xref: /linux/drivers/md/dm-cache-target.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 
20 #define DM_MSG_PREFIX "cache"
21 
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 	"A percentage of time allocated for copying to and/or from cache");
24 
25 /*----------------------------------------------------------------*/
26 
27 /*
28  * Glossary:
29  *
30  * oblock: index of an origin block
31  * cblock: index of a cache block
32  * promotion: movement of a block from origin to cache
33  * demotion: movement of a block from cache to origin
34  * migration: movement of a block between the origin and cache device,
35  *	      either direction
36  */
37 
38 /*----------------------------------------------------------------*/
39 
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42 	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44 
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47 	size_t s = bitset_size_in_bytes(nr_entries);
48 	return vzalloc(s);
49 }
50 
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53 	size_t s = bitset_size_in_bytes(nr_entries);
54 	memset(bitset, 0, s);
55 }
56 
57 static void free_bitset(unsigned long *bits)
58 {
59 	vfree(bits);
60 }
61 
62 /*----------------------------------------------------------------*/
63 
64 #define PRISON_CELLS 1024
65 #define MIGRATION_POOL_SIZE 128
66 #define COMMIT_PERIOD HZ
67 #define MIGRATION_COUNT_WINDOW 10
68 
69 /*
70  * The block size of the device holding cache data must be >= 32KB
71  */
72 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
73 
74 /*
75  * FIXME: the cache is read/write for the time being.
76  */
77 enum cache_mode {
78 	CM_WRITE,		/* metadata may be changed */
79 	CM_READ_ONLY,		/* metadata may not be changed */
80 };
81 
82 struct cache_features {
83 	enum cache_mode mode;
84 	bool write_through:1;
85 };
86 
87 struct cache_stats {
88 	atomic_t read_hit;
89 	atomic_t read_miss;
90 	atomic_t write_hit;
91 	atomic_t write_miss;
92 	atomic_t demotion;
93 	atomic_t promotion;
94 	atomic_t copies_avoided;
95 	atomic_t cache_cell_clash;
96 	atomic_t commit_count;
97 	atomic_t discard_count;
98 };
99 
100 struct cache {
101 	struct dm_target *ti;
102 	struct dm_target_callbacks callbacks;
103 
104 	/*
105 	 * Metadata is written to this device.
106 	 */
107 	struct dm_dev *metadata_dev;
108 
109 	/*
110 	 * The slower of the two data devices.  Typically a spindle.
111 	 */
112 	struct dm_dev *origin_dev;
113 
114 	/*
115 	 * The faster of the two data devices.  Typically an SSD.
116 	 */
117 	struct dm_dev *cache_dev;
118 
119 	/*
120 	 * Cache features such as write-through.
121 	 */
122 	struct cache_features features;
123 
124 	/*
125 	 * Size of the origin device in _complete_ blocks and native sectors.
126 	 */
127 	dm_oblock_t origin_blocks;
128 	sector_t origin_sectors;
129 
130 	/*
131 	 * Size of the cache device in blocks.
132 	 */
133 	dm_cblock_t cache_size;
134 
135 	/*
136 	 * Fields for converting from sectors to blocks.
137 	 */
138 	uint32_t sectors_per_block;
139 	int sectors_per_block_shift;
140 
141 	struct dm_cache_metadata *cmd;
142 
143 	spinlock_t lock;
144 	struct bio_list deferred_bios;
145 	struct bio_list deferred_flush_bios;
146 	struct bio_list deferred_writethrough_bios;
147 	struct list_head quiesced_migrations;
148 	struct list_head completed_migrations;
149 	struct list_head need_commit_migrations;
150 	sector_t migration_threshold;
151 	atomic_t nr_migrations;
152 	wait_queue_head_t migration_wait;
153 
154 	/*
155 	 * cache_size entries, dirty if set
156 	 */
157 	dm_cblock_t nr_dirty;
158 	unsigned long *dirty_bitset;
159 
160 	/*
161 	 * origin_blocks entries, discarded if set.
162 	 */
163 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
164 	dm_dblock_t discard_nr_blocks;
165 	unsigned long *discard_bitset;
166 
167 	struct dm_kcopyd_client *copier;
168 	struct workqueue_struct *wq;
169 	struct work_struct worker;
170 
171 	struct delayed_work waker;
172 	unsigned long last_commit_jiffies;
173 
174 	struct dm_bio_prison *prison;
175 	struct dm_deferred_set *all_io_ds;
176 
177 	mempool_t *migration_pool;
178 	struct dm_cache_migration *next_migration;
179 
180 	struct dm_cache_policy *policy;
181 	unsigned policy_nr_args;
182 
183 	bool need_tick_bio:1;
184 	bool sized:1;
185 	bool quiescing:1;
186 	bool commit_requested:1;
187 	bool loaded_mappings:1;
188 	bool loaded_discards:1;
189 
190 	struct cache_stats stats;
191 
192 	/*
193 	 * Rather than reconstructing the table line for the status we just
194 	 * save it and regurgitate.
195 	 */
196 	unsigned nr_ctr_args;
197 	const char **ctr_args;
198 };
199 
200 struct per_bio_data {
201 	bool tick:1;
202 	unsigned req_nr:2;
203 	struct dm_deferred_entry *all_io_entry;
204 
205 	/*
206 	 * writethrough fields.  These MUST remain at the end of this
207 	 * structure and the 'cache' member must be the first as it
208 	 * is used to determine the offsetof the writethrough fields.
209 	 */
210 	struct cache *cache;
211 	dm_cblock_t cblock;
212 	bio_end_io_t *saved_bi_end_io;
213 	struct dm_bio_details bio_details;
214 };
215 
216 struct dm_cache_migration {
217 	struct list_head list;
218 	struct cache *cache;
219 
220 	unsigned long start_jiffies;
221 	dm_oblock_t old_oblock;
222 	dm_oblock_t new_oblock;
223 	dm_cblock_t cblock;
224 
225 	bool err:1;
226 	bool writeback:1;
227 	bool demote:1;
228 	bool promote:1;
229 
230 	struct dm_bio_prison_cell *old_ocell;
231 	struct dm_bio_prison_cell *new_ocell;
232 };
233 
234 /*
235  * Processing a bio in the worker thread may require these memory
236  * allocations.  We prealloc to avoid deadlocks (the same worker thread
237  * frees them back to the mempool).
238  */
239 struct prealloc {
240 	struct dm_cache_migration *mg;
241 	struct dm_bio_prison_cell *cell1;
242 	struct dm_bio_prison_cell *cell2;
243 };
244 
245 static void wake_worker(struct cache *cache)
246 {
247 	queue_work(cache->wq, &cache->worker);
248 }
249 
250 /*----------------------------------------------------------------*/
251 
252 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
253 {
254 	/* FIXME: change to use a local slab. */
255 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
256 }
257 
258 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
259 {
260 	dm_bio_prison_free_cell(cache->prison, cell);
261 }
262 
263 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
264 {
265 	if (!p->mg) {
266 		p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
267 		if (!p->mg)
268 			return -ENOMEM;
269 	}
270 
271 	if (!p->cell1) {
272 		p->cell1 = alloc_prison_cell(cache);
273 		if (!p->cell1)
274 			return -ENOMEM;
275 	}
276 
277 	if (!p->cell2) {
278 		p->cell2 = alloc_prison_cell(cache);
279 		if (!p->cell2)
280 			return -ENOMEM;
281 	}
282 
283 	return 0;
284 }
285 
286 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
287 {
288 	if (p->cell2)
289 		free_prison_cell(cache, p->cell2);
290 
291 	if (p->cell1)
292 		free_prison_cell(cache, p->cell1);
293 
294 	if (p->mg)
295 		mempool_free(p->mg, cache->migration_pool);
296 }
297 
298 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
299 {
300 	struct dm_cache_migration *mg = p->mg;
301 
302 	BUG_ON(!mg);
303 	p->mg = NULL;
304 
305 	return mg;
306 }
307 
308 /*
309  * You must have a cell within the prealloc struct to return.  If not this
310  * function will BUG() rather than returning NULL.
311  */
312 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
313 {
314 	struct dm_bio_prison_cell *r = NULL;
315 
316 	if (p->cell1) {
317 		r = p->cell1;
318 		p->cell1 = NULL;
319 
320 	} else if (p->cell2) {
321 		r = p->cell2;
322 		p->cell2 = NULL;
323 	} else
324 		BUG();
325 
326 	return r;
327 }
328 
329 /*
330  * You can't have more than two cells in a prealloc struct.  BUG() will be
331  * called if you try and overfill.
332  */
333 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
334 {
335 	if (!p->cell2)
336 		p->cell2 = cell;
337 
338 	else if (!p->cell1)
339 		p->cell1 = cell;
340 
341 	else
342 		BUG();
343 }
344 
345 /*----------------------------------------------------------------*/
346 
347 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
348 {
349 	key->virtual = 0;
350 	key->dev = 0;
351 	key->block = from_oblock(oblock);
352 }
353 
354 /*
355  * The caller hands in a preallocated cell, and a free function for it.
356  * The cell will be freed if there's an error, or if it wasn't used because
357  * a cell with that key already exists.
358  */
359 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
360 
361 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
362 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
363 		      cell_free_fn free_fn, void *free_context,
364 		      struct dm_bio_prison_cell **cell_result)
365 {
366 	int r;
367 	struct dm_cell_key key;
368 
369 	build_key(oblock, &key);
370 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
371 	if (r)
372 		free_fn(free_context, cell_prealloc);
373 
374 	return r;
375 }
376 
377 static int get_cell(struct cache *cache,
378 		    dm_oblock_t oblock,
379 		    struct prealloc *structs,
380 		    struct dm_bio_prison_cell **cell_result)
381 {
382 	int r;
383 	struct dm_cell_key key;
384 	struct dm_bio_prison_cell *cell_prealloc;
385 
386 	cell_prealloc = prealloc_get_cell(structs);
387 
388 	build_key(oblock, &key);
389 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
390 	if (r)
391 		prealloc_put_cell(structs, cell_prealloc);
392 
393 	return r;
394 }
395 
396  /*----------------------------------------------------------------*/
397 
398 static bool is_dirty(struct cache *cache, dm_cblock_t b)
399 {
400 	return test_bit(from_cblock(b), cache->dirty_bitset);
401 }
402 
403 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
404 {
405 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
406 		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
407 		policy_set_dirty(cache->policy, oblock);
408 	}
409 }
410 
411 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
412 {
413 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
414 		policy_clear_dirty(cache->policy, oblock);
415 		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
416 		if (!from_cblock(cache->nr_dirty))
417 			dm_table_event(cache->ti->table);
418 	}
419 }
420 
421 /*----------------------------------------------------------------*/
422 static bool block_size_is_power_of_two(struct cache *cache)
423 {
424 	return cache->sectors_per_block_shift >= 0;
425 }
426 
427 static dm_block_t block_div(dm_block_t b, uint32_t n)
428 {
429 	do_div(b, n);
430 
431 	return b;
432 }
433 
434 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
435 {
436 	uint32_t discard_blocks = cache->discard_block_size;
437 	dm_block_t b = from_oblock(oblock);
438 
439 	if (!block_size_is_power_of_two(cache))
440 		discard_blocks = discard_blocks / cache->sectors_per_block;
441 	else
442 		discard_blocks >>= cache->sectors_per_block_shift;
443 
444 	b = block_div(b, discard_blocks);
445 
446 	return to_dblock(b);
447 }
448 
449 static void set_discard(struct cache *cache, dm_dblock_t b)
450 {
451 	unsigned long flags;
452 
453 	atomic_inc(&cache->stats.discard_count);
454 
455 	spin_lock_irqsave(&cache->lock, flags);
456 	set_bit(from_dblock(b), cache->discard_bitset);
457 	spin_unlock_irqrestore(&cache->lock, flags);
458 }
459 
460 static void clear_discard(struct cache *cache, dm_dblock_t b)
461 {
462 	unsigned long flags;
463 
464 	spin_lock_irqsave(&cache->lock, flags);
465 	clear_bit(from_dblock(b), cache->discard_bitset);
466 	spin_unlock_irqrestore(&cache->lock, flags);
467 }
468 
469 static bool is_discarded(struct cache *cache, dm_dblock_t b)
470 {
471 	int r;
472 	unsigned long flags;
473 
474 	spin_lock_irqsave(&cache->lock, flags);
475 	r = test_bit(from_dblock(b), cache->discard_bitset);
476 	spin_unlock_irqrestore(&cache->lock, flags);
477 
478 	return r;
479 }
480 
481 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
482 {
483 	int r;
484 	unsigned long flags;
485 
486 	spin_lock_irqsave(&cache->lock, flags);
487 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
488 		     cache->discard_bitset);
489 	spin_unlock_irqrestore(&cache->lock, flags);
490 
491 	return r;
492 }
493 
494 /*----------------------------------------------------------------*/
495 
496 static void load_stats(struct cache *cache)
497 {
498 	struct dm_cache_statistics stats;
499 
500 	dm_cache_metadata_get_stats(cache->cmd, &stats);
501 	atomic_set(&cache->stats.read_hit, stats.read_hits);
502 	atomic_set(&cache->stats.read_miss, stats.read_misses);
503 	atomic_set(&cache->stats.write_hit, stats.write_hits);
504 	atomic_set(&cache->stats.write_miss, stats.write_misses);
505 }
506 
507 static void save_stats(struct cache *cache)
508 {
509 	struct dm_cache_statistics stats;
510 
511 	stats.read_hits = atomic_read(&cache->stats.read_hit);
512 	stats.read_misses = atomic_read(&cache->stats.read_miss);
513 	stats.write_hits = atomic_read(&cache->stats.write_hit);
514 	stats.write_misses = atomic_read(&cache->stats.write_miss);
515 
516 	dm_cache_metadata_set_stats(cache->cmd, &stats);
517 }
518 
519 /*----------------------------------------------------------------
520  * Per bio data
521  *--------------------------------------------------------------*/
522 
523 /*
524  * If using writeback, leave out struct per_bio_data's writethrough fields.
525  */
526 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
527 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
528 
529 static size_t get_per_bio_data_size(struct cache *cache)
530 {
531 	return cache->features.write_through ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
532 }
533 
534 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
535 {
536 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
537 	BUG_ON(!pb);
538 	return pb;
539 }
540 
541 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
542 {
543 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
544 
545 	pb->tick = false;
546 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
547 	pb->all_io_entry = NULL;
548 
549 	return pb;
550 }
551 
552 /*----------------------------------------------------------------
553  * Remapping
554  *--------------------------------------------------------------*/
555 static void remap_to_origin(struct cache *cache, struct bio *bio)
556 {
557 	bio->bi_bdev = cache->origin_dev->bdev;
558 }
559 
560 static void remap_to_cache(struct cache *cache, struct bio *bio,
561 			   dm_cblock_t cblock)
562 {
563 	sector_t bi_sector = bio->bi_sector;
564 
565 	bio->bi_bdev = cache->cache_dev->bdev;
566 	if (!block_size_is_power_of_two(cache))
567 		bio->bi_sector = (from_cblock(cblock) * cache->sectors_per_block) +
568 				sector_div(bi_sector, cache->sectors_per_block);
569 	else
570 		bio->bi_sector = (from_cblock(cblock) << cache->sectors_per_block_shift) |
571 				(bi_sector & (cache->sectors_per_block - 1));
572 }
573 
574 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
575 {
576 	unsigned long flags;
577 	size_t pb_data_size = get_per_bio_data_size(cache);
578 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
579 
580 	spin_lock_irqsave(&cache->lock, flags);
581 	if (cache->need_tick_bio &&
582 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
583 		pb->tick = true;
584 		cache->need_tick_bio = false;
585 	}
586 	spin_unlock_irqrestore(&cache->lock, flags);
587 }
588 
589 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
590 				  dm_oblock_t oblock)
591 {
592 	check_if_tick_bio_needed(cache, bio);
593 	remap_to_origin(cache, bio);
594 	if (bio_data_dir(bio) == WRITE)
595 		clear_discard(cache, oblock_to_dblock(cache, oblock));
596 }
597 
598 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
599 				 dm_oblock_t oblock, dm_cblock_t cblock)
600 {
601 	remap_to_cache(cache, bio, cblock);
602 	if (bio_data_dir(bio) == WRITE) {
603 		set_dirty(cache, oblock, cblock);
604 		clear_discard(cache, oblock_to_dblock(cache, oblock));
605 	}
606 }
607 
608 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
609 {
610 	sector_t block_nr = bio->bi_sector;
611 
612 	if (!block_size_is_power_of_two(cache))
613 		(void) sector_div(block_nr, cache->sectors_per_block);
614 	else
615 		block_nr >>= cache->sectors_per_block_shift;
616 
617 	return to_oblock(block_nr);
618 }
619 
620 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
621 {
622 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
623 }
624 
625 static void issue(struct cache *cache, struct bio *bio)
626 {
627 	unsigned long flags;
628 
629 	if (!bio_triggers_commit(cache, bio)) {
630 		generic_make_request(bio);
631 		return;
632 	}
633 
634 	/*
635 	 * Batch together any bios that trigger commits and then issue a
636 	 * single commit for them in do_worker().
637 	 */
638 	spin_lock_irqsave(&cache->lock, flags);
639 	cache->commit_requested = true;
640 	bio_list_add(&cache->deferred_flush_bios, bio);
641 	spin_unlock_irqrestore(&cache->lock, flags);
642 }
643 
644 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
645 {
646 	unsigned long flags;
647 
648 	spin_lock_irqsave(&cache->lock, flags);
649 	bio_list_add(&cache->deferred_writethrough_bios, bio);
650 	spin_unlock_irqrestore(&cache->lock, flags);
651 
652 	wake_worker(cache);
653 }
654 
655 static void writethrough_endio(struct bio *bio, int err)
656 {
657 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
658 	bio->bi_end_io = pb->saved_bi_end_io;
659 
660 	if (err) {
661 		bio_endio(bio, err);
662 		return;
663 	}
664 
665 	dm_bio_restore(&pb->bio_details, bio);
666 	remap_to_cache(pb->cache, bio, pb->cblock);
667 
668 	/*
669 	 * We can't issue this bio directly, since we're in interrupt
670 	 * context.  So it get's put on a bio list for processing by the
671 	 * worker thread.
672 	 */
673 	defer_writethrough_bio(pb->cache, bio);
674 }
675 
676 /*
677  * When running in writethrough mode we need to send writes to clean blocks
678  * to both the cache and origin devices.  In future we'd like to clone the
679  * bio and send them in parallel, but for now we're doing them in
680  * series as this is easier.
681  */
682 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
683 				       dm_oblock_t oblock, dm_cblock_t cblock)
684 {
685 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
686 
687 	pb->cache = cache;
688 	pb->cblock = cblock;
689 	pb->saved_bi_end_io = bio->bi_end_io;
690 	dm_bio_record(&pb->bio_details, bio);
691 	bio->bi_end_io = writethrough_endio;
692 
693 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
694 }
695 
696 /*----------------------------------------------------------------
697  * Migration processing
698  *
699  * Migration covers moving data from the origin device to the cache, or
700  * vice versa.
701  *--------------------------------------------------------------*/
702 static void free_migration(struct dm_cache_migration *mg)
703 {
704 	mempool_free(mg, mg->cache->migration_pool);
705 }
706 
707 static void inc_nr_migrations(struct cache *cache)
708 {
709 	atomic_inc(&cache->nr_migrations);
710 }
711 
712 static void dec_nr_migrations(struct cache *cache)
713 {
714 	atomic_dec(&cache->nr_migrations);
715 
716 	/*
717 	 * Wake the worker in case we're suspending the target.
718 	 */
719 	wake_up(&cache->migration_wait);
720 }
721 
722 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
723 			 bool holder)
724 {
725 	(holder ? dm_cell_release : dm_cell_release_no_holder)
726 		(cache->prison, cell, &cache->deferred_bios);
727 	free_prison_cell(cache, cell);
728 }
729 
730 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
731 		       bool holder)
732 {
733 	unsigned long flags;
734 
735 	spin_lock_irqsave(&cache->lock, flags);
736 	__cell_defer(cache, cell, holder);
737 	spin_unlock_irqrestore(&cache->lock, flags);
738 
739 	wake_worker(cache);
740 }
741 
742 static void cleanup_migration(struct dm_cache_migration *mg)
743 {
744 	dec_nr_migrations(mg->cache);
745 	free_migration(mg);
746 }
747 
748 static void migration_failure(struct dm_cache_migration *mg)
749 {
750 	struct cache *cache = mg->cache;
751 
752 	if (mg->writeback) {
753 		DMWARN_LIMIT("writeback failed; couldn't copy block");
754 		set_dirty(cache, mg->old_oblock, mg->cblock);
755 		cell_defer(cache, mg->old_ocell, false);
756 
757 	} else if (mg->demote) {
758 		DMWARN_LIMIT("demotion failed; couldn't copy block");
759 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
760 
761 		cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
762 		if (mg->promote)
763 			cell_defer(cache, mg->new_ocell, 1);
764 	} else {
765 		DMWARN_LIMIT("promotion failed; couldn't copy block");
766 		policy_remove_mapping(cache->policy, mg->new_oblock);
767 		cell_defer(cache, mg->new_ocell, 1);
768 	}
769 
770 	cleanup_migration(mg);
771 }
772 
773 static void migration_success_pre_commit(struct dm_cache_migration *mg)
774 {
775 	unsigned long flags;
776 	struct cache *cache = mg->cache;
777 
778 	if (mg->writeback) {
779 		cell_defer(cache, mg->old_ocell, false);
780 		clear_dirty(cache, mg->old_oblock, mg->cblock);
781 		cleanup_migration(mg);
782 		return;
783 
784 	} else if (mg->demote) {
785 		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
786 			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
787 			policy_force_mapping(cache->policy, mg->new_oblock,
788 					     mg->old_oblock);
789 			if (mg->promote)
790 				cell_defer(cache, mg->new_ocell, true);
791 			cleanup_migration(mg);
792 			return;
793 		}
794 	} else {
795 		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
796 			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
797 			policy_remove_mapping(cache->policy, mg->new_oblock);
798 			cleanup_migration(mg);
799 			return;
800 		}
801 	}
802 
803 	spin_lock_irqsave(&cache->lock, flags);
804 	list_add_tail(&mg->list, &cache->need_commit_migrations);
805 	cache->commit_requested = true;
806 	spin_unlock_irqrestore(&cache->lock, flags);
807 }
808 
809 static void migration_success_post_commit(struct dm_cache_migration *mg)
810 {
811 	unsigned long flags;
812 	struct cache *cache = mg->cache;
813 
814 	if (mg->writeback) {
815 		DMWARN("writeback unexpectedly triggered commit");
816 		return;
817 
818 	} else if (mg->demote) {
819 		cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
820 
821 		if (mg->promote) {
822 			mg->demote = false;
823 
824 			spin_lock_irqsave(&cache->lock, flags);
825 			list_add_tail(&mg->list, &cache->quiesced_migrations);
826 			spin_unlock_irqrestore(&cache->lock, flags);
827 
828 		} else
829 			cleanup_migration(mg);
830 
831 	} else {
832 		cell_defer(cache, mg->new_ocell, true);
833 		clear_dirty(cache, mg->new_oblock, mg->cblock);
834 		cleanup_migration(mg);
835 	}
836 }
837 
838 static void copy_complete(int read_err, unsigned long write_err, void *context)
839 {
840 	unsigned long flags;
841 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
842 	struct cache *cache = mg->cache;
843 
844 	if (read_err || write_err)
845 		mg->err = true;
846 
847 	spin_lock_irqsave(&cache->lock, flags);
848 	list_add_tail(&mg->list, &cache->completed_migrations);
849 	spin_unlock_irqrestore(&cache->lock, flags);
850 
851 	wake_worker(cache);
852 }
853 
854 static void issue_copy_real(struct dm_cache_migration *mg)
855 {
856 	int r;
857 	struct dm_io_region o_region, c_region;
858 	struct cache *cache = mg->cache;
859 
860 	o_region.bdev = cache->origin_dev->bdev;
861 	o_region.count = cache->sectors_per_block;
862 
863 	c_region.bdev = cache->cache_dev->bdev;
864 	c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block;
865 	c_region.count = cache->sectors_per_block;
866 
867 	if (mg->writeback || mg->demote) {
868 		/* demote */
869 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
870 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
871 	} else {
872 		/* promote */
873 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
874 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
875 	}
876 
877 	if (r < 0)
878 		migration_failure(mg);
879 }
880 
881 static void avoid_copy(struct dm_cache_migration *mg)
882 {
883 	atomic_inc(&mg->cache->stats.copies_avoided);
884 	migration_success_pre_commit(mg);
885 }
886 
887 static void issue_copy(struct dm_cache_migration *mg)
888 {
889 	bool avoid;
890 	struct cache *cache = mg->cache;
891 
892 	if (mg->writeback || mg->demote)
893 		avoid = !is_dirty(cache, mg->cblock) ||
894 			is_discarded_oblock(cache, mg->old_oblock);
895 	else
896 		avoid = is_discarded_oblock(cache, mg->new_oblock);
897 
898 	avoid ? avoid_copy(mg) : issue_copy_real(mg);
899 }
900 
901 static void complete_migration(struct dm_cache_migration *mg)
902 {
903 	if (mg->err)
904 		migration_failure(mg);
905 	else
906 		migration_success_pre_commit(mg);
907 }
908 
909 static void process_migrations(struct cache *cache, struct list_head *head,
910 			       void (*fn)(struct dm_cache_migration *))
911 {
912 	unsigned long flags;
913 	struct list_head list;
914 	struct dm_cache_migration *mg, *tmp;
915 
916 	INIT_LIST_HEAD(&list);
917 	spin_lock_irqsave(&cache->lock, flags);
918 	list_splice_init(head, &list);
919 	spin_unlock_irqrestore(&cache->lock, flags);
920 
921 	list_for_each_entry_safe(mg, tmp, &list, list)
922 		fn(mg);
923 }
924 
925 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
926 {
927 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
928 }
929 
930 static void queue_quiesced_migration(struct dm_cache_migration *mg)
931 {
932 	unsigned long flags;
933 	struct cache *cache = mg->cache;
934 
935 	spin_lock_irqsave(&cache->lock, flags);
936 	__queue_quiesced_migration(mg);
937 	spin_unlock_irqrestore(&cache->lock, flags);
938 
939 	wake_worker(cache);
940 }
941 
942 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
943 {
944 	unsigned long flags;
945 	struct dm_cache_migration *mg, *tmp;
946 
947 	spin_lock_irqsave(&cache->lock, flags);
948 	list_for_each_entry_safe(mg, tmp, work, list)
949 		__queue_quiesced_migration(mg);
950 	spin_unlock_irqrestore(&cache->lock, flags);
951 
952 	wake_worker(cache);
953 }
954 
955 static void check_for_quiesced_migrations(struct cache *cache,
956 					  struct per_bio_data *pb)
957 {
958 	struct list_head work;
959 
960 	if (!pb->all_io_entry)
961 		return;
962 
963 	INIT_LIST_HEAD(&work);
964 	if (pb->all_io_entry)
965 		dm_deferred_entry_dec(pb->all_io_entry, &work);
966 
967 	if (!list_empty(&work))
968 		queue_quiesced_migrations(cache, &work);
969 }
970 
971 static void quiesce_migration(struct dm_cache_migration *mg)
972 {
973 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
974 		queue_quiesced_migration(mg);
975 }
976 
977 static void promote(struct cache *cache, struct prealloc *structs,
978 		    dm_oblock_t oblock, dm_cblock_t cblock,
979 		    struct dm_bio_prison_cell *cell)
980 {
981 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
982 
983 	mg->err = false;
984 	mg->writeback = false;
985 	mg->demote = false;
986 	mg->promote = true;
987 	mg->cache = cache;
988 	mg->new_oblock = oblock;
989 	mg->cblock = cblock;
990 	mg->old_ocell = NULL;
991 	mg->new_ocell = cell;
992 	mg->start_jiffies = jiffies;
993 
994 	inc_nr_migrations(cache);
995 	quiesce_migration(mg);
996 }
997 
998 static void writeback(struct cache *cache, struct prealloc *structs,
999 		      dm_oblock_t oblock, dm_cblock_t cblock,
1000 		      struct dm_bio_prison_cell *cell)
1001 {
1002 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1003 
1004 	mg->err = false;
1005 	mg->writeback = true;
1006 	mg->demote = false;
1007 	mg->promote = false;
1008 	mg->cache = cache;
1009 	mg->old_oblock = oblock;
1010 	mg->cblock = cblock;
1011 	mg->old_ocell = cell;
1012 	mg->new_ocell = NULL;
1013 	mg->start_jiffies = jiffies;
1014 
1015 	inc_nr_migrations(cache);
1016 	quiesce_migration(mg);
1017 }
1018 
1019 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1020 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1021 				dm_cblock_t cblock,
1022 				struct dm_bio_prison_cell *old_ocell,
1023 				struct dm_bio_prison_cell *new_ocell)
1024 {
1025 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1026 
1027 	mg->err = false;
1028 	mg->writeback = false;
1029 	mg->demote = true;
1030 	mg->promote = true;
1031 	mg->cache = cache;
1032 	mg->old_oblock = old_oblock;
1033 	mg->new_oblock = new_oblock;
1034 	mg->cblock = cblock;
1035 	mg->old_ocell = old_ocell;
1036 	mg->new_ocell = new_ocell;
1037 	mg->start_jiffies = jiffies;
1038 
1039 	inc_nr_migrations(cache);
1040 	quiesce_migration(mg);
1041 }
1042 
1043 /*----------------------------------------------------------------
1044  * bio processing
1045  *--------------------------------------------------------------*/
1046 static void defer_bio(struct cache *cache, struct bio *bio)
1047 {
1048 	unsigned long flags;
1049 
1050 	spin_lock_irqsave(&cache->lock, flags);
1051 	bio_list_add(&cache->deferred_bios, bio);
1052 	spin_unlock_irqrestore(&cache->lock, flags);
1053 
1054 	wake_worker(cache);
1055 }
1056 
1057 static void process_flush_bio(struct cache *cache, struct bio *bio)
1058 {
1059 	size_t pb_data_size = get_per_bio_data_size(cache);
1060 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1061 
1062 	BUG_ON(bio->bi_size);
1063 	if (!pb->req_nr)
1064 		remap_to_origin(cache, bio);
1065 	else
1066 		remap_to_cache(cache, bio, 0);
1067 
1068 	issue(cache, bio);
1069 }
1070 
1071 /*
1072  * People generally discard large parts of a device, eg, the whole device
1073  * when formatting.  Splitting these large discards up into cache block
1074  * sized ios and then quiescing (always neccessary for discard) takes too
1075  * long.
1076  *
1077  * We keep it simple, and allow any size of discard to come in, and just
1078  * mark off blocks on the discard bitset.  No passdown occurs!
1079  *
1080  * To implement passdown we need to change the bio_prison such that a cell
1081  * can have a key that spans many blocks.
1082  */
1083 static void process_discard_bio(struct cache *cache, struct bio *bio)
1084 {
1085 	dm_block_t start_block = dm_sector_div_up(bio->bi_sector,
1086 						  cache->discard_block_size);
1087 	dm_block_t end_block = bio->bi_sector + bio_sectors(bio);
1088 	dm_block_t b;
1089 
1090 	end_block = block_div(end_block, cache->discard_block_size);
1091 
1092 	for (b = start_block; b < end_block; b++)
1093 		set_discard(cache, to_dblock(b));
1094 
1095 	bio_endio(bio, 0);
1096 }
1097 
1098 static bool spare_migration_bandwidth(struct cache *cache)
1099 {
1100 	sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1101 		cache->sectors_per_block;
1102 	return current_volume < cache->migration_threshold;
1103 }
1104 
1105 static bool is_writethrough_io(struct cache *cache, struct bio *bio,
1106 			       dm_cblock_t cblock)
1107 {
1108 	return bio_data_dir(bio) == WRITE &&
1109 		cache->features.write_through && !is_dirty(cache, cblock);
1110 }
1111 
1112 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1113 {
1114 	atomic_inc(bio_data_dir(bio) == READ ?
1115 		   &cache->stats.read_hit : &cache->stats.write_hit);
1116 }
1117 
1118 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1119 {
1120 	atomic_inc(bio_data_dir(bio) == READ ?
1121 		   &cache->stats.read_miss : &cache->stats.write_miss);
1122 }
1123 
1124 static void process_bio(struct cache *cache, struct prealloc *structs,
1125 			struct bio *bio)
1126 {
1127 	int r;
1128 	bool release_cell = true;
1129 	dm_oblock_t block = get_bio_block(cache, bio);
1130 	struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1131 	struct policy_result lookup_result;
1132 	size_t pb_data_size = get_per_bio_data_size(cache);
1133 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1134 	bool discarded_block = is_discarded_oblock(cache, block);
1135 	bool can_migrate = discarded_block || spare_migration_bandwidth(cache);
1136 
1137 	/*
1138 	 * Check to see if that block is currently migrating.
1139 	 */
1140 	cell_prealloc = prealloc_get_cell(structs);
1141 	r = bio_detain(cache, block, bio, cell_prealloc,
1142 		       (cell_free_fn) prealloc_put_cell,
1143 		       structs, &new_ocell);
1144 	if (r > 0)
1145 		return;
1146 
1147 	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1148 		       bio, &lookup_result);
1149 
1150 	if (r == -EWOULDBLOCK)
1151 		/* migration has been denied */
1152 		lookup_result.op = POLICY_MISS;
1153 
1154 	switch (lookup_result.op) {
1155 	case POLICY_HIT:
1156 		inc_hit_counter(cache, bio);
1157 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1158 
1159 		if (is_writethrough_io(cache, bio, lookup_result.cblock))
1160 			remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1161 		else
1162 			remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1163 
1164 		issue(cache, bio);
1165 		break;
1166 
1167 	case POLICY_MISS:
1168 		inc_miss_counter(cache, bio);
1169 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1170 		remap_to_origin_clear_discard(cache, bio, block);
1171 		issue(cache, bio);
1172 		break;
1173 
1174 	case POLICY_NEW:
1175 		atomic_inc(&cache->stats.promotion);
1176 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1177 		release_cell = false;
1178 		break;
1179 
1180 	case POLICY_REPLACE:
1181 		cell_prealloc = prealloc_get_cell(structs);
1182 		r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1183 			       (cell_free_fn) prealloc_put_cell,
1184 			       structs, &old_ocell);
1185 		if (r > 0) {
1186 			/*
1187 			 * We have to be careful to avoid lock inversion of
1188 			 * the cells.  So we back off, and wait for the
1189 			 * old_ocell to become free.
1190 			 */
1191 			policy_force_mapping(cache->policy, block,
1192 					     lookup_result.old_oblock);
1193 			atomic_inc(&cache->stats.cache_cell_clash);
1194 			break;
1195 		}
1196 		atomic_inc(&cache->stats.demotion);
1197 		atomic_inc(&cache->stats.promotion);
1198 
1199 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1200 				    block, lookup_result.cblock,
1201 				    old_ocell, new_ocell);
1202 		release_cell = false;
1203 		break;
1204 
1205 	default:
1206 		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1207 			    (unsigned) lookup_result.op);
1208 		bio_io_error(bio);
1209 	}
1210 
1211 	if (release_cell)
1212 		cell_defer(cache, new_ocell, false);
1213 }
1214 
1215 static int need_commit_due_to_time(struct cache *cache)
1216 {
1217 	return jiffies < cache->last_commit_jiffies ||
1218 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1219 }
1220 
1221 static int commit_if_needed(struct cache *cache)
1222 {
1223 	if (dm_cache_changed_this_transaction(cache->cmd) &&
1224 	    (cache->commit_requested || need_commit_due_to_time(cache))) {
1225 		atomic_inc(&cache->stats.commit_count);
1226 		cache->last_commit_jiffies = jiffies;
1227 		cache->commit_requested = false;
1228 		return dm_cache_commit(cache->cmd, false);
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 static void process_deferred_bios(struct cache *cache)
1235 {
1236 	unsigned long flags;
1237 	struct bio_list bios;
1238 	struct bio *bio;
1239 	struct prealloc structs;
1240 
1241 	memset(&structs, 0, sizeof(structs));
1242 	bio_list_init(&bios);
1243 
1244 	spin_lock_irqsave(&cache->lock, flags);
1245 	bio_list_merge(&bios, &cache->deferred_bios);
1246 	bio_list_init(&cache->deferred_bios);
1247 	spin_unlock_irqrestore(&cache->lock, flags);
1248 
1249 	while (!bio_list_empty(&bios)) {
1250 		/*
1251 		 * If we've got no free migration structs, and processing
1252 		 * this bio might require one, we pause until there are some
1253 		 * prepared mappings to process.
1254 		 */
1255 		if (prealloc_data_structs(cache, &structs)) {
1256 			spin_lock_irqsave(&cache->lock, flags);
1257 			bio_list_merge(&cache->deferred_bios, &bios);
1258 			spin_unlock_irqrestore(&cache->lock, flags);
1259 			break;
1260 		}
1261 
1262 		bio = bio_list_pop(&bios);
1263 
1264 		if (bio->bi_rw & REQ_FLUSH)
1265 			process_flush_bio(cache, bio);
1266 		else if (bio->bi_rw & REQ_DISCARD)
1267 			process_discard_bio(cache, bio);
1268 		else
1269 			process_bio(cache, &structs, bio);
1270 	}
1271 
1272 	prealloc_free_structs(cache, &structs);
1273 }
1274 
1275 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1276 {
1277 	unsigned long flags;
1278 	struct bio_list bios;
1279 	struct bio *bio;
1280 
1281 	bio_list_init(&bios);
1282 
1283 	spin_lock_irqsave(&cache->lock, flags);
1284 	bio_list_merge(&bios, &cache->deferred_flush_bios);
1285 	bio_list_init(&cache->deferred_flush_bios);
1286 	spin_unlock_irqrestore(&cache->lock, flags);
1287 
1288 	while ((bio = bio_list_pop(&bios)))
1289 		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1290 }
1291 
1292 static void process_deferred_writethrough_bios(struct cache *cache)
1293 {
1294 	unsigned long flags;
1295 	struct bio_list bios;
1296 	struct bio *bio;
1297 
1298 	bio_list_init(&bios);
1299 
1300 	spin_lock_irqsave(&cache->lock, flags);
1301 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1302 	bio_list_init(&cache->deferred_writethrough_bios);
1303 	spin_unlock_irqrestore(&cache->lock, flags);
1304 
1305 	while ((bio = bio_list_pop(&bios)))
1306 		generic_make_request(bio);
1307 }
1308 
1309 static void writeback_some_dirty_blocks(struct cache *cache)
1310 {
1311 	int r = 0;
1312 	dm_oblock_t oblock;
1313 	dm_cblock_t cblock;
1314 	struct prealloc structs;
1315 	struct dm_bio_prison_cell *old_ocell;
1316 
1317 	memset(&structs, 0, sizeof(structs));
1318 
1319 	while (spare_migration_bandwidth(cache)) {
1320 		if (prealloc_data_structs(cache, &structs))
1321 			break;
1322 
1323 		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1324 		if (r)
1325 			break;
1326 
1327 		r = get_cell(cache, oblock, &structs, &old_ocell);
1328 		if (r) {
1329 			policy_set_dirty(cache->policy, oblock);
1330 			break;
1331 		}
1332 
1333 		writeback(cache, &structs, oblock, cblock, old_ocell);
1334 	}
1335 
1336 	prealloc_free_structs(cache, &structs);
1337 }
1338 
1339 /*----------------------------------------------------------------
1340  * Main worker loop
1341  *--------------------------------------------------------------*/
1342 static void start_quiescing(struct cache *cache)
1343 {
1344 	unsigned long flags;
1345 
1346 	spin_lock_irqsave(&cache->lock, flags);
1347 	cache->quiescing = 1;
1348 	spin_unlock_irqrestore(&cache->lock, flags);
1349 }
1350 
1351 static void stop_quiescing(struct cache *cache)
1352 {
1353 	unsigned long flags;
1354 
1355 	spin_lock_irqsave(&cache->lock, flags);
1356 	cache->quiescing = 0;
1357 	spin_unlock_irqrestore(&cache->lock, flags);
1358 }
1359 
1360 static bool is_quiescing(struct cache *cache)
1361 {
1362 	int r;
1363 	unsigned long flags;
1364 
1365 	spin_lock_irqsave(&cache->lock, flags);
1366 	r = cache->quiescing;
1367 	spin_unlock_irqrestore(&cache->lock, flags);
1368 
1369 	return r;
1370 }
1371 
1372 static void wait_for_migrations(struct cache *cache)
1373 {
1374 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1375 }
1376 
1377 static void stop_worker(struct cache *cache)
1378 {
1379 	cancel_delayed_work(&cache->waker);
1380 	flush_workqueue(cache->wq);
1381 }
1382 
1383 static void requeue_deferred_io(struct cache *cache)
1384 {
1385 	struct bio *bio;
1386 	struct bio_list bios;
1387 
1388 	bio_list_init(&bios);
1389 	bio_list_merge(&bios, &cache->deferred_bios);
1390 	bio_list_init(&cache->deferred_bios);
1391 
1392 	while ((bio = bio_list_pop(&bios)))
1393 		bio_endio(bio, DM_ENDIO_REQUEUE);
1394 }
1395 
1396 static int more_work(struct cache *cache)
1397 {
1398 	if (is_quiescing(cache))
1399 		return !list_empty(&cache->quiesced_migrations) ||
1400 			!list_empty(&cache->completed_migrations) ||
1401 			!list_empty(&cache->need_commit_migrations);
1402 	else
1403 		return !bio_list_empty(&cache->deferred_bios) ||
1404 			!bio_list_empty(&cache->deferred_flush_bios) ||
1405 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1406 			!list_empty(&cache->quiesced_migrations) ||
1407 			!list_empty(&cache->completed_migrations) ||
1408 			!list_empty(&cache->need_commit_migrations);
1409 }
1410 
1411 static void do_worker(struct work_struct *ws)
1412 {
1413 	struct cache *cache = container_of(ws, struct cache, worker);
1414 
1415 	do {
1416 		if (!is_quiescing(cache))
1417 			process_deferred_bios(cache);
1418 
1419 		process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1420 		process_migrations(cache, &cache->completed_migrations, complete_migration);
1421 
1422 		writeback_some_dirty_blocks(cache);
1423 
1424 		process_deferred_writethrough_bios(cache);
1425 
1426 		if (commit_if_needed(cache)) {
1427 			process_deferred_flush_bios(cache, false);
1428 
1429 			/*
1430 			 * FIXME: rollback metadata or just go into a
1431 			 * failure mode and error everything
1432 			 */
1433 		} else {
1434 			process_deferred_flush_bios(cache, true);
1435 			process_migrations(cache, &cache->need_commit_migrations,
1436 					   migration_success_post_commit);
1437 		}
1438 	} while (more_work(cache));
1439 }
1440 
1441 /*
1442  * We want to commit periodically so that not too much
1443  * unwritten metadata builds up.
1444  */
1445 static void do_waker(struct work_struct *ws)
1446 {
1447 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1448 	wake_worker(cache);
1449 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1450 }
1451 
1452 /*----------------------------------------------------------------*/
1453 
1454 static int is_congested(struct dm_dev *dev, int bdi_bits)
1455 {
1456 	struct request_queue *q = bdev_get_queue(dev->bdev);
1457 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1458 }
1459 
1460 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1461 {
1462 	struct cache *cache = container_of(cb, struct cache, callbacks);
1463 
1464 	return is_congested(cache->origin_dev, bdi_bits) ||
1465 		is_congested(cache->cache_dev, bdi_bits);
1466 }
1467 
1468 /*----------------------------------------------------------------
1469  * Target methods
1470  *--------------------------------------------------------------*/
1471 
1472 /*
1473  * This function gets called on the error paths of the constructor, so we
1474  * have to cope with a partially initialised struct.
1475  */
1476 static void destroy(struct cache *cache)
1477 {
1478 	unsigned i;
1479 
1480 	if (cache->next_migration)
1481 		mempool_free(cache->next_migration, cache->migration_pool);
1482 
1483 	if (cache->migration_pool)
1484 		mempool_destroy(cache->migration_pool);
1485 
1486 	if (cache->all_io_ds)
1487 		dm_deferred_set_destroy(cache->all_io_ds);
1488 
1489 	if (cache->prison)
1490 		dm_bio_prison_destroy(cache->prison);
1491 
1492 	if (cache->wq)
1493 		destroy_workqueue(cache->wq);
1494 
1495 	if (cache->dirty_bitset)
1496 		free_bitset(cache->dirty_bitset);
1497 
1498 	if (cache->discard_bitset)
1499 		free_bitset(cache->discard_bitset);
1500 
1501 	if (cache->copier)
1502 		dm_kcopyd_client_destroy(cache->copier);
1503 
1504 	if (cache->cmd)
1505 		dm_cache_metadata_close(cache->cmd);
1506 
1507 	if (cache->metadata_dev)
1508 		dm_put_device(cache->ti, cache->metadata_dev);
1509 
1510 	if (cache->origin_dev)
1511 		dm_put_device(cache->ti, cache->origin_dev);
1512 
1513 	if (cache->cache_dev)
1514 		dm_put_device(cache->ti, cache->cache_dev);
1515 
1516 	if (cache->policy)
1517 		dm_cache_policy_destroy(cache->policy);
1518 
1519 	for (i = 0; i < cache->nr_ctr_args ; i++)
1520 		kfree(cache->ctr_args[i]);
1521 	kfree(cache->ctr_args);
1522 
1523 	kfree(cache);
1524 }
1525 
1526 static void cache_dtr(struct dm_target *ti)
1527 {
1528 	struct cache *cache = ti->private;
1529 
1530 	destroy(cache);
1531 }
1532 
1533 static sector_t get_dev_size(struct dm_dev *dev)
1534 {
1535 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1536 }
1537 
1538 /*----------------------------------------------------------------*/
1539 
1540 /*
1541  * Construct a cache device mapping.
1542  *
1543  * cache <metadata dev> <cache dev> <origin dev> <block size>
1544  *       <#feature args> [<feature arg>]*
1545  *       <policy> <#policy args> [<policy arg>]*
1546  *
1547  * metadata dev    : fast device holding the persistent metadata
1548  * cache dev	   : fast device holding cached data blocks
1549  * origin dev	   : slow device holding original data blocks
1550  * block size	   : cache unit size in sectors
1551  *
1552  * #feature args   : number of feature arguments passed
1553  * feature args    : writethrough.  (The default is writeback.)
1554  *
1555  * policy	   : the replacement policy to use
1556  * #policy args    : an even number of policy arguments corresponding
1557  *		     to key/value pairs passed to the policy
1558  * policy args	   : key/value pairs passed to the policy
1559  *		     E.g. 'sequential_threshold 1024'
1560  *		     See cache-policies.txt for details.
1561  *
1562  * Optional feature arguments are:
1563  *   writethrough  : write through caching that prohibits cache block
1564  *		     content from being different from origin block content.
1565  *		     Without this argument, the default behaviour is to write
1566  *		     back cache block contents later for performance reasons,
1567  *		     so they may differ from the corresponding origin blocks.
1568  */
1569 struct cache_args {
1570 	struct dm_target *ti;
1571 
1572 	struct dm_dev *metadata_dev;
1573 
1574 	struct dm_dev *cache_dev;
1575 	sector_t cache_sectors;
1576 
1577 	struct dm_dev *origin_dev;
1578 	sector_t origin_sectors;
1579 
1580 	uint32_t block_size;
1581 
1582 	const char *policy_name;
1583 	int policy_argc;
1584 	const char **policy_argv;
1585 
1586 	struct cache_features features;
1587 };
1588 
1589 static void destroy_cache_args(struct cache_args *ca)
1590 {
1591 	if (ca->metadata_dev)
1592 		dm_put_device(ca->ti, ca->metadata_dev);
1593 
1594 	if (ca->cache_dev)
1595 		dm_put_device(ca->ti, ca->cache_dev);
1596 
1597 	if (ca->origin_dev)
1598 		dm_put_device(ca->ti, ca->origin_dev);
1599 
1600 	kfree(ca);
1601 }
1602 
1603 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1604 {
1605 	if (!as->argc) {
1606 		*error = "Insufficient args";
1607 		return false;
1608 	}
1609 
1610 	return true;
1611 }
1612 
1613 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1614 			      char **error)
1615 {
1616 	int r;
1617 	sector_t metadata_dev_size;
1618 	char b[BDEVNAME_SIZE];
1619 
1620 	if (!at_least_one_arg(as, error))
1621 		return -EINVAL;
1622 
1623 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1624 			  &ca->metadata_dev);
1625 	if (r) {
1626 		*error = "Error opening metadata device";
1627 		return r;
1628 	}
1629 
1630 	metadata_dev_size = get_dev_size(ca->metadata_dev);
1631 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1632 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1633 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1634 
1635 	return 0;
1636 }
1637 
1638 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1639 			   char **error)
1640 {
1641 	int r;
1642 
1643 	if (!at_least_one_arg(as, error))
1644 		return -EINVAL;
1645 
1646 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1647 			  &ca->cache_dev);
1648 	if (r) {
1649 		*error = "Error opening cache device";
1650 		return r;
1651 	}
1652 	ca->cache_sectors = get_dev_size(ca->cache_dev);
1653 
1654 	return 0;
1655 }
1656 
1657 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1658 			    char **error)
1659 {
1660 	int r;
1661 
1662 	if (!at_least_one_arg(as, error))
1663 		return -EINVAL;
1664 
1665 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1666 			  &ca->origin_dev);
1667 	if (r) {
1668 		*error = "Error opening origin device";
1669 		return r;
1670 	}
1671 
1672 	ca->origin_sectors = get_dev_size(ca->origin_dev);
1673 	if (ca->ti->len > ca->origin_sectors) {
1674 		*error = "Device size larger than cached device";
1675 		return -EINVAL;
1676 	}
1677 
1678 	return 0;
1679 }
1680 
1681 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1682 			    char **error)
1683 {
1684 	unsigned long tmp;
1685 
1686 	if (!at_least_one_arg(as, error))
1687 		return -EINVAL;
1688 
1689 	if (kstrtoul(dm_shift_arg(as), 10, &tmp) || !tmp ||
1690 	    tmp < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1691 	    tmp & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1692 		*error = "Invalid data block size";
1693 		return -EINVAL;
1694 	}
1695 
1696 	if (tmp > ca->cache_sectors) {
1697 		*error = "Data block size is larger than the cache device";
1698 		return -EINVAL;
1699 	}
1700 
1701 	ca->block_size = tmp;
1702 
1703 	return 0;
1704 }
1705 
1706 static void init_features(struct cache_features *cf)
1707 {
1708 	cf->mode = CM_WRITE;
1709 	cf->write_through = false;
1710 }
1711 
1712 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1713 			  char **error)
1714 {
1715 	static struct dm_arg _args[] = {
1716 		{0, 1, "Invalid number of cache feature arguments"},
1717 	};
1718 
1719 	int r;
1720 	unsigned argc;
1721 	const char *arg;
1722 	struct cache_features *cf = &ca->features;
1723 
1724 	init_features(cf);
1725 
1726 	r = dm_read_arg_group(_args, as, &argc, error);
1727 	if (r)
1728 		return -EINVAL;
1729 
1730 	while (argc--) {
1731 		arg = dm_shift_arg(as);
1732 
1733 		if (!strcasecmp(arg, "writeback"))
1734 			cf->write_through = false;
1735 
1736 		else if (!strcasecmp(arg, "writethrough"))
1737 			cf->write_through = true;
1738 
1739 		else {
1740 			*error = "Unrecognised cache feature requested";
1741 			return -EINVAL;
1742 		}
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
1749 			char **error)
1750 {
1751 	static struct dm_arg _args[] = {
1752 		{0, 1024, "Invalid number of policy arguments"},
1753 	};
1754 
1755 	int r;
1756 
1757 	if (!at_least_one_arg(as, error))
1758 		return -EINVAL;
1759 
1760 	ca->policy_name = dm_shift_arg(as);
1761 
1762 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
1763 	if (r)
1764 		return -EINVAL;
1765 
1766 	ca->policy_argv = (const char **)as->argv;
1767 	dm_consume_args(as, ca->policy_argc);
1768 
1769 	return 0;
1770 }
1771 
1772 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
1773 			    char **error)
1774 {
1775 	int r;
1776 	struct dm_arg_set as;
1777 
1778 	as.argc = argc;
1779 	as.argv = argv;
1780 
1781 	r = parse_metadata_dev(ca, &as, error);
1782 	if (r)
1783 		return r;
1784 
1785 	r = parse_cache_dev(ca, &as, error);
1786 	if (r)
1787 		return r;
1788 
1789 	r = parse_origin_dev(ca, &as, error);
1790 	if (r)
1791 		return r;
1792 
1793 	r = parse_block_size(ca, &as, error);
1794 	if (r)
1795 		return r;
1796 
1797 	r = parse_features(ca, &as, error);
1798 	if (r)
1799 		return r;
1800 
1801 	r = parse_policy(ca, &as, error);
1802 	if (r)
1803 		return r;
1804 
1805 	return 0;
1806 }
1807 
1808 /*----------------------------------------------------------------*/
1809 
1810 static struct kmem_cache *migration_cache;
1811 
1812 static int set_config_values(struct dm_cache_policy *p, int argc, const char **argv)
1813 {
1814 	int r = 0;
1815 
1816 	if (argc & 1) {
1817 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
1818 		return -EINVAL;
1819 	}
1820 
1821 	while (argc) {
1822 		r = policy_set_config_value(p, argv[0], argv[1]);
1823 		if (r) {
1824 			DMWARN("policy_set_config_value failed: key = '%s', value = '%s'",
1825 			       argv[0], argv[1]);
1826 			return r;
1827 		}
1828 
1829 		argc -= 2;
1830 		argv += 2;
1831 	}
1832 
1833 	return r;
1834 }
1835 
1836 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
1837 			       char **error)
1838 {
1839 	int r;
1840 
1841 	cache->policy =	dm_cache_policy_create(ca->policy_name,
1842 					       cache->cache_size,
1843 					       cache->origin_sectors,
1844 					       cache->sectors_per_block);
1845 	if (!cache->policy) {
1846 		*error = "Error creating cache's policy";
1847 		return -ENOMEM;
1848 	}
1849 
1850 	r = set_config_values(cache->policy, ca->policy_argc, ca->policy_argv);
1851 	if (r) {
1852 		*error = "Error setting cache policy's config values";
1853 		dm_cache_policy_destroy(cache->policy);
1854 		cache->policy = NULL;
1855 	}
1856 
1857 	return r;
1858 }
1859 
1860 /*
1861  * We want the discard block size to be a power of two, at least the size
1862  * of the cache block size, and have no more than 2^14 discard blocks
1863  * across the origin.
1864  */
1865 #define MAX_DISCARD_BLOCKS (1 << 14)
1866 
1867 static bool too_many_discard_blocks(sector_t discard_block_size,
1868 				    sector_t origin_size)
1869 {
1870 	(void) sector_div(origin_size, discard_block_size);
1871 
1872 	return origin_size > MAX_DISCARD_BLOCKS;
1873 }
1874 
1875 static sector_t calculate_discard_block_size(sector_t cache_block_size,
1876 					     sector_t origin_size)
1877 {
1878 	sector_t discard_block_size;
1879 
1880 	discard_block_size = roundup_pow_of_two(cache_block_size);
1881 
1882 	if (origin_size)
1883 		while (too_many_discard_blocks(discard_block_size, origin_size))
1884 			discard_block_size *= 2;
1885 
1886 	return discard_block_size;
1887 }
1888 
1889 #define DEFAULT_MIGRATION_THRESHOLD (2048 * 100)
1890 
1891 static int cache_create(struct cache_args *ca, struct cache **result)
1892 {
1893 	int r = 0;
1894 	char **error = &ca->ti->error;
1895 	struct cache *cache;
1896 	struct dm_target *ti = ca->ti;
1897 	dm_block_t origin_blocks;
1898 	struct dm_cache_metadata *cmd;
1899 	bool may_format = ca->features.mode == CM_WRITE;
1900 
1901 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
1902 	if (!cache)
1903 		return -ENOMEM;
1904 
1905 	cache->ti = ca->ti;
1906 	ti->private = cache;
1907 	ti->num_flush_bios = 2;
1908 	ti->flush_supported = true;
1909 
1910 	ti->num_discard_bios = 1;
1911 	ti->discards_supported = true;
1912 	ti->discard_zeroes_data_unsupported = true;
1913 
1914 	memcpy(&cache->features, &ca->features, sizeof(cache->features));
1915 	ti->per_bio_data_size = get_per_bio_data_size(cache);
1916 
1917 	cache->callbacks.congested_fn = cache_is_congested;
1918 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
1919 
1920 	cache->metadata_dev = ca->metadata_dev;
1921 	cache->origin_dev = ca->origin_dev;
1922 	cache->cache_dev = ca->cache_dev;
1923 
1924 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
1925 
1926 	/* FIXME: factor out this whole section */
1927 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
1928 	origin_blocks = block_div(origin_blocks, ca->block_size);
1929 	cache->origin_blocks = to_oblock(origin_blocks);
1930 
1931 	cache->sectors_per_block = ca->block_size;
1932 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
1933 		r = -EINVAL;
1934 		goto bad;
1935 	}
1936 
1937 	if (ca->block_size & (ca->block_size - 1)) {
1938 		dm_block_t cache_size = ca->cache_sectors;
1939 
1940 		cache->sectors_per_block_shift = -1;
1941 		cache_size = block_div(cache_size, ca->block_size);
1942 		cache->cache_size = to_cblock(cache_size);
1943 	} else {
1944 		cache->sectors_per_block_shift = __ffs(ca->block_size);
1945 		cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
1946 	}
1947 
1948 	r = create_cache_policy(cache, ca, error);
1949 	if (r)
1950 		goto bad;
1951 	cache->policy_nr_args = ca->policy_argc;
1952 
1953 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
1954 				     ca->block_size, may_format,
1955 				     dm_cache_policy_get_hint_size(cache->policy));
1956 	if (IS_ERR(cmd)) {
1957 		*error = "Error creating metadata object";
1958 		r = PTR_ERR(cmd);
1959 		goto bad;
1960 	}
1961 	cache->cmd = cmd;
1962 
1963 	spin_lock_init(&cache->lock);
1964 	bio_list_init(&cache->deferred_bios);
1965 	bio_list_init(&cache->deferred_flush_bios);
1966 	bio_list_init(&cache->deferred_writethrough_bios);
1967 	INIT_LIST_HEAD(&cache->quiesced_migrations);
1968 	INIT_LIST_HEAD(&cache->completed_migrations);
1969 	INIT_LIST_HEAD(&cache->need_commit_migrations);
1970 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
1971 	atomic_set(&cache->nr_migrations, 0);
1972 	init_waitqueue_head(&cache->migration_wait);
1973 
1974 	cache->nr_dirty = 0;
1975 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
1976 	if (!cache->dirty_bitset) {
1977 		*error = "could not allocate dirty bitset";
1978 		goto bad;
1979 	}
1980 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
1981 
1982 	cache->discard_block_size =
1983 		calculate_discard_block_size(cache->sectors_per_block,
1984 					     cache->origin_sectors);
1985 	cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
1986 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
1987 	if (!cache->discard_bitset) {
1988 		*error = "could not allocate discard bitset";
1989 		goto bad;
1990 	}
1991 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
1992 
1993 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1994 	if (IS_ERR(cache->copier)) {
1995 		*error = "could not create kcopyd client";
1996 		r = PTR_ERR(cache->copier);
1997 		goto bad;
1998 	}
1999 
2000 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2001 	if (!cache->wq) {
2002 		*error = "could not create workqueue for metadata object";
2003 		goto bad;
2004 	}
2005 	INIT_WORK(&cache->worker, do_worker);
2006 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2007 	cache->last_commit_jiffies = jiffies;
2008 
2009 	cache->prison = dm_bio_prison_create(PRISON_CELLS);
2010 	if (!cache->prison) {
2011 		*error = "could not create bio prison";
2012 		goto bad;
2013 	}
2014 
2015 	cache->all_io_ds = dm_deferred_set_create();
2016 	if (!cache->all_io_ds) {
2017 		*error = "could not create all_io deferred set";
2018 		goto bad;
2019 	}
2020 
2021 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2022 							 migration_cache);
2023 	if (!cache->migration_pool) {
2024 		*error = "Error creating cache's migration mempool";
2025 		goto bad;
2026 	}
2027 
2028 	cache->next_migration = NULL;
2029 
2030 	cache->need_tick_bio = true;
2031 	cache->sized = false;
2032 	cache->quiescing = false;
2033 	cache->commit_requested = false;
2034 	cache->loaded_mappings = false;
2035 	cache->loaded_discards = false;
2036 
2037 	load_stats(cache);
2038 
2039 	atomic_set(&cache->stats.demotion, 0);
2040 	atomic_set(&cache->stats.promotion, 0);
2041 	atomic_set(&cache->stats.copies_avoided, 0);
2042 	atomic_set(&cache->stats.cache_cell_clash, 0);
2043 	atomic_set(&cache->stats.commit_count, 0);
2044 	atomic_set(&cache->stats.discard_count, 0);
2045 
2046 	*result = cache;
2047 	return 0;
2048 
2049 bad:
2050 	destroy(cache);
2051 	return r;
2052 }
2053 
2054 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2055 {
2056 	unsigned i;
2057 	const char **copy;
2058 
2059 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2060 	if (!copy)
2061 		return -ENOMEM;
2062 	for (i = 0; i < argc; i++) {
2063 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2064 		if (!copy[i]) {
2065 			while (i--)
2066 				kfree(copy[i]);
2067 			kfree(copy);
2068 			return -ENOMEM;
2069 		}
2070 	}
2071 
2072 	cache->nr_ctr_args = argc;
2073 	cache->ctr_args = copy;
2074 
2075 	return 0;
2076 }
2077 
2078 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2079 {
2080 	int r = -EINVAL;
2081 	struct cache_args *ca;
2082 	struct cache *cache = NULL;
2083 
2084 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2085 	if (!ca) {
2086 		ti->error = "Error allocating memory for cache";
2087 		return -ENOMEM;
2088 	}
2089 	ca->ti = ti;
2090 
2091 	r = parse_cache_args(ca, argc, argv, &ti->error);
2092 	if (r)
2093 		goto out;
2094 
2095 	r = cache_create(ca, &cache);
2096 	if (r)
2097 		goto out;
2098 
2099 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2100 	if (r) {
2101 		destroy(cache);
2102 		goto out;
2103 	}
2104 
2105 	ti->private = cache;
2106 
2107 out:
2108 	destroy_cache_args(ca);
2109 	return r;
2110 }
2111 
2112 static int cache_map(struct dm_target *ti, struct bio *bio)
2113 {
2114 	struct cache *cache = ti->private;
2115 
2116 	int r;
2117 	dm_oblock_t block = get_bio_block(cache, bio);
2118 	size_t pb_data_size = get_per_bio_data_size(cache);
2119 	bool can_migrate = false;
2120 	bool discarded_block;
2121 	struct dm_bio_prison_cell *cell;
2122 	struct policy_result lookup_result;
2123 	struct per_bio_data *pb;
2124 
2125 	if (from_oblock(block) > from_oblock(cache->origin_blocks)) {
2126 		/*
2127 		 * This can only occur if the io goes to a partial block at
2128 		 * the end of the origin device.  We don't cache these.
2129 		 * Just remap to the origin and carry on.
2130 		 */
2131 		remap_to_origin_clear_discard(cache, bio, block);
2132 		return DM_MAPIO_REMAPPED;
2133 	}
2134 
2135 	pb = init_per_bio_data(bio, pb_data_size);
2136 
2137 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2138 		defer_bio(cache, bio);
2139 		return DM_MAPIO_SUBMITTED;
2140 	}
2141 
2142 	/*
2143 	 * Check to see if that block is currently migrating.
2144 	 */
2145 	cell = alloc_prison_cell(cache);
2146 	if (!cell) {
2147 		defer_bio(cache, bio);
2148 		return DM_MAPIO_SUBMITTED;
2149 	}
2150 
2151 	r = bio_detain(cache, block, bio, cell,
2152 		       (cell_free_fn) free_prison_cell,
2153 		       cache, &cell);
2154 	if (r) {
2155 		if (r < 0)
2156 			defer_bio(cache, bio);
2157 
2158 		return DM_MAPIO_SUBMITTED;
2159 	}
2160 
2161 	discarded_block = is_discarded_oblock(cache, block);
2162 
2163 	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2164 		       bio, &lookup_result);
2165 	if (r == -EWOULDBLOCK) {
2166 		cell_defer(cache, cell, true);
2167 		return DM_MAPIO_SUBMITTED;
2168 
2169 	} else if (r) {
2170 		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2171 		bio_io_error(bio);
2172 		return DM_MAPIO_SUBMITTED;
2173 	}
2174 
2175 	switch (lookup_result.op) {
2176 	case POLICY_HIT:
2177 		inc_hit_counter(cache, bio);
2178 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2179 
2180 		if (is_writethrough_io(cache, bio, lookup_result.cblock))
2181 			remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2182 		else
2183 			remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2184 
2185 		cell_defer(cache, cell, false);
2186 		break;
2187 
2188 	case POLICY_MISS:
2189 		inc_miss_counter(cache, bio);
2190 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2191 
2192 		if (pb->req_nr != 0) {
2193 			/*
2194 			 * This is a duplicate writethrough io that is no
2195 			 * longer needed because the block has been demoted.
2196 			 */
2197 			bio_endio(bio, 0);
2198 			cell_defer(cache, cell, false);
2199 			return DM_MAPIO_SUBMITTED;
2200 		} else {
2201 			remap_to_origin_clear_discard(cache, bio, block);
2202 			cell_defer(cache, cell, false);
2203 		}
2204 		break;
2205 
2206 	default:
2207 		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2208 			    (unsigned) lookup_result.op);
2209 		bio_io_error(bio);
2210 		return DM_MAPIO_SUBMITTED;
2211 	}
2212 
2213 	return DM_MAPIO_REMAPPED;
2214 }
2215 
2216 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2217 {
2218 	struct cache *cache = ti->private;
2219 	unsigned long flags;
2220 	size_t pb_data_size = get_per_bio_data_size(cache);
2221 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2222 
2223 	if (pb->tick) {
2224 		policy_tick(cache->policy);
2225 
2226 		spin_lock_irqsave(&cache->lock, flags);
2227 		cache->need_tick_bio = true;
2228 		spin_unlock_irqrestore(&cache->lock, flags);
2229 	}
2230 
2231 	check_for_quiesced_migrations(cache, pb);
2232 
2233 	return 0;
2234 }
2235 
2236 static int write_dirty_bitset(struct cache *cache)
2237 {
2238 	unsigned i, r;
2239 
2240 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2241 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2242 				       is_dirty(cache, to_cblock(i)));
2243 		if (r)
2244 			return r;
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 static int write_discard_bitset(struct cache *cache)
2251 {
2252 	unsigned i, r;
2253 
2254 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2255 					   cache->discard_nr_blocks);
2256 	if (r) {
2257 		DMERR("could not resize on-disk discard bitset");
2258 		return r;
2259 	}
2260 
2261 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2262 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2263 					 is_discarded(cache, to_dblock(i)));
2264 		if (r)
2265 			return r;
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2272 		     uint32_t hint)
2273 {
2274 	struct cache *cache = context;
2275 	return dm_cache_save_hint(cache->cmd, cblock, hint);
2276 }
2277 
2278 static int write_hints(struct cache *cache)
2279 {
2280 	int r;
2281 
2282 	r = dm_cache_begin_hints(cache->cmd, cache->policy);
2283 	if (r) {
2284 		DMERR("dm_cache_begin_hints failed");
2285 		return r;
2286 	}
2287 
2288 	r = policy_walk_mappings(cache->policy, save_hint, cache);
2289 	if (r)
2290 		DMERR("policy_walk_mappings failed");
2291 
2292 	return r;
2293 }
2294 
2295 /*
2296  * returns true on success
2297  */
2298 static bool sync_metadata(struct cache *cache)
2299 {
2300 	int r1, r2, r3, r4;
2301 
2302 	r1 = write_dirty_bitset(cache);
2303 	if (r1)
2304 		DMERR("could not write dirty bitset");
2305 
2306 	r2 = write_discard_bitset(cache);
2307 	if (r2)
2308 		DMERR("could not write discard bitset");
2309 
2310 	save_stats(cache);
2311 
2312 	r3 = write_hints(cache);
2313 	if (r3)
2314 		DMERR("could not write hints");
2315 
2316 	/*
2317 	 * If writing the above metadata failed, we still commit, but don't
2318 	 * set the clean shutdown flag.  This will effectively force every
2319 	 * dirty bit to be set on reload.
2320 	 */
2321 	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2322 	if (r4)
2323 		DMERR("could not write cache metadata.  Data loss may occur.");
2324 
2325 	return !r1 && !r2 && !r3 && !r4;
2326 }
2327 
2328 static void cache_postsuspend(struct dm_target *ti)
2329 {
2330 	struct cache *cache = ti->private;
2331 
2332 	start_quiescing(cache);
2333 	wait_for_migrations(cache);
2334 	stop_worker(cache);
2335 	requeue_deferred_io(cache);
2336 	stop_quiescing(cache);
2337 
2338 	(void) sync_metadata(cache);
2339 }
2340 
2341 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2342 			bool dirty, uint32_t hint, bool hint_valid)
2343 {
2344 	int r;
2345 	struct cache *cache = context;
2346 
2347 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2348 	if (r)
2349 		return r;
2350 
2351 	if (dirty)
2352 		set_dirty(cache, oblock, cblock);
2353 	else
2354 		clear_dirty(cache, oblock, cblock);
2355 
2356 	return 0;
2357 }
2358 
2359 static int load_discard(void *context, sector_t discard_block_size,
2360 			dm_dblock_t dblock, bool discard)
2361 {
2362 	struct cache *cache = context;
2363 
2364 	/* FIXME: handle mis-matched block size */
2365 
2366 	if (discard)
2367 		set_discard(cache, dblock);
2368 	else
2369 		clear_discard(cache, dblock);
2370 
2371 	return 0;
2372 }
2373 
2374 static int cache_preresume(struct dm_target *ti)
2375 {
2376 	int r = 0;
2377 	struct cache *cache = ti->private;
2378 	sector_t actual_cache_size = get_dev_size(cache->cache_dev);
2379 	(void) sector_div(actual_cache_size, cache->sectors_per_block);
2380 
2381 	/*
2382 	 * Check to see if the cache has resized.
2383 	 */
2384 	if (from_cblock(cache->cache_size) != actual_cache_size || !cache->sized) {
2385 		cache->cache_size = to_cblock(actual_cache_size);
2386 
2387 		r = dm_cache_resize(cache->cmd, cache->cache_size);
2388 		if (r) {
2389 			DMERR("could not resize cache metadata");
2390 			return r;
2391 		}
2392 
2393 		cache->sized = true;
2394 	}
2395 
2396 	if (!cache->loaded_mappings) {
2397 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2398 					   load_mapping, cache);
2399 		if (r) {
2400 			DMERR("could not load cache mappings");
2401 			return r;
2402 		}
2403 
2404 		cache->loaded_mappings = true;
2405 	}
2406 
2407 	if (!cache->loaded_discards) {
2408 		r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2409 		if (r) {
2410 			DMERR("could not load origin discards");
2411 			return r;
2412 		}
2413 
2414 		cache->loaded_discards = true;
2415 	}
2416 
2417 	return r;
2418 }
2419 
2420 static void cache_resume(struct dm_target *ti)
2421 {
2422 	struct cache *cache = ti->private;
2423 
2424 	cache->need_tick_bio = true;
2425 	do_waker(&cache->waker.work);
2426 }
2427 
2428 /*
2429  * Status format:
2430  *
2431  * <#used metadata blocks>/<#total metadata blocks>
2432  * <#read hits> <#read misses> <#write hits> <#write misses>
2433  * <#demotions> <#promotions> <#blocks in cache> <#dirty>
2434  * <#features> <features>*
2435  * <#core args> <core args>
2436  * <#policy args> <policy args>*
2437  */
2438 static void cache_status(struct dm_target *ti, status_type_t type,
2439 			 unsigned status_flags, char *result, unsigned maxlen)
2440 {
2441 	int r = 0;
2442 	unsigned i;
2443 	ssize_t sz = 0;
2444 	dm_block_t nr_free_blocks_metadata = 0;
2445 	dm_block_t nr_blocks_metadata = 0;
2446 	char buf[BDEVNAME_SIZE];
2447 	struct cache *cache = ti->private;
2448 	dm_cblock_t residency;
2449 
2450 	switch (type) {
2451 	case STATUSTYPE_INFO:
2452 		/* Commit to ensure statistics aren't out-of-date */
2453 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2454 			r = dm_cache_commit(cache->cmd, false);
2455 			if (r)
2456 				DMERR("could not commit metadata for accurate status");
2457 		}
2458 
2459 		r = dm_cache_get_free_metadata_block_count(cache->cmd,
2460 							   &nr_free_blocks_metadata);
2461 		if (r) {
2462 			DMERR("could not get metadata free block count");
2463 			goto err;
2464 		}
2465 
2466 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2467 		if (r) {
2468 			DMERR("could not get metadata device size");
2469 			goto err;
2470 		}
2471 
2472 		residency = policy_residency(cache->policy);
2473 
2474 		DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u ",
2475 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2476 		       (unsigned long long)nr_blocks_metadata,
2477 		       (unsigned) atomic_read(&cache->stats.read_hit),
2478 		       (unsigned) atomic_read(&cache->stats.read_miss),
2479 		       (unsigned) atomic_read(&cache->stats.write_hit),
2480 		       (unsigned) atomic_read(&cache->stats.write_miss),
2481 		       (unsigned) atomic_read(&cache->stats.demotion),
2482 		       (unsigned) atomic_read(&cache->stats.promotion),
2483 		       (unsigned long long) from_cblock(residency),
2484 		       cache->nr_dirty);
2485 
2486 		if (cache->features.write_through)
2487 			DMEMIT("1 writethrough ");
2488 		else
2489 			DMEMIT("0 ");
2490 
2491 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2492 		if (sz < maxlen) {
2493 			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2494 			if (r)
2495 				DMERR("policy_emit_config_values returned %d", r);
2496 		}
2497 
2498 		break;
2499 
2500 	case STATUSTYPE_TABLE:
2501 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2502 		DMEMIT("%s ", buf);
2503 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2504 		DMEMIT("%s ", buf);
2505 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2506 		DMEMIT("%s", buf);
2507 
2508 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
2509 			DMEMIT(" %s", cache->ctr_args[i]);
2510 		if (cache->nr_ctr_args)
2511 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2512 	}
2513 
2514 	return;
2515 
2516 err:
2517 	DMEMIT("Error");
2518 }
2519 
2520 #define NOT_CORE_OPTION 1
2521 
2522 static int process_config_option(struct cache *cache, char **argv)
2523 {
2524 	unsigned long tmp;
2525 
2526 	if (!strcasecmp(argv[0], "migration_threshold")) {
2527 		if (kstrtoul(argv[1], 10, &tmp))
2528 			return -EINVAL;
2529 
2530 		cache->migration_threshold = tmp;
2531 		return 0;
2532 	}
2533 
2534 	return NOT_CORE_OPTION;
2535 }
2536 
2537 /*
2538  * Supports <key> <value>.
2539  *
2540  * The key migration_threshold is supported by the cache target core.
2541  */
2542 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2543 {
2544 	int r;
2545 	struct cache *cache = ti->private;
2546 
2547 	if (argc != 2)
2548 		return -EINVAL;
2549 
2550 	r = process_config_option(cache, argv);
2551 	if (r == NOT_CORE_OPTION)
2552 		return policy_set_config_value(cache->policy, argv[0], argv[1]);
2553 
2554 	return r;
2555 }
2556 
2557 static int cache_iterate_devices(struct dm_target *ti,
2558 				 iterate_devices_callout_fn fn, void *data)
2559 {
2560 	int r = 0;
2561 	struct cache *cache = ti->private;
2562 
2563 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
2564 	if (!r)
2565 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
2566 
2567 	return r;
2568 }
2569 
2570 /*
2571  * We assume I/O is going to the origin (which is the volume
2572  * more likely to have restrictions e.g. by being striped).
2573  * (Looking up the exact location of the data would be expensive
2574  * and could always be out of date by the time the bio is submitted.)
2575  */
2576 static int cache_bvec_merge(struct dm_target *ti,
2577 			    struct bvec_merge_data *bvm,
2578 			    struct bio_vec *biovec, int max_size)
2579 {
2580 	struct cache *cache = ti->private;
2581 	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
2582 
2583 	if (!q->merge_bvec_fn)
2584 		return max_size;
2585 
2586 	bvm->bi_bdev = cache->origin_dev->bdev;
2587 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2588 }
2589 
2590 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
2591 {
2592 	/*
2593 	 * FIXME: these limits may be incompatible with the cache device
2594 	 */
2595 	limits->max_discard_sectors = cache->discard_block_size * 1024;
2596 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
2597 }
2598 
2599 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
2600 {
2601 	struct cache *cache = ti->private;
2602 
2603 	blk_limits_io_min(limits, 0);
2604 	blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
2605 	set_discard_limits(cache, limits);
2606 }
2607 
2608 /*----------------------------------------------------------------*/
2609 
2610 static struct target_type cache_target = {
2611 	.name = "cache",
2612 	.version = {1, 1, 0},
2613 	.module = THIS_MODULE,
2614 	.ctr = cache_ctr,
2615 	.dtr = cache_dtr,
2616 	.map = cache_map,
2617 	.end_io = cache_end_io,
2618 	.postsuspend = cache_postsuspend,
2619 	.preresume = cache_preresume,
2620 	.resume = cache_resume,
2621 	.status = cache_status,
2622 	.message = cache_message,
2623 	.iterate_devices = cache_iterate_devices,
2624 	.merge = cache_bvec_merge,
2625 	.io_hints = cache_io_hints,
2626 };
2627 
2628 static int __init dm_cache_init(void)
2629 {
2630 	int r;
2631 
2632 	r = dm_register_target(&cache_target);
2633 	if (r) {
2634 		DMERR("cache target registration failed: %d", r);
2635 		return r;
2636 	}
2637 
2638 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
2639 	if (!migration_cache) {
2640 		dm_unregister_target(&cache_target);
2641 		return -ENOMEM;
2642 	}
2643 
2644 	return 0;
2645 }
2646 
2647 static void __exit dm_cache_exit(void)
2648 {
2649 	dm_unregister_target(&cache_target);
2650 	kmem_cache_destroy(migration_cache);
2651 }
2652 
2653 module_init(dm_cache_init);
2654 module_exit(dm_cache_exit);
2655 
2656 MODULE_DESCRIPTION(DM_NAME " cache target");
2657 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
2658 MODULE_LICENSE("GPL");
2659