1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-bio-prison-v2.h" 10 #include "dm-bio-record.h" 11 #include "dm-cache-metadata.h" 12 #include "dm-io-tracker.h" 13 14 #include <linux/dm-io.h> 15 #include <linux/dm-kcopyd.h> 16 #include <linux/jiffies.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/rwsem.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 24 #define DM_MSG_PREFIX "cache" 25 26 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, 27 "A percentage of time allocated for copying to and/or from cache"); 28 29 /*----------------------------------------------------------------*/ 30 31 /* 32 * Glossary: 33 * 34 * oblock: index of an origin block 35 * cblock: index of a cache block 36 * promotion: movement of a block from origin to cache 37 * demotion: movement of a block from cache to origin 38 * migration: movement of a block between the origin and cache device, 39 * either direction 40 */ 41 42 /*----------------------------------------------------------------*/ 43 44 /* 45 * Represents a chunk of future work. 'input' allows continuations to pass 46 * values between themselves, typically error values. 47 */ 48 struct continuation { 49 struct work_struct ws; 50 blk_status_t input; 51 }; 52 53 static inline void init_continuation(struct continuation *k, 54 void (*fn)(struct work_struct *)) 55 { 56 INIT_WORK(&k->ws, fn); 57 k->input = 0; 58 } 59 60 static inline void queue_continuation(struct workqueue_struct *wq, 61 struct continuation *k) 62 { 63 queue_work(wq, &k->ws); 64 } 65 66 /*----------------------------------------------------------------*/ 67 68 /* 69 * The batcher collects together pieces of work that need a particular 70 * operation to occur before they can proceed (typically a commit). 71 */ 72 struct batcher { 73 /* 74 * The operation that everyone is waiting for. 75 */ 76 blk_status_t (*commit_op)(void *context); 77 void *commit_context; 78 79 /* 80 * This is how bios should be issued once the commit op is complete 81 * (accounted_request). 82 */ 83 void (*issue_op)(struct bio *bio, void *context); 84 void *issue_context; 85 86 /* 87 * Queued work gets put on here after commit. 88 */ 89 struct workqueue_struct *wq; 90 91 spinlock_t lock; 92 struct list_head work_items; 93 struct bio_list bios; 94 struct work_struct commit_work; 95 96 bool commit_scheduled; 97 }; 98 99 static void __commit(struct work_struct *_ws) 100 { 101 struct batcher *b = container_of(_ws, struct batcher, commit_work); 102 blk_status_t r; 103 struct list_head work_items; 104 struct work_struct *ws, *tmp; 105 struct continuation *k; 106 struct bio *bio; 107 struct bio_list bios; 108 109 INIT_LIST_HEAD(&work_items); 110 bio_list_init(&bios); 111 112 /* 113 * We have to grab these before the commit_op to avoid a race 114 * condition. 115 */ 116 spin_lock_irq(&b->lock); 117 list_splice_init(&b->work_items, &work_items); 118 bio_list_merge_init(&bios, &b->bios); 119 b->commit_scheduled = false; 120 spin_unlock_irq(&b->lock); 121 122 r = b->commit_op(b->commit_context); 123 124 list_for_each_entry_safe(ws, tmp, &work_items, entry) { 125 k = container_of(ws, struct continuation, ws); 126 k->input = r; 127 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */ 128 queue_work(b->wq, ws); 129 } 130 131 while ((bio = bio_list_pop(&bios))) { 132 if (r) { 133 bio->bi_status = r; 134 bio_endio(bio); 135 } else 136 b->issue_op(bio, b->issue_context); 137 } 138 } 139 140 static void batcher_init(struct batcher *b, 141 blk_status_t (*commit_op)(void *), 142 void *commit_context, 143 void (*issue_op)(struct bio *bio, void *), 144 void *issue_context, 145 struct workqueue_struct *wq) 146 { 147 b->commit_op = commit_op; 148 b->commit_context = commit_context; 149 b->issue_op = issue_op; 150 b->issue_context = issue_context; 151 b->wq = wq; 152 153 spin_lock_init(&b->lock); 154 INIT_LIST_HEAD(&b->work_items); 155 bio_list_init(&b->bios); 156 INIT_WORK(&b->commit_work, __commit); 157 b->commit_scheduled = false; 158 } 159 160 static void async_commit(struct batcher *b) 161 { 162 queue_work(b->wq, &b->commit_work); 163 } 164 165 static void continue_after_commit(struct batcher *b, struct continuation *k) 166 { 167 bool commit_scheduled; 168 169 spin_lock_irq(&b->lock); 170 commit_scheduled = b->commit_scheduled; 171 list_add_tail(&k->ws.entry, &b->work_items); 172 spin_unlock_irq(&b->lock); 173 174 if (commit_scheduled) 175 async_commit(b); 176 } 177 178 /* 179 * Bios are errored if commit failed. 180 */ 181 static void issue_after_commit(struct batcher *b, struct bio *bio) 182 { 183 bool commit_scheduled; 184 185 spin_lock_irq(&b->lock); 186 commit_scheduled = b->commit_scheduled; 187 bio_list_add(&b->bios, bio); 188 spin_unlock_irq(&b->lock); 189 190 if (commit_scheduled) 191 async_commit(b); 192 } 193 194 /* 195 * Call this if some urgent work is waiting for the commit to complete. 196 */ 197 static void schedule_commit(struct batcher *b) 198 { 199 bool immediate; 200 201 spin_lock_irq(&b->lock); 202 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios); 203 b->commit_scheduled = true; 204 spin_unlock_irq(&b->lock); 205 206 if (immediate) 207 async_commit(b); 208 } 209 210 /* 211 * There are a couple of places where we let a bio run, but want to do some 212 * work before calling its endio function. We do this by temporarily 213 * changing the endio fn. 214 */ 215 struct dm_hook_info { 216 bio_end_io_t *bi_end_io; 217 }; 218 219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio, 220 bio_end_io_t *bi_end_io, void *bi_private) 221 { 222 h->bi_end_io = bio->bi_end_io; 223 224 bio->bi_end_io = bi_end_io; 225 bio->bi_private = bi_private; 226 } 227 228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio) 229 { 230 bio->bi_end_io = h->bi_end_io; 231 } 232 233 /*----------------------------------------------------------------*/ 234 235 #define MIGRATION_POOL_SIZE 128 236 #define COMMIT_PERIOD HZ 237 #define MIGRATION_COUNT_WINDOW 10 238 239 /* 240 * The block size of the device holding cache data must be 241 * between 32KB and 1GB. 242 */ 243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) 244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 245 246 enum cache_metadata_mode { 247 CM_WRITE, /* metadata may be changed */ 248 CM_READ_ONLY, /* metadata may not be changed */ 249 CM_FAIL 250 }; 251 252 enum cache_io_mode { 253 /* 254 * Data is written to cached blocks only. These blocks are marked 255 * dirty. If you lose the cache device you will lose data. 256 * Potential performance increase for both reads and writes. 257 */ 258 CM_IO_WRITEBACK, 259 260 /* 261 * Data is written to both cache and origin. Blocks are never 262 * dirty. Potential performance benfit for reads only. 263 */ 264 CM_IO_WRITETHROUGH, 265 266 /* 267 * A degraded mode useful for various cache coherency situations 268 * (eg, rolling back snapshots). Reads and writes always go to the 269 * origin. If a write goes to a cached oblock, then the cache 270 * block is invalidated. 271 */ 272 CM_IO_PASSTHROUGH 273 }; 274 275 struct cache_features { 276 enum cache_metadata_mode mode; 277 enum cache_io_mode io_mode; 278 unsigned int metadata_version; 279 bool discard_passdown:1; 280 }; 281 282 struct cache_stats { 283 atomic_t read_hit; 284 atomic_t read_miss; 285 atomic_t write_hit; 286 atomic_t write_miss; 287 atomic_t demotion; 288 atomic_t promotion; 289 atomic_t writeback; 290 atomic_t copies_avoided; 291 atomic_t cache_cell_clash; 292 atomic_t commit_count; 293 atomic_t discard_count; 294 }; 295 296 struct cache { 297 struct dm_target *ti; 298 spinlock_t lock; 299 300 /* 301 * Fields for converting from sectors to blocks. 302 */ 303 int sectors_per_block_shift; 304 sector_t sectors_per_block; 305 306 struct dm_cache_metadata *cmd; 307 308 /* 309 * Metadata is written to this device. 310 */ 311 struct dm_dev *metadata_dev; 312 313 /* 314 * The slower of the two data devices. Typically a spindle. 315 */ 316 struct dm_dev *origin_dev; 317 318 /* 319 * The faster of the two data devices. Typically an SSD. 320 */ 321 struct dm_dev *cache_dev; 322 323 /* 324 * Size of the origin device in _complete_ blocks and native sectors. 325 */ 326 dm_oblock_t origin_blocks; 327 sector_t origin_sectors; 328 329 /* 330 * Size of the cache device in blocks. 331 */ 332 dm_cblock_t cache_size; 333 334 /* 335 * Invalidation fields. 336 */ 337 spinlock_t invalidation_lock; 338 struct list_head invalidation_requests; 339 340 sector_t migration_threshold; 341 wait_queue_head_t migration_wait; 342 atomic_t nr_allocated_migrations; 343 344 /* 345 * The number of in flight migrations that are performing 346 * background io. eg, promotion, writeback. 347 */ 348 atomic_t nr_io_migrations; 349 350 struct bio_list deferred_bios; 351 352 struct rw_semaphore quiesce_lock; 353 354 /* 355 * origin_blocks entries, discarded if set. 356 */ 357 dm_dblock_t discard_nr_blocks; 358 unsigned long *discard_bitset; 359 uint32_t discard_block_size; /* a power of 2 times sectors per block */ 360 361 /* 362 * Rather than reconstructing the table line for the status we just 363 * save it and regurgitate. 364 */ 365 unsigned int nr_ctr_args; 366 const char **ctr_args; 367 368 struct dm_kcopyd_client *copier; 369 struct work_struct deferred_bio_worker; 370 struct work_struct migration_worker; 371 struct workqueue_struct *wq; 372 struct delayed_work waker; 373 struct dm_bio_prison_v2 *prison; 374 375 /* 376 * cache_size entries, dirty if set 377 */ 378 unsigned long *dirty_bitset; 379 atomic_t nr_dirty; 380 381 unsigned int policy_nr_args; 382 struct dm_cache_policy *policy; 383 384 /* 385 * Cache features such as write-through. 386 */ 387 struct cache_features features; 388 389 struct cache_stats stats; 390 391 bool need_tick_bio:1; 392 bool sized:1; 393 bool invalidate:1; 394 bool commit_requested:1; 395 bool loaded_mappings:1; 396 bool loaded_discards:1; 397 398 struct rw_semaphore background_work_lock; 399 400 struct batcher committer; 401 struct work_struct commit_ws; 402 403 struct dm_io_tracker tracker; 404 405 mempool_t migration_pool; 406 407 struct bio_set bs; 408 }; 409 410 struct per_bio_data { 411 bool tick:1; 412 unsigned int req_nr:2; 413 struct dm_bio_prison_cell_v2 *cell; 414 struct dm_hook_info hook_info; 415 sector_t len; 416 }; 417 418 struct dm_cache_migration { 419 struct continuation k; 420 struct cache *cache; 421 422 struct policy_work *op; 423 struct bio *overwrite_bio; 424 struct dm_bio_prison_cell_v2 *cell; 425 426 dm_cblock_t invalidate_cblock; 427 dm_oblock_t invalidate_oblock; 428 }; 429 430 /*----------------------------------------------------------------*/ 431 432 static bool writethrough_mode(struct cache *cache) 433 { 434 return cache->features.io_mode == CM_IO_WRITETHROUGH; 435 } 436 437 static bool writeback_mode(struct cache *cache) 438 { 439 return cache->features.io_mode == CM_IO_WRITEBACK; 440 } 441 442 static inline bool passthrough_mode(struct cache *cache) 443 { 444 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH); 445 } 446 447 /*----------------------------------------------------------------*/ 448 449 static void wake_deferred_bio_worker(struct cache *cache) 450 { 451 queue_work(cache->wq, &cache->deferred_bio_worker); 452 } 453 454 static void wake_migration_worker(struct cache *cache) 455 { 456 if (passthrough_mode(cache)) 457 return; 458 459 queue_work(cache->wq, &cache->migration_worker); 460 } 461 462 /*----------------------------------------------------------------*/ 463 464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache) 465 { 466 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO); 467 } 468 469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell) 470 { 471 dm_bio_prison_free_cell_v2(cache->prison, cell); 472 } 473 474 static struct dm_cache_migration *alloc_migration(struct cache *cache) 475 { 476 struct dm_cache_migration *mg; 477 478 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO); 479 480 memset(mg, 0, sizeof(*mg)); 481 482 mg->cache = cache; 483 atomic_inc(&cache->nr_allocated_migrations); 484 485 return mg; 486 } 487 488 static void free_migration(struct dm_cache_migration *mg) 489 { 490 struct cache *cache = mg->cache; 491 492 if (atomic_dec_and_test(&cache->nr_allocated_migrations)) 493 wake_up(&cache->migration_wait); 494 495 mempool_free(mg, &cache->migration_pool); 496 } 497 498 /*----------------------------------------------------------------*/ 499 500 static inline dm_oblock_t oblock_succ(dm_oblock_t b) 501 { 502 return to_oblock(from_oblock(b) + 1ull); 503 } 504 505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key) 506 { 507 key->virtual = 0; 508 key->dev = 0; 509 key->block_begin = from_oblock(begin); 510 key->block_end = from_oblock(end); 511 } 512 513 /* 514 * We have two lock levels. Level 0, which is used to prevent WRITEs, and 515 * level 1 which prevents *both* READs and WRITEs. 516 */ 517 #define WRITE_LOCK_LEVEL 0 518 #define READ_WRITE_LOCK_LEVEL 1 519 520 static unsigned int lock_level(struct bio *bio) 521 { 522 return bio_data_dir(bio) == WRITE ? 523 WRITE_LOCK_LEVEL : 524 READ_WRITE_LOCK_LEVEL; 525 } 526 527 /* 528 *-------------------------------------------------------------- 529 * Per bio data 530 *-------------------------------------------------------------- 531 */ 532 533 static struct per_bio_data *get_per_bio_data(struct bio *bio) 534 { 535 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 536 537 BUG_ON(!pb); 538 return pb; 539 } 540 541 static struct per_bio_data *init_per_bio_data(struct bio *bio) 542 { 543 struct per_bio_data *pb = get_per_bio_data(bio); 544 545 pb->tick = false; 546 pb->req_nr = dm_bio_get_target_bio_nr(bio); 547 pb->cell = NULL; 548 pb->len = 0; 549 550 return pb; 551 } 552 553 /*----------------------------------------------------------------*/ 554 555 static void defer_bio(struct cache *cache, struct bio *bio) 556 { 557 spin_lock_irq(&cache->lock); 558 bio_list_add(&cache->deferred_bios, bio); 559 spin_unlock_irq(&cache->lock); 560 561 wake_deferred_bio_worker(cache); 562 } 563 564 static void defer_bios(struct cache *cache, struct bio_list *bios) 565 { 566 spin_lock_irq(&cache->lock); 567 bio_list_merge_init(&cache->deferred_bios, bios); 568 spin_unlock_irq(&cache->lock); 569 570 wake_deferred_bio_worker(cache); 571 } 572 573 /*----------------------------------------------------------------*/ 574 575 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio) 576 { 577 bool r; 578 struct per_bio_data *pb; 579 struct dm_cell_key_v2 key; 580 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL); 581 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell; 582 583 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */ 584 585 build_key(oblock, end, &key); 586 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell); 587 if (!r) { 588 /* 589 * Failed to get the lock. 590 */ 591 free_prison_cell(cache, cell_prealloc); 592 return r; 593 } 594 595 if (cell != cell_prealloc) 596 free_prison_cell(cache, cell_prealloc); 597 598 pb = get_per_bio_data(bio); 599 pb->cell = cell; 600 601 return r; 602 } 603 604 /*----------------------------------------------------------------*/ 605 606 static bool is_dirty(struct cache *cache, dm_cblock_t b) 607 { 608 return test_bit(from_cblock(b), cache->dirty_bitset); 609 } 610 611 static void set_dirty(struct cache *cache, dm_cblock_t cblock) 612 { 613 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { 614 atomic_inc(&cache->nr_dirty); 615 policy_set_dirty(cache->policy, cblock); 616 } 617 } 618 619 /* 620 * These two are called when setting after migrations to force the policy 621 * and dirty bitset to be in sync. 622 */ 623 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock) 624 { 625 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) 626 atomic_inc(&cache->nr_dirty); 627 policy_set_dirty(cache->policy, cblock); 628 } 629 630 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock) 631 { 632 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { 633 if (atomic_dec_return(&cache->nr_dirty) == 0) 634 dm_table_event(cache->ti->table); 635 } 636 637 policy_clear_dirty(cache->policy, cblock); 638 } 639 640 /*----------------------------------------------------------------*/ 641 642 static bool block_size_is_power_of_two(struct cache *cache) 643 { 644 return cache->sectors_per_block_shift >= 0; 645 } 646 647 static dm_block_t block_div(dm_block_t b, uint32_t n) 648 { 649 do_div(b, n); 650 651 return b; 652 } 653 654 static dm_block_t oblocks_per_dblock(struct cache *cache) 655 { 656 dm_block_t oblocks = cache->discard_block_size; 657 658 if (block_size_is_power_of_two(cache)) 659 oblocks >>= cache->sectors_per_block_shift; 660 else 661 oblocks = block_div(oblocks, cache->sectors_per_block); 662 663 return oblocks; 664 } 665 666 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock) 667 { 668 return to_dblock(block_div(from_oblock(oblock), 669 oblocks_per_dblock(cache))); 670 } 671 672 static void set_discard(struct cache *cache, dm_dblock_t b) 673 { 674 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks)); 675 atomic_inc(&cache->stats.discard_count); 676 677 spin_lock_irq(&cache->lock); 678 set_bit(from_dblock(b), cache->discard_bitset); 679 spin_unlock_irq(&cache->lock); 680 } 681 682 static void clear_discard(struct cache *cache, dm_dblock_t b) 683 { 684 spin_lock_irq(&cache->lock); 685 clear_bit(from_dblock(b), cache->discard_bitset); 686 spin_unlock_irq(&cache->lock); 687 } 688 689 static bool is_discarded(struct cache *cache, dm_dblock_t b) 690 { 691 int r; 692 693 spin_lock_irq(&cache->lock); 694 r = test_bit(from_dblock(b), cache->discard_bitset); 695 spin_unlock_irq(&cache->lock); 696 697 return r; 698 } 699 700 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) 701 { 702 int r; 703 704 spin_lock_irq(&cache->lock); 705 r = test_bit(from_dblock(oblock_to_dblock(cache, b)), 706 cache->discard_bitset); 707 spin_unlock_irq(&cache->lock); 708 709 return r; 710 } 711 712 /* 713 * ------------------------------------------------------------- 714 * Remapping 715 *-------------------------------------------------------------- 716 */ 717 static void remap_to_origin(struct cache *cache, struct bio *bio) 718 { 719 bio_set_dev(bio, cache->origin_dev->bdev); 720 } 721 722 static void remap_to_cache(struct cache *cache, struct bio *bio, 723 dm_cblock_t cblock) 724 { 725 sector_t bi_sector = bio->bi_iter.bi_sector; 726 sector_t block = from_cblock(cblock); 727 728 bio_set_dev(bio, cache->cache_dev->bdev); 729 if (!block_size_is_power_of_two(cache)) 730 bio->bi_iter.bi_sector = 731 (block * cache->sectors_per_block) + 732 sector_div(bi_sector, cache->sectors_per_block); 733 else 734 bio->bi_iter.bi_sector = 735 (block << cache->sectors_per_block_shift) | 736 (bi_sector & (cache->sectors_per_block - 1)); 737 } 738 739 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) 740 { 741 struct per_bio_data *pb; 742 743 spin_lock_irq(&cache->lock); 744 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) && 745 bio_op(bio) != REQ_OP_DISCARD) { 746 pb = get_per_bio_data(bio); 747 pb->tick = true; 748 cache->need_tick_bio = false; 749 } 750 spin_unlock_irq(&cache->lock); 751 } 752 753 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, 754 dm_oblock_t oblock) 755 { 756 // FIXME: check_if_tick_bio_needed() is called way too much through this interface 757 check_if_tick_bio_needed(cache, bio); 758 remap_to_origin(cache, bio); 759 if (bio_data_dir(bio) == WRITE) 760 clear_discard(cache, oblock_to_dblock(cache, oblock)); 761 } 762 763 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, 764 dm_oblock_t oblock, dm_cblock_t cblock) 765 { 766 check_if_tick_bio_needed(cache, bio); 767 remap_to_cache(cache, bio, cblock); 768 if (bio_data_dir(bio) == WRITE) { 769 set_dirty(cache, cblock); 770 clear_discard(cache, oblock_to_dblock(cache, oblock)); 771 } 772 } 773 774 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) 775 { 776 sector_t block_nr = bio->bi_iter.bi_sector; 777 778 if (!block_size_is_power_of_two(cache)) 779 (void) sector_div(block_nr, cache->sectors_per_block); 780 else 781 block_nr >>= cache->sectors_per_block_shift; 782 783 return to_oblock(block_nr); 784 } 785 786 static bool accountable_bio(struct cache *cache, struct bio *bio) 787 { 788 return bio_op(bio) != REQ_OP_DISCARD; 789 } 790 791 static void accounted_begin(struct cache *cache, struct bio *bio) 792 { 793 struct per_bio_data *pb; 794 795 if (accountable_bio(cache, bio)) { 796 pb = get_per_bio_data(bio); 797 pb->len = bio_sectors(bio); 798 dm_iot_io_begin(&cache->tracker, pb->len); 799 } 800 } 801 802 static void accounted_complete(struct cache *cache, struct bio *bio) 803 { 804 struct per_bio_data *pb = get_per_bio_data(bio); 805 806 dm_iot_io_end(&cache->tracker, pb->len); 807 } 808 809 static void accounted_request(struct cache *cache, struct bio *bio) 810 { 811 accounted_begin(cache, bio); 812 dm_submit_bio_remap(bio, NULL); 813 } 814 815 static void issue_op(struct bio *bio, void *context) 816 { 817 struct cache *cache = context; 818 819 accounted_request(cache, bio); 820 } 821 822 /* 823 * When running in writethrough mode we need to send writes to clean blocks 824 * to both the cache and origin devices. Clone the bio and send them in parallel. 825 */ 826 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio, 827 dm_oblock_t oblock, dm_cblock_t cblock) 828 { 829 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio, 830 GFP_NOIO, &cache->bs); 831 832 BUG_ON(!origin_bio); 833 834 bio_chain(origin_bio, bio); 835 836 if (bio_data_dir(origin_bio) == WRITE) 837 clear_discard(cache, oblock_to_dblock(cache, oblock)); 838 submit_bio(origin_bio); 839 840 remap_to_cache(cache, bio, cblock); 841 } 842 843 /* 844 *-------------------------------------------------------------- 845 * Failure modes 846 *-------------------------------------------------------------- 847 */ 848 static enum cache_metadata_mode get_cache_mode(struct cache *cache) 849 { 850 return cache->features.mode; 851 } 852 853 static const char *cache_device_name(struct cache *cache) 854 { 855 return dm_table_device_name(cache->ti->table); 856 } 857 858 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode) 859 { 860 static const char *descs[] = { 861 "write", 862 "read-only", 863 "fail" 864 }; 865 866 dm_table_event(cache->ti->table); 867 DMINFO("%s: switching cache to %s mode", 868 cache_device_name(cache), descs[(int)mode]); 869 } 870 871 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode) 872 { 873 bool needs_check; 874 enum cache_metadata_mode old_mode = get_cache_mode(cache); 875 876 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) { 877 DMERR("%s: unable to read needs_check flag, setting failure mode.", 878 cache_device_name(cache)); 879 new_mode = CM_FAIL; 880 } 881 882 if (new_mode == CM_WRITE && needs_check) { 883 DMERR("%s: unable to switch cache to write mode until repaired.", 884 cache_device_name(cache)); 885 if (old_mode != new_mode) 886 new_mode = old_mode; 887 else 888 new_mode = CM_READ_ONLY; 889 } 890 891 /* Never move out of fail mode */ 892 if (old_mode == CM_FAIL) 893 new_mode = CM_FAIL; 894 895 switch (new_mode) { 896 case CM_FAIL: 897 case CM_READ_ONLY: 898 dm_cache_metadata_set_read_only(cache->cmd); 899 break; 900 901 case CM_WRITE: 902 dm_cache_metadata_set_read_write(cache->cmd); 903 break; 904 } 905 906 cache->features.mode = new_mode; 907 908 if (new_mode != old_mode) 909 notify_mode_switch(cache, new_mode); 910 } 911 912 static void abort_transaction(struct cache *cache) 913 { 914 const char *dev_name = cache_device_name(cache); 915 916 if (get_cache_mode(cache) >= CM_READ_ONLY) 917 return; 918 919 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 920 if (dm_cache_metadata_abort(cache->cmd)) { 921 DMERR("%s: failed to abort metadata transaction", dev_name); 922 set_cache_mode(cache, CM_FAIL); 923 } 924 925 if (dm_cache_metadata_set_needs_check(cache->cmd)) { 926 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 927 set_cache_mode(cache, CM_FAIL); 928 } 929 } 930 931 static void metadata_operation_failed(struct cache *cache, const char *op, int r) 932 { 933 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 934 cache_device_name(cache), op, r); 935 abort_transaction(cache); 936 set_cache_mode(cache, CM_READ_ONLY); 937 } 938 939 /*----------------------------------------------------------------*/ 940 941 static void load_stats(struct cache *cache) 942 { 943 struct dm_cache_statistics stats; 944 945 dm_cache_metadata_get_stats(cache->cmd, &stats); 946 atomic_set(&cache->stats.read_hit, stats.read_hits); 947 atomic_set(&cache->stats.read_miss, stats.read_misses); 948 atomic_set(&cache->stats.write_hit, stats.write_hits); 949 atomic_set(&cache->stats.write_miss, stats.write_misses); 950 } 951 952 static void save_stats(struct cache *cache) 953 { 954 struct dm_cache_statistics stats; 955 956 if (get_cache_mode(cache) >= CM_READ_ONLY) 957 return; 958 959 stats.read_hits = atomic_read(&cache->stats.read_hit); 960 stats.read_misses = atomic_read(&cache->stats.read_miss); 961 stats.write_hits = atomic_read(&cache->stats.write_hit); 962 stats.write_misses = atomic_read(&cache->stats.write_miss); 963 964 dm_cache_metadata_set_stats(cache->cmd, &stats); 965 } 966 967 static void update_stats(struct cache_stats *stats, enum policy_operation op) 968 { 969 switch (op) { 970 case POLICY_PROMOTE: 971 atomic_inc(&stats->promotion); 972 break; 973 974 case POLICY_DEMOTE: 975 atomic_inc(&stats->demotion); 976 break; 977 978 case POLICY_WRITEBACK: 979 atomic_inc(&stats->writeback); 980 break; 981 } 982 } 983 984 /* 985 *--------------------------------------------------------------------- 986 * Migration processing 987 * 988 * Migration covers moving data from the origin device to the cache, or 989 * vice versa. 990 *--------------------------------------------------------------------- 991 */ 992 static void inc_io_migrations(struct cache *cache) 993 { 994 atomic_inc(&cache->nr_io_migrations); 995 } 996 997 static void dec_io_migrations(struct cache *cache) 998 { 999 atomic_dec(&cache->nr_io_migrations); 1000 } 1001 1002 static bool discard_or_flush(struct bio *bio) 1003 { 1004 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf); 1005 } 1006 1007 static void calc_discard_block_range(struct cache *cache, struct bio *bio, 1008 dm_dblock_t *b, dm_dblock_t *e) 1009 { 1010 sector_t sb = bio->bi_iter.bi_sector; 1011 sector_t se = bio_end_sector(bio); 1012 1013 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size)); 1014 1015 if (se - sb < cache->discard_block_size) 1016 *e = *b; 1017 else 1018 *e = to_dblock(block_div(se, cache->discard_block_size)); 1019 } 1020 1021 /*----------------------------------------------------------------*/ 1022 1023 static void prevent_background_work(struct cache *cache) 1024 { 1025 lockdep_off(); 1026 down_write(&cache->background_work_lock); 1027 lockdep_on(); 1028 } 1029 1030 static void allow_background_work(struct cache *cache) 1031 { 1032 lockdep_off(); 1033 up_write(&cache->background_work_lock); 1034 lockdep_on(); 1035 } 1036 1037 static bool background_work_begin(struct cache *cache) 1038 { 1039 bool r; 1040 1041 lockdep_off(); 1042 r = down_read_trylock(&cache->background_work_lock); 1043 lockdep_on(); 1044 1045 return r; 1046 } 1047 1048 static void background_work_end(struct cache *cache) 1049 { 1050 lockdep_off(); 1051 up_read(&cache->background_work_lock); 1052 lockdep_on(); 1053 } 1054 1055 /*----------------------------------------------------------------*/ 1056 1057 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio) 1058 { 1059 return (bio_data_dir(bio) == WRITE) && 1060 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT)); 1061 } 1062 1063 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block) 1064 { 1065 return writeback_mode(cache) && 1066 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio)); 1067 } 1068 1069 static void quiesce(struct dm_cache_migration *mg, 1070 void (*continuation)(struct work_struct *)) 1071 { 1072 init_continuation(&mg->k, continuation); 1073 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws); 1074 } 1075 1076 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws) 1077 { 1078 struct continuation *k = container_of(ws, struct continuation, ws); 1079 1080 return container_of(k, struct dm_cache_migration, k); 1081 } 1082 1083 static void copy_complete(int read_err, unsigned long write_err, void *context) 1084 { 1085 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k); 1086 1087 if (read_err || write_err) 1088 mg->k.input = BLK_STS_IOERR; 1089 1090 queue_continuation(mg->cache->wq, &mg->k); 1091 } 1092 1093 static void copy(struct dm_cache_migration *mg, bool promote) 1094 { 1095 struct dm_io_region o_region, c_region; 1096 struct cache *cache = mg->cache; 1097 1098 o_region.bdev = cache->origin_dev->bdev; 1099 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block; 1100 o_region.count = cache->sectors_per_block; 1101 1102 c_region.bdev = cache->cache_dev->bdev; 1103 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block; 1104 c_region.count = cache->sectors_per_block; 1105 1106 if (promote) 1107 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k); 1108 else 1109 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k); 1110 } 1111 1112 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio) 1113 { 1114 struct per_bio_data *pb = get_per_bio_data(bio); 1115 1116 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell)) 1117 free_prison_cell(cache, pb->cell); 1118 pb->cell = NULL; 1119 } 1120 1121 static void overwrite_endio(struct bio *bio) 1122 { 1123 struct dm_cache_migration *mg = bio->bi_private; 1124 struct cache *cache = mg->cache; 1125 struct per_bio_data *pb = get_per_bio_data(bio); 1126 1127 dm_unhook_bio(&pb->hook_info, bio); 1128 1129 if (bio->bi_status) 1130 mg->k.input = bio->bi_status; 1131 1132 queue_continuation(cache->wq, &mg->k); 1133 } 1134 1135 static void overwrite(struct dm_cache_migration *mg, 1136 void (*continuation)(struct work_struct *)) 1137 { 1138 struct bio *bio = mg->overwrite_bio; 1139 struct per_bio_data *pb = get_per_bio_data(bio); 1140 1141 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg); 1142 1143 /* 1144 * The overwrite bio is part of the copy operation, as such it does 1145 * not set/clear discard or dirty flags. 1146 */ 1147 if (mg->op->op == POLICY_PROMOTE) 1148 remap_to_cache(mg->cache, bio, mg->op->cblock); 1149 else 1150 remap_to_origin(mg->cache, bio); 1151 1152 init_continuation(&mg->k, continuation); 1153 accounted_request(mg->cache, bio); 1154 } 1155 1156 /* 1157 * Migration steps: 1158 * 1159 * 1) exclusive lock preventing WRITEs 1160 * 2) quiesce 1161 * 3) copy or issue overwrite bio 1162 * 4) upgrade to exclusive lock preventing READs and WRITEs 1163 * 5) quiesce 1164 * 6) update metadata and commit 1165 * 7) unlock 1166 */ 1167 static void mg_complete(struct dm_cache_migration *mg, bool success) 1168 { 1169 struct bio_list bios; 1170 struct cache *cache = mg->cache; 1171 struct policy_work *op = mg->op; 1172 dm_cblock_t cblock = op->cblock; 1173 1174 if (success) 1175 update_stats(&cache->stats, op->op); 1176 1177 switch (op->op) { 1178 case POLICY_PROMOTE: 1179 clear_discard(cache, oblock_to_dblock(cache, op->oblock)); 1180 policy_complete_background_work(cache->policy, op, success); 1181 1182 if (mg->overwrite_bio) { 1183 if (success) 1184 force_set_dirty(cache, cblock); 1185 else if (mg->k.input) 1186 mg->overwrite_bio->bi_status = mg->k.input; 1187 else 1188 mg->overwrite_bio->bi_status = BLK_STS_IOERR; 1189 bio_endio(mg->overwrite_bio); 1190 } else { 1191 if (success) 1192 force_clear_dirty(cache, cblock); 1193 dec_io_migrations(cache); 1194 } 1195 break; 1196 1197 case POLICY_DEMOTE: 1198 /* 1199 * We clear dirty here to update the nr_dirty counter. 1200 */ 1201 if (success) 1202 force_clear_dirty(cache, cblock); 1203 policy_complete_background_work(cache->policy, op, success); 1204 dec_io_migrations(cache); 1205 break; 1206 1207 case POLICY_WRITEBACK: 1208 if (success) 1209 force_clear_dirty(cache, cblock); 1210 policy_complete_background_work(cache->policy, op, success); 1211 dec_io_migrations(cache); 1212 break; 1213 } 1214 1215 bio_list_init(&bios); 1216 if (mg->cell) { 1217 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1218 free_prison_cell(cache, mg->cell); 1219 } 1220 1221 free_migration(mg); 1222 defer_bios(cache, &bios); 1223 wake_migration_worker(cache); 1224 1225 background_work_end(cache); 1226 } 1227 1228 static void mg_success(struct work_struct *ws) 1229 { 1230 struct dm_cache_migration *mg = ws_to_mg(ws); 1231 1232 mg_complete(mg, mg->k.input == 0); 1233 } 1234 1235 static void mg_update_metadata(struct work_struct *ws) 1236 { 1237 int r; 1238 struct dm_cache_migration *mg = ws_to_mg(ws); 1239 struct cache *cache = mg->cache; 1240 struct policy_work *op = mg->op; 1241 1242 switch (op->op) { 1243 case POLICY_PROMOTE: 1244 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock); 1245 if (r) { 1246 DMERR_LIMIT("%s: migration failed; couldn't insert mapping", 1247 cache_device_name(cache)); 1248 metadata_operation_failed(cache, "dm_cache_insert_mapping", r); 1249 1250 mg_complete(mg, false); 1251 return; 1252 } 1253 mg_complete(mg, true); 1254 break; 1255 1256 case POLICY_DEMOTE: 1257 r = dm_cache_remove_mapping(cache->cmd, op->cblock); 1258 if (r) { 1259 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata", 1260 cache_device_name(cache)); 1261 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1262 1263 mg_complete(mg, false); 1264 return; 1265 } 1266 1267 /* 1268 * It would be nice if we only had to commit when a REQ_FLUSH 1269 * comes through. But there's one scenario that we have to 1270 * look out for: 1271 * 1272 * - vblock x in a cache block 1273 * - domotion occurs 1274 * - cache block gets reallocated and over written 1275 * - crash 1276 * 1277 * When we recover, because there was no commit the cache will 1278 * rollback to having the data for vblock x in the cache block. 1279 * But the cache block has since been overwritten, so it'll end 1280 * up pointing to data that was never in 'x' during the history 1281 * of the device. 1282 * 1283 * To avoid this issue we require a commit as part of the 1284 * demotion operation. 1285 */ 1286 init_continuation(&mg->k, mg_success); 1287 continue_after_commit(&cache->committer, &mg->k); 1288 schedule_commit(&cache->committer); 1289 break; 1290 1291 case POLICY_WRITEBACK: 1292 mg_complete(mg, true); 1293 break; 1294 } 1295 } 1296 1297 static void mg_update_metadata_after_copy(struct work_struct *ws) 1298 { 1299 struct dm_cache_migration *mg = ws_to_mg(ws); 1300 1301 /* 1302 * Did the copy succeed? 1303 */ 1304 if (mg->k.input) 1305 mg_complete(mg, false); 1306 else 1307 mg_update_metadata(ws); 1308 } 1309 1310 static void mg_upgrade_lock(struct work_struct *ws) 1311 { 1312 int r; 1313 struct dm_cache_migration *mg = ws_to_mg(ws); 1314 1315 /* 1316 * Did the copy succeed? 1317 */ 1318 if (mg->k.input) 1319 mg_complete(mg, false); 1320 1321 else { 1322 /* 1323 * Now we want the lock to prevent both reads and writes. 1324 */ 1325 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell, 1326 READ_WRITE_LOCK_LEVEL); 1327 if (r < 0) 1328 mg_complete(mg, false); 1329 1330 else if (r) 1331 quiesce(mg, mg_update_metadata); 1332 1333 else 1334 mg_update_metadata(ws); 1335 } 1336 } 1337 1338 static void mg_full_copy(struct work_struct *ws) 1339 { 1340 struct dm_cache_migration *mg = ws_to_mg(ws); 1341 struct cache *cache = mg->cache; 1342 struct policy_work *op = mg->op; 1343 bool is_policy_promote = (op->op == POLICY_PROMOTE); 1344 1345 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) || 1346 is_discarded_oblock(cache, op->oblock)) { 1347 mg_upgrade_lock(ws); 1348 return; 1349 } 1350 1351 init_continuation(&mg->k, mg_upgrade_lock); 1352 copy(mg, is_policy_promote); 1353 } 1354 1355 static void mg_copy(struct work_struct *ws) 1356 { 1357 struct dm_cache_migration *mg = ws_to_mg(ws); 1358 1359 if (mg->overwrite_bio) { 1360 /* 1361 * No exclusive lock was held when we last checked if the bio 1362 * was optimisable. So we have to check again in case things 1363 * have changed (eg, the block may no longer be discarded). 1364 */ 1365 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) { 1366 /* 1367 * Fallback to a real full copy after doing some tidying up. 1368 */ 1369 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio); 1370 1371 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */ 1372 mg->overwrite_bio = NULL; 1373 inc_io_migrations(mg->cache); 1374 mg_full_copy(ws); 1375 return; 1376 } 1377 1378 /* 1379 * It's safe to do this here, even though it's new data 1380 * because all IO has been locked out of the block. 1381 * 1382 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL 1383 * so _not_ using mg_upgrade_lock() as continutation. 1384 */ 1385 overwrite(mg, mg_update_metadata_after_copy); 1386 1387 } else 1388 mg_full_copy(ws); 1389 } 1390 1391 static int mg_lock_writes(struct dm_cache_migration *mg) 1392 { 1393 int r; 1394 struct dm_cell_key_v2 key; 1395 struct cache *cache = mg->cache; 1396 struct dm_bio_prison_cell_v2 *prealloc; 1397 1398 prealloc = alloc_prison_cell(cache); 1399 1400 /* 1401 * Prevent writes to the block, but allow reads to continue. 1402 * Unless we're using an overwrite bio, in which case we lock 1403 * everything. 1404 */ 1405 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key); 1406 r = dm_cell_lock_v2(cache->prison, &key, 1407 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL, 1408 prealloc, &mg->cell); 1409 if (r < 0) { 1410 free_prison_cell(cache, prealloc); 1411 mg_complete(mg, false); 1412 return r; 1413 } 1414 1415 if (mg->cell != prealloc) 1416 free_prison_cell(cache, prealloc); 1417 1418 if (r == 0) 1419 mg_copy(&mg->k.ws); 1420 else 1421 quiesce(mg, mg_copy); 1422 1423 return 0; 1424 } 1425 1426 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio) 1427 { 1428 struct dm_cache_migration *mg; 1429 1430 if (!background_work_begin(cache)) { 1431 policy_complete_background_work(cache->policy, op, false); 1432 return -EPERM; 1433 } 1434 1435 mg = alloc_migration(cache); 1436 1437 mg->op = op; 1438 mg->overwrite_bio = bio; 1439 1440 if (!bio) 1441 inc_io_migrations(cache); 1442 1443 return mg_lock_writes(mg); 1444 } 1445 1446 /* 1447 *-------------------------------------------------------------- 1448 * invalidation processing 1449 *-------------------------------------------------------------- 1450 */ 1451 1452 static void invalidate_complete(struct dm_cache_migration *mg, bool success) 1453 { 1454 struct bio_list bios; 1455 struct cache *cache = mg->cache; 1456 1457 bio_list_init(&bios); 1458 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1459 free_prison_cell(cache, mg->cell); 1460 1461 if (!success && mg->overwrite_bio) 1462 bio_io_error(mg->overwrite_bio); 1463 1464 free_migration(mg); 1465 defer_bios(cache, &bios); 1466 1467 background_work_end(cache); 1468 } 1469 1470 static void invalidate_completed(struct work_struct *ws) 1471 { 1472 struct dm_cache_migration *mg = ws_to_mg(ws); 1473 1474 invalidate_complete(mg, !mg->k.input); 1475 } 1476 1477 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock) 1478 { 1479 int r; 1480 1481 r = policy_invalidate_mapping(cache->policy, cblock); 1482 if (!r) { 1483 r = dm_cache_remove_mapping(cache->cmd, cblock); 1484 if (r) { 1485 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata", 1486 cache_device_name(cache)); 1487 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1488 } 1489 1490 } else if (r == -ENODATA) { 1491 /* 1492 * Harmless, already unmapped. 1493 */ 1494 r = 0; 1495 1496 } else 1497 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache)); 1498 1499 return r; 1500 } 1501 1502 static void invalidate_remove(struct work_struct *ws) 1503 { 1504 int r; 1505 struct dm_cache_migration *mg = ws_to_mg(ws); 1506 struct cache *cache = mg->cache; 1507 1508 r = invalidate_cblock(cache, mg->invalidate_cblock); 1509 if (r) { 1510 invalidate_complete(mg, false); 1511 return; 1512 } 1513 1514 init_continuation(&mg->k, invalidate_completed); 1515 continue_after_commit(&cache->committer, &mg->k); 1516 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock); 1517 mg->overwrite_bio = NULL; 1518 schedule_commit(&cache->committer); 1519 } 1520 1521 static int invalidate_lock(struct dm_cache_migration *mg) 1522 { 1523 int r; 1524 struct dm_cell_key_v2 key; 1525 struct cache *cache = mg->cache; 1526 struct dm_bio_prison_cell_v2 *prealloc; 1527 1528 prealloc = alloc_prison_cell(cache); 1529 1530 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key); 1531 r = dm_cell_lock_v2(cache->prison, &key, 1532 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell); 1533 if (r < 0) { 1534 free_prison_cell(cache, prealloc); 1535 invalidate_complete(mg, false); 1536 return r; 1537 } 1538 1539 if (mg->cell != prealloc) 1540 free_prison_cell(cache, prealloc); 1541 1542 if (r) 1543 quiesce(mg, invalidate_remove); 1544 1545 else { 1546 /* 1547 * We can't call invalidate_remove() directly here because we 1548 * might still be in request context. 1549 */ 1550 init_continuation(&mg->k, invalidate_remove); 1551 queue_work(cache->wq, &mg->k.ws); 1552 } 1553 1554 return 0; 1555 } 1556 1557 static int invalidate_start(struct cache *cache, dm_cblock_t cblock, 1558 dm_oblock_t oblock, struct bio *bio) 1559 { 1560 struct dm_cache_migration *mg; 1561 1562 if (!background_work_begin(cache)) 1563 return -EPERM; 1564 1565 mg = alloc_migration(cache); 1566 1567 mg->overwrite_bio = bio; 1568 mg->invalidate_cblock = cblock; 1569 mg->invalidate_oblock = oblock; 1570 1571 return invalidate_lock(mg); 1572 } 1573 1574 /* 1575 *-------------------------------------------------------------- 1576 * bio processing 1577 *-------------------------------------------------------------- 1578 */ 1579 1580 enum busy { 1581 IDLE, 1582 BUSY 1583 }; 1584 1585 static enum busy spare_migration_bandwidth(struct cache *cache) 1586 { 1587 bool idle = dm_iot_idle_for(&cache->tracker, HZ); 1588 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) * 1589 cache->sectors_per_block; 1590 1591 if (idle && current_volume <= cache->migration_threshold) 1592 return IDLE; 1593 else 1594 return BUSY; 1595 } 1596 1597 static void inc_hit_counter(struct cache *cache, struct bio *bio) 1598 { 1599 atomic_inc(bio_data_dir(bio) == READ ? 1600 &cache->stats.read_hit : &cache->stats.write_hit); 1601 } 1602 1603 static void inc_miss_counter(struct cache *cache, struct bio *bio) 1604 { 1605 atomic_inc(bio_data_dir(bio) == READ ? 1606 &cache->stats.read_miss : &cache->stats.write_miss); 1607 } 1608 1609 /*----------------------------------------------------------------*/ 1610 1611 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block, 1612 bool *commit_needed) 1613 { 1614 int r, data_dir; 1615 bool rb, background_queued; 1616 dm_cblock_t cblock; 1617 1618 *commit_needed = false; 1619 1620 rb = bio_detain_shared(cache, block, bio); 1621 if (!rb) { 1622 /* 1623 * An exclusive lock is held for this block, so we have to 1624 * wait. We set the commit_needed flag so the current 1625 * transaction will be committed asap, allowing this lock 1626 * to be dropped. 1627 */ 1628 *commit_needed = true; 1629 return DM_MAPIO_SUBMITTED; 1630 } 1631 1632 data_dir = bio_data_dir(bio); 1633 1634 if (optimisable_bio(cache, bio, block)) { 1635 struct policy_work *op = NULL; 1636 1637 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op); 1638 if (unlikely(r && r != -ENOENT)) { 1639 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d", 1640 cache_device_name(cache), r); 1641 bio_io_error(bio); 1642 return DM_MAPIO_SUBMITTED; 1643 } 1644 1645 if (r == -ENOENT && op) { 1646 bio_drop_shared_lock(cache, bio); 1647 BUG_ON(op->op != POLICY_PROMOTE); 1648 mg_start(cache, op, bio); 1649 return DM_MAPIO_SUBMITTED; 1650 } 1651 } else { 1652 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued); 1653 if (unlikely(r && r != -ENOENT)) { 1654 DMERR_LIMIT("%s: policy_lookup() failed with r = %d", 1655 cache_device_name(cache), r); 1656 bio_io_error(bio); 1657 return DM_MAPIO_SUBMITTED; 1658 } 1659 1660 if (background_queued) 1661 wake_migration_worker(cache); 1662 } 1663 1664 if (r == -ENOENT) { 1665 struct per_bio_data *pb = get_per_bio_data(bio); 1666 1667 /* 1668 * Miss. 1669 */ 1670 inc_miss_counter(cache, bio); 1671 if (pb->req_nr == 0) { 1672 accounted_begin(cache, bio); 1673 remap_to_origin_clear_discard(cache, bio, block); 1674 } else { 1675 /* 1676 * This is a duplicate writethrough io that is no 1677 * longer needed because the block has been demoted. 1678 */ 1679 bio_endio(bio); 1680 return DM_MAPIO_SUBMITTED; 1681 } 1682 } else { 1683 /* 1684 * Hit. 1685 */ 1686 inc_hit_counter(cache, bio); 1687 1688 /* 1689 * Passthrough always maps to the origin, invalidating any 1690 * cache blocks that are written to. 1691 */ 1692 if (passthrough_mode(cache)) { 1693 if (bio_data_dir(bio) == WRITE) { 1694 bio_drop_shared_lock(cache, bio); 1695 atomic_inc(&cache->stats.demotion); 1696 invalidate_start(cache, cblock, block, bio); 1697 } else 1698 remap_to_origin_clear_discard(cache, bio, block); 1699 } else { 1700 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) && 1701 !is_dirty(cache, cblock)) { 1702 remap_to_origin_and_cache(cache, bio, block, cblock); 1703 accounted_begin(cache, bio); 1704 } else 1705 remap_to_cache_dirty(cache, bio, block, cblock); 1706 } 1707 } 1708 1709 /* 1710 * dm core turns FUA requests into a separate payload and FLUSH req. 1711 */ 1712 if (bio->bi_opf & REQ_FUA) { 1713 /* 1714 * issue_after_commit will call accounted_begin a second time. So 1715 * we call accounted_complete() to avoid double accounting. 1716 */ 1717 accounted_complete(cache, bio); 1718 issue_after_commit(&cache->committer, bio); 1719 *commit_needed = true; 1720 return DM_MAPIO_SUBMITTED; 1721 } 1722 1723 return DM_MAPIO_REMAPPED; 1724 } 1725 1726 static bool process_bio(struct cache *cache, struct bio *bio) 1727 { 1728 bool commit_needed; 1729 1730 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED) 1731 dm_submit_bio_remap(bio, NULL); 1732 1733 return commit_needed; 1734 } 1735 1736 /* 1737 * A non-zero return indicates read_only or fail_io mode. 1738 */ 1739 static int commit(struct cache *cache, bool clean_shutdown) 1740 { 1741 int r; 1742 1743 if (get_cache_mode(cache) >= CM_READ_ONLY) 1744 return -EINVAL; 1745 1746 atomic_inc(&cache->stats.commit_count); 1747 r = dm_cache_commit(cache->cmd, clean_shutdown); 1748 if (r) 1749 metadata_operation_failed(cache, "dm_cache_commit", r); 1750 1751 return r; 1752 } 1753 1754 /* 1755 * Used by the batcher. 1756 */ 1757 static blk_status_t commit_op(void *context) 1758 { 1759 struct cache *cache = context; 1760 1761 if (dm_cache_changed_this_transaction(cache->cmd)) 1762 return errno_to_blk_status(commit(cache, false)); 1763 1764 return 0; 1765 } 1766 1767 /*----------------------------------------------------------------*/ 1768 1769 static bool process_flush_bio(struct cache *cache, struct bio *bio) 1770 { 1771 struct per_bio_data *pb = get_per_bio_data(bio); 1772 1773 if (!pb->req_nr) 1774 remap_to_origin(cache, bio); 1775 else 1776 remap_to_cache(cache, bio, 0); 1777 1778 issue_after_commit(&cache->committer, bio); 1779 return true; 1780 } 1781 1782 static bool process_discard_bio(struct cache *cache, struct bio *bio) 1783 { 1784 dm_dblock_t b, e; 1785 1786 /* 1787 * FIXME: do we need to lock the region? Or can we just assume the 1788 * user wont be so foolish as to issue discard concurrently with 1789 * other IO? 1790 */ 1791 calc_discard_block_range(cache, bio, &b, &e); 1792 while (b != e) { 1793 set_discard(cache, b); 1794 b = to_dblock(from_dblock(b) + 1); 1795 } 1796 1797 if (cache->features.discard_passdown) { 1798 remap_to_origin(cache, bio); 1799 dm_submit_bio_remap(bio, NULL); 1800 } else 1801 bio_endio(bio); 1802 1803 return false; 1804 } 1805 1806 static void process_deferred_bios(struct work_struct *ws) 1807 { 1808 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker); 1809 1810 bool commit_needed = false; 1811 struct bio_list bios; 1812 struct bio *bio; 1813 1814 bio_list_init(&bios); 1815 1816 spin_lock_irq(&cache->lock); 1817 bio_list_merge_init(&bios, &cache->deferred_bios); 1818 spin_unlock_irq(&cache->lock); 1819 1820 while ((bio = bio_list_pop(&bios))) { 1821 if (bio->bi_opf & REQ_PREFLUSH) 1822 commit_needed = process_flush_bio(cache, bio) || commit_needed; 1823 1824 else if (bio_op(bio) == REQ_OP_DISCARD) 1825 commit_needed = process_discard_bio(cache, bio) || commit_needed; 1826 1827 else 1828 commit_needed = process_bio(cache, bio) || commit_needed; 1829 cond_resched(); 1830 } 1831 1832 if (commit_needed) 1833 schedule_commit(&cache->committer); 1834 } 1835 1836 /* 1837 *-------------------------------------------------------------- 1838 * Main worker loop 1839 *-------------------------------------------------------------- 1840 */ 1841 static void requeue_deferred_bios(struct cache *cache) 1842 { 1843 struct bio *bio; 1844 struct bio_list bios; 1845 1846 bio_list_init(&bios); 1847 bio_list_merge_init(&bios, &cache->deferred_bios); 1848 1849 while ((bio = bio_list_pop(&bios))) { 1850 bio->bi_status = BLK_STS_DM_REQUEUE; 1851 bio_endio(bio); 1852 cond_resched(); 1853 } 1854 } 1855 1856 /* 1857 * We want to commit periodically so that not too much 1858 * unwritten metadata builds up. 1859 */ 1860 static void do_waker(struct work_struct *ws) 1861 { 1862 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); 1863 1864 policy_tick(cache->policy, true); 1865 wake_migration_worker(cache); 1866 schedule_commit(&cache->committer); 1867 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); 1868 } 1869 1870 static void check_migrations(struct work_struct *ws) 1871 { 1872 int r; 1873 struct policy_work *op; 1874 struct cache *cache = container_of(ws, struct cache, migration_worker); 1875 enum busy b; 1876 1877 for (;;) { 1878 b = spare_migration_bandwidth(cache); 1879 1880 r = policy_get_background_work(cache->policy, b == IDLE, &op); 1881 if (r == -ENODATA) 1882 break; 1883 1884 if (r) { 1885 DMERR_LIMIT("%s: policy_background_work failed", 1886 cache_device_name(cache)); 1887 break; 1888 } 1889 1890 r = mg_start(cache, op, NULL); 1891 if (r) 1892 break; 1893 1894 cond_resched(); 1895 } 1896 } 1897 1898 /* 1899 *-------------------------------------------------------------- 1900 * Target methods 1901 *-------------------------------------------------------------- 1902 */ 1903 1904 /* 1905 * This function gets called on the error paths of the constructor, so we 1906 * have to cope with a partially initialised struct. 1907 */ 1908 static void destroy(struct cache *cache) 1909 { 1910 unsigned int i; 1911 1912 mempool_exit(&cache->migration_pool); 1913 1914 if (cache->prison) 1915 dm_bio_prison_destroy_v2(cache->prison); 1916 1917 cancel_delayed_work_sync(&cache->waker); 1918 if (cache->wq) 1919 destroy_workqueue(cache->wq); 1920 1921 if (cache->dirty_bitset) 1922 free_bitset(cache->dirty_bitset); 1923 1924 if (cache->discard_bitset) 1925 free_bitset(cache->discard_bitset); 1926 1927 if (cache->copier) 1928 dm_kcopyd_client_destroy(cache->copier); 1929 1930 if (cache->cmd) 1931 dm_cache_metadata_close(cache->cmd); 1932 1933 if (cache->metadata_dev) 1934 dm_put_device(cache->ti, cache->metadata_dev); 1935 1936 if (cache->origin_dev) 1937 dm_put_device(cache->ti, cache->origin_dev); 1938 1939 if (cache->cache_dev) 1940 dm_put_device(cache->ti, cache->cache_dev); 1941 1942 if (cache->policy) 1943 dm_cache_policy_destroy(cache->policy); 1944 1945 for (i = 0; i < cache->nr_ctr_args ; i++) 1946 kfree(cache->ctr_args[i]); 1947 kfree(cache->ctr_args); 1948 1949 bioset_exit(&cache->bs); 1950 1951 kfree(cache); 1952 } 1953 1954 static void cache_dtr(struct dm_target *ti) 1955 { 1956 struct cache *cache = ti->private; 1957 1958 destroy(cache); 1959 } 1960 1961 static sector_t get_dev_size(struct dm_dev *dev) 1962 { 1963 return bdev_nr_sectors(dev->bdev); 1964 } 1965 1966 /*----------------------------------------------------------------*/ 1967 1968 /* 1969 * Construct a cache device mapping. 1970 * 1971 * cache <metadata dev> <cache dev> <origin dev> <block size> 1972 * <#feature args> [<feature arg>]* 1973 * <policy> <#policy args> [<policy arg>]* 1974 * 1975 * metadata dev : fast device holding the persistent metadata 1976 * cache dev : fast device holding cached data blocks 1977 * origin dev : slow device holding original data blocks 1978 * block size : cache unit size in sectors 1979 * 1980 * #feature args : number of feature arguments passed 1981 * feature args : writethrough. (The default is writeback.) 1982 * 1983 * policy : the replacement policy to use 1984 * #policy args : an even number of policy arguments corresponding 1985 * to key/value pairs passed to the policy 1986 * policy args : key/value pairs passed to the policy 1987 * E.g. 'sequential_threshold 1024' 1988 * See cache-policies.txt for details. 1989 * 1990 * Optional feature arguments are: 1991 * writethrough : write through caching that prohibits cache block 1992 * content from being different from origin block content. 1993 * Without this argument, the default behaviour is to write 1994 * back cache block contents later for performance reasons, 1995 * so they may differ from the corresponding origin blocks. 1996 */ 1997 struct cache_args { 1998 struct dm_target *ti; 1999 2000 struct dm_dev *metadata_dev; 2001 2002 struct dm_dev *cache_dev; 2003 sector_t cache_sectors; 2004 2005 struct dm_dev *origin_dev; 2006 sector_t origin_sectors; 2007 2008 uint32_t block_size; 2009 2010 const char *policy_name; 2011 int policy_argc; 2012 const char **policy_argv; 2013 2014 struct cache_features features; 2015 }; 2016 2017 static void destroy_cache_args(struct cache_args *ca) 2018 { 2019 if (ca->metadata_dev) 2020 dm_put_device(ca->ti, ca->metadata_dev); 2021 2022 if (ca->cache_dev) 2023 dm_put_device(ca->ti, ca->cache_dev); 2024 2025 if (ca->origin_dev) 2026 dm_put_device(ca->ti, ca->origin_dev); 2027 2028 kfree(ca); 2029 } 2030 2031 static bool at_least_one_arg(struct dm_arg_set *as, char **error) 2032 { 2033 if (!as->argc) { 2034 *error = "Insufficient args"; 2035 return false; 2036 } 2037 2038 return true; 2039 } 2040 2041 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, 2042 char **error) 2043 { 2044 int r; 2045 sector_t metadata_dev_size; 2046 2047 if (!at_least_one_arg(as, error)) 2048 return -EINVAL; 2049 2050 r = dm_get_device(ca->ti, dm_shift_arg(as), 2051 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev); 2052 if (r) { 2053 *error = "Error opening metadata device"; 2054 return r; 2055 } 2056 2057 metadata_dev_size = get_dev_size(ca->metadata_dev); 2058 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) 2059 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 2060 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS); 2061 2062 return 0; 2063 } 2064 2065 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, 2066 char **error) 2067 { 2068 int r; 2069 2070 if (!at_least_one_arg(as, error)) 2071 return -EINVAL; 2072 2073 r = dm_get_device(ca->ti, dm_shift_arg(as), 2074 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev); 2075 if (r) { 2076 *error = "Error opening cache device"; 2077 return r; 2078 } 2079 ca->cache_sectors = get_dev_size(ca->cache_dev); 2080 2081 return 0; 2082 } 2083 2084 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, 2085 char **error) 2086 { 2087 int r; 2088 2089 if (!at_least_one_arg(as, error)) 2090 return -EINVAL; 2091 2092 r = dm_get_device(ca->ti, dm_shift_arg(as), 2093 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev); 2094 if (r) { 2095 *error = "Error opening origin device"; 2096 return r; 2097 } 2098 2099 ca->origin_sectors = get_dev_size(ca->origin_dev); 2100 if (ca->ti->len > ca->origin_sectors) { 2101 *error = "Device size larger than cached device"; 2102 return -EINVAL; 2103 } 2104 2105 return 0; 2106 } 2107 2108 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, 2109 char **error) 2110 { 2111 unsigned long block_size; 2112 2113 if (!at_least_one_arg(as, error)) 2114 return -EINVAL; 2115 2116 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || 2117 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2118 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2119 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2120 *error = "Invalid data block size"; 2121 return -EINVAL; 2122 } 2123 2124 if (block_size > ca->cache_sectors) { 2125 *error = "Data block size is larger than the cache device"; 2126 return -EINVAL; 2127 } 2128 2129 ca->block_size = block_size; 2130 2131 return 0; 2132 } 2133 2134 static void init_features(struct cache_features *cf) 2135 { 2136 cf->mode = CM_WRITE; 2137 cf->io_mode = CM_IO_WRITEBACK; 2138 cf->metadata_version = 1; 2139 cf->discard_passdown = true; 2140 } 2141 2142 static int parse_features(struct cache_args *ca, struct dm_arg_set *as, 2143 char **error) 2144 { 2145 static const struct dm_arg _args[] = { 2146 {0, 3, "Invalid number of cache feature arguments"}, 2147 }; 2148 2149 int r, mode_ctr = 0; 2150 unsigned int argc; 2151 const char *arg; 2152 struct cache_features *cf = &ca->features; 2153 2154 init_features(cf); 2155 2156 r = dm_read_arg_group(_args, as, &argc, error); 2157 if (r) 2158 return -EINVAL; 2159 2160 while (argc--) { 2161 arg = dm_shift_arg(as); 2162 2163 if (!strcasecmp(arg, "writeback")) { 2164 cf->io_mode = CM_IO_WRITEBACK; 2165 mode_ctr++; 2166 } 2167 2168 else if (!strcasecmp(arg, "writethrough")) { 2169 cf->io_mode = CM_IO_WRITETHROUGH; 2170 mode_ctr++; 2171 } 2172 2173 else if (!strcasecmp(arg, "passthrough")) { 2174 cf->io_mode = CM_IO_PASSTHROUGH; 2175 mode_ctr++; 2176 } 2177 2178 else if (!strcasecmp(arg, "metadata2")) 2179 cf->metadata_version = 2; 2180 2181 else if (!strcasecmp(arg, "no_discard_passdown")) 2182 cf->discard_passdown = false; 2183 2184 else { 2185 *error = "Unrecognised cache feature requested"; 2186 return -EINVAL; 2187 } 2188 } 2189 2190 if (mode_ctr > 1) { 2191 *error = "Duplicate cache io_mode features requested"; 2192 return -EINVAL; 2193 } 2194 2195 return 0; 2196 } 2197 2198 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, 2199 char **error) 2200 { 2201 static const struct dm_arg _args[] = { 2202 {0, 1024, "Invalid number of policy arguments"}, 2203 }; 2204 2205 int r; 2206 2207 if (!at_least_one_arg(as, error)) 2208 return -EINVAL; 2209 2210 ca->policy_name = dm_shift_arg(as); 2211 2212 r = dm_read_arg_group(_args, as, &ca->policy_argc, error); 2213 if (r) 2214 return -EINVAL; 2215 2216 ca->policy_argv = (const char **)as->argv; 2217 dm_consume_args(as, ca->policy_argc); 2218 2219 return 0; 2220 } 2221 2222 static int parse_cache_args(struct cache_args *ca, int argc, char **argv, 2223 char **error) 2224 { 2225 int r; 2226 struct dm_arg_set as; 2227 2228 as.argc = argc; 2229 as.argv = argv; 2230 2231 r = parse_metadata_dev(ca, &as, error); 2232 if (r) 2233 return r; 2234 2235 r = parse_cache_dev(ca, &as, error); 2236 if (r) 2237 return r; 2238 2239 r = parse_origin_dev(ca, &as, error); 2240 if (r) 2241 return r; 2242 2243 r = parse_block_size(ca, &as, error); 2244 if (r) 2245 return r; 2246 2247 r = parse_features(ca, &as, error); 2248 if (r) 2249 return r; 2250 2251 r = parse_policy(ca, &as, error); 2252 if (r) 2253 return r; 2254 2255 return 0; 2256 } 2257 2258 /*----------------------------------------------------------------*/ 2259 2260 static struct kmem_cache *migration_cache; 2261 2262 #define NOT_CORE_OPTION 1 2263 2264 static int process_config_option(struct cache *cache, const char *key, const char *value) 2265 { 2266 unsigned long tmp; 2267 2268 if (!strcasecmp(key, "migration_threshold")) { 2269 if (kstrtoul(value, 10, &tmp)) 2270 return -EINVAL; 2271 2272 cache->migration_threshold = tmp; 2273 return 0; 2274 } 2275 2276 return NOT_CORE_OPTION; 2277 } 2278 2279 static int set_config_value(struct cache *cache, const char *key, const char *value) 2280 { 2281 int r = process_config_option(cache, key, value); 2282 2283 if (r == NOT_CORE_OPTION) 2284 r = policy_set_config_value(cache->policy, key, value); 2285 2286 if (r) 2287 DMWARN("bad config value for %s: %s", key, value); 2288 2289 return r; 2290 } 2291 2292 static int set_config_values(struct cache *cache, int argc, const char **argv) 2293 { 2294 int r = 0; 2295 2296 if (argc & 1) { 2297 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs."); 2298 return -EINVAL; 2299 } 2300 2301 while (argc) { 2302 r = set_config_value(cache, argv[0], argv[1]); 2303 if (r) 2304 break; 2305 2306 argc -= 2; 2307 argv += 2; 2308 } 2309 2310 return r; 2311 } 2312 2313 static int create_cache_policy(struct cache *cache, struct cache_args *ca, 2314 char **error) 2315 { 2316 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, 2317 cache->cache_size, 2318 cache->origin_sectors, 2319 cache->sectors_per_block); 2320 if (IS_ERR(p)) { 2321 *error = "Error creating cache's policy"; 2322 return PTR_ERR(p); 2323 } 2324 cache->policy = p; 2325 BUG_ON(!cache->policy); 2326 2327 return 0; 2328 } 2329 2330 /* 2331 * We want the discard block size to be at least the size of the cache 2332 * block size and have no more than 2^14 discard blocks across the origin. 2333 */ 2334 #define MAX_DISCARD_BLOCKS (1 << 14) 2335 2336 static bool too_many_discard_blocks(sector_t discard_block_size, 2337 sector_t origin_size) 2338 { 2339 (void) sector_div(origin_size, discard_block_size); 2340 2341 return origin_size > MAX_DISCARD_BLOCKS; 2342 } 2343 2344 static sector_t calculate_discard_block_size(sector_t cache_block_size, 2345 sector_t origin_size) 2346 { 2347 sector_t discard_block_size = cache_block_size; 2348 2349 if (origin_size) 2350 while (too_many_discard_blocks(discard_block_size, origin_size)) 2351 discard_block_size *= 2; 2352 2353 return discard_block_size; 2354 } 2355 2356 static void set_cache_size(struct cache *cache, dm_cblock_t size) 2357 { 2358 dm_block_t nr_blocks = from_cblock(size); 2359 2360 if (nr_blocks > (1 << 20) && cache->cache_size != size) 2361 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n" 2362 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n" 2363 "Please consider increasing the cache block size to reduce the overall cache block count.", 2364 (unsigned long long) nr_blocks); 2365 2366 cache->cache_size = size; 2367 } 2368 2369 #define DEFAULT_MIGRATION_THRESHOLD 2048 2370 2371 static int cache_create(struct cache_args *ca, struct cache **result) 2372 { 2373 int r = 0; 2374 char **error = &ca->ti->error; 2375 struct cache *cache; 2376 struct dm_target *ti = ca->ti; 2377 dm_block_t origin_blocks; 2378 struct dm_cache_metadata *cmd; 2379 bool may_format = ca->features.mode == CM_WRITE; 2380 2381 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 2382 if (!cache) 2383 return -ENOMEM; 2384 2385 cache->ti = ca->ti; 2386 ti->private = cache; 2387 ti->accounts_remapped_io = true; 2388 ti->num_flush_bios = 2; 2389 ti->flush_supported = true; 2390 2391 ti->num_discard_bios = 1; 2392 ti->discards_supported = true; 2393 2394 ti->per_io_data_size = sizeof(struct per_bio_data); 2395 2396 cache->features = ca->features; 2397 if (writethrough_mode(cache)) { 2398 /* Create bioset for writethrough bios issued to origin */ 2399 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0); 2400 if (r) 2401 goto bad; 2402 } 2403 2404 cache->metadata_dev = ca->metadata_dev; 2405 cache->origin_dev = ca->origin_dev; 2406 cache->cache_dev = ca->cache_dev; 2407 2408 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; 2409 2410 origin_blocks = cache->origin_sectors = ca->origin_sectors; 2411 origin_blocks = block_div(origin_blocks, ca->block_size); 2412 cache->origin_blocks = to_oblock(origin_blocks); 2413 2414 cache->sectors_per_block = ca->block_size; 2415 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { 2416 r = -EINVAL; 2417 goto bad; 2418 } 2419 2420 if (ca->block_size & (ca->block_size - 1)) { 2421 dm_block_t cache_size = ca->cache_sectors; 2422 2423 cache->sectors_per_block_shift = -1; 2424 cache_size = block_div(cache_size, ca->block_size); 2425 set_cache_size(cache, to_cblock(cache_size)); 2426 } else { 2427 cache->sectors_per_block_shift = __ffs(ca->block_size); 2428 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift)); 2429 } 2430 2431 r = create_cache_policy(cache, ca, error); 2432 if (r) 2433 goto bad; 2434 2435 cache->policy_nr_args = ca->policy_argc; 2436 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; 2437 2438 r = set_config_values(cache, ca->policy_argc, ca->policy_argv); 2439 if (r) { 2440 *error = "Error setting cache policy's config values"; 2441 goto bad; 2442 } 2443 2444 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, 2445 ca->block_size, may_format, 2446 dm_cache_policy_get_hint_size(cache->policy), 2447 ca->features.metadata_version); 2448 if (IS_ERR(cmd)) { 2449 *error = "Error creating metadata object"; 2450 r = PTR_ERR(cmd); 2451 goto bad; 2452 } 2453 cache->cmd = cmd; 2454 set_cache_mode(cache, CM_WRITE); 2455 if (get_cache_mode(cache) != CM_WRITE) { 2456 *error = "Unable to get write access to metadata, please check/repair metadata."; 2457 r = -EINVAL; 2458 goto bad; 2459 } 2460 2461 if (passthrough_mode(cache)) { 2462 bool all_clean; 2463 2464 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean); 2465 if (r) { 2466 *error = "dm_cache_metadata_all_clean() failed"; 2467 goto bad; 2468 } 2469 2470 if (!all_clean) { 2471 *error = "Cannot enter passthrough mode unless all blocks are clean"; 2472 r = -EINVAL; 2473 goto bad; 2474 } 2475 2476 policy_allow_migrations(cache->policy, false); 2477 } 2478 2479 spin_lock_init(&cache->lock); 2480 bio_list_init(&cache->deferred_bios); 2481 atomic_set(&cache->nr_allocated_migrations, 0); 2482 atomic_set(&cache->nr_io_migrations, 0); 2483 init_waitqueue_head(&cache->migration_wait); 2484 2485 r = -ENOMEM; 2486 atomic_set(&cache->nr_dirty, 0); 2487 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); 2488 if (!cache->dirty_bitset) { 2489 *error = "could not allocate dirty bitset"; 2490 goto bad; 2491 } 2492 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); 2493 2494 cache->discard_block_size = 2495 calculate_discard_block_size(cache->sectors_per_block, 2496 cache->origin_sectors); 2497 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors, 2498 cache->discard_block_size)); 2499 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks)); 2500 if (!cache->discard_bitset) { 2501 *error = "could not allocate discard bitset"; 2502 goto bad; 2503 } 2504 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2505 2506 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2507 if (IS_ERR(cache->copier)) { 2508 *error = "could not create kcopyd client"; 2509 r = PTR_ERR(cache->copier); 2510 goto bad; 2511 } 2512 2513 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0); 2514 if (!cache->wq) { 2515 *error = "could not create workqueue for metadata object"; 2516 goto bad; 2517 } 2518 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios); 2519 INIT_WORK(&cache->migration_worker, check_migrations); 2520 INIT_DELAYED_WORK(&cache->waker, do_waker); 2521 2522 cache->prison = dm_bio_prison_create_v2(cache->wq); 2523 if (!cache->prison) { 2524 *error = "could not create bio prison"; 2525 goto bad; 2526 } 2527 2528 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE, 2529 migration_cache); 2530 if (r) { 2531 *error = "Error creating cache's migration mempool"; 2532 goto bad; 2533 } 2534 2535 cache->need_tick_bio = true; 2536 cache->sized = false; 2537 cache->invalidate = false; 2538 cache->commit_requested = false; 2539 cache->loaded_mappings = false; 2540 cache->loaded_discards = false; 2541 2542 load_stats(cache); 2543 2544 atomic_set(&cache->stats.demotion, 0); 2545 atomic_set(&cache->stats.promotion, 0); 2546 atomic_set(&cache->stats.copies_avoided, 0); 2547 atomic_set(&cache->stats.cache_cell_clash, 0); 2548 atomic_set(&cache->stats.commit_count, 0); 2549 atomic_set(&cache->stats.discard_count, 0); 2550 2551 spin_lock_init(&cache->invalidation_lock); 2552 INIT_LIST_HEAD(&cache->invalidation_requests); 2553 2554 batcher_init(&cache->committer, commit_op, cache, 2555 issue_op, cache, cache->wq); 2556 dm_iot_init(&cache->tracker); 2557 2558 init_rwsem(&cache->background_work_lock); 2559 prevent_background_work(cache); 2560 2561 *result = cache; 2562 return 0; 2563 bad: 2564 destroy(cache); 2565 return r; 2566 } 2567 2568 static int copy_ctr_args(struct cache *cache, int argc, const char **argv) 2569 { 2570 unsigned int i; 2571 const char **copy; 2572 2573 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); 2574 if (!copy) 2575 return -ENOMEM; 2576 for (i = 0; i < argc; i++) { 2577 copy[i] = kstrdup(argv[i], GFP_KERNEL); 2578 if (!copy[i]) { 2579 while (i--) 2580 kfree(copy[i]); 2581 kfree(copy); 2582 return -ENOMEM; 2583 } 2584 } 2585 2586 cache->nr_ctr_args = argc; 2587 cache->ctr_args = copy; 2588 2589 return 0; 2590 } 2591 2592 static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv) 2593 { 2594 int r = -EINVAL; 2595 struct cache_args *ca; 2596 struct cache *cache = NULL; 2597 2598 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2599 if (!ca) { 2600 ti->error = "Error allocating memory for cache"; 2601 return -ENOMEM; 2602 } 2603 ca->ti = ti; 2604 2605 r = parse_cache_args(ca, argc, argv, &ti->error); 2606 if (r) 2607 goto out; 2608 2609 r = cache_create(ca, &cache); 2610 if (r) 2611 goto out; 2612 2613 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); 2614 if (r) { 2615 destroy(cache); 2616 goto out; 2617 } 2618 2619 ti->private = cache; 2620 out: 2621 destroy_cache_args(ca); 2622 return r; 2623 } 2624 2625 /*----------------------------------------------------------------*/ 2626 2627 static int cache_map(struct dm_target *ti, struct bio *bio) 2628 { 2629 struct cache *cache = ti->private; 2630 2631 int r; 2632 bool commit_needed; 2633 dm_oblock_t block = get_bio_block(cache, bio); 2634 2635 init_per_bio_data(bio); 2636 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) { 2637 /* 2638 * This can only occur if the io goes to a partial block at 2639 * the end of the origin device. We don't cache these. 2640 * Just remap to the origin and carry on. 2641 */ 2642 remap_to_origin(cache, bio); 2643 accounted_begin(cache, bio); 2644 return DM_MAPIO_REMAPPED; 2645 } 2646 2647 if (discard_or_flush(bio)) { 2648 defer_bio(cache, bio); 2649 return DM_MAPIO_SUBMITTED; 2650 } 2651 2652 r = map_bio(cache, bio, block, &commit_needed); 2653 if (commit_needed) 2654 schedule_commit(&cache->committer); 2655 2656 return r; 2657 } 2658 2659 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error) 2660 { 2661 struct cache *cache = ti->private; 2662 unsigned long flags; 2663 struct per_bio_data *pb = get_per_bio_data(bio); 2664 2665 if (pb->tick) { 2666 policy_tick(cache->policy, false); 2667 2668 spin_lock_irqsave(&cache->lock, flags); 2669 cache->need_tick_bio = true; 2670 spin_unlock_irqrestore(&cache->lock, flags); 2671 } 2672 2673 bio_drop_shared_lock(cache, bio); 2674 accounted_complete(cache, bio); 2675 2676 return DM_ENDIO_DONE; 2677 } 2678 2679 static int write_dirty_bitset(struct cache *cache) 2680 { 2681 int r; 2682 2683 if (get_cache_mode(cache) >= CM_READ_ONLY) 2684 return -EINVAL; 2685 2686 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset); 2687 if (r) 2688 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r); 2689 2690 return r; 2691 } 2692 2693 static int write_discard_bitset(struct cache *cache) 2694 { 2695 unsigned int i, r; 2696 2697 if (get_cache_mode(cache) >= CM_READ_ONLY) 2698 return -EINVAL; 2699 2700 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size, 2701 cache->discard_nr_blocks); 2702 if (r) { 2703 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache)); 2704 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r); 2705 return r; 2706 } 2707 2708 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) { 2709 r = dm_cache_set_discard(cache->cmd, to_dblock(i), 2710 is_discarded(cache, to_dblock(i))); 2711 if (r) { 2712 metadata_operation_failed(cache, "dm_cache_set_discard", r); 2713 return r; 2714 } 2715 } 2716 2717 return 0; 2718 } 2719 2720 static int write_hints(struct cache *cache) 2721 { 2722 int r; 2723 2724 if (get_cache_mode(cache) >= CM_READ_ONLY) 2725 return -EINVAL; 2726 2727 r = dm_cache_write_hints(cache->cmd, cache->policy); 2728 if (r) { 2729 metadata_operation_failed(cache, "dm_cache_write_hints", r); 2730 return r; 2731 } 2732 2733 return 0; 2734 } 2735 2736 /* 2737 * returns true on success 2738 */ 2739 static bool sync_metadata(struct cache *cache) 2740 { 2741 int r1, r2, r3, r4; 2742 2743 r1 = write_dirty_bitset(cache); 2744 if (r1) 2745 DMERR("%s: could not write dirty bitset", cache_device_name(cache)); 2746 2747 r2 = write_discard_bitset(cache); 2748 if (r2) 2749 DMERR("%s: could not write discard bitset", cache_device_name(cache)); 2750 2751 save_stats(cache); 2752 2753 r3 = write_hints(cache); 2754 if (r3) 2755 DMERR("%s: could not write hints", cache_device_name(cache)); 2756 2757 /* 2758 * If writing the above metadata failed, we still commit, but don't 2759 * set the clean shutdown flag. This will effectively force every 2760 * dirty bit to be set on reload. 2761 */ 2762 r4 = commit(cache, !r1 && !r2 && !r3); 2763 if (r4) 2764 DMERR("%s: could not write cache metadata", cache_device_name(cache)); 2765 2766 return !r1 && !r2 && !r3 && !r4; 2767 } 2768 2769 static void cache_postsuspend(struct dm_target *ti) 2770 { 2771 struct cache *cache = ti->private; 2772 2773 prevent_background_work(cache); 2774 BUG_ON(atomic_read(&cache->nr_io_migrations)); 2775 2776 cancel_delayed_work_sync(&cache->waker); 2777 drain_workqueue(cache->wq); 2778 WARN_ON(cache->tracker.in_flight); 2779 2780 /* 2781 * If it's a flush suspend there won't be any deferred bios, so this 2782 * call is harmless. 2783 */ 2784 requeue_deferred_bios(cache); 2785 2786 if (get_cache_mode(cache) == CM_WRITE) 2787 (void) sync_metadata(cache); 2788 } 2789 2790 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, 2791 bool dirty, uint32_t hint, bool hint_valid) 2792 { 2793 struct cache *cache = context; 2794 2795 if (dirty) { 2796 set_bit(from_cblock(cblock), cache->dirty_bitset); 2797 atomic_inc(&cache->nr_dirty); 2798 } else 2799 clear_bit(from_cblock(cblock), cache->dirty_bitset); 2800 2801 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid); 2802 } 2803 2804 /* 2805 * The discard block size in the on disk metadata is not 2806 * necessarily the same as we're currently using. So we have to 2807 * be careful to only set the discarded attribute if we know it 2808 * covers a complete block of the new size. 2809 */ 2810 struct discard_load_info { 2811 struct cache *cache; 2812 2813 /* 2814 * These blocks are sized using the on disk dblock size, rather 2815 * than the current one. 2816 */ 2817 dm_block_t block_size; 2818 dm_block_t discard_begin, discard_end; 2819 }; 2820 2821 static void discard_load_info_init(struct cache *cache, 2822 struct discard_load_info *li) 2823 { 2824 li->cache = cache; 2825 li->discard_begin = li->discard_end = 0; 2826 } 2827 2828 static void set_discard_range(struct discard_load_info *li) 2829 { 2830 sector_t b, e; 2831 2832 if (li->discard_begin == li->discard_end) 2833 return; 2834 2835 /* 2836 * Convert to sectors. 2837 */ 2838 b = li->discard_begin * li->block_size; 2839 e = li->discard_end * li->block_size; 2840 2841 /* 2842 * Then convert back to the current dblock size. 2843 */ 2844 b = dm_sector_div_up(b, li->cache->discard_block_size); 2845 sector_div(e, li->cache->discard_block_size); 2846 2847 /* 2848 * The origin may have shrunk, so we need to check we're still in 2849 * bounds. 2850 */ 2851 if (e > from_dblock(li->cache->discard_nr_blocks)) 2852 e = from_dblock(li->cache->discard_nr_blocks); 2853 2854 for (; b < e; b++) 2855 set_discard(li->cache, to_dblock(b)); 2856 } 2857 2858 static int load_discard(void *context, sector_t discard_block_size, 2859 dm_dblock_t dblock, bool discard) 2860 { 2861 struct discard_load_info *li = context; 2862 2863 li->block_size = discard_block_size; 2864 2865 if (discard) { 2866 if (from_dblock(dblock) == li->discard_end) 2867 /* 2868 * We're already in a discard range, just extend it. 2869 */ 2870 li->discard_end = li->discard_end + 1ULL; 2871 2872 else { 2873 /* 2874 * Emit the old range and start a new one. 2875 */ 2876 set_discard_range(li); 2877 li->discard_begin = from_dblock(dblock); 2878 li->discard_end = li->discard_begin + 1ULL; 2879 } 2880 } else { 2881 set_discard_range(li); 2882 li->discard_begin = li->discard_end = 0; 2883 } 2884 2885 return 0; 2886 } 2887 2888 static dm_cblock_t get_cache_dev_size(struct cache *cache) 2889 { 2890 sector_t size = get_dev_size(cache->cache_dev); 2891 (void) sector_div(size, cache->sectors_per_block); 2892 return to_cblock(size); 2893 } 2894 2895 static bool can_resize(struct cache *cache, dm_cblock_t new_size) 2896 { 2897 if (from_cblock(new_size) > from_cblock(cache->cache_size)) { 2898 if (cache->sized) { 2899 DMERR("%s: unable to extend cache due to missing cache table reload", 2900 cache_device_name(cache)); 2901 return false; 2902 } 2903 } 2904 2905 /* 2906 * We can't drop a dirty block when shrinking the cache. 2907 */ 2908 while (from_cblock(new_size) < from_cblock(cache->cache_size)) { 2909 new_size = to_cblock(from_cblock(new_size) + 1); 2910 if (is_dirty(cache, new_size)) { 2911 DMERR("%s: unable to shrink cache; cache block %llu is dirty", 2912 cache_device_name(cache), 2913 (unsigned long long) from_cblock(new_size)); 2914 return false; 2915 } 2916 } 2917 2918 return true; 2919 } 2920 2921 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size) 2922 { 2923 int r; 2924 2925 r = dm_cache_resize(cache->cmd, new_size); 2926 if (r) { 2927 DMERR("%s: could not resize cache metadata", cache_device_name(cache)); 2928 metadata_operation_failed(cache, "dm_cache_resize", r); 2929 return r; 2930 } 2931 2932 set_cache_size(cache, new_size); 2933 2934 return 0; 2935 } 2936 2937 static int cache_preresume(struct dm_target *ti) 2938 { 2939 int r = 0; 2940 struct cache *cache = ti->private; 2941 dm_cblock_t csize = get_cache_dev_size(cache); 2942 2943 /* 2944 * Check to see if the cache has resized. 2945 */ 2946 if (!cache->sized) { 2947 r = resize_cache_dev(cache, csize); 2948 if (r) 2949 return r; 2950 2951 cache->sized = true; 2952 2953 } else if (csize != cache->cache_size) { 2954 if (!can_resize(cache, csize)) 2955 return -EINVAL; 2956 2957 r = resize_cache_dev(cache, csize); 2958 if (r) 2959 return r; 2960 } 2961 2962 if (!cache->loaded_mappings) { 2963 r = dm_cache_load_mappings(cache->cmd, cache->policy, 2964 load_mapping, cache); 2965 if (r) { 2966 DMERR("%s: could not load cache mappings", cache_device_name(cache)); 2967 metadata_operation_failed(cache, "dm_cache_load_mappings", r); 2968 return r; 2969 } 2970 2971 cache->loaded_mappings = true; 2972 } 2973 2974 if (!cache->loaded_discards) { 2975 struct discard_load_info li; 2976 2977 /* 2978 * The discard bitset could have been resized, or the 2979 * discard block size changed. To be safe we start by 2980 * setting every dblock to not discarded. 2981 */ 2982 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2983 2984 discard_load_info_init(cache, &li); 2985 r = dm_cache_load_discards(cache->cmd, load_discard, &li); 2986 if (r) { 2987 DMERR("%s: could not load origin discards", cache_device_name(cache)); 2988 metadata_operation_failed(cache, "dm_cache_load_discards", r); 2989 return r; 2990 } 2991 set_discard_range(&li); 2992 2993 cache->loaded_discards = true; 2994 } 2995 2996 return r; 2997 } 2998 2999 static void cache_resume(struct dm_target *ti) 3000 { 3001 struct cache *cache = ti->private; 3002 3003 cache->need_tick_bio = true; 3004 allow_background_work(cache); 3005 do_waker(&cache->waker.work); 3006 } 3007 3008 static void emit_flags(struct cache *cache, char *result, 3009 unsigned int maxlen, ssize_t *sz_ptr) 3010 { 3011 ssize_t sz = *sz_ptr; 3012 struct cache_features *cf = &cache->features; 3013 unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1; 3014 3015 DMEMIT("%u ", count); 3016 3017 if (cf->metadata_version == 2) 3018 DMEMIT("metadata2 "); 3019 3020 if (writethrough_mode(cache)) 3021 DMEMIT("writethrough "); 3022 3023 else if (passthrough_mode(cache)) 3024 DMEMIT("passthrough "); 3025 3026 else if (writeback_mode(cache)) 3027 DMEMIT("writeback "); 3028 3029 else { 3030 DMEMIT("unknown "); 3031 DMERR("%s: internal error: unknown io mode: %d", 3032 cache_device_name(cache), (int) cf->io_mode); 3033 } 3034 3035 if (!cf->discard_passdown) 3036 DMEMIT("no_discard_passdown "); 3037 3038 *sz_ptr = sz; 3039 } 3040 3041 /* 3042 * Status format: 3043 * 3044 * <metadata block size> <#used metadata blocks>/<#total metadata blocks> 3045 * <cache block size> <#used cache blocks>/<#total cache blocks> 3046 * <#read hits> <#read misses> <#write hits> <#write misses> 3047 * <#demotions> <#promotions> <#dirty> 3048 * <#features> <features>* 3049 * <#core args> <core args> 3050 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check> 3051 */ 3052 static void cache_status(struct dm_target *ti, status_type_t type, 3053 unsigned int status_flags, char *result, unsigned int maxlen) 3054 { 3055 int r = 0; 3056 unsigned int i; 3057 ssize_t sz = 0; 3058 dm_block_t nr_free_blocks_metadata = 0; 3059 dm_block_t nr_blocks_metadata = 0; 3060 char buf[BDEVNAME_SIZE]; 3061 struct cache *cache = ti->private; 3062 dm_cblock_t residency; 3063 bool needs_check; 3064 3065 switch (type) { 3066 case STATUSTYPE_INFO: 3067 if (get_cache_mode(cache) == CM_FAIL) { 3068 DMEMIT("Fail"); 3069 break; 3070 } 3071 3072 /* Commit to ensure statistics aren't out-of-date */ 3073 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3074 (void) commit(cache, false); 3075 3076 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata); 3077 if (r) { 3078 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d", 3079 cache_device_name(cache), r); 3080 goto err; 3081 } 3082 3083 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); 3084 if (r) { 3085 DMERR("%s: dm_cache_get_metadata_dev_size returned %d", 3086 cache_device_name(cache), r); 3087 goto err; 3088 } 3089 3090 residency = policy_residency(cache->policy); 3091 3092 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ", 3093 (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE, 3094 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3095 (unsigned long long)nr_blocks_metadata, 3096 (unsigned long long)cache->sectors_per_block, 3097 (unsigned long long) from_cblock(residency), 3098 (unsigned long long) from_cblock(cache->cache_size), 3099 (unsigned int) atomic_read(&cache->stats.read_hit), 3100 (unsigned int) atomic_read(&cache->stats.read_miss), 3101 (unsigned int) atomic_read(&cache->stats.write_hit), 3102 (unsigned int) atomic_read(&cache->stats.write_miss), 3103 (unsigned int) atomic_read(&cache->stats.demotion), 3104 (unsigned int) atomic_read(&cache->stats.promotion), 3105 (unsigned long) atomic_read(&cache->nr_dirty)); 3106 3107 emit_flags(cache, result, maxlen, &sz); 3108 3109 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); 3110 3111 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy)); 3112 if (sz < maxlen) { 3113 r = policy_emit_config_values(cache->policy, result, maxlen, &sz); 3114 if (r) 3115 DMERR("%s: policy_emit_config_values returned %d", 3116 cache_device_name(cache), r); 3117 } 3118 3119 if (get_cache_mode(cache) == CM_READ_ONLY) 3120 DMEMIT("ro "); 3121 else 3122 DMEMIT("rw "); 3123 3124 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check); 3125 3126 if (r || needs_check) 3127 DMEMIT("needs_check "); 3128 else 3129 DMEMIT("- "); 3130 3131 break; 3132 3133 case STATUSTYPE_TABLE: 3134 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3135 DMEMIT("%s ", buf); 3136 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3137 DMEMIT("%s ", buf); 3138 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3139 DMEMIT("%s", buf); 3140 3141 for (i = 0; i < cache->nr_ctr_args - 1; i++) 3142 DMEMIT(" %s", cache->ctr_args[i]); 3143 if (cache->nr_ctr_args) 3144 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); 3145 break; 3146 3147 case STATUSTYPE_IMA: 3148 DMEMIT_TARGET_NAME_VERSION(ti->type); 3149 if (get_cache_mode(cache) == CM_FAIL) 3150 DMEMIT(",metadata_mode=fail"); 3151 else if (get_cache_mode(cache) == CM_READ_ONLY) 3152 DMEMIT(",metadata_mode=ro"); 3153 else 3154 DMEMIT(",metadata_mode=rw"); 3155 3156 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3157 DMEMIT(",cache_metadata_device=%s", buf); 3158 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3159 DMEMIT(",cache_device=%s", buf); 3160 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3161 DMEMIT(",cache_origin_device=%s", buf); 3162 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n'); 3163 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n'); 3164 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n'); 3165 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n'); 3166 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y'); 3167 DMEMIT(";"); 3168 break; 3169 } 3170 3171 return; 3172 3173 err: 3174 DMEMIT("Error"); 3175 } 3176 3177 /* 3178 * Defines a range of cblocks, begin to (end - 1) are in the range. end is 3179 * the one-past-the-end value. 3180 */ 3181 struct cblock_range { 3182 dm_cblock_t begin; 3183 dm_cblock_t end; 3184 }; 3185 3186 /* 3187 * A cache block range can take two forms: 3188 * 3189 * i) A single cblock, eg. '3456' 3190 * ii) A begin and end cblock with a dash between, eg. 123-234 3191 */ 3192 static int parse_cblock_range(struct cache *cache, const char *str, 3193 struct cblock_range *result) 3194 { 3195 char dummy; 3196 uint64_t b, e; 3197 int r; 3198 3199 /* 3200 * Try and parse form (ii) first. 3201 */ 3202 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy); 3203 if (r < 0) 3204 return r; 3205 3206 if (r == 2) { 3207 result->begin = to_cblock(b); 3208 result->end = to_cblock(e); 3209 return 0; 3210 } 3211 3212 /* 3213 * That didn't work, try form (i). 3214 */ 3215 r = sscanf(str, "%llu%c", &b, &dummy); 3216 if (r < 0) 3217 return r; 3218 3219 if (r == 1) { 3220 result->begin = to_cblock(b); 3221 result->end = to_cblock(from_cblock(result->begin) + 1u); 3222 return 0; 3223 } 3224 3225 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str); 3226 return -EINVAL; 3227 } 3228 3229 static int validate_cblock_range(struct cache *cache, struct cblock_range *range) 3230 { 3231 uint64_t b = from_cblock(range->begin); 3232 uint64_t e = from_cblock(range->end); 3233 uint64_t n = from_cblock(cache->cache_size); 3234 3235 if (b >= n) { 3236 DMERR("%s: begin cblock out of range: %llu >= %llu", 3237 cache_device_name(cache), b, n); 3238 return -EINVAL; 3239 } 3240 3241 if (e > n) { 3242 DMERR("%s: end cblock out of range: %llu > %llu", 3243 cache_device_name(cache), e, n); 3244 return -EINVAL; 3245 } 3246 3247 if (b >= e) { 3248 DMERR("%s: invalid cblock range: %llu >= %llu", 3249 cache_device_name(cache), b, e); 3250 return -EINVAL; 3251 } 3252 3253 return 0; 3254 } 3255 3256 static inline dm_cblock_t cblock_succ(dm_cblock_t b) 3257 { 3258 return to_cblock(from_cblock(b) + 1); 3259 } 3260 3261 static int request_invalidation(struct cache *cache, struct cblock_range *range) 3262 { 3263 int r = 0; 3264 3265 /* 3266 * We don't need to do any locking here because we know we're in 3267 * passthrough mode. There's is potential for a race between an 3268 * invalidation triggered by an io and an invalidation message. This 3269 * is harmless, we must not worry if the policy call fails. 3270 */ 3271 while (range->begin != range->end) { 3272 r = invalidate_cblock(cache, range->begin); 3273 if (r) 3274 return r; 3275 3276 range->begin = cblock_succ(range->begin); 3277 } 3278 3279 cache->commit_requested = true; 3280 return r; 3281 } 3282 3283 static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count, 3284 const char **cblock_ranges) 3285 { 3286 int r = 0; 3287 unsigned int i; 3288 struct cblock_range range; 3289 3290 if (!passthrough_mode(cache)) { 3291 DMERR("%s: cache has to be in passthrough mode for invalidation", 3292 cache_device_name(cache)); 3293 return -EPERM; 3294 } 3295 3296 for (i = 0; i < count; i++) { 3297 r = parse_cblock_range(cache, cblock_ranges[i], &range); 3298 if (r) 3299 break; 3300 3301 r = validate_cblock_range(cache, &range); 3302 if (r) 3303 break; 3304 3305 /* 3306 * Pass begin and end origin blocks to the worker and wake it. 3307 */ 3308 r = request_invalidation(cache, &range); 3309 if (r) 3310 break; 3311 } 3312 3313 return r; 3314 } 3315 3316 /* 3317 * Supports 3318 * "<key> <value>" 3319 * and 3320 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]* 3321 * 3322 * The key migration_threshold is supported by the cache target core. 3323 */ 3324 static int cache_message(struct dm_target *ti, unsigned int argc, char **argv, 3325 char *result, unsigned int maxlen) 3326 { 3327 struct cache *cache = ti->private; 3328 3329 if (!argc) 3330 return -EINVAL; 3331 3332 if (get_cache_mode(cache) >= CM_READ_ONLY) { 3333 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode", 3334 cache_device_name(cache)); 3335 return -EOPNOTSUPP; 3336 } 3337 3338 if (!strcasecmp(argv[0], "invalidate_cblocks")) 3339 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1); 3340 3341 if (argc != 2) 3342 return -EINVAL; 3343 3344 return set_config_value(cache, argv[0], argv[1]); 3345 } 3346 3347 static int cache_iterate_devices(struct dm_target *ti, 3348 iterate_devices_callout_fn fn, void *data) 3349 { 3350 int r = 0; 3351 struct cache *cache = ti->private; 3352 3353 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); 3354 if (!r) 3355 r = fn(ti, cache->origin_dev, 0, ti->len, data); 3356 3357 return r; 3358 } 3359 3360 /* 3361 * If discard_passdown was enabled verify that the origin device 3362 * supports discards. Disable discard_passdown if not. 3363 */ 3364 static void disable_passdown_if_not_supported(struct cache *cache) 3365 { 3366 struct block_device *origin_bdev = cache->origin_dev->bdev; 3367 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3368 const char *reason = NULL; 3369 3370 if (!cache->features.discard_passdown) 3371 return; 3372 3373 if (!bdev_max_discard_sectors(origin_bdev)) 3374 reason = "discard unsupported"; 3375 3376 else if (origin_limits->max_discard_sectors < cache->sectors_per_block) 3377 reason = "max discard sectors smaller than a block"; 3378 3379 if (reason) { 3380 DMWARN("Origin device (%pg) %s: Disabling discard passdown.", 3381 origin_bdev, reason); 3382 cache->features.discard_passdown = false; 3383 } 3384 } 3385 3386 static void set_discard_limits(struct cache *cache, struct queue_limits *limits) 3387 { 3388 struct block_device *origin_bdev = cache->origin_dev->bdev; 3389 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3390 3391 if (!cache->features.discard_passdown) { 3392 /* No passdown is done so setting own virtual limits */ 3393 limits->max_hw_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024, 3394 cache->origin_sectors); 3395 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT; 3396 return; 3397 } 3398 3399 /* 3400 * cache_iterate_devices() is stacking both origin and fast device limits 3401 * but discards aren't passed to fast device, so inherit origin's limits. 3402 */ 3403 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors; 3404 limits->discard_granularity = origin_limits->discard_granularity; 3405 limits->discard_alignment = origin_limits->discard_alignment; 3406 } 3407 3408 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) 3409 { 3410 struct cache *cache = ti->private; 3411 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3412 3413 /* 3414 * If the system-determined stacked limits are compatible with the 3415 * cache's blocksize (io_opt is a factor) do not override them. 3416 */ 3417 if (io_opt_sectors < cache->sectors_per_block || 3418 do_div(io_opt_sectors, cache->sectors_per_block)) { 3419 limits->io_min = cache->sectors_per_block << SECTOR_SHIFT; 3420 limits->io_opt = cache->sectors_per_block << SECTOR_SHIFT; 3421 } 3422 3423 disable_passdown_if_not_supported(cache); 3424 set_discard_limits(cache, limits); 3425 } 3426 3427 /*----------------------------------------------------------------*/ 3428 3429 static struct target_type cache_target = { 3430 .name = "cache", 3431 .version = {2, 2, 0}, 3432 .module = THIS_MODULE, 3433 .ctr = cache_ctr, 3434 .dtr = cache_dtr, 3435 .map = cache_map, 3436 .end_io = cache_end_io, 3437 .postsuspend = cache_postsuspend, 3438 .preresume = cache_preresume, 3439 .resume = cache_resume, 3440 .status = cache_status, 3441 .message = cache_message, 3442 .iterate_devices = cache_iterate_devices, 3443 .io_hints = cache_io_hints, 3444 }; 3445 3446 static int __init dm_cache_init(void) 3447 { 3448 int r; 3449 3450 migration_cache = KMEM_CACHE(dm_cache_migration, 0); 3451 if (!migration_cache) 3452 return -ENOMEM; 3453 3454 r = dm_register_target(&cache_target); 3455 if (r) { 3456 kmem_cache_destroy(migration_cache); 3457 return r; 3458 } 3459 3460 return 0; 3461 } 3462 3463 static void __exit dm_cache_exit(void) 3464 { 3465 dm_unregister_target(&cache_target); 3466 kmem_cache_destroy(migration_cache); 3467 } 3468 3469 module_init(dm_cache_init); 3470 module_exit(dm_cache_exit); 3471 3472 MODULE_DESCRIPTION(DM_NAME " cache target"); 3473 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); 3474 MODULE_LICENSE("GPL"); 3475