812 spin_lock_irqsave(&cache->lock, flags); 813 r = test_bit(from_dblock(b), cache->discard_bitset); 814 spin_unlock_irqrestore(&cache->lock, flags); 815 816 return r; 817 } 818 819 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) 820 { 821 int r; 822 unsigned long flags; 823 824 spin_lock_irqsave(&cache->lock, flags); 825 r = test_bit(from_dblock(oblock_to_dblock(cache, b)), 826 cache->discard_bitset); 827 spin_unlock_irqrestore(&cache->lock, flags); 828 829 return r; 830 } 831 832 /*---------------------------------------------------------------- 833 * Remapping 834 *--------------------------------------------------------------*/ 835 static void remap_to_origin(struct cache *cache, struct bio *bio) 836 { 837 bio->bi_bdev = cache->origin_dev->bdev; 838 } 839 840 static void remap_to_cache(struct cache *cache, struct bio *bio, 841 dm_cblock_t cblock) 842 { 843 sector_t bi_sector = bio->bi_iter.bi_sector; 844 sector_t block = from_cblock(cblock); 845 846 bio->bi_bdev = cache->cache_dev->bdev; 847 if (!block_size_is_power_of_two(cache)) 848 bio->bi_iter.bi_sector = 849 (block * cache->sectors_per_block) + 850 sector_div(bi_sector, cache->sectors_per_block); 851 else 852 bio->bi_iter.bi_sector = 853 (block << cache->sectors_per_block_shift) | 854 (bi_sector & (cache->sectors_per_block - 1)); 855 } 856 857 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) 858 { 859 unsigned long flags; 860 size_t pb_data_size = get_per_bio_data_size(cache); 861 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 862 863 spin_lock_irqsave(&cache->lock, flags); 864 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) && 865 bio_op(bio) != REQ_OP_DISCARD) { 866 pb->tick = true; 867 cache->need_tick_bio = false; 868 } 869 spin_unlock_irqrestore(&cache->lock, flags); 870 } 871 872 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, 873 dm_oblock_t oblock) 874 { 875 // FIXME: this is called way too much. 876 check_if_tick_bio_needed(cache, bio); 877 remap_to_origin(cache, bio); 878 if (bio_data_dir(bio) == WRITE) 879 clear_discard(cache, oblock_to_dblock(cache, oblock)); 880 } 881 882 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, 883 dm_oblock_t oblock, dm_cblock_t cblock) 884 { 885 check_if_tick_bio_needed(cache, bio); 886 remap_to_cache(cache, bio, cblock); 887 if (bio_data_dir(bio) == WRITE) { 888 set_dirty(cache, cblock); 889 clear_discard(cache, oblock_to_dblock(cache, oblock)); 890 } 891 } 892 893 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) 894 { 895 sector_t block_nr = bio->bi_iter.bi_sector; 896 897 if (!block_size_is_power_of_two(cache)) 898 (void) sector_div(block_nr, cache->sectors_per_block); 899 else 900 block_nr >>= cache->sectors_per_block_shift; 901 902 return to_oblock(block_nr); 903 } 904 905 static bool accountable_bio(struct cache *cache, struct bio *bio) 906 { 907 return bio_op(bio) != REQ_OP_DISCARD; 908 } 909 910 static void accounted_begin(struct cache *cache, struct bio *bio) 911 { 912 size_t pb_data_size = get_per_bio_data_size(cache); 913 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 914 915 if (accountable_bio(cache, bio)) { 916 pb->len = bio_sectors(bio); 917 iot_io_begin(&cache->tracker, pb->len); 918 } 919 } 920 921 static void accounted_complete(struct cache *cache, struct bio *bio) 922 { 923 size_t pb_data_size = get_per_bio_data_size(cache); 924 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 925 926 iot_io_end(&cache->tracker, pb->len); 927 } 928 929 static void accounted_request(struct cache *cache, struct bio *bio) 930 { 931 accounted_begin(cache, bio); 932 generic_make_request(bio); 933 } 934 935 static void issue_op(struct bio *bio, void *context) 936 { 937 struct cache *cache = context; 938 accounted_request(cache, bio); 939 } 940 941 static void defer_writethrough_bio(struct cache *cache, struct bio *bio) 942 { 943 unsigned long flags; 944 945 spin_lock_irqsave(&cache->lock, flags); 946 bio_list_add(&cache->deferred_writethrough_bios, bio); 947 spin_unlock_irqrestore(&cache->lock, flags); 948 949 wake_deferred_writethrough_worker(cache); 950 } 951 952 static void writethrough_endio(struct bio *bio) 953 { 954 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT); 955 956 dm_unhook_bio(&pb->hook_info, bio); 957 958 if (bio->bi_error) { 959 bio_endio(bio); 960 return; 961 } 962 963 dm_bio_restore(&pb->bio_details, bio); 964 remap_to_cache(pb->cache, bio, pb->cblock); 965 966 /* 967 * We can't issue this bio directly, since we're in interrupt 968 * context. So it gets put on a bio list for processing by the 969 * worker thread. 970 */ 971 defer_writethrough_bio(pb->cache, bio); 972 } 973 974 /* 975 * FIXME: send in parallel, huge latency as is. 976 * When running in writethrough mode we need to send writes to clean blocks 977 * to both the cache and origin devices. In future we'd like to clone the 978 * bio and send them in parallel, but for now we're doing them in 979 * series as this is easier. 980 */ 981 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio, 982 dm_oblock_t oblock, dm_cblock_t cblock) 983 { 984 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT); 985 986 pb->cache = cache; 987 pb->cblock = cblock; 988 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL); 989 dm_bio_record(&pb->bio_details, bio); 990 991 remap_to_origin_clear_discard(pb->cache, bio, oblock); 992 } 993 994 /*---------------------------------------------------------------- 995 * Failure modes 996 *--------------------------------------------------------------*/ 997 static enum cache_metadata_mode get_cache_mode(struct cache *cache) 998 { 999 return cache->features.mode; 1000 } 1001 1002 static const char *cache_device_name(struct cache *cache) 1003 { 1004 return dm_device_name(dm_table_get_md(cache->ti->table)); 1005 } 1006 1007 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode) 1008 { 1009 const char *descs[] = { 1010 "write", 1011 "read-only", 1012 "fail" 1013 }; 1014 1015 dm_table_event(cache->ti->table); 1016 DMINFO("%s: switching cache to %s mode", 1017 cache_device_name(cache), descs[(int)mode]); 1018 } 1019 1020 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode) 1021 { 1022 bool needs_check; 1023 enum cache_metadata_mode old_mode = get_cache_mode(cache); 1024 1025 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) { 1026 DMERR("%s: unable to read needs_check flag, setting failure mode.", 1027 cache_device_name(cache)); 1028 new_mode = CM_FAIL; 1029 } 1030 1031 if (new_mode == CM_WRITE && needs_check) { 1032 DMERR("%s: unable to switch cache to write mode until repaired.", 1033 cache_device_name(cache)); 1034 if (old_mode != new_mode) 1035 new_mode = old_mode; 1036 else 1037 new_mode = CM_READ_ONLY; 1038 } 1039 1040 /* Never move out of fail mode */ 1041 if (old_mode == CM_FAIL) 1042 new_mode = CM_FAIL; 1043 1044 switch (new_mode) { 1045 case CM_FAIL: 1046 case CM_READ_ONLY: 1047 dm_cache_metadata_set_read_only(cache->cmd); 1048 break; 1049 1050 case CM_WRITE: 1051 dm_cache_metadata_set_read_write(cache->cmd); 1052 break; 1053 } 1054 1055 cache->features.mode = new_mode; 1056 1057 if (new_mode != old_mode) 1058 notify_mode_switch(cache, new_mode); 1059 } 1060 1061 static void abort_transaction(struct cache *cache) 1062 { 1063 const char *dev_name = cache_device_name(cache); 1064 1065 if (get_cache_mode(cache) >= CM_READ_ONLY) 1066 return; 1067 1068 if (dm_cache_metadata_set_needs_check(cache->cmd)) { 1069 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 1070 set_cache_mode(cache, CM_FAIL); 1071 } 1072 1073 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 1074 if (dm_cache_metadata_abort(cache->cmd)) { 1075 DMERR("%s: failed to abort metadata transaction", dev_name); 1076 set_cache_mode(cache, CM_FAIL); 1077 } 1078 } 1079 1080 static void metadata_operation_failed(struct cache *cache, const char *op, int r) 1081 { 1082 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 1083 cache_device_name(cache), op, r); 1084 abort_transaction(cache); 1085 set_cache_mode(cache, CM_READ_ONLY); 1086 } 1087 1088 /*----------------------------------------------------------------*/ 1089 1090 static void load_stats(struct cache *cache) 1091 { 1092 struct dm_cache_statistics stats; 1093 1094 dm_cache_metadata_get_stats(cache->cmd, &stats); 1095 atomic_set(&cache->stats.read_hit, stats.read_hits); 1096 atomic_set(&cache->stats.read_miss, stats.read_misses); 1097 atomic_set(&cache->stats.write_hit, stats.write_hits); 1098 atomic_set(&cache->stats.write_miss, stats.write_misses); 1099 } 1100 1101 static void save_stats(struct cache *cache) 1102 { 1103 struct dm_cache_statistics stats; 1104 1105 if (get_cache_mode(cache) >= CM_READ_ONLY) 1106 return; 1107 1108 stats.read_hits = atomic_read(&cache->stats.read_hit); 1109 stats.read_misses = atomic_read(&cache->stats.read_miss); 1110 stats.write_hits = atomic_read(&cache->stats.write_hit); 1111 stats.write_misses = atomic_read(&cache->stats.write_miss); 1112 1113 dm_cache_metadata_set_stats(cache->cmd, &stats); 1114 } 1115 1116 static void update_stats(struct cache_stats *stats, enum policy_operation op) 1117 { 1118 switch (op) { 1119 case POLICY_PROMOTE: 1120 atomic_inc(&stats->promotion); 1121 break; 1122 1123 case POLICY_DEMOTE: 1124 atomic_inc(&stats->demotion); 1125 break; 1126 1127 case POLICY_WRITEBACK: 1128 atomic_inc(&stats->writeback); 1129 break; 1130 } 1131 } 1132 1133 /*---------------------------------------------------------------- 1134 * Migration processing 1135 * 1136 * Migration covers moving data from the origin device to the cache, or 1137 * vice versa. 1138 *--------------------------------------------------------------*/ 1139 1140 static void inc_io_migrations(struct cache *cache) 1141 { 1142 atomic_inc(&cache->nr_io_migrations); 1143 } 1144 1145 static void dec_io_migrations(struct cache *cache) 1146 { 1147 atomic_dec(&cache->nr_io_migrations); 1148 } 1149 1150 static bool discard_or_flush(struct bio *bio) 1151 { 1152 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf); 1153 } 1154 1155 static void calc_discard_block_range(struct cache *cache, struct bio *bio, 1156 dm_dblock_t *b, dm_dblock_t *e) 1157 { 1158 sector_t sb = bio->bi_iter.bi_sector; 1159 sector_t se = bio_end_sector(bio); 1160 1161 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size)); 1162 1163 if (se - sb < cache->discard_block_size) 1164 *e = *b; 1165 else 1166 *e = to_dblock(block_div(se, cache->discard_block_size)); 1167 } 1168 1169 /*----------------------------------------------------------------*/ 1170 1171 static void prevent_background_work(struct cache *cache) 1172 { 1173 lockdep_off(); 1174 down_write(&cache->background_work_lock); 1175 lockdep_on(); 1176 } 1177 1178 static void allow_background_work(struct cache *cache) 1179 { 1180 lockdep_off(); 1181 up_write(&cache->background_work_lock); 1182 lockdep_on(); 1183 } 1184 1185 static bool background_work_begin(struct cache *cache) 1186 { 1187 bool r; 1188 1189 lockdep_off(); 1190 r = down_read_trylock(&cache->background_work_lock); 1191 lockdep_on(); 1192 1193 return r; 1194 } 1195 1196 static void background_work_end(struct cache *cache) 1197 { 1198 lockdep_off(); 1199 up_read(&cache->background_work_lock); 1200 lockdep_on(); 1201 } 1202 1203 /*----------------------------------------------------------------*/ 1204 1205 static void quiesce(struct dm_cache_migration *mg, 1206 void (*continuation)(struct work_struct *)) 1207 { 1208 init_continuation(&mg->k, continuation); 1209 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws); 1210 } 1211 1212 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws) 1213 { 1214 struct continuation *k = container_of(ws, struct continuation, ws); 1215 return container_of(k, struct dm_cache_migration, k); 1216 } 1217 1218 static void copy_complete(int read_err, unsigned long write_err, void *context) 1219 { 1220 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k); 1221 1222 if (read_err || write_err) 1223 mg->k.input = -EIO; 1224 1225 queue_continuation(mg->cache->wq, &mg->k); 1226 } 1227 1228 static int copy(struct dm_cache_migration *mg, bool promote) 1229 { 1230 int r; 1231 struct dm_io_region o_region, c_region; 1232 struct cache *cache = mg->cache; 1233 1234 o_region.bdev = cache->origin_dev->bdev; 1235 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block; 1236 o_region.count = cache->sectors_per_block; 1237 1238 c_region.bdev = cache->cache_dev->bdev; 1239 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block; 1240 c_region.count = cache->sectors_per_block; 1241 1242 if (promote) 1243 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k); 1244 else 1245 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k); 1246 1247 return r; 1248 } 1249 1250 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio) 1251 { 1252 size_t pb_data_size = get_per_bio_data_size(cache); 1253 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 1254 1255 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell)) 1256 free_prison_cell(cache, pb->cell); 1257 pb->cell = NULL; 1258 } 1259 1260 static void overwrite_endio(struct bio *bio) 1261 { 1262 struct dm_cache_migration *mg = bio->bi_private; 1263 struct cache *cache = mg->cache; 1264 size_t pb_data_size = get_per_bio_data_size(cache); 1265 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 1266 1267 dm_unhook_bio(&pb->hook_info, bio); 1268 1269 if (bio->bi_error) 1270 mg->k.input = bio->bi_error; 1271 1272 queue_continuation(mg->cache->wq, &mg->k); 1273 } 1274 1275 static void overwrite(struct dm_cache_migration *mg, 1276 void (*continuation)(struct work_struct *)) 1277 { 1278 struct bio *bio = mg->overwrite_bio; 1279 size_t pb_data_size = get_per_bio_data_size(mg->cache); 1280 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 1281 1282 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg); 1283 1284 /* 1285 * The overwrite bio is part of the copy operation, as such it does 1286 * not set/clear discard or dirty flags. 1287 */ 1288 if (mg->op->op == POLICY_PROMOTE) 1289 remap_to_cache(mg->cache, bio, mg->op->cblock); 1290 else 1291 remap_to_origin(mg->cache, bio); 1292 1293 init_continuation(&mg->k, continuation); 1294 accounted_request(mg->cache, bio); 1295 } 1296 1297 /* 1298 * Migration steps: 1299 * 1300 * 1) exclusive lock preventing WRITEs 1301 * 2) quiesce 1302 * 3) copy or issue overwrite bio 1303 * 4) upgrade to exclusive lock preventing READs and WRITEs 1304 * 5) quiesce 1305 * 6) update metadata and commit 1306 * 7) unlock 1307 */ 1308 static void mg_complete(struct dm_cache_migration *mg, bool success) 1309 { 1310 struct bio_list bios; 1311 struct cache *cache = mg->cache; 1312 struct policy_work *op = mg->op; 1313 dm_cblock_t cblock = op->cblock; 1314 1315 if (success) 1316 update_stats(&cache->stats, op->op); 1317 1318 switch (op->op) { 1319 case POLICY_PROMOTE: 1320 clear_discard(cache, oblock_to_dblock(cache, op->oblock)); 1321 policy_complete_background_work(cache->policy, op, success); 1322 1323 if (mg->overwrite_bio) { 1324 if (success) 1325 force_set_dirty(cache, cblock); 1326 else 1327 mg->overwrite_bio->bi_error = (mg->k.input ? : -EIO); 1328 bio_endio(mg->overwrite_bio); 1329 } else { 1330 if (success) 1331 force_clear_dirty(cache, cblock); 1332 dec_io_migrations(cache); 1333 } 1334 break; 1335 1336 case POLICY_DEMOTE: 1337 /* 1338 * We clear dirty here to update the nr_dirty counter. 1339 */ 1340 if (success) 1341 force_clear_dirty(cache, cblock); 1342 policy_complete_background_work(cache->policy, op, success); 1343 dec_io_migrations(cache); 1344 break; 1345 1346 case POLICY_WRITEBACK: 1347 if (success) 1348 force_clear_dirty(cache, cblock); 1349 policy_complete_background_work(cache->policy, op, success); 1350 dec_io_migrations(cache); 1351 break; 1352 } 1353 1354 bio_list_init(&bios); 1355 if (mg->cell) { 1356 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1357 free_prison_cell(cache, mg->cell); 1358 } 1359 1360 free_migration(mg); 1361 defer_bios(cache, &bios); 1362 wake_migration_worker(cache); 1363 1364 background_work_end(cache); 1365 } 1366 1367 static void mg_success(struct work_struct *ws) 1368 { 1369 struct dm_cache_migration *mg = ws_to_mg(ws); 1370 mg_complete(mg, mg->k.input == 0); 1371 } 1372 1373 static void mg_update_metadata(struct work_struct *ws) 1374 { 1375 int r; 1376 struct dm_cache_migration *mg = ws_to_mg(ws); 1377 struct cache *cache = mg->cache; 1378 struct policy_work *op = mg->op; 1379 1380 switch (op->op) { 1381 case POLICY_PROMOTE: 1382 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock); 1383 if (r) { 1384 DMERR_LIMIT("%s: migration failed; couldn't insert mapping", 1385 cache_device_name(cache)); 1386 metadata_operation_failed(cache, "dm_cache_insert_mapping", r); 1387 1388 mg_complete(mg, false); 1389 return; 1390 } 1391 mg_complete(mg, true); 1392 break; 1393 1394 case POLICY_DEMOTE: 1395 r = dm_cache_remove_mapping(cache->cmd, op->cblock); 1396 if (r) { 1397 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata", 1398 cache_device_name(cache)); 1399 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1400 1401 mg_complete(mg, false); 1402 return; 1403 } 1404 1405 /* 1406 * It would be nice if we only had to commit when a REQ_FLUSH 1407 * comes through. But there's one scenario that we have to 1408 * look out for: 1409 * 1410 * - vblock x in a cache block 1411 * - domotion occurs 1412 * - cache block gets reallocated and over written 1413 * - crash 1414 * 1415 * When we recover, because there was no commit the cache will 1416 * rollback to having the data for vblock x in the cache block. 1417 * But the cache block has since been overwritten, so it'll end 1418 * up pointing to data that was never in 'x' during the history 1419 * of the device. 1420 * 1421 * To avoid this issue we require a commit as part of the 1422 * demotion operation. 1423 */ 1424 init_continuation(&mg->k, mg_success); 1425 continue_after_commit(&cache->committer, &mg->k); 1426 schedule_commit(&cache->committer); 1427 break; 1428 1429 case POLICY_WRITEBACK: 1430 mg_complete(mg, true); 1431 break; 1432 } 1433 } 1434 1435 static void mg_update_metadata_after_copy(struct work_struct *ws) 1436 { 1437 struct dm_cache_migration *mg = ws_to_mg(ws); 1438 1439 /* 1440 * Did the copy succeed? 1441 */ 1442 if (mg->k.input) 1443 mg_complete(mg, false); 1444 else 1445 mg_update_metadata(ws); 1446 } 1447 1448 static void mg_upgrade_lock(struct work_struct *ws) 1449 { 1450 int r; 1451 struct dm_cache_migration *mg = ws_to_mg(ws); 1452 1453 /* 1454 * Did the copy succeed? 1455 */ 1456 if (mg->k.input) 1457 mg_complete(mg, false); 1458 1459 else { 1460 /* 1461 * Now we want the lock to prevent both reads and writes. 1462 */ 1463 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell, 1464 READ_WRITE_LOCK_LEVEL); 1465 if (r < 0) 1466 mg_complete(mg, false); 1467 1468 else if (r) 1469 quiesce(mg, mg_update_metadata); 1470 1471 else 1472 mg_update_metadata(ws); 1473 } 1474 } 1475 1476 static void mg_copy(struct work_struct *ws) 1477 { 1478 int r; 1479 struct dm_cache_migration *mg = ws_to_mg(ws); 1480 1481 if (mg->overwrite_bio) { 1482 /* 1483 * It's safe to do this here, even though it's new data 1484 * because all IO has been locked out of the block. 1485 * 1486 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL 1487 * so _not_ using mg_upgrade_lock() as continutation. 1488 */ 1489 overwrite(mg, mg_update_metadata_after_copy); 1490 1491 } else { 1492 struct cache *cache = mg->cache; 1493 struct policy_work *op = mg->op; 1494 bool is_policy_promote = (op->op == POLICY_PROMOTE); 1495 1496 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) || 1497 is_discarded_oblock(cache, op->oblock)) { 1498 mg_upgrade_lock(ws); 1499 return; 1500 } 1501 1502 init_continuation(&mg->k, mg_upgrade_lock); 1503 1504 r = copy(mg, is_policy_promote); 1505 if (r) { 1506 DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache)); 1507 mg->k.input = -EIO; 1508 mg_complete(mg, false); 1509 } 1510 } 1511 } 1512 1513 static int mg_lock_writes(struct dm_cache_migration *mg) 1514 { 1515 int r; 1516 struct dm_cell_key_v2 key; 1517 struct cache *cache = mg->cache; 1518 struct dm_bio_prison_cell_v2 *prealloc; 1519 1520 prealloc = alloc_prison_cell(cache); 1521 if (!prealloc) { 1522 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache)); 1523 mg_complete(mg, false); 1524 return -ENOMEM; 1525 } 1526 1527 /* 1528 * Prevent writes to the block, but allow reads to continue. 1529 * Unless we're using an overwrite bio, in which case we lock 1530 * everything. 1531 */ 1532 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key); 1533 r = dm_cell_lock_v2(cache->prison, &key, 1534 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL, 1535 prealloc, &mg->cell); 1536 if (r < 0) { 1537 free_prison_cell(cache, prealloc); 1538 mg_complete(mg, false); 1539 return r; 1540 } 1541 1542 if (mg->cell != prealloc) 1543 free_prison_cell(cache, prealloc); 1544 1545 if (r == 0) 1546 mg_copy(&mg->k.ws); 1547 else 1548 quiesce(mg, mg_copy); 1549 1550 return 0; 1551 } 1552 1553 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio) 1554 { 1555 struct dm_cache_migration *mg; 1556 1557 if (!background_work_begin(cache)) { 1558 policy_complete_background_work(cache->policy, op, false); 1559 return -EPERM; 1560 } 1561 1562 mg = alloc_migration(cache); 1563 if (!mg) { 1564 policy_complete_background_work(cache->policy, op, false); 1565 background_work_end(cache); 1566 return -ENOMEM; 1567 } 1568 1569 memset(mg, 0, sizeof(*mg)); 1570 1571 mg->cache = cache; 1572 mg->op = op; 1573 mg->overwrite_bio = bio; 1574 1575 if (!bio) 1576 inc_io_migrations(cache); 1577 1578 return mg_lock_writes(mg); 1579 } 1580 1581 /*---------------------------------------------------------------- 1582 * invalidation processing 1583 *--------------------------------------------------------------*/ 1584 1585 static void invalidate_complete(struct dm_cache_migration *mg, bool success) 1586 { 1587 struct bio_list bios; 1588 struct cache *cache = mg->cache; 1589 1590 bio_list_init(&bios); 1591 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1592 free_prison_cell(cache, mg->cell); 1593 1594 if (!success && mg->overwrite_bio) 1595 bio_io_error(mg->overwrite_bio); 1596 1597 free_migration(mg); 1598 defer_bios(cache, &bios); 1599 1600 background_work_end(cache); 1601 } 1602 1603 static void invalidate_completed(struct work_struct *ws) 1604 { 1605 struct dm_cache_migration *mg = ws_to_mg(ws); 1606 invalidate_complete(mg, !mg->k.input); 1607 } 1608 1609 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock) 1610 { 1611 int r = policy_invalidate_mapping(cache->policy, cblock); 1612 if (!r) { 1613 r = dm_cache_remove_mapping(cache->cmd, cblock); 1614 if (r) { 1615 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata", 1616 cache_device_name(cache)); 1617 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1618 } 1619 1620 } else if (r == -ENODATA) { 1621 /* 1622 * Harmless, already unmapped. 1623 */ 1624 r = 0; 1625 1626 } else 1627 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache)); 1628 1629 return r; 1630 } 1631 1632 static void invalidate_remove(struct work_struct *ws) 1633 { 1634 int r; 1635 struct dm_cache_migration *mg = ws_to_mg(ws); 1636 struct cache *cache = mg->cache; 1637 1638 r = invalidate_cblock(cache, mg->invalidate_cblock); 1639 if (r) { 1640 invalidate_complete(mg, false); 1641 return; 1642 } 1643 1644 init_continuation(&mg->k, invalidate_completed); 1645 continue_after_commit(&cache->committer, &mg->k); 1646 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock); 1647 mg->overwrite_bio = NULL; 1648 schedule_commit(&cache->committer); 1649 } 1650 1651 static int invalidate_lock(struct dm_cache_migration *mg) 1652 { 1653 int r; 1654 struct dm_cell_key_v2 key; 1655 struct cache *cache = mg->cache; 1656 struct dm_bio_prison_cell_v2 *prealloc; 1657 1658 prealloc = alloc_prison_cell(cache); 1659 if (!prealloc) { 1660 invalidate_complete(mg, false); 1661 return -ENOMEM; 1662 } 1663 1664 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key); 1665 r = dm_cell_lock_v2(cache->prison, &key, 1666 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell); 1667 if (r < 0) { 1668 free_prison_cell(cache, prealloc); 1669 invalidate_complete(mg, false); 1670 return r; 1671 } 1672 1673 if (mg->cell != prealloc) 1674 free_prison_cell(cache, prealloc); 1675 1676 if (r) 1677 quiesce(mg, invalidate_remove); 1678 1679 else { 1680 /* 1681 * We can't call invalidate_remove() directly here because we 1682 * might still be in request context. 1683 */ 1684 init_continuation(&mg->k, invalidate_remove); 1685 queue_work(cache->wq, &mg->k.ws); 1686 } 1687 1688 return 0; 1689 } 1690 1691 static int invalidate_start(struct cache *cache, dm_cblock_t cblock, 1692 dm_oblock_t oblock, struct bio *bio) 1693 { 1694 struct dm_cache_migration *mg; 1695 1696 if (!background_work_begin(cache)) 1697 return -EPERM; 1698 1699 mg = alloc_migration(cache); 1700 if (!mg) { 1701 background_work_end(cache); 1702 return -ENOMEM; 1703 } 1704 1705 memset(mg, 0, sizeof(*mg)); 1706 1707 mg->cache = cache; 1708 mg->overwrite_bio = bio; 1709 mg->invalidate_cblock = cblock; 1710 mg->invalidate_oblock = oblock; 1711 1712 return invalidate_lock(mg); 1713 } 1714 1715 /*---------------------------------------------------------------- 1716 * bio processing 1717 *--------------------------------------------------------------*/ 1718 1719 enum busy { 1720 IDLE, 1721 BUSY 1722 }; 1723 1724 static enum busy spare_migration_bandwidth(struct cache *cache) 1725 { 1726 bool idle = iot_idle_for(&cache->tracker, HZ); 1727 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) * 1728 cache->sectors_per_block; 1729 1730 if (idle && current_volume <= cache->migration_threshold) 1731 return IDLE; 1732 else 1733 return BUSY; 1734 } 1735 1736 static void inc_hit_counter(struct cache *cache, struct bio *bio) 1737 { 1738 atomic_inc(bio_data_dir(bio) == READ ? 1739 &cache->stats.read_hit : &cache->stats.write_hit); 1740 } 1741 1742 static void inc_miss_counter(struct cache *cache, struct bio *bio) 1743 { 1744 atomic_inc(bio_data_dir(bio) == READ ? 1745 &cache->stats.read_miss : &cache->stats.write_miss); 1746 } 1747 1748 /*----------------------------------------------------------------*/ 1749 1750 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio) 1751 { 1752 return (bio_data_dir(bio) == WRITE) && 1753 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT)); 1754 } 1755 1756 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block) 1757 { 1758 return writeback_mode(&cache->features) && 1759 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio)); 1760 } 1761 1762 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block, 1763 bool *commit_needed) 1764 { 1765 int r, data_dir; 1766 bool rb, background_queued; 1767 dm_cblock_t cblock; 1768 size_t pb_data_size = get_per_bio_data_size(cache); 1769 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 1770 1771 *commit_needed = false; 1772 1773 rb = bio_detain_shared(cache, block, bio); 1774 if (!rb) { 1775 /* 1776 * An exclusive lock is held for this block, so we have to 1777 * wait. We set the commit_needed flag so the current 1778 * transaction will be committed asap, allowing this lock 1779 * to be dropped. 1780 */ 1781 *commit_needed = true; 1782 return DM_MAPIO_SUBMITTED; 1783 } 1784 1785 data_dir = bio_data_dir(bio); 1786 1787 if (optimisable_bio(cache, bio, block)) { 1788 struct policy_work *op = NULL; 1789 1790 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op); 1791 if (unlikely(r && r != -ENOENT)) { 1792 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d", 1793 cache_device_name(cache), r); 1794 bio_io_error(bio); 1795 return DM_MAPIO_SUBMITTED; 1796 } 1797 1798 if (r == -ENOENT && op) { 1799 bio_drop_shared_lock(cache, bio); 1800 BUG_ON(op->op != POLICY_PROMOTE); 1801 mg_start(cache, op, bio); 1802 return DM_MAPIO_SUBMITTED; 1803 } 1804 } else { 1805 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued); 1806 if (unlikely(r && r != -ENOENT)) { 1807 DMERR_LIMIT("%s: policy_lookup() failed with r = %d", 1808 cache_device_name(cache), r); 1809 bio_io_error(bio); 1810 return DM_MAPIO_SUBMITTED; 1811 } 1812 1813 if (background_queued) 1814 wake_migration_worker(cache); 1815 } 1816 1817 if (r == -ENOENT) { 1818 /* 1819 * Miss. 1820 */ 1821 inc_miss_counter(cache, bio); 1822 if (pb->req_nr == 0) { 1823 accounted_begin(cache, bio); 1824 remap_to_origin_clear_discard(cache, bio, block); 1825 1826 } else { 1827 /* 1828 * This is a duplicate writethrough io that is no 1829 * longer needed because the block has been demoted. 1830 */ 1831 bio_endio(bio); 1832 return DM_MAPIO_SUBMITTED; 1833 } 1834 } else { 1835 /* 1836 * Hit. 1837 */ 1838 inc_hit_counter(cache, bio); 1839 1840 /* 1841 * Passthrough always maps to the origin, invalidating any 1842 * cache blocks that are written to. 1843 */ 1844 if (passthrough_mode(&cache->features)) { 1845 if (bio_data_dir(bio) == WRITE) { 1846 bio_drop_shared_lock(cache, bio); 1847 atomic_inc(&cache->stats.demotion); 1848 invalidate_start(cache, cblock, block, bio); 1849 } else 1850 remap_to_origin_clear_discard(cache, bio, block); 1851 1852 } else { 1853 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) && 1854 !is_dirty(cache, cblock)) { 1855 remap_to_origin_then_cache(cache, bio, block, cblock); 1856 accounted_begin(cache, bio); 1857 } else 1858 remap_to_cache_dirty(cache, bio, block, cblock); 1859 } 1860 } 1861 1862 /* 1863 * dm core turns FUA requests into a separate payload and FLUSH req. 1864 */ 1865 if (bio->bi_opf & REQ_FUA) { 1866 /* 1867 * issue_after_commit will call accounted_begin a second time. So 1868 * we call accounted_complete() to avoid double accounting. 1869 */ 1870 accounted_complete(cache, bio); 1871 issue_after_commit(&cache->committer, bio); 1872 *commit_needed = true; 1873 return DM_MAPIO_SUBMITTED; 1874 } 1875 1876 return DM_MAPIO_REMAPPED; 1877 } 1878 1879 static bool process_bio(struct cache *cache, struct bio *bio) 1880 { 1881 bool commit_needed; 1882 1883 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED) 1884 generic_make_request(bio); 1885 1886 return commit_needed; 1887 } 1888 1889 /* 1890 * A non-zero return indicates read_only or fail_io mode. 1891 */ 1892 static int commit(struct cache *cache, bool clean_shutdown) 1893 { 1894 int r; 1895 1896 if (get_cache_mode(cache) >= CM_READ_ONLY) 1897 return -EINVAL; 1898 1899 atomic_inc(&cache->stats.commit_count); 1900 r = dm_cache_commit(cache->cmd, clean_shutdown); 1901 if (r) 1902 metadata_operation_failed(cache, "dm_cache_commit", r); 1903 1904 return r; 1905 } 1906 1907 /* 1908 * Used by the batcher. 1909 */ 1910 static int commit_op(void *context) 1911 { 1912 struct cache *cache = context; 1913 1914 if (dm_cache_changed_this_transaction(cache->cmd)) 1915 return commit(cache, false); 1916 1917 return 0; 1918 } 1919 1920 /*----------------------------------------------------------------*/ 1921 1922 static bool process_flush_bio(struct cache *cache, struct bio *bio) 1923 { 1924 size_t pb_data_size = get_per_bio_data_size(cache); 1925 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 1926 1927 if (!pb->req_nr) 1928 remap_to_origin(cache, bio); 1929 else 1930 remap_to_cache(cache, bio, 0); 1931 1932 issue_after_commit(&cache->committer, bio); 1933 return true; 1934 } 1935 1936 static bool process_discard_bio(struct cache *cache, struct bio *bio) 1937 { 1938 dm_dblock_t b, e; 1939 1940 // FIXME: do we need to lock the region? Or can we just assume the 1941 // user wont be so foolish as to issue discard concurrently with 1942 // other IO? 1943 calc_discard_block_range(cache, bio, &b, &e); 1944 while (b != e) { 1945 set_discard(cache, b); 1946 b = to_dblock(from_dblock(b) + 1); 1947 } 1948 1949 bio_endio(bio); 1950 1951 return false; 1952 } 1953 1954 static void process_deferred_bios(struct work_struct *ws) 1955 { 1956 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker); 1957 1958 unsigned long flags; 1959 bool commit_needed = false; 1960 struct bio_list bios; 1961 struct bio *bio; 1962 1963 bio_list_init(&bios); 1964 1965 spin_lock_irqsave(&cache->lock, flags); 1966 bio_list_merge(&bios, &cache->deferred_bios); 1967 bio_list_init(&cache->deferred_bios); 1968 spin_unlock_irqrestore(&cache->lock, flags); 1969 1970 while ((bio = bio_list_pop(&bios))) { 1971 if (bio->bi_opf & REQ_PREFLUSH) 1972 commit_needed = process_flush_bio(cache, bio) || commit_needed; 1973 1974 else if (bio_op(bio) == REQ_OP_DISCARD) 1975 commit_needed = process_discard_bio(cache, bio) || commit_needed; 1976 1977 else 1978 commit_needed = process_bio(cache, bio) || commit_needed; 1979 } 1980 1981 if (commit_needed) 1982 schedule_commit(&cache->committer); 1983 } 1984 1985 static void process_deferred_writethrough_bios(struct work_struct *ws) 1986 { 1987 struct cache *cache = container_of(ws, struct cache, deferred_writethrough_worker); 1988 1989 unsigned long flags; 1990 struct bio_list bios; 1991 struct bio *bio; 1992 1993 bio_list_init(&bios); 1994 1995 spin_lock_irqsave(&cache->lock, flags); 1996 bio_list_merge(&bios, &cache->deferred_writethrough_bios); 1997 bio_list_init(&cache->deferred_writethrough_bios); 1998 spin_unlock_irqrestore(&cache->lock, flags); 1999 2000 /* 2001 * These bios have already been through accounted_begin() 2002 */ 2003 while ((bio = bio_list_pop(&bios))) 2004 generic_make_request(bio); 2005 } 2006 2007 /*---------------------------------------------------------------- 2008 * Main worker loop 2009 *--------------------------------------------------------------*/ 2010 2011 static void requeue_deferred_bios(struct cache *cache) 2012 { 2013 struct bio *bio; 2014 struct bio_list bios; 2015 2016 bio_list_init(&bios); 2017 bio_list_merge(&bios, &cache->deferred_bios); 2018 bio_list_init(&cache->deferred_bios); 2019 2020 while ((bio = bio_list_pop(&bios))) { 2021 bio->bi_error = DM_ENDIO_REQUEUE; 2022 bio_endio(bio); 2023 } 2024 } 2025 2026 /* 2027 * We want to commit periodically so that not too much 2028 * unwritten metadata builds up. 2029 */ 2030 static void do_waker(struct work_struct *ws) 2031 { 2032 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); 2033 2034 policy_tick(cache->policy, true); 2035 wake_migration_worker(cache); 2036 schedule_commit(&cache->committer); 2037 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); 2038 } 2039 2040 static void check_migrations(struct work_struct *ws) 2041 { 2042 int r; 2043 struct policy_work *op; 2044 struct cache *cache = container_of(ws, struct cache, migration_worker); 2045 enum busy b; 2046 2047 for (;;) { 2048 b = spare_migration_bandwidth(cache); 2049 2050 r = policy_get_background_work(cache->policy, b == IDLE, &op); 2051 if (r == -ENODATA) 2052 break; 2053 2054 if (r) { 2055 DMERR_LIMIT("%s: policy_background_work failed", 2056 cache_device_name(cache)); 2057 break; 2058 } 2059 2060 r = mg_start(cache, op, NULL); 2061 if (r) 2062 break; 2063 } 2064 } 2065 2066 /*---------------------------------------------------------------- 2067 * Target methods 2068 *--------------------------------------------------------------*/ 2069 2070 /* 2071 * This function gets called on the error paths of the constructor, so we 2072 * have to cope with a partially initialised struct. 2073 */ 2074 static void destroy(struct cache *cache) 2075 { 2076 unsigned i; 2077 2078 mempool_destroy(cache->migration_pool); 2079 2080 if (cache->prison) 2081 dm_bio_prison_destroy_v2(cache->prison); 2082 2083 if (cache->wq) 2084 destroy_workqueue(cache->wq); 2085 2086 if (cache->dirty_bitset) 2087 free_bitset(cache->dirty_bitset); 2088 2089 if (cache->discard_bitset) 2090 free_bitset(cache->discard_bitset); 2091 2092 if (cache->copier) 2093 dm_kcopyd_client_destroy(cache->copier); 2094 2095 if (cache->cmd) 2096 dm_cache_metadata_close(cache->cmd); 2097 2098 if (cache->metadata_dev) 2099 dm_put_device(cache->ti, cache->metadata_dev); 2100 2101 if (cache->origin_dev) 2102 dm_put_device(cache->ti, cache->origin_dev); 2103 2104 if (cache->cache_dev) 2105 dm_put_device(cache->ti, cache->cache_dev); 2106 2107 if (cache->policy) 2108 dm_cache_policy_destroy(cache->policy); 2109 2110 for (i = 0; i < cache->nr_ctr_args ; i++) 2111 kfree(cache->ctr_args[i]); 2112 kfree(cache->ctr_args); 2113 2114 kfree(cache); 2115 } 2116 2117 static void cache_dtr(struct dm_target *ti) 2118 { 2119 struct cache *cache = ti->private; 2120 2121 destroy(cache); 2122 } 2123 2124 static sector_t get_dev_size(struct dm_dev *dev) 2125 { 2126 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; 2127 } 2128 2129 /*----------------------------------------------------------------*/ 2130 2131 /* 2132 * Construct a cache device mapping. 2133 * 2134 * cache <metadata dev> <cache dev> <origin dev> <block size> 2135 * <#feature args> [<feature arg>]* 2136 * <policy> <#policy args> [<policy arg>]* 2137 * 2138 * metadata dev : fast device holding the persistent metadata 2139 * cache dev : fast device holding cached data blocks 2140 * origin dev : slow device holding original data blocks 2141 * block size : cache unit size in sectors 2142 * 2143 * #feature args : number of feature arguments passed 2144 * feature args : writethrough. (The default is writeback.) 2145 * 2146 * policy : the replacement policy to use 2147 * #policy args : an even number of policy arguments corresponding 2148 * to key/value pairs passed to the policy 2149 * policy args : key/value pairs passed to the policy 2150 * E.g. 'sequential_threshold 1024' 2151 * See cache-policies.txt for details. 2152 * 2153 * Optional feature arguments are: 2154 * writethrough : write through caching that prohibits cache block 2155 * content from being different from origin block content. 2156 * Without this argument, the default behaviour is to write 2157 * back cache block contents later for performance reasons, 2158 * so they may differ from the corresponding origin blocks. 2159 */ 2160 struct cache_args { 2161 struct dm_target *ti; 2162 2163 struct dm_dev *metadata_dev; 2164 2165 struct dm_dev *cache_dev; 2166 sector_t cache_sectors; 2167 2168 struct dm_dev *origin_dev; 2169 sector_t origin_sectors; 2170 2171 uint32_t block_size; 2172 2173 const char *policy_name; 2174 int policy_argc; 2175 const char **policy_argv; 2176 2177 struct cache_features features; 2178 }; 2179 2180 static void destroy_cache_args(struct cache_args *ca) 2181 { 2182 if (ca->metadata_dev) 2183 dm_put_device(ca->ti, ca->metadata_dev); 2184 2185 if (ca->cache_dev) 2186 dm_put_device(ca->ti, ca->cache_dev); 2187 2188 if (ca->origin_dev) 2189 dm_put_device(ca->ti, ca->origin_dev); 2190 2191 kfree(ca); 2192 } 2193 2194 static bool at_least_one_arg(struct dm_arg_set *as, char **error) 2195 { 2196 if (!as->argc) { 2197 *error = "Insufficient args"; 2198 return false; 2199 } 2200 2201 return true; 2202 } 2203 2204 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, 2205 char **error) 2206 { 2207 int r; 2208 sector_t metadata_dev_size; 2209 char b[BDEVNAME_SIZE]; 2210 2211 if (!at_least_one_arg(as, error)) 2212 return -EINVAL; 2213 2214 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2215 &ca->metadata_dev); 2216 if (r) { 2217 *error = "Error opening metadata device"; 2218 return r; 2219 } 2220 2221 metadata_dev_size = get_dev_size(ca->metadata_dev); 2222 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) 2223 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2224 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); 2225 2226 return 0; 2227 } 2228 2229 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, 2230 char **error) 2231 { 2232 int r; 2233 2234 if (!at_least_one_arg(as, error)) 2235 return -EINVAL; 2236 2237 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2238 &ca->cache_dev); 2239 if (r) { 2240 *error = "Error opening cache device"; 2241 return r; 2242 } 2243 ca->cache_sectors = get_dev_size(ca->cache_dev); 2244 2245 return 0; 2246 } 2247 2248 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, 2249 char **error) 2250 { 2251 int r; 2252 2253 if (!at_least_one_arg(as, error)) 2254 return -EINVAL; 2255 2256 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2257 &ca->origin_dev); 2258 if (r) { 2259 *error = "Error opening origin device"; 2260 return r; 2261 } 2262 2263 ca->origin_sectors = get_dev_size(ca->origin_dev); 2264 if (ca->ti->len > ca->origin_sectors) { 2265 *error = "Device size larger than cached device"; 2266 return -EINVAL; 2267 } 2268 2269 return 0; 2270 } 2271 2272 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, 2273 char **error) 2274 { 2275 unsigned long block_size; 2276 2277 if (!at_least_one_arg(as, error)) 2278 return -EINVAL; 2279 2280 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || 2281 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2282 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2283 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2284 *error = "Invalid data block size"; 2285 return -EINVAL; 2286 } 2287 2288 if (block_size > ca->cache_sectors) { 2289 *error = "Data block size is larger than the cache device"; 2290 return -EINVAL; 2291 } 2292 2293 ca->block_size = block_size; 2294 2295 return 0; 2296 } 2297 2298 static void init_features(struct cache_features *cf) 2299 { 2300 cf->mode = CM_WRITE; 2301 cf->io_mode = CM_IO_WRITEBACK; 2302 cf->metadata_version = 1; 2303 } 2304 2305 static int parse_features(struct cache_args *ca, struct dm_arg_set *as, 2306 char **error) 2307 { 2308 static struct dm_arg _args[] = { 2309 {0, 2, "Invalid number of cache feature arguments"}, 2310 }; 2311 2312 int r; 2313 unsigned argc; 2314 const char *arg; 2315 struct cache_features *cf = &ca->features; 2316 2317 init_features(cf); 2318 2319 r = dm_read_arg_group(_args, as, &argc, error); 2320 if (r) 2321 return -EINVAL; 2322 2323 while (argc--) { 2324 arg = dm_shift_arg(as); 2325 2326 if (!strcasecmp(arg, "writeback")) 2327 cf->io_mode = CM_IO_WRITEBACK; 2328 2329 else if (!strcasecmp(arg, "writethrough")) 2330 cf->io_mode = CM_IO_WRITETHROUGH; 2331 2332 else if (!strcasecmp(arg, "passthrough")) 2333 cf->io_mode = CM_IO_PASSTHROUGH; 2334 2335 else if (!strcasecmp(arg, "metadata2")) 2336 cf->metadata_version = 2; 2337 2338 else { 2339 *error = "Unrecognised cache feature requested"; 2340 return -EINVAL; 2341 } 2342 } 2343 2344 return 0; 2345 } 2346 2347 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, 2348 char **error) 2349 { 2350 static struct dm_arg _args[] = { 2351 {0, 1024, "Invalid number of policy arguments"}, 2352 }; 2353 2354 int r; 2355 2356 if (!at_least_one_arg(as, error)) 2357 return -EINVAL; 2358 2359 ca->policy_name = dm_shift_arg(as); 2360 2361 r = dm_read_arg_group(_args, as, &ca->policy_argc, error); 2362 if (r) 2363 return -EINVAL; 2364 2365 ca->policy_argv = (const char **)as->argv; 2366 dm_consume_args(as, ca->policy_argc); 2367 2368 return 0; 2369 } 2370 2371 static int parse_cache_args(struct cache_args *ca, int argc, char **argv, 2372 char **error) 2373 { 2374 int r; 2375 struct dm_arg_set as; 2376 2377 as.argc = argc; 2378 as.argv = argv; 2379 2380 r = parse_metadata_dev(ca, &as, error); 2381 if (r) 2382 return r; 2383 2384 r = parse_cache_dev(ca, &as, error); 2385 if (r) 2386 return r; 2387 2388 r = parse_origin_dev(ca, &as, error); 2389 if (r) 2390 return r; 2391 2392 r = parse_block_size(ca, &as, error); 2393 if (r) 2394 return r; 2395 2396 r = parse_features(ca, &as, error); 2397 if (r) 2398 return r; 2399 2400 r = parse_policy(ca, &as, error); 2401 if (r) 2402 return r; 2403 2404 return 0; 2405 } 2406 2407 /*----------------------------------------------------------------*/ 2408 2409 static struct kmem_cache *migration_cache; 2410 2411 #define NOT_CORE_OPTION 1 2412 2413 static int process_config_option(struct cache *cache, const char *key, const char *value) 2414 { 2415 unsigned long tmp; 2416 2417 if (!strcasecmp(key, "migration_threshold")) { 2418 if (kstrtoul(value, 10, &tmp)) 2419 return -EINVAL; 2420 2421 cache->migration_threshold = tmp; 2422 return 0; 2423 } 2424 2425 return NOT_CORE_OPTION; 2426 } 2427 2428 static int set_config_value(struct cache *cache, const char *key, const char *value) 2429 { 2430 int r = process_config_option(cache, key, value); 2431 2432 if (r == NOT_CORE_OPTION) 2433 r = policy_set_config_value(cache->policy, key, value); 2434 2435 if (r) 2436 DMWARN("bad config value for %s: %s", key, value); 2437 2438 return r; 2439 } 2440 2441 static int set_config_values(struct cache *cache, int argc, const char **argv) 2442 { 2443 int r = 0; 2444 2445 if (argc & 1) { 2446 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs."); 2447 return -EINVAL; 2448 } 2449 2450 while (argc) { 2451 r = set_config_value(cache, argv[0], argv[1]); 2452 if (r) 2453 break; 2454 2455 argc -= 2; 2456 argv += 2; 2457 } 2458 2459 return r; 2460 } 2461 2462 static int create_cache_policy(struct cache *cache, struct cache_args *ca, 2463 char **error) 2464 { 2465 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, 2466 cache->cache_size, 2467 cache->origin_sectors, 2468 cache->sectors_per_block); 2469 if (IS_ERR(p)) { 2470 *error = "Error creating cache's policy"; 2471 return PTR_ERR(p); 2472 } 2473 cache->policy = p; 2474 BUG_ON(!cache->policy); 2475 2476 return 0; 2477 } 2478 2479 /* 2480 * We want the discard block size to be at least the size of the cache 2481 * block size and have no more than 2^14 discard blocks across the origin. 2482 */ 2483 #define MAX_DISCARD_BLOCKS (1 << 14) 2484 2485 static bool too_many_discard_blocks(sector_t discard_block_size, 2486 sector_t origin_size) 2487 { 2488 (void) sector_div(origin_size, discard_block_size); 2489 2490 return origin_size > MAX_DISCARD_BLOCKS; 2491 } 2492 2493 static sector_t calculate_discard_block_size(sector_t cache_block_size, 2494 sector_t origin_size) 2495 { 2496 sector_t discard_block_size = cache_block_size; 2497 2498 if (origin_size) 2499 while (too_many_discard_blocks(discard_block_size, origin_size)) 2500 discard_block_size *= 2; 2501 2502 return discard_block_size; 2503 } 2504 2505 static void set_cache_size(struct cache *cache, dm_cblock_t size) 2506 { 2507 dm_block_t nr_blocks = from_cblock(size); 2508 2509 if (nr_blocks > (1 << 20) && cache->cache_size != size) 2510 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n" 2511 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n" 2512 "Please consider increasing the cache block size to reduce the overall cache block count.", 2513 (unsigned long long) nr_blocks); 2514 2515 cache->cache_size = size; 2516 } 2517 2518 static int is_congested(struct dm_dev *dev, int bdi_bits) 2519 { 2520 struct request_queue *q = bdev_get_queue(dev->bdev); 2521 return bdi_congested(q->backing_dev_info, bdi_bits); 2522 } 2523 2524 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2525 { 2526 struct cache *cache = container_of(cb, struct cache, callbacks); 2527 2528 return is_congested(cache->origin_dev, bdi_bits) || 2529 is_congested(cache->cache_dev, bdi_bits); 2530 } 2531 2532 #define DEFAULT_MIGRATION_THRESHOLD 2048 2533 2534 static int cache_create(struct cache_args *ca, struct cache **result) 2535 { 2536 int r = 0; 2537 char **error = &ca->ti->error; 2538 struct cache *cache; 2539 struct dm_target *ti = ca->ti; 2540 dm_block_t origin_blocks; 2541 struct dm_cache_metadata *cmd; 2542 bool may_format = ca->features.mode == CM_WRITE; 2543 2544 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 2545 if (!cache) 2546 return -ENOMEM; 2547 2548 cache->ti = ca->ti; 2549 ti->private = cache; 2550 ti->num_flush_bios = 2; 2551 ti->flush_supported = true; 2552 2553 ti->num_discard_bios = 1; 2554 ti->discards_supported = true; 2555 ti->split_discard_bios = false; 2556 2557 cache->features = ca->features; 2558 ti->per_io_data_size = get_per_bio_data_size(cache); 2559 2560 cache->callbacks.congested_fn = cache_is_congested; 2561 dm_table_add_target_callbacks(ti->table, &cache->callbacks); 2562 2563 cache->metadata_dev = ca->metadata_dev; 2564 cache->origin_dev = ca->origin_dev; 2565 cache->cache_dev = ca->cache_dev; 2566 2567 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; 2568 2569 origin_blocks = cache->origin_sectors = ca->origin_sectors; 2570 origin_blocks = block_div(origin_blocks, ca->block_size); 2571 cache->origin_blocks = to_oblock(origin_blocks); 2572 2573 cache->sectors_per_block = ca->block_size; 2574 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { 2575 r = -EINVAL; 2576 goto bad; 2577 } 2578 2579 if (ca->block_size & (ca->block_size - 1)) { 2580 dm_block_t cache_size = ca->cache_sectors; 2581 2582 cache->sectors_per_block_shift = -1; 2583 cache_size = block_div(cache_size, ca->block_size); 2584 set_cache_size(cache, to_cblock(cache_size)); 2585 } else { 2586 cache->sectors_per_block_shift = __ffs(ca->block_size); 2587 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift)); 2588 } 2589 2590 r = create_cache_policy(cache, ca, error); 2591 if (r) 2592 goto bad; 2593 2594 cache->policy_nr_args = ca->policy_argc; 2595 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; 2596 2597 r = set_config_values(cache, ca->policy_argc, ca->policy_argv); 2598 if (r) { 2599 *error = "Error setting cache policy's config values"; 2600 goto bad; 2601 } 2602 2603 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, 2604 ca->block_size, may_format, 2605 dm_cache_policy_get_hint_size(cache->policy), 2606 ca->features.metadata_version); 2607 if (IS_ERR(cmd)) { 2608 *error = "Error creating metadata object"; 2609 r = PTR_ERR(cmd); 2610 goto bad; 2611 } 2612 cache->cmd = cmd; 2613 set_cache_mode(cache, CM_WRITE); 2614 if (get_cache_mode(cache) != CM_WRITE) { 2615 *error = "Unable to get write access to metadata, please check/repair metadata."; 2616 r = -EINVAL; 2617 goto bad; 2618 } 2619 2620 if (passthrough_mode(&cache->features)) { 2621 bool all_clean; 2622 2623 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean); 2624 if (r) { 2625 *error = "dm_cache_metadata_all_clean() failed"; 2626 goto bad; 2627 } 2628 2629 if (!all_clean) { 2630 *error = "Cannot enter passthrough mode unless all blocks are clean"; 2631 r = -EINVAL; 2632 goto bad; 2633 } 2634 2635 policy_allow_migrations(cache->policy, false); 2636 } 2637 2638 spin_lock_init(&cache->lock); 2639 INIT_LIST_HEAD(&cache->deferred_cells); 2640 bio_list_init(&cache->deferred_bios); 2641 bio_list_init(&cache->deferred_writethrough_bios); 2642 atomic_set(&cache->nr_allocated_migrations, 0); 2643 atomic_set(&cache->nr_io_migrations, 0); 2644 init_waitqueue_head(&cache->migration_wait); 2645 2646 r = -ENOMEM; 2647 atomic_set(&cache->nr_dirty, 0); 2648 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); 2649 if (!cache->dirty_bitset) { 2650 *error = "could not allocate dirty bitset"; 2651 goto bad; 2652 } 2653 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); 2654 2655 cache->discard_block_size = 2656 calculate_discard_block_size(cache->sectors_per_block, 2657 cache->origin_sectors); 2658 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors, 2659 cache->discard_block_size)); 2660 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks)); 2661 if (!cache->discard_bitset) { 2662 *error = "could not allocate discard bitset"; 2663 goto bad; 2664 } 2665 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2666 2667 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2668 if (IS_ERR(cache->copier)) { 2669 *error = "could not create kcopyd client"; 2670 r = PTR_ERR(cache->copier); 2671 goto bad; 2672 } 2673 2674 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0); 2675 if (!cache->wq) { 2676 *error = "could not create workqueue for metadata object"; 2677 goto bad; 2678 } 2679 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios); 2680 INIT_WORK(&cache->deferred_writethrough_worker, 2681 process_deferred_writethrough_bios); 2682 INIT_WORK(&cache->migration_worker, check_migrations); 2683 INIT_DELAYED_WORK(&cache->waker, do_waker); 2684 2685 cache->prison = dm_bio_prison_create_v2(cache->wq); 2686 if (!cache->prison) { 2687 *error = "could not create bio prison"; 2688 goto bad; 2689 } 2690 2691 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE, 2692 migration_cache); 2693 if (!cache->migration_pool) { 2694 *error = "Error creating cache's migration mempool"; 2695 goto bad; 2696 } 2697 2698 cache->need_tick_bio = true; 2699 cache->sized = false; 2700 cache->invalidate = false; 2701 cache->commit_requested = false; 2702 cache->loaded_mappings = false; 2703 cache->loaded_discards = false; 2704 2705 load_stats(cache); 2706 2707 atomic_set(&cache->stats.demotion, 0); 2708 atomic_set(&cache->stats.promotion, 0); 2709 atomic_set(&cache->stats.copies_avoided, 0); 2710 atomic_set(&cache->stats.cache_cell_clash, 0); 2711 atomic_set(&cache->stats.commit_count, 0); 2712 atomic_set(&cache->stats.discard_count, 0); 2713 2714 spin_lock_init(&cache->invalidation_lock); 2715 INIT_LIST_HEAD(&cache->invalidation_requests); 2716 2717 batcher_init(&cache->committer, commit_op, cache, 2718 issue_op, cache, cache->wq); 2719 iot_init(&cache->tracker); 2720 2721 init_rwsem(&cache->background_work_lock); 2722 prevent_background_work(cache); 2723 2724 *result = cache; 2725 return 0; 2726 bad: 2727 destroy(cache); 2728 return r; 2729 } 2730 2731 static int copy_ctr_args(struct cache *cache, int argc, const char **argv) 2732 { 2733 unsigned i; 2734 const char **copy; 2735 2736 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); 2737 if (!copy) 2738 return -ENOMEM; 2739 for (i = 0; i < argc; i++) { 2740 copy[i] = kstrdup(argv[i], GFP_KERNEL); 2741 if (!copy[i]) { 2742 while (i--) 2743 kfree(copy[i]); 2744 kfree(copy); 2745 return -ENOMEM; 2746 } 2747 } 2748 2749 cache->nr_ctr_args = argc; 2750 cache->ctr_args = copy; 2751 2752 return 0; 2753 } 2754 2755 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2756 { 2757 int r = -EINVAL; 2758 struct cache_args *ca; 2759 struct cache *cache = NULL; 2760 2761 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2762 if (!ca) { 2763 ti->error = "Error allocating memory for cache"; 2764 return -ENOMEM; 2765 } 2766 ca->ti = ti; 2767 2768 r = parse_cache_args(ca, argc, argv, &ti->error); 2769 if (r) 2770 goto out; 2771 2772 r = cache_create(ca, &cache); 2773 if (r) 2774 goto out; 2775 2776 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); 2777 if (r) { 2778 destroy(cache); 2779 goto out; 2780 } 2781 2782 ti->private = cache; 2783 out: 2784 destroy_cache_args(ca); 2785 return r; 2786 } 2787 2788 /*----------------------------------------------------------------*/ 2789 2790 static int cache_map(struct dm_target *ti, struct bio *bio) 2791 { 2792 struct cache *cache = ti->private; 2793 2794 int r; 2795 bool commit_needed; 2796 dm_oblock_t block = get_bio_block(cache, bio); 2797 size_t pb_data_size = get_per_bio_data_size(cache); 2798 2799 init_per_bio_data(bio, pb_data_size); 2800 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) { 2801 /* 2802 * This can only occur if the io goes to a partial block at 2803 * the end of the origin device. We don't cache these. 2804 * Just remap to the origin and carry on. 2805 */ 2806 remap_to_origin(cache, bio); 2807 accounted_begin(cache, bio); 2808 return DM_MAPIO_REMAPPED; 2809 } 2810 2811 if (discard_or_flush(bio)) { 2812 defer_bio(cache, bio); 2813 return DM_MAPIO_SUBMITTED; 2814 } 2815 2816 r = map_bio(cache, bio, block, &commit_needed); 2817 if (commit_needed) 2818 schedule_commit(&cache->committer); 2819 2820 return r; 2821 } 2822 2823 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error) 2824 { 2825 struct cache *cache = ti->private; 2826 unsigned long flags; 2827 size_t pb_data_size = get_per_bio_data_size(cache); 2828 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 2829 2830 if (pb->tick) { 2831 policy_tick(cache->policy, false); 2832 2833 spin_lock_irqsave(&cache->lock, flags); 2834 cache->need_tick_bio = true; 2835 spin_unlock_irqrestore(&cache->lock, flags); 2836 } 2837 2838 bio_drop_shared_lock(cache, bio); 2839 accounted_complete(cache, bio); 2840 2841 return 0; 2842 } 2843 2844 static int write_dirty_bitset(struct cache *cache) 2845 { 2846 int r; 2847 2848 if (get_cache_mode(cache) >= CM_READ_ONLY) 2849 return -EINVAL; 2850 2851 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset); 2852 if (r) 2853 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r); 2854 2855 return r; 2856 } 2857 2858 static int write_discard_bitset(struct cache *cache) 2859 { 2860 unsigned i, r; 2861 2862 if (get_cache_mode(cache) >= CM_READ_ONLY) 2863 return -EINVAL; 2864 2865 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size, 2866 cache->discard_nr_blocks); 2867 if (r) { 2868 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache)); 2869 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r); 2870 return r; 2871 } 2872 2873 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) { 2874 r = dm_cache_set_discard(cache->cmd, to_dblock(i), 2875 is_discarded(cache, to_dblock(i))); 2876 if (r) { 2877 metadata_operation_failed(cache, "dm_cache_set_discard", r); 2878 return r; 2879 } 2880 } 2881 2882 return 0; 2883 } 2884 2885 static int write_hints(struct cache *cache) 2886 { 2887 int r; 2888 2889 if (get_cache_mode(cache) >= CM_READ_ONLY) 2890 return -EINVAL; 2891 2892 r = dm_cache_write_hints(cache->cmd, cache->policy); 2893 if (r) { 2894 metadata_operation_failed(cache, "dm_cache_write_hints", r); 2895 return r; 2896 } 2897 2898 return 0; 2899 } 2900 2901 /* 2902 * returns true on success 2903 */ 2904 static bool sync_metadata(struct cache *cache) 2905 { 2906 int r1, r2, r3, r4; 2907 2908 r1 = write_dirty_bitset(cache); 2909 if (r1) 2910 DMERR("%s: could not write dirty bitset", cache_device_name(cache)); 2911 2912 r2 = write_discard_bitset(cache); 2913 if (r2) 2914 DMERR("%s: could not write discard bitset", cache_device_name(cache)); 2915 2916 save_stats(cache); 2917 2918 r3 = write_hints(cache); 2919 if (r3) 2920 DMERR("%s: could not write hints", cache_device_name(cache)); 2921 2922 /* 2923 * If writing the above metadata failed, we still commit, but don't 2924 * set the clean shutdown flag. This will effectively force every 2925 * dirty bit to be set on reload. 2926 */ 2927 r4 = commit(cache, !r1 && !r2 && !r3); 2928 if (r4) 2929 DMERR("%s: could not write cache metadata", cache_device_name(cache)); 2930 2931 return !r1 && !r2 && !r3 && !r4; 2932 } 2933 2934 static void cache_postsuspend(struct dm_target *ti) 2935 { 2936 struct cache *cache = ti->private; 2937 2938 prevent_background_work(cache); 2939 BUG_ON(atomic_read(&cache->nr_io_migrations)); 2940 2941 cancel_delayed_work(&cache->waker); 2942 flush_workqueue(cache->wq); 2943 WARN_ON(cache->tracker.in_flight); 2944 2945 /* 2946 * If it's a flush suspend there won't be any deferred bios, so this 2947 * call is harmless. 2948 */ 2949 requeue_deferred_bios(cache); 2950 2951 if (get_cache_mode(cache) == CM_WRITE) 2952 (void) sync_metadata(cache); 2953 } 2954 2955 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, 2956 bool dirty, uint32_t hint, bool hint_valid) 2957 { 2958 int r; 2959 struct cache *cache = context; 2960 2961 if (dirty) { 2962 set_bit(from_cblock(cblock), cache->dirty_bitset); 2963 atomic_inc(&cache->nr_dirty); 2964 } else 2965 clear_bit(from_cblock(cblock), cache->dirty_bitset); 2966 2967 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid); 2968 if (r) 2969 return r; 2970 2971 return 0; 2972 } 2973 2974 /* 2975 * The discard block size in the on disk metadata is not 2976 * neccessarily the same as we're currently using. So we have to 2977 * be careful to only set the discarded attribute if we know it 2978 * covers a complete block of the new size. 2979 */ 2980 struct discard_load_info { 2981 struct cache *cache; 2982 2983 /* 2984 * These blocks are sized using the on disk dblock size, rather 2985 * than the current one. 2986 */ 2987 dm_block_t block_size; 2988 dm_block_t discard_begin, discard_end; 2989 }; 2990 2991 static void discard_load_info_init(struct cache *cache, 2992 struct discard_load_info *li) 2993 { 2994 li->cache = cache; 2995 li->discard_begin = li->discard_end = 0; 2996 } 2997 2998 static void set_discard_range(struct discard_load_info *li) 2999 { 3000 sector_t b, e; 3001 3002 if (li->discard_begin == li->discard_end) 3003 return; 3004 3005 /* 3006 * Convert to sectors. 3007 */ 3008 b = li->discard_begin * li->block_size; 3009 e = li->discard_end * li->block_size; 3010 3011 /* 3012 * Then convert back to the current dblock size. 3013 */ 3014 b = dm_sector_div_up(b, li->cache->discard_block_size); 3015 sector_div(e, li->cache->discard_block_size); 3016 3017 /* 3018 * The origin may have shrunk, so we need to check we're still in 3019 * bounds. 3020 */ 3021 if (e > from_dblock(li->cache->discard_nr_blocks)) 3022 e = from_dblock(li->cache->discard_nr_blocks); 3023 3024 for (; b < e; b++) 3025 set_discard(li->cache, to_dblock(b)); 3026 } 3027 3028 static int load_discard(void *context, sector_t discard_block_size, 3029 dm_dblock_t dblock, bool discard) 3030 { 3031 struct discard_load_info *li = context; 3032 3033 li->block_size = discard_block_size; 3034 3035 if (discard) { 3036 if (from_dblock(dblock) == li->discard_end) 3037 /* 3038 * We're already in a discard range, just extend it. 3039 */ 3040 li->discard_end = li->discard_end + 1ULL; 3041 3042 else { 3043 /* 3044 * Emit the old range and start a new one. 3045 */ 3046 set_discard_range(li); 3047 li->discard_begin = from_dblock(dblock); 3048 li->discard_end = li->discard_begin + 1ULL; 3049 } 3050 } else { 3051 set_discard_range(li); 3052 li->discard_begin = li->discard_end = 0; 3053 } 3054 3055 return 0; 3056 } 3057 3058 static dm_cblock_t get_cache_dev_size(struct cache *cache) 3059 { 3060 sector_t size = get_dev_size(cache->cache_dev); 3061 (void) sector_div(size, cache->sectors_per_block); 3062 return to_cblock(size); 3063 } 3064 3065 static bool can_resize(struct cache *cache, dm_cblock_t new_size) 3066 { 3067 if (from_cblock(new_size) > from_cblock(cache->cache_size)) 3068 return true; 3069 3070 /* 3071 * We can't drop a dirty block when shrinking the cache. 3072 */ 3073 while (from_cblock(new_size) < from_cblock(cache->cache_size)) { 3074 new_size = to_cblock(from_cblock(new_size) + 1); 3075 if (is_dirty(cache, new_size)) { 3076 DMERR("%s: unable to shrink cache; cache block %llu is dirty", 3077 cache_device_name(cache), 3078 (unsigned long long) from_cblock(new_size)); 3079 return false; 3080 } 3081 } 3082 3083 return true; 3084 } 3085 3086 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size) 3087 { 3088 int r; 3089 3090 r = dm_cache_resize(cache->cmd, new_size); 3091 if (r) { 3092 DMERR("%s: could not resize cache metadata", cache_device_name(cache)); 3093 metadata_operation_failed(cache, "dm_cache_resize", r); 3094 return r; 3095 } 3096 3097 set_cache_size(cache, new_size); 3098 3099 return 0; 3100 } 3101 3102 static int cache_preresume(struct dm_target *ti) 3103 { 3104 int r = 0; 3105 struct cache *cache = ti->private; 3106 dm_cblock_t csize = get_cache_dev_size(cache); 3107 3108 /* 3109 * Check to see if the cache has resized. 3110 */ 3111 if (!cache->sized) { 3112 r = resize_cache_dev(cache, csize); 3113 if (r) 3114 return r; 3115 3116 cache->sized = true; 3117 3118 } else if (csize != cache->cache_size) { 3119 if (!can_resize(cache, csize)) 3120 return -EINVAL; 3121 3122 r = resize_cache_dev(cache, csize); 3123 if (r) 3124 return r; 3125 } 3126 3127 if (!cache->loaded_mappings) { 3128 r = dm_cache_load_mappings(cache->cmd, cache->policy, 3129 load_mapping, cache); 3130 if (r) { 3131 DMERR("%s: could not load cache mappings", cache_device_name(cache)); 3132 metadata_operation_failed(cache, "dm_cache_load_mappings", r); 3133 return r; 3134 } 3135 3136 cache->loaded_mappings = true; 3137 } 3138 3139 if (!cache->loaded_discards) { 3140 struct discard_load_info li; 3141 3142 /* 3143 * The discard bitset could have been resized, or the 3144 * discard block size changed. To be safe we start by 3145 * setting every dblock to not discarded. 3146 */ 3147 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 3148 3149 discard_load_info_init(cache, &li); 3150 r = dm_cache_load_discards(cache->cmd, load_discard, &li); 3151 if (r) { 3152 DMERR("%s: could not load origin discards", cache_device_name(cache)); 3153 metadata_operation_failed(cache, "dm_cache_load_discards", r); 3154 return r; 3155 } 3156 set_discard_range(&li); 3157 3158 cache->loaded_discards = true; 3159 } 3160 3161 return r; 3162 } 3163 3164 static void cache_resume(struct dm_target *ti) 3165 { 3166 struct cache *cache = ti->private; 3167 3168 cache->need_tick_bio = true; 3169 allow_background_work(cache); 3170 do_waker(&cache->waker.work); 3171 } 3172 3173 /* 3174 * Status format: 3175 * 3176 * <metadata block size> <#used metadata blocks>/<#total metadata blocks> 3177 * <cache block size> <#used cache blocks>/<#total cache blocks> 3178 * <#read hits> <#read misses> <#write hits> <#write misses> 3179 * <#demotions> <#promotions> <#dirty> 3180 * <#features> <features>* 3181 * <#core args> <core args> 3182 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check> 3183 */ 3184 static void cache_status(struct dm_target *ti, status_type_t type, 3185 unsigned status_flags, char *result, unsigned maxlen) 3186 { 3187 int r = 0; 3188 unsigned i; 3189 ssize_t sz = 0; 3190 dm_block_t nr_free_blocks_metadata = 0; 3191 dm_block_t nr_blocks_metadata = 0; 3192 char buf[BDEVNAME_SIZE]; 3193 struct cache *cache = ti->private; 3194 dm_cblock_t residency; 3195 bool needs_check; 3196 3197 switch (type) { 3198 case STATUSTYPE_INFO: 3199 if (get_cache_mode(cache) == CM_FAIL) { 3200 DMEMIT("Fail"); 3201 break; 3202 } 3203 3204 /* Commit to ensure statistics aren't out-of-date */ 3205 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3206 (void) commit(cache, false); 3207 3208 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata); 3209 if (r) { 3210 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d", 3211 cache_device_name(cache), r); 3212 goto err; 3213 } 3214 3215 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); 3216 if (r) { 3217 DMERR("%s: dm_cache_get_metadata_dev_size returned %d", 3218 cache_device_name(cache), r); 3219 goto err; 3220 } 3221 3222 residency = policy_residency(cache->policy); 3223 3224 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ", 3225 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE, 3226 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3227 (unsigned long long)nr_blocks_metadata, 3228 (unsigned long long)cache->sectors_per_block, 3229 (unsigned long long) from_cblock(residency), 3230 (unsigned long long) from_cblock(cache->cache_size), 3231 (unsigned) atomic_read(&cache->stats.read_hit), 3232 (unsigned) atomic_read(&cache->stats.read_miss), 3233 (unsigned) atomic_read(&cache->stats.write_hit), 3234 (unsigned) atomic_read(&cache->stats.write_miss), 3235 (unsigned) atomic_read(&cache->stats.demotion), 3236 (unsigned) atomic_read(&cache->stats.promotion), 3237 (unsigned long) atomic_read(&cache->nr_dirty)); 3238 3239 if (cache->features.metadata_version == 2) 3240 DMEMIT("2 metadata2 "); 3241 else 3242 DMEMIT("1 "); 3243 3244 if (writethrough_mode(&cache->features)) 3245 DMEMIT("writethrough "); 3246 3247 else if (passthrough_mode(&cache->features)) 3248 DMEMIT("passthrough "); 3249 3250 else if (writeback_mode(&cache->features)) 3251 DMEMIT("writeback "); 3252 3253 else { 3254 DMERR("%s: internal error: unknown io mode: %d", 3255 cache_device_name(cache), (int) cache->features.io_mode); 3256 goto err; 3257 } 3258 3259 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); 3260 3261 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy)); 3262 if (sz < maxlen) { 3263 r = policy_emit_config_values(cache->policy, result, maxlen, &sz); 3264 if (r) 3265 DMERR("%s: policy_emit_config_values returned %d", 3266 cache_device_name(cache), r); 3267 } 3268 3269 if (get_cache_mode(cache) == CM_READ_ONLY) 3270 DMEMIT("ro "); 3271 else 3272 DMEMIT("rw "); 3273 3274 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check); 3275 3276 if (r || needs_check) 3277 DMEMIT("needs_check "); 3278 else 3279 DMEMIT("- "); 3280 3281 break; 3282 3283 case STATUSTYPE_TABLE: 3284 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3285 DMEMIT("%s ", buf); 3286 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3287 DMEMIT("%s ", buf); 3288 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3289 DMEMIT("%s", buf); 3290 3291 for (i = 0; i < cache->nr_ctr_args - 1; i++) 3292 DMEMIT(" %s", cache->ctr_args[i]); 3293 if (cache->nr_ctr_args) 3294 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); 3295 } 3296 3297 return; 3298 3299 err: 3300 DMEMIT("Error"); 3301 } 3302 3303 /* 3304 * Defines a range of cblocks, begin to (end - 1) are in the range. end is 3305 * the one-past-the-end value. 3306 */ 3307 struct cblock_range { 3308 dm_cblock_t begin; 3309 dm_cblock_t end; 3310 }; 3311 3312 /* 3313 * A cache block range can take two forms: 3314 * 3315 * i) A single cblock, eg. '3456' 3316 * ii) A begin and end cblock with a dash between, eg. 123-234 3317 */ 3318 static int parse_cblock_range(struct cache *cache, const char *str, 3319 struct cblock_range *result) 3320 { 3321 char dummy; 3322 uint64_t b, e; 3323 int r; 3324 3325 /* 3326 * Try and parse form (ii) first. 3327 */ 3328 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy); 3329 if (r < 0) 3330 return r; 3331 3332 if (r == 2) { 3333 result->begin = to_cblock(b); 3334 result->end = to_cblock(e); 3335 return 0; 3336 } 3337 3338 /* 3339 * That didn't work, try form (i). 3340 */ 3341 r = sscanf(str, "%llu%c", &b, &dummy); 3342 if (r < 0) 3343 return r; 3344 3345 if (r == 1) { 3346 result->begin = to_cblock(b); 3347 result->end = to_cblock(from_cblock(result->begin) + 1u); 3348 return 0; 3349 } 3350 3351 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str); 3352 return -EINVAL; 3353 } 3354 3355 static int validate_cblock_range(struct cache *cache, struct cblock_range *range) 3356 { 3357 uint64_t b = from_cblock(range->begin); 3358 uint64_t e = from_cblock(range->end); 3359 uint64_t n = from_cblock(cache->cache_size); 3360 3361 if (b >= n) { 3362 DMERR("%s: begin cblock out of range: %llu >= %llu", 3363 cache_device_name(cache), b, n); 3364 return -EINVAL; 3365 } 3366 3367 if (e > n) { 3368 DMERR("%s: end cblock out of range: %llu > %llu", 3369 cache_device_name(cache), e, n); 3370 return -EINVAL; 3371 } 3372 3373 if (b >= e) { 3374 DMERR("%s: invalid cblock range: %llu >= %llu", 3375 cache_device_name(cache), b, e); 3376 return -EINVAL; 3377 } 3378 3379 return 0; 3380 } 3381 3382 static inline dm_cblock_t cblock_succ(dm_cblock_t b) 3383 { 3384 return to_cblock(from_cblock(b) + 1); 3385 } 3386 3387 static int request_invalidation(struct cache *cache, struct cblock_range *range) 3388 { 3389 int r = 0; 3390 3391 /* 3392 * We don't need to do any locking here because we know we're in 3393 * passthrough mode. There's is potential for a race between an 3394 * invalidation triggered by an io and an invalidation message. This 3395 * is harmless, we must not worry if the policy call fails. 3396 */ 3397 while (range->begin != range->end) { 3398 r = invalidate_cblock(cache, range->begin); 3399 if (r) 3400 return r; 3401 3402 range->begin = cblock_succ(range->begin); 3403 } 3404 3405 cache->commit_requested = true; 3406 return r; 3407 } 3408 3409 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count, 3410 const char **cblock_ranges) 3411 { 3412 int r = 0; 3413 unsigned i; 3414 struct cblock_range range; 3415 3416 if (!passthrough_mode(&cache->features)) { 3417 DMERR("%s: cache has to be in passthrough mode for invalidation", 3418 cache_device_name(cache)); 3419 return -EPERM; 3420 } 3421 3422 for (i = 0; i < count; i++) { 3423 r = parse_cblock_range(cache, cblock_ranges[i], &range); 3424 if (r) 3425 break; 3426 3427 r = validate_cblock_range(cache, &range); 3428 if (r) 3429 break; 3430 3431 /* 3432 * Pass begin and end origin blocks to the worker and wake it. 3433 */ 3434 r = request_invalidation(cache, &range); 3435 if (r) 3436 break; 3437 } 3438 3439 return r; 3440 } 3441 3442 /* 3443 * Supports 3444 * "<key> <value>" 3445 * and 3446 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]* 3447 * 3448 * The key migration_threshold is supported by the cache target core. 3449 */ 3450 static int cache_message(struct dm_target *ti, unsigned argc, char **argv) 3451 { 3452 struct cache *cache = ti->private; 3453 3454 if (!argc) 3455 return -EINVAL; 3456 3457 if (get_cache_mode(cache) >= CM_READ_ONLY) { 3458 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode", 3459 cache_device_name(cache)); 3460 return -EOPNOTSUPP; 3461 } 3462 3463 if (!strcasecmp(argv[0], "invalidate_cblocks")) 3464 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1); 3465 3466 if (argc != 2) 3467 return -EINVAL; 3468 3469 return set_config_value(cache, argv[0], argv[1]); 3470 } 3471 3472 static int cache_iterate_devices(struct dm_target *ti, 3473 iterate_devices_callout_fn fn, void *data) 3474 { 3475 int r = 0; 3476 struct cache *cache = ti->private; 3477 3478 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); 3479 if (!r) 3480 r = fn(ti, cache->origin_dev, 0, ti->len, data); 3481 3482 return r; 3483 } 3484 3485 static void set_discard_limits(struct cache *cache, struct queue_limits *limits) 3486 { 3487 /* 3488 * FIXME: these limits may be incompatible with the cache device 3489 */ 3490 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024, 3491 cache->origin_sectors); 3492 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT; 3493 } 3494 3495 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) 3496 { 3497 struct cache *cache = ti->private; 3498 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3499 3500 /* 3501 * If the system-determined stacked limits are compatible with the 3502 * cache's blocksize (io_opt is a factor) do not override them. 3503 */ 3504 if (io_opt_sectors < cache->sectors_per_block || 3505 do_div(io_opt_sectors, cache->sectors_per_block)) { 3506 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT); 3507 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); 3508 } 3509 set_discard_limits(cache, limits); 3510 } 3511 3512 /*----------------------------------------------------------------*/ 3513 3514 static struct target_type cache_target = { 3515 .name = "cache", 3516 .version = {2, 0, 0}, 3517 .module = THIS_MODULE, 3518 .ctr = cache_ctr, 3519 .dtr = cache_dtr, 3520 .map = cache_map, 3521 .end_io = cache_end_io, 3522 .postsuspend = cache_postsuspend, 3523 .preresume = cache_preresume, 3524 .resume = cache_resume, 3525 .status = cache_status, 3526 .message = cache_message, 3527 .iterate_devices = cache_iterate_devices, 3528 .io_hints = cache_io_hints, 3529 }; 3530 3531 static int __init dm_cache_init(void) 3532 { 3533 int r; 3534 3535 r = dm_register_target(&cache_target); 3536 if (r) { 3537 DMERR("cache target registration failed: %d", r); 3538 return r; 3539 } 3540 3541 migration_cache = KMEM_CACHE(dm_cache_migration, 0); 3542 if (!migration_cache) { 3543 dm_unregister_target(&cache_target); 3544 return -ENOMEM; 3545 } 3546 3547 return 0; 3548 } 3549 3550 static void __exit dm_cache_exit(void) 3551 { 3552 dm_unregister_target(&cache_target); 3553 kmem_cache_destroy(migration_cache); 3554 } 3555 3556 module_init(dm_cache_init); 3557 module_exit(dm_cache_exit); 3558 3559 MODULE_DESCRIPTION(DM_NAME " cache target"); 3560 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); 3561 MODULE_LICENSE("GPL"); 3562