xref: /linux/drivers/md/dm-cache-target.c (revision 8b6aaf65d3b001ec9b5dcba0992b3b68cbf6057f)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 
20 #define DM_MSG_PREFIX "cache"
21 
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 	"A percentage of time allocated for copying to and/or from cache");
24 
25 /*----------------------------------------------------------------*/
26 
27 /*
28  * Glossary:
29  *
30  * oblock: index of an origin block
31  * cblock: index of a cache block
32  * promotion: movement of a block from origin to cache
33  * demotion: movement of a block from cache to origin
34  * migration: movement of a block between the origin and cache device,
35  *	      either direction
36  */
37 
38 /*----------------------------------------------------------------*/
39 
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42 	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44 
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47 	size_t s = bitset_size_in_bytes(nr_entries);
48 	return vzalloc(s);
49 }
50 
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53 	size_t s = bitset_size_in_bytes(nr_entries);
54 	memset(bitset, 0, s);
55 }
56 
57 static void free_bitset(unsigned long *bits)
58 {
59 	vfree(bits);
60 }
61 
62 /*----------------------------------------------------------------*/
63 
64 /*
65  * There are a couple of places where we let a bio run, but want to do some
66  * work before calling its endio function.  We do this by temporarily
67  * changing the endio fn.
68  */
69 struct dm_hook_info {
70 	bio_end_io_t *bi_end_io;
71 	void *bi_private;
72 };
73 
74 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
75 			bio_end_io_t *bi_end_io, void *bi_private)
76 {
77 	h->bi_end_io = bio->bi_end_io;
78 	h->bi_private = bio->bi_private;
79 
80 	bio->bi_end_io = bi_end_io;
81 	bio->bi_private = bi_private;
82 }
83 
84 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
85 {
86 	bio->bi_end_io = h->bi_end_io;
87 	bio->bi_private = h->bi_private;
88 
89 	/*
90 	 * Must bump bi_remaining to allow bio to complete with
91 	 * restored bi_end_io.
92 	 */
93 	atomic_inc(&bio->bi_remaining);
94 }
95 
96 /*----------------------------------------------------------------*/
97 
98 #define PRISON_CELLS 1024
99 #define MIGRATION_POOL_SIZE 128
100 #define COMMIT_PERIOD HZ
101 #define MIGRATION_COUNT_WINDOW 10
102 
103 /*
104  * The block size of the device holding cache data must be
105  * between 32KB and 1GB.
106  */
107 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
108 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
109 
110 /*
111  * FIXME: the cache is read/write for the time being.
112  */
113 enum cache_metadata_mode {
114 	CM_WRITE,		/* metadata may be changed */
115 	CM_READ_ONLY,		/* metadata may not be changed */
116 };
117 
118 enum cache_io_mode {
119 	/*
120 	 * Data is written to cached blocks only.  These blocks are marked
121 	 * dirty.  If you lose the cache device you will lose data.
122 	 * Potential performance increase for both reads and writes.
123 	 */
124 	CM_IO_WRITEBACK,
125 
126 	/*
127 	 * Data is written to both cache and origin.  Blocks are never
128 	 * dirty.  Potential performance benfit for reads only.
129 	 */
130 	CM_IO_WRITETHROUGH,
131 
132 	/*
133 	 * A degraded mode useful for various cache coherency situations
134 	 * (eg, rolling back snapshots).  Reads and writes always go to the
135 	 * origin.  If a write goes to a cached oblock, then the cache
136 	 * block is invalidated.
137 	 */
138 	CM_IO_PASSTHROUGH
139 };
140 
141 struct cache_features {
142 	enum cache_metadata_mode mode;
143 	enum cache_io_mode io_mode;
144 };
145 
146 struct cache_stats {
147 	atomic_t read_hit;
148 	atomic_t read_miss;
149 	atomic_t write_hit;
150 	atomic_t write_miss;
151 	atomic_t demotion;
152 	atomic_t promotion;
153 	atomic_t copies_avoided;
154 	atomic_t cache_cell_clash;
155 	atomic_t commit_count;
156 	atomic_t discard_count;
157 };
158 
159 /*
160  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
161  * the one-past-the-end value.
162  */
163 struct cblock_range {
164 	dm_cblock_t begin;
165 	dm_cblock_t end;
166 };
167 
168 struct invalidation_request {
169 	struct list_head list;
170 	struct cblock_range *cblocks;
171 
172 	atomic_t complete;
173 	int err;
174 
175 	wait_queue_head_t result_wait;
176 };
177 
178 struct cache {
179 	struct dm_target *ti;
180 	struct dm_target_callbacks callbacks;
181 
182 	struct dm_cache_metadata *cmd;
183 
184 	/*
185 	 * Metadata is written to this device.
186 	 */
187 	struct dm_dev *metadata_dev;
188 
189 	/*
190 	 * The slower of the two data devices.  Typically a spindle.
191 	 */
192 	struct dm_dev *origin_dev;
193 
194 	/*
195 	 * The faster of the two data devices.  Typically an SSD.
196 	 */
197 	struct dm_dev *cache_dev;
198 
199 	/*
200 	 * Size of the origin device in _complete_ blocks and native sectors.
201 	 */
202 	dm_oblock_t origin_blocks;
203 	sector_t origin_sectors;
204 
205 	/*
206 	 * Size of the cache device in blocks.
207 	 */
208 	dm_cblock_t cache_size;
209 
210 	/*
211 	 * Fields for converting from sectors to blocks.
212 	 */
213 	uint32_t sectors_per_block;
214 	int sectors_per_block_shift;
215 
216 	spinlock_t lock;
217 	struct bio_list deferred_bios;
218 	struct bio_list deferred_flush_bios;
219 	struct bio_list deferred_writethrough_bios;
220 	struct list_head quiesced_migrations;
221 	struct list_head completed_migrations;
222 	struct list_head need_commit_migrations;
223 	sector_t migration_threshold;
224 	wait_queue_head_t migration_wait;
225 	atomic_t nr_migrations;
226 
227 	wait_queue_head_t quiescing_wait;
228 	atomic_t quiescing;
229 	atomic_t quiescing_ack;
230 
231 	/*
232 	 * cache_size entries, dirty if set
233 	 */
234 	atomic_t nr_dirty;
235 	unsigned long *dirty_bitset;
236 
237 	/*
238 	 * origin_blocks entries, discarded if set.
239 	 */
240 	dm_oblock_t discard_nr_blocks;
241 	unsigned long *discard_bitset;
242 
243 	/*
244 	 * Rather than reconstructing the table line for the status we just
245 	 * save it and regurgitate.
246 	 */
247 	unsigned nr_ctr_args;
248 	const char **ctr_args;
249 
250 	struct dm_kcopyd_client *copier;
251 	struct workqueue_struct *wq;
252 	struct work_struct worker;
253 
254 	struct delayed_work waker;
255 	unsigned long last_commit_jiffies;
256 
257 	struct dm_bio_prison *prison;
258 	struct dm_deferred_set *all_io_ds;
259 
260 	mempool_t *migration_pool;
261 	struct dm_cache_migration *next_migration;
262 
263 	struct dm_cache_policy *policy;
264 	unsigned policy_nr_args;
265 
266 	bool need_tick_bio:1;
267 	bool sized:1;
268 	bool invalidate:1;
269 	bool commit_requested:1;
270 	bool loaded_mappings:1;
271 	bool loaded_discards:1;
272 
273 	/*
274 	 * Cache features such as write-through.
275 	 */
276 	struct cache_features features;
277 
278 	struct cache_stats stats;
279 
280 	/*
281 	 * Invalidation fields.
282 	 */
283 	spinlock_t invalidation_lock;
284 	struct list_head invalidation_requests;
285 };
286 
287 struct per_bio_data {
288 	bool tick:1;
289 	unsigned req_nr:2;
290 	struct dm_deferred_entry *all_io_entry;
291 	struct dm_hook_info hook_info;
292 
293 	/*
294 	 * writethrough fields.  These MUST remain at the end of this
295 	 * structure and the 'cache' member must be the first as it
296 	 * is used to determine the offset of the writethrough fields.
297 	 */
298 	struct cache *cache;
299 	dm_cblock_t cblock;
300 	struct dm_bio_details bio_details;
301 };
302 
303 struct dm_cache_migration {
304 	struct list_head list;
305 	struct cache *cache;
306 
307 	unsigned long start_jiffies;
308 	dm_oblock_t old_oblock;
309 	dm_oblock_t new_oblock;
310 	dm_cblock_t cblock;
311 
312 	bool err:1;
313 	bool writeback:1;
314 	bool demote:1;
315 	bool promote:1;
316 	bool requeue_holder:1;
317 	bool invalidate:1;
318 
319 	struct dm_bio_prison_cell *old_ocell;
320 	struct dm_bio_prison_cell *new_ocell;
321 };
322 
323 /*
324  * Processing a bio in the worker thread may require these memory
325  * allocations.  We prealloc to avoid deadlocks (the same worker thread
326  * frees them back to the mempool).
327  */
328 struct prealloc {
329 	struct dm_cache_migration *mg;
330 	struct dm_bio_prison_cell *cell1;
331 	struct dm_bio_prison_cell *cell2;
332 };
333 
334 static void wake_worker(struct cache *cache)
335 {
336 	queue_work(cache->wq, &cache->worker);
337 }
338 
339 /*----------------------------------------------------------------*/
340 
341 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
342 {
343 	/* FIXME: change to use a local slab. */
344 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
345 }
346 
347 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
348 {
349 	dm_bio_prison_free_cell(cache->prison, cell);
350 }
351 
352 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
353 {
354 	if (!p->mg) {
355 		p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
356 		if (!p->mg)
357 			return -ENOMEM;
358 	}
359 
360 	if (!p->cell1) {
361 		p->cell1 = alloc_prison_cell(cache);
362 		if (!p->cell1)
363 			return -ENOMEM;
364 	}
365 
366 	if (!p->cell2) {
367 		p->cell2 = alloc_prison_cell(cache);
368 		if (!p->cell2)
369 			return -ENOMEM;
370 	}
371 
372 	return 0;
373 }
374 
375 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
376 {
377 	if (p->cell2)
378 		free_prison_cell(cache, p->cell2);
379 
380 	if (p->cell1)
381 		free_prison_cell(cache, p->cell1);
382 
383 	if (p->mg)
384 		mempool_free(p->mg, cache->migration_pool);
385 }
386 
387 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
388 {
389 	struct dm_cache_migration *mg = p->mg;
390 
391 	BUG_ON(!mg);
392 	p->mg = NULL;
393 
394 	return mg;
395 }
396 
397 /*
398  * You must have a cell within the prealloc struct to return.  If not this
399  * function will BUG() rather than returning NULL.
400  */
401 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
402 {
403 	struct dm_bio_prison_cell *r = NULL;
404 
405 	if (p->cell1) {
406 		r = p->cell1;
407 		p->cell1 = NULL;
408 
409 	} else if (p->cell2) {
410 		r = p->cell2;
411 		p->cell2 = NULL;
412 	} else
413 		BUG();
414 
415 	return r;
416 }
417 
418 /*
419  * You can't have more than two cells in a prealloc struct.  BUG() will be
420  * called if you try and overfill.
421  */
422 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
423 {
424 	if (!p->cell2)
425 		p->cell2 = cell;
426 
427 	else if (!p->cell1)
428 		p->cell1 = cell;
429 
430 	else
431 		BUG();
432 }
433 
434 /*----------------------------------------------------------------*/
435 
436 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
437 {
438 	key->virtual = 0;
439 	key->dev = 0;
440 	key->block = from_oblock(oblock);
441 }
442 
443 /*
444  * The caller hands in a preallocated cell, and a free function for it.
445  * The cell will be freed if there's an error, or if it wasn't used because
446  * a cell with that key already exists.
447  */
448 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
449 
450 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
451 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
452 		      cell_free_fn free_fn, void *free_context,
453 		      struct dm_bio_prison_cell **cell_result)
454 {
455 	int r;
456 	struct dm_cell_key key;
457 
458 	build_key(oblock, &key);
459 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
460 	if (r)
461 		free_fn(free_context, cell_prealloc);
462 
463 	return r;
464 }
465 
466 static int get_cell(struct cache *cache,
467 		    dm_oblock_t oblock,
468 		    struct prealloc *structs,
469 		    struct dm_bio_prison_cell **cell_result)
470 {
471 	int r;
472 	struct dm_cell_key key;
473 	struct dm_bio_prison_cell *cell_prealloc;
474 
475 	cell_prealloc = prealloc_get_cell(structs);
476 
477 	build_key(oblock, &key);
478 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
479 	if (r)
480 		prealloc_put_cell(structs, cell_prealloc);
481 
482 	return r;
483 }
484 
485 /*----------------------------------------------------------------*/
486 
487 static bool is_dirty(struct cache *cache, dm_cblock_t b)
488 {
489 	return test_bit(from_cblock(b), cache->dirty_bitset);
490 }
491 
492 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
493 {
494 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
495 		atomic_inc(&cache->nr_dirty);
496 		policy_set_dirty(cache->policy, oblock);
497 	}
498 }
499 
500 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
501 {
502 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
503 		policy_clear_dirty(cache->policy, oblock);
504 		if (atomic_dec_return(&cache->nr_dirty) == 0)
505 			dm_table_event(cache->ti->table);
506 	}
507 }
508 
509 /*----------------------------------------------------------------*/
510 
511 static bool block_size_is_power_of_two(struct cache *cache)
512 {
513 	return cache->sectors_per_block_shift >= 0;
514 }
515 
516 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
517 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
518 __always_inline
519 #endif
520 static dm_block_t block_div(dm_block_t b, uint32_t n)
521 {
522 	do_div(b, n);
523 
524 	return b;
525 }
526 
527 static void set_discard(struct cache *cache, dm_oblock_t b)
528 {
529 	unsigned long flags;
530 
531 	atomic_inc(&cache->stats.discard_count);
532 
533 	spin_lock_irqsave(&cache->lock, flags);
534 	set_bit(from_oblock(b), cache->discard_bitset);
535 	spin_unlock_irqrestore(&cache->lock, flags);
536 }
537 
538 static void clear_discard(struct cache *cache, dm_oblock_t b)
539 {
540 	unsigned long flags;
541 
542 	spin_lock_irqsave(&cache->lock, flags);
543 	clear_bit(from_oblock(b), cache->discard_bitset);
544 	spin_unlock_irqrestore(&cache->lock, flags);
545 }
546 
547 static bool is_discarded(struct cache *cache, dm_oblock_t b)
548 {
549 	int r;
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(&cache->lock, flags);
553 	r = test_bit(from_oblock(b), cache->discard_bitset);
554 	spin_unlock_irqrestore(&cache->lock, flags);
555 
556 	return r;
557 }
558 
559 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
560 {
561 	int r;
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(&cache->lock, flags);
565 	r = test_bit(from_oblock(b), cache->discard_bitset);
566 	spin_unlock_irqrestore(&cache->lock, flags);
567 
568 	return r;
569 }
570 
571 /*----------------------------------------------------------------*/
572 
573 static void load_stats(struct cache *cache)
574 {
575 	struct dm_cache_statistics stats;
576 
577 	dm_cache_metadata_get_stats(cache->cmd, &stats);
578 	atomic_set(&cache->stats.read_hit, stats.read_hits);
579 	atomic_set(&cache->stats.read_miss, stats.read_misses);
580 	atomic_set(&cache->stats.write_hit, stats.write_hits);
581 	atomic_set(&cache->stats.write_miss, stats.write_misses);
582 }
583 
584 static void save_stats(struct cache *cache)
585 {
586 	struct dm_cache_statistics stats;
587 
588 	stats.read_hits = atomic_read(&cache->stats.read_hit);
589 	stats.read_misses = atomic_read(&cache->stats.read_miss);
590 	stats.write_hits = atomic_read(&cache->stats.write_hit);
591 	stats.write_misses = atomic_read(&cache->stats.write_miss);
592 
593 	dm_cache_metadata_set_stats(cache->cmd, &stats);
594 }
595 
596 /*----------------------------------------------------------------
597  * Per bio data
598  *--------------------------------------------------------------*/
599 
600 /*
601  * If using writeback, leave out struct per_bio_data's writethrough fields.
602  */
603 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
604 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
605 
606 static bool writethrough_mode(struct cache_features *f)
607 {
608 	return f->io_mode == CM_IO_WRITETHROUGH;
609 }
610 
611 static bool writeback_mode(struct cache_features *f)
612 {
613 	return f->io_mode == CM_IO_WRITEBACK;
614 }
615 
616 static bool passthrough_mode(struct cache_features *f)
617 {
618 	return f->io_mode == CM_IO_PASSTHROUGH;
619 }
620 
621 static size_t get_per_bio_data_size(struct cache *cache)
622 {
623 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
624 }
625 
626 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
627 {
628 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
629 	BUG_ON(!pb);
630 	return pb;
631 }
632 
633 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
634 {
635 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
636 
637 	pb->tick = false;
638 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
639 	pb->all_io_entry = NULL;
640 
641 	return pb;
642 }
643 
644 /*----------------------------------------------------------------
645  * Remapping
646  *--------------------------------------------------------------*/
647 static void remap_to_origin(struct cache *cache, struct bio *bio)
648 {
649 	bio->bi_bdev = cache->origin_dev->bdev;
650 }
651 
652 static void remap_to_cache(struct cache *cache, struct bio *bio,
653 			   dm_cblock_t cblock)
654 {
655 	sector_t bi_sector = bio->bi_iter.bi_sector;
656 	sector_t block = from_cblock(cblock);
657 
658 	bio->bi_bdev = cache->cache_dev->bdev;
659 	if (!block_size_is_power_of_two(cache))
660 		bio->bi_iter.bi_sector =
661 			(block * cache->sectors_per_block) +
662 			sector_div(bi_sector, cache->sectors_per_block);
663 	else
664 		bio->bi_iter.bi_sector =
665 			(block << cache->sectors_per_block_shift) |
666 			(bi_sector & (cache->sectors_per_block - 1));
667 }
668 
669 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
670 {
671 	unsigned long flags;
672 	size_t pb_data_size = get_per_bio_data_size(cache);
673 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
674 
675 	spin_lock_irqsave(&cache->lock, flags);
676 	if (cache->need_tick_bio &&
677 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
678 		pb->tick = true;
679 		cache->need_tick_bio = false;
680 	}
681 	spin_unlock_irqrestore(&cache->lock, flags);
682 }
683 
684 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
685 				  dm_oblock_t oblock)
686 {
687 	check_if_tick_bio_needed(cache, bio);
688 	remap_to_origin(cache, bio);
689 	if (bio_data_dir(bio) == WRITE)
690 		clear_discard(cache, oblock);
691 }
692 
693 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
694 				 dm_oblock_t oblock, dm_cblock_t cblock)
695 {
696 	check_if_tick_bio_needed(cache, bio);
697 	remap_to_cache(cache, bio, cblock);
698 	if (bio_data_dir(bio) == WRITE) {
699 		set_dirty(cache, oblock, cblock);
700 		clear_discard(cache, oblock);
701 	}
702 }
703 
704 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
705 {
706 	sector_t block_nr = bio->bi_iter.bi_sector;
707 
708 	if (!block_size_is_power_of_two(cache))
709 		(void) sector_div(block_nr, cache->sectors_per_block);
710 	else
711 		block_nr >>= cache->sectors_per_block_shift;
712 
713 	return to_oblock(block_nr);
714 }
715 
716 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
717 {
718 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
719 }
720 
721 static void issue(struct cache *cache, struct bio *bio)
722 {
723 	unsigned long flags;
724 
725 	if (!bio_triggers_commit(cache, bio)) {
726 		generic_make_request(bio);
727 		return;
728 	}
729 
730 	/*
731 	 * Batch together any bios that trigger commits and then issue a
732 	 * single commit for them in do_worker().
733 	 */
734 	spin_lock_irqsave(&cache->lock, flags);
735 	cache->commit_requested = true;
736 	bio_list_add(&cache->deferred_flush_bios, bio);
737 	spin_unlock_irqrestore(&cache->lock, flags);
738 }
739 
740 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
741 {
742 	unsigned long flags;
743 
744 	spin_lock_irqsave(&cache->lock, flags);
745 	bio_list_add(&cache->deferred_writethrough_bios, bio);
746 	spin_unlock_irqrestore(&cache->lock, flags);
747 
748 	wake_worker(cache);
749 }
750 
751 static void writethrough_endio(struct bio *bio, int err)
752 {
753 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
754 
755 	dm_unhook_bio(&pb->hook_info, bio);
756 
757 	if (err) {
758 		bio_endio(bio, err);
759 		return;
760 	}
761 
762 	dm_bio_restore(&pb->bio_details, bio);
763 	remap_to_cache(pb->cache, bio, pb->cblock);
764 
765 	/*
766 	 * We can't issue this bio directly, since we're in interrupt
767 	 * context.  So it gets put on a bio list for processing by the
768 	 * worker thread.
769 	 */
770 	defer_writethrough_bio(pb->cache, bio);
771 }
772 
773 /*
774  * When running in writethrough mode we need to send writes to clean blocks
775  * to both the cache and origin devices.  In future we'd like to clone the
776  * bio and send them in parallel, but for now we're doing them in
777  * series as this is easier.
778  */
779 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
780 				       dm_oblock_t oblock, dm_cblock_t cblock)
781 {
782 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
783 
784 	pb->cache = cache;
785 	pb->cblock = cblock;
786 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
787 	dm_bio_record(&pb->bio_details, bio);
788 
789 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
790 }
791 
792 /*----------------------------------------------------------------
793  * Migration processing
794  *
795  * Migration covers moving data from the origin device to the cache, or
796  * vice versa.
797  *--------------------------------------------------------------*/
798 static void free_migration(struct dm_cache_migration *mg)
799 {
800 	mempool_free(mg, mg->cache->migration_pool);
801 }
802 
803 static void inc_nr_migrations(struct cache *cache)
804 {
805 	atomic_inc(&cache->nr_migrations);
806 }
807 
808 static void dec_nr_migrations(struct cache *cache)
809 {
810 	atomic_dec(&cache->nr_migrations);
811 
812 	/*
813 	 * Wake the worker in case we're suspending the target.
814 	 */
815 	wake_up(&cache->migration_wait);
816 }
817 
818 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
819 			 bool holder)
820 {
821 	(holder ? dm_cell_release : dm_cell_release_no_holder)
822 		(cache->prison, cell, &cache->deferred_bios);
823 	free_prison_cell(cache, cell);
824 }
825 
826 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
827 		       bool holder)
828 {
829 	unsigned long flags;
830 
831 	spin_lock_irqsave(&cache->lock, flags);
832 	__cell_defer(cache, cell, holder);
833 	spin_unlock_irqrestore(&cache->lock, flags);
834 
835 	wake_worker(cache);
836 }
837 
838 static void cleanup_migration(struct dm_cache_migration *mg)
839 {
840 	struct cache *cache = mg->cache;
841 	free_migration(mg);
842 	dec_nr_migrations(cache);
843 }
844 
845 static void migration_failure(struct dm_cache_migration *mg)
846 {
847 	struct cache *cache = mg->cache;
848 
849 	if (mg->writeback) {
850 		DMWARN_LIMIT("writeback failed; couldn't copy block");
851 		set_dirty(cache, mg->old_oblock, mg->cblock);
852 		cell_defer(cache, mg->old_ocell, false);
853 
854 	} else if (mg->demote) {
855 		DMWARN_LIMIT("demotion failed; couldn't copy block");
856 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
857 
858 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
859 		if (mg->promote)
860 			cell_defer(cache, mg->new_ocell, true);
861 	} else {
862 		DMWARN_LIMIT("promotion failed; couldn't copy block");
863 		policy_remove_mapping(cache->policy, mg->new_oblock);
864 		cell_defer(cache, mg->new_ocell, true);
865 	}
866 
867 	cleanup_migration(mg);
868 }
869 
870 static void migration_success_pre_commit(struct dm_cache_migration *mg)
871 {
872 	unsigned long flags;
873 	struct cache *cache = mg->cache;
874 
875 	if (mg->writeback) {
876 		cell_defer(cache, mg->old_ocell, false);
877 		clear_dirty(cache, mg->old_oblock, mg->cblock);
878 		cleanup_migration(mg);
879 		return;
880 
881 	} else if (mg->demote) {
882 		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
883 			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
884 			policy_force_mapping(cache->policy, mg->new_oblock,
885 					     mg->old_oblock);
886 			if (mg->promote)
887 				cell_defer(cache, mg->new_ocell, true);
888 			cleanup_migration(mg);
889 			return;
890 		}
891 	} else {
892 		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
893 			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
894 			policy_remove_mapping(cache->policy, mg->new_oblock);
895 			cleanup_migration(mg);
896 			return;
897 		}
898 	}
899 
900 	spin_lock_irqsave(&cache->lock, flags);
901 	list_add_tail(&mg->list, &cache->need_commit_migrations);
902 	cache->commit_requested = true;
903 	spin_unlock_irqrestore(&cache->lock, flags);
904 }
905 
906 static void migration_success_post_commit(struct dm_cache_migration *mg)
907 {
908 	unsigned long flags;
909 	struct cache *cache = mg->cache;
910 
911 	if (mg->writeback) {
912 		DMWARN("writeback unexpectedly triggered commit");
913 		return;
914 
915 	} else if (mg->demote) {
916 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
917 
918 		if (mg->promote) {
919 			mg->demote = false;
920 
921 			spin_lock_irqsave(&cache->lock, flags);
922 			list_add_tail(&mg->list, &cache->quiesced_migrations);
923 			spin_unlock_irqrestore(&cache->lock, flags);
924 
925 		} else {
926 			if (mg->invalidate)
927 				policy_remove_mapping(cache->policy, mg->old_oblock);
928 			cleanup_migration(mg);
929 		}
930 
931 	} else {
932 		if (mg->requeue_holder)
933 			cell_defer(cache, mg->new_ocell, true);
934 		else {
935 			bio_endio(mg->new_ocell->holder, 0);
936 			cell_defer(cache, mg->new_ocell, false);
937 		}
938 		clear_dirty(cache, mg->new_oblock, mg->cblock);
939 		cleanup_migration(mg);
940 	}
941 }
942 
943 static void copy_complete(int read_err, unsigned long write_err, void *context)
944 {
945 	unsigned long flags;
946 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
947 	struct cache *cache = mg->cache;
948 
949 	if (read_err || write_err)
950 		mg->err = true;
951 
952 	spin_lock_irqsave(&cache->lock, flags);
953 	list_add_tail(&mg->list, &cache->completed_migrations);
954 	spin_unlock_irqrestore(&cache->lock, flags);
955 
956 	wake_worker(cache);
957 }
958 
959 static void issue_copy_real(struct dm_cache_migration *mg)
960 {
961 	int r;
962 	struct dm_io_region o_region, c_region;
963 	struct cache *cache = mg->cache;
964 	sector_t cblock = from_cblock(mg->cblock);
965 
966 	o_region.bdev = cache->origin_dev->bdev;
967 	o_region.count = cache->sectors_per_block;
968 
969 	c_region.bdev = cache->cache_dev->bdev;
970 	c_region.sector = cblock * cache->sectors_per_block;
971 	c_region.count = cache->sectors_per_block;
972 
973 	if (mg->writeback || mg->demote) {
974 		/* demote */
975 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
976 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
977 	} else {
978 		/* promote */
979 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
980 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
981 	}
982 
983 	if (r < 0) {
984 		DMERR_LIMIT("issuing migration failed");
985 		migration_failure(mg);
986 	}
987 }
988 
989 static void overwrite_endio(struct bio *bio, int err)
990 {
991 	struct dm_cache_migration *mg = bio->bi_private;
992 	struct cache *cache = mg->cache;
993 	size_t pb_data_size = get_per_bio_data_size(cache);
994 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
995 	unsigned long flags;
996 
997 	dm_unhook_bio(&pb->hook_info, bio);
998 
999 	if (err)
1000 		mg->err = true;
1001 
1002 	mg->requeue_holder = false;
1003 
1004 	spin_lock_irqsave(&cache->lock, flags);
1005 	list_add_tail(&mg->list, &cache->completed_migrations);
1006 	spin_unlock_irqrestore(&cache->lock, flags);
1007 
1008 	wake_worker(cache);
1009 }
1010 
1011 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1012 {
1013 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1014 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1015 
1016 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1017 	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1018 	generic_make_request(bio);
1019 }
1020 
1021 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1022 {
1023 	return (bio_data_dir(bio) == WRITE) &&
1024 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1025 }
1026 
1027 static void avoid_copy(struct dm_cache_migration *mg)
1028 {
1029 	atomic_inc(&mg->cache->stats.copies_avoided);
1030 	migration_success_pre_commit(mg);
1031 }
1032 
1033 static void issue_copy(struct dm_cache_migration *mg)
1034 {
1035 	bool avoid;
1036 	struct cache *cache = mg->cache;
1037 
1038 	if (mg->writeback || mg->demote)
1039 		avoid = !is_dirty(cache, mg->cblock) ||
1040 			is_discarded_oblock(cache, mg->old_oblock);
1041 	else {
1042 		struct bio *bio = mg->new_ocell->holder;
1043 
1044 		avoid = is_discarded_oblock(cache, mg->new_oblock);
1045 
1046 		if (!avoid && bio_writes_complete_block(cache, bio)) {
1047 			issue_overwrite(mg, bio);
1048 			return;
1049 		}
1050 	}
1051 
1052 	avoid ? avoid_copy(mg) : issue_copy_real(mg);
1053 }
1054 
1055 static void complete_migration(struct dm_cache_migration *mg)
1056 {
1057 	if (mg->err)
1058 		migration_failure(mg);
1059 	else
1060 		migration_success_pre_commit(mg);
1061 }
1062 
1063 static void process_migrations(struct cache *cache, struct list_head *head,
1064 			       void (*fn)(struct dm_cache_migration *))
1065 {
1066 	unsigned long flags;
1067 	struct list_head list;
1068 	struct dm_cache_migration *mg, *tmp;
1069 
1070 	INIT_LIST_HEAD(&list);
1071 	spin_lock_irqsave(&cache->lock, flags);
1072 	list_splice_init(head, &list);
1073 	spin_unlock_irqrestore(&cache->lock, flags);
1074 
1075 	list_for_each_entry_safe(mg, tmp, &list, list)
1076 		fn(mg);
1077 }
1078 
1079 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1080 {
1081 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1082 }
1083 
1084 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1085 {
1086 	unsigned long flags;
1087 	struct cache *cache = mg->cache;
1088 
1089 	spin_lock_irqsave(&cache->lock, flags);
1090 	__queue_quiesced_migration(mg);
1091 	spin_unlock_irqrestore(&cache->lock, flags);
1092 
1093 	wake_worker(cache);
1094 }
1095 
1096 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1097 {
1098 	unsigned long flags;
1099 	struct dm_cache_migration *mg, *tmp;
1100 
1101 	spin_lock_irqsave(&cache->lock, flags);
1102 	list_for_each_entry_safe(mg, tmp, work, list)
1103 		__queue_quiesced_migration(mg);
1104 	spin_unlock_irqrestore(&cache->lock, flags);
1105 
1106 	wake_worker(cache);
1107 }
1108 
1109 static void check_for_quiesced_migrations(struct cache *cache,
1110 					  struct per_bio_data *pb)
1111 {
1112 	struct list_head work;
1113 
1114 	if (!pb->all_io_entry)
1115 		return;
1116 
1117 	INIT_LIST_HEAD(&work);
1118 	if (pb->all_io_entry)
1119 		dm_deferred_entry_dec(pb->all_io_entry, &work);
1120 
1121 	if (!list_empty(&work))
1122 		queue_quiesced_migrations(cache, &work);
1123 }
1124 
1125 static void quiesce_migration(struct dm_cache_migration *mg)
1126 {
1127 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1128 		queue_quiesced_migration(mg);
1129 }
1130 
1131 static void promote(struct cache *cache, struct prealloc *structs,
1132 		    dm_oblock_t oblock, dm_cblock_t cblock,
1133 		    struct dm_bio_prison_cell *cell)
1134 {
1135 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1136 
1137 	mg->err = false;
1138 	mg->writeback = false;
1139 	mg->demote = false;
1140 	mg->promote = true;
1141 	mg->requeue_holder = true;
1142 	mg->invalidate = false;
1143 	mg->cache = cache;
1144 	mg->new_oblock = oblock;
1145 	mg->cblock = cblock;
1146 	mg->old_ocell = NULL;
1147 	mg->new_ocell = cell;
1148 	mg->start_jiffies = jiffies;
1149 
1150 	inc_nr_migrations(cache);
1151 	quiesce_migration(mg);
1152 }
1153 
1154 static void writeback(struct cache *cache, struct prealloc *structs,
1155 		      dm_oblock_t oblock, dm_cblock_t cblock,
1156 		      struct dm_bio_prison_cell *cell)
1157 {
1158 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1159 
1160 	mg->err = false;
1161 	mg->writeback = true;
1162 	mg->demote = false;
1163 	mg->promote = false;
1164 	mg->requeue_holder = true;
1165 	mg->invalidate = false;
1166 	mg->cache = cache;
1167 	mg->old_oblock = oblock;
1168 	mg->cblock = cblock;
1169 	mg->old_ocell = cell;
1170 	mg->new_ocell = NULL;
1171 	mg->start_jiffies = jiffies;
1172 
1173 	inc_nr_migrations(cache);
1174 	quiesce_migration(mg);
1175 }
1176 
1177 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1178 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1179 				dm_cblock_t cblock,
1180 				struct dm_bio_prison_cell *old_ocell,
1181 				struct dm_bio_prison_cell *new_ocell)
1182 {
1183 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1184 
1185 	mg->err = false;
1186 	mg->writeback = false;
1187 	mg->demote = true;
1188 	mg->promote = true;
1189 	mg->requeue_holder = true;
1190 	mg->invalidate = false;
1191 	mg->cache = cache;
1192 	mg->old_oblock = old_oblock;
1193 	mg->new_oblock = new_oblock;
1194 	mg->cblock = cblock;
1195 	mg->old_ocell = old_ocell;
1196 	mg->new_ocell = new_ocell;
1197 	mg->start_jiffies = jiffies;
1198 
1199 	inc_nr_migrations(cache);
1200 	quiesce_migration(mg);
1201 }
1202 
1203 /*
1204  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1205  * block are thrown away.
1206  */
1207 static void invalidate(struct cache *cache, struct prealloc *structs,
1208 		       dm_oblock_t oblock, dm_cblock_t cblock,
1209 		       struct dm_bio_prison_cell *cell)
1210 {
1211 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1212 
1213 	mg->err = false;
1214 	mg->writeback = false;
1215 	mg->demote = true;
1216 	mg->promote = false;
1217 	mg->requeue_holder = true;
1218 	mg->invalidate = true;
1219 	mg->cache = cache;
1220 	mg->old_oblock = oblock;
1221 	mg->cblock = cblock;
1222 	mg->old_ocell = cell;
1223 	mg->new_ocell = NULL;
1224 	mg->start_jiffies = jiffies;
1225 
1226 	inc_nr_migrations(cache);
1227 	quiesce_migration(mg);
1228 }
1229 
1230 /*----------------------------------------------------------------
1231  * bio processing
1232  *--------------------------------------------------------------*/
1233 static void defer_bio(struct cache *cache, struct bio *bio)
1234 {
1235 	unsigned long flags;
1236 
1237 	spin_lock_irqsave(&cache->lock, flags);
1238 	bio_list_add(&cache->deferred_bios, bio);
1239 	spin_unlock_irqrestore(&cache->lock, flags);
1240 
1241 	wake_worker(cache);
1242 }
1243 
1244 static void process_flush_bio(struct cache *cache, struct bio *bio)
1245 {
1246 	size_t pb_data_size = get_per_bio_data_size(cache);
1247 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1248 
1249 	BUG_ON(bio->bi_iter.bi_size);
1250 	if (!pb->req_nr)
1251 		remap_to_origin(cache, bio);
1252 	else
1253 		remap_to_cache(cache, bio, 0);
1254 
1255 	issue(cache, bio);
1256 }
1257 
1258 /*
1259  * People generally discard large parts of a device, eg, the whole device
1260  * when formatting.  Splitting these large discards up into cache block
1261  * sized ios and then quiescing (always neccessary for discard) takes too
1262  * long.
1263  *
1264  * We keep it simple, and allow any size of discard to come in, and just
1265  * mark off blocks on the discard bitset.  No passdown occurs!
1266  *
1267  * To implement passdown we need to change the bio_prison such that a cell
1268  * can have a key that spans many blocks.
1269  */
1270 static void process_discard_bio(struct cache *cache, struct bio *bio)
1271 {
1272 	dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector,
1273 						  cache->sectors_per_block);
1274 	dm_block_t end_block = bio_end_sector(bio);
1275 	dm_block_t b;
1276 
1277 	end_block = block_div(end_block, cache->sectors_per_block);
1278 
1279 	for (b = start_block; b < end_block; b++)
1280 		set_discard(cache, to_oblock(b));
1281 
1282 	bio_endio(bio, 0);
1283 }
1284 
1285 static bool spare_migration_bandwidth(struct cache *cache)
1286 {
1287 	sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1288 		cache->sectors_per_block;
1289 	return current_volume < cache->migration_threshold;
1290 }
1291 
1292 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1293 {
1294 	atomic_inc(bio_data_dir(bio) == READ ?
1295 		   &cache->stats.read_hit : &cache->stats.write_hit);
1296 }
1297 
1298 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1299 {
1300 	atomic_inc(bio_data_dir(bio) == READ ?
1301 		   &cache->stats.read_miss : &cache->stats.write_miss);
1302 }
1303 
1304 static void issue_cache_bio(struct cache *cache, struct bio *bio,
1305 			    struct per_bio_data *pb,
1306 			    dm_oblock_t oblock, dm_cblock_t cblock)
1307 {
1308 	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1309 	remap_to_cache_dirty(cache, bio, oblock, cblock);
1310 	issue(cache, bio);
1311 }
1312 
1313 static void process_bio(struct cache *cache, struct prealloc *structs,
1314 			struct bio *bio)
1315 {
1316 	int r;
1317 	bool release_cell = true;
1318 	dm_oblock_t block = get_bio_block(cache, bio);
1319 	struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1320 	struct policy_result lookup_result;
1321 	size_t pb_data_size = get_per_bio_data_size(cache);
1322 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1323 	bool discarded_block = is_discarded_oblock(cache, block);
1324 	bool passthrough = passthrough_mode(&cache->features);
1325 	bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1326 
1327 	/*
1328 	 * Check to see if that block is currently migrating.
1329 	 */
1330 	cell_prealloc = prealloc_get_cell(structs);
1331 	r = bio_detain(cache, block, bio, cell_prealloc,
1332 		       (cell_free_fn) prealloc_put_cell,
1333 		       structs, &new_ocell);
1334 	if (r > 0)
1335 		return;
1336 
1337 	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1338 		       bio, &lookup_result);
1339 
1340 	if (r == -EWOULDBLOCK)
1341 		/* migration has been denied */
1342 		lookup_result.op = POLICY_MISS;
1343 
1344 	switch (lookup_result.op) {
1345 	case POLICY_HIT:
1346 		if (passthrough) {
1347 			inc_miss_counter(cache, bio);
1348 
1349 			/*
1350 			 * Passthrough always maps to the origin,
1351 			 * invalidating any cache blocks that are written
1352 			 * to.
1353 			 */
1354 
1355 			if (bio_data_dir(bio) == WRITE) {
1356 				atomic_inc(&cache->stats.demotion);
1357 				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1358 				release_cell = false;
1359 
1360 			} else {
1361 				/* FIXME: factor out issue_origin() */
1362 				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1363 				remap_to_origin_clear_discard(cache, bio, block);
1364 				issue(cache, bio);
1365 			}
1366 		} else {
1367 			inc_hit_counter(cache, bio);
1368 
1369 			if (bio_data_dir(bio) == WRITE &&
1370 			    writethrough_mode(&cache->features) &&
1371 			    !is_dirty(cache, lookup_result.cblock)) {
1372 				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1373 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1374 				issue(cache, bio);
1375 			} else
1376 				issue_cache_bio(cache, bio, pb, block, lookup_result.cblock);
1377 		}
1378 
1379 		break;
1380 
1381 	case POLICY_MISS:
1382 		inc_miss_counter(cache, bio);
1383 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1384 		remap_to_origin_clear_discard(cache, bio, block);
1385 		issue(cache, bio);
1386 		break;
1387 
1388 	case POLICY_NEW:
1389 		atomic_inc(&cache->stats.promotion);
1390 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1391 		release_cell = false;
1392 		break;
1393 
1394 	case POLICY_REPLACE:
1395 		cell_prealloc = prealloc_get_cell(structs);
1396 		r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1397 			       (cell_free_fn) prealloc_put_cell,
1398 			       structs, &old_ocell);
1399 		if (r > 0) {
1400 			/*
1401 			 * We have to be careful to avoid lock inversion of
1402 			 * the cells.  So we back off, and wait for the
1403 			 * old_ocell to become free.
1404 			 */
1405 			policy_force_mapping(cache->policy, block,
1406 					     lookup_result.old_oblock);
1407 			atomic_inc(&cache->stats.cache_cell_clash);
1408 			break;
1409 		}
1410 		atomic_inc(&cache->stats.demotion);
1411 		atomic_inc(&cache->stats.promotion);
1412 
1413 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1414 				    block, lookup_result.cblock,
1415 				    old_ocell, new_ocell);
1416 		release_cell = false;
1417 		break;
1418 
1419 	default:
1420 		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1421 			    (unsigned) lookup_result.op);
1422 		bio_io_error(bio);
1423 	}
1424 
1425 	if (release_cell)
1426 		cell_defer(cache, new_ocell, false);
1427 }
1428 
1429 static int need_commit_due_to_time(struct cache *cache)
1430 {
1431 	return jiffies < cache->last_commit_jiffies ||
1432 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1433 }
1434 
1435 static int commit_if_needed(struct cache *cache)
1436 {
1437 	int r = 0;
1438 
1439 	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1440 	    dm_cache_changed_this_transaction(cache->cmd)) {
1441 		atomic_inc(&cache->stats.commit_count);
1442 		cache->commit_requested = false;
1443 		r = dm_cache_commit(cache->cmd, false);
1444 		cache->last_commit_jiffies = jiffies;
1445 	}
1446 
1447 	return r;
1448 }
1449 
1450 static void process_deferred_bios(struct cache *cache)
1451 {
1452 	unsigned long flags;
1453 	struct bio_list bios;
1454 	struct bio *bio;
1455 	struct prealloc structs;
1456 
1457 	memset(&structs, 0, sizeof(structs));
1458 	bio_list_init(&bios);
1459 
1460 	spin_lock_irqsave(&cache->lock, flags);
1461 	bio_list_merge(&bios, &cache->deferred_bios);
1462 	bio_list_init(&cache->deferred_bios);
1463 	spin_unlock_irqrestore(&cache->lock, flags);
1464 
1465 	while (!bio_list_empty(&bios)) {
1466 		/*
1467 		 * If we've got no free migration structs, and processing
1468 		 * this bio might require one, we pause until there are some
1469 		 * prepared mappings to process.
1470 		 */
1471 		if (prealloc_data_structs(cache, &structs)) {
1472 			spin_lock_irqsave(&cache->lock, flags);
1473 			bio_list_merge(&cache->deferred_bios, &bios);
1474 			spin_unlock_irqrestore(&cache->lock, flags);
1475 			break;
1476 		}
1477 
1478 		bio = bio_list_pop(&bios);
1479 
1480 		if (bio->bi_rw & REQ_FLUSH)
1481 			process_flush_bio(cache, bio);
1482 		else if (bio->bi_rw & REQ_DISCARD)
1483 			process_discard_bio(cache, bio);
1484 		else
1485 			process_bio(cache, &structs, bio);
1486 	}
1487 
1488 	prealloc_free_structs(cache, &structs);
1489 }
1490 
1491 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1492 {
1493 	unsigned long flags;
1494 	struct bio_list bios;
1495 	struct bio *bio;
1496 
1497 	bio_list_init(&bios);
1498 
1499 	spin_lock_irqsave(&cache->lock, flags);
1500 	bio_list_merge(&bios, &cache->deferred_flush_bios);
1501 	bio_list_init(&cache->deferred_flush_bios);
1502 	spin_unlock_irqrestore(&cache->lock, flags);
1503 
1504 	while ((bio = bio_list_pop(&bios)))
1505 		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1506 }
1507 
1508 static void process_deferred_writethrough_bios(struct cache *cache)
1509 {
1510 	unsigned long flags;
1511 	struct bio_list bios;
1512 	struct bio *bio;
1513 
1514 	bio_list_init(&bios);
1515 
1516 	spin_lock_irqsave(&cache->lock, flags);
1517 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1518 	bio_list_init(&cache->deferred_writethrough_bios);
1519 	spin_unlock_irqrestore(&cache->lock, flags);
1520 
1521 	while ((bio = bio_list_pop(&bios)))
1522 		generic_make_request(bio);
1523 }
1524 
1525 static void writeback_some_dirty_blocks(struct cache *cache)
1526 {
1527 	int r = 0;
1528 	dm_oblock_t oblock;
1529 	dm_cblock_t cblock;
1530 	struct prealloc structs;
1531 	struct dm_bio_prison_cell *old_ocell;
1532 
1533 	memset(&structs, 0, sizeof(structs));
1534 
1535 	while (spare_migration_bandwidth(cache)) {
1536 		if (prealloc_data_structs(cache, &structs))
1537 			break;
1538 
1539 		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1540 		if (r)
1541 			break;
1542 
1543 		r = get_cell(cache, oblock, &structs, &old_ocell);
1544 		if (r) {
1545 			policy_set_dirty(cache->policy, oblock);
1546 			break;
1547 		}
1548 
1549 		writeback(cache, &structs, oblock, cblock, old_ocell);
1550 	}
1551 
1552 	prealloc_free_structs(cache, &structs);
1553 }
1554 
1555 /*----------------------------------------------------------------
1556  * Invalidations.
1557  * Dropping something from the cache *without* writing back.
1558  *--------------------------------------------------------------*/
1559 
1560 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1561 {
1562 	int r = 0;
1563 	uint64_t begin = from_cblock(req->cblocks->begin);
1564 	uint64_t end = from_cblock(req->cblocks->end);
1565 
1566 	while (begin != end) {
1567 		r = policy_remove_cblock(cache->policy, to_cblock(begin));
1568 		if (!r) {
1569 			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1570 			if (r)
1571 				break;
1572 
1573 		} else if (r == -ENODATA) {
1574 			/* harmless, already unmapped */
1575 			r = 0;
1576 
1577 		} else {
1578 			DMERR("policy_remove_cblock failed");
1579 			break;
1580 		}
1581 
1582 		begin++;
1583         }
1584 
1585 	cache->commit_requested = true;
1586 
1587 	req->err = r;
1588 	atomic_set(&req->complete, 1);
1589 
1590 	wake_up(&req->result_wait);
1591 }
1592 
1593 static void process_invalidation_requests(struct cache *cache)
1594 {
1595 	struct list_head list;
1596 	struct invalidation_request *req, *tmp;
1597 
1598 	INIT_LIST_HEAD(&list);
1599 	spin_lock(&cache->invalidation_lock);
1600 	list_splice_init(&cache->invalidation_requests, &list);
1601 	spin_unlock(&cache->invalidation_lock);
1602 
1603 	list_for_each_entry_safe (req, tmp, &list, list)
1604 		process_invalidation_request(cache, req);
1605 }
1606 
1607 /*----------------------------------------------------------------
1608  * Main worker loop
1609  *--------------------------------------------------------------*/
1610 static bool is_quiescing(struct cache *cache)
1611 {
1612 	return atomic_read(&cache->quiescing);
1613 }
1614 
1615 static void ack_quiescing(struct cache *cache)
1616 {
1617 	if (is_quiescing(cache)) {
1618 		atomic_inc(&cache->quiescing_ack);
1619 		wake_up(&cache->quiescing_wait);
1620 	}
1621 }
1622 
1623 static void wait_for_quiescing_ack(struct cache *cache)
1624 {
1625 	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1626 }
1627 
1628 static void start_quiescing(struct cache *cache)
1629 {
1630 	atomic_inc(&cache->quiescing);
1631 	wait_for_quiescing_ack(cache);
1632 }
1633 
1634 static void stop_quiescing(struct cache *cache)
1635 {
1636 	atomic_set(&cache->quiescing, 0);
1637 	atomic_set(&cache->quiescing_ack, 0);
1638 }
1639 
1640 static void wait_for_migrations(struct cache *cache)
1641 {
1642 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1643 }
1644 
1645 static void stop_worker(struct cache *cache)
1646 {
1647 	cancel_delayed_work(&cache->waker);
1648 	flush_workqueue(cache->wq);
1649 }
1650 
1651 static void requeue_deferred_io(struct cache *cache)
1652 {
1653 	struct bio *bio;
1654 	struct bio_list bios;
1655 
1656 	bio_list_init(&bios);
1657 	bio_list_merge(&bios, &cache->deferred_bios);
1658 	bio_list_init(&cache->deferred_bios);
1659 
1660 	while ((bio = bio_list_pop(&bios)))
1661 		bio_endio(bio, DM_ENDIO_REQUEUE);
1662 }
1663 
1664 static int more_work(struct cache *cache)
1665 {
1666 	if (is_quiescing(cache))
1667 		return !list_empty(&cache->quiesced_migrations) ||
1668 			!list_empty(&cache->completed_migrations) ||
1669 			!list_empty(&cache->need_commit_migrations);
1670 	else
1671 		return !bio_list_empty(&cache->deferred_bios) ||
1672 			!bio_list_empty(&cache->deferred_flush_bios) ||
1673 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1674 			!list_empty(&cache->quiesced_migrations) ||
1675 			!list_empty(&cache->completed_migrations) ||
1676 			!list_empty(&cache->need_commit_migrations) ||
1677 			cache->invalidate;
1678 }
1679 
1680 static void do_worker(struct work_struct *ws)
1681 {
1682 	struct cache *cache = container_of(ws, struct cache, worker);
1683 
1684 	do {
1685 		if (!is_quiescing(cache)) {
1686 			writeback_some_dirty_blocks(cache);
1687 			process_deferred_writethrough_bios(cache);
1688 			process_deferred_bios(cache);
1689 			process_invalidation_requests(cache);
1690 		}
1691 
1692 		process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1693 		process_migrations(cache, &cache->completed_migrations, complete_migration);
1694 
1695 		if (commit_if_needed(cache)) {
1696 			process_deferred_flush_bios(cache, false);
1697 
1698 			/*
1699 			 * FIXME: rollback metadata or just go into a
1700 			 * failure mode and error everything
1701 			 */
1702 		} else {
1703 			process_deferred_flush_bios(cache, true);
1704 			process_migrations(cache, &cache->need_commit_migrations,
1705 					   migration_success_post_commit);
1706 		}
1707 
1708 		ack_quiescing(cache);
1709 
1710 	} while (more_work(cache));
1711 }
1712 
1713 /*
1714  * We want to commit periodically so that not too much
1715  * unwritten metadata builds up.
1716  */
1717 static void do_waker(struct work_struct *ws)
1718 {
1719 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1720 	policy_tick(cache->policy);
1721 	wake_worker(cache);
1722 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1723 }
1724 
1725 /*----------------------------------------------------------------*/
1726 
1727 static int is_congested(struct dm_dev *dev, int bdi_bits)
1728 {
1729 	struct request_queue *q = bdev_get_queue(dev->bdev);
1730 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1731 }
1732 
1733 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1734 {
1735 	struct cache *cache = container_of(cb, struct cache, callbacks);
1736 
1737 	return is_congested(cache->origin_dev, bdi_bits) ||
1738 		is_congested(cache->cache_dev, bdi_bits);
1739 }
1740 
1741 /*----------------------------------------------------------------
1742  * Target methods
1743  *--------------------------------------------------------------*/
1744 
1745 /*
1746  * This function gets called on the error paths of the constructor, so we
1747  * have to cope with a partially initialised struct.
1748  */
1749 static void destroy(struct cache *cache)
1750 {
1751 	unsigned i;
1752 
1753 	if (cache->next_migration)
1754 		mempool_free(cache->next_migration, cache->migration_pool);
1755 
1756 	if (cache->migration_pool)
1757 		mempool_destroy(cache->migration_pool);
1758 
1759 	if (cache->all_io_ds)
1760 		dm_deferred_set_destroy(cache->all_io_ds);
1761 
1762 	if (cache->prison)
1763 		dm_bio_prison_destroy(cache->prison);
1764 
1765 	if (cache->wq)
1766 		destroy_workqueue(cache->wq);
1767 
1768 	if (cache->dirty_bitset)
1769 		free_bitset(cache->dirty_bitset);
1770 
1771 	if (cache->discard_bitset)
1772 		free_bitset(cache->discard_bitset);
1773 
1774 	if (cache->copier)
1775 		dm_kcopyd_client_destroy(cache->copier);
1776 
1777 	if (cache->cmd)
1778 		dm_cache_metadata_close(cache->cmd);
1779 
1780 	if (cache->metadata_dev)
1781 		dm_put_device(cache->ti, cache->metadata_dev);
1782 
1783 	if (cache->origin_dev)
1784 		dm_put_device(cache->ti, cache->origin_dev);
1785 
1786 	if (cache->cache_dev)
1787 		dm_put_device(cache->ti, cache->cache_dev);
1788 
1789 	if (cache->policy)
1790 		dm_cache_policy_destroy(cache->policy);
1791 
1792 	for (i = 0; i < cache->nr_ctr_args ; i++)
1793 		kfree(cache->ctr_args[i]);
1794 	kfree(cache->ctr_args);
1795 
1796 	kfree(cache);
1797 }
1798 
1799 static void cache_dtr(struct dm_target *ti)
1800 {
1801 	struct cache *cache = ti->private;
1802 
1803 	destroy(cache);
1804 }
1805 
1806 static sector_t get_dev_size(struct dm_dev *dev)
1807 {
1808 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1809 }
1810 
1811 /*----------------------------------------------------------------*/
1812 
1813 /*
1814  * Construct a cache device mapping.
1815  *
1816  * cache <metadata dev> <cache dev> <origin dev> <block size>
1817  *       <#feature args> [<feature arg>]*
1818  *       <policy> <#policy args> [<policy arg>]*
1819  *
1820  * metadata dev    : fast device holding the persistent metadata
1821  * cache dev	   : fast device holding cached data blocks
1822  * origin dev	   : slow device holding original data blocks
1823  * block size	   : cache unit size in sectors
1824  *
1825  * #feature args   : number of feature arguments passed
1826  * feature args    : writethrough.  (The default is writeback.)
1827  *
1828  * policy	   : the replacement policy to use
1829  * #policy args    : an even number of policy arguments corresponding
1830  *		     to key/value pairs passed to the policy
1831  * policy args	   : key/value pairs passed to the policy
1832  *		     E.g. 'sequential_threshold 1024'
1833  *		     See cache-policies.txt for details.
1834  *
1835  * Optional feature arguments are:
1836  *   writethrough  : write through caching that prohibits cache block
1837  *		     content from being different from origin block content.
1838  *		     Without this argument, the default behaviour is to write
1839  *		     back cache block contents later for performance reasons,
1840  *		     so they may differ from the corresponding origin blocks.
1841  */
1842 struct cache_args {
1843 	struct dm_target *ti;
1844 
1845 	struct dm_dev *metadata_dev;
1846 
1847 	struct dm_dev *cache_dev;
1848 	sector_t cache_sectors;
1849 
1850 	struct dm_dev *origin_dev;
1851 	sector_t origin_sectors;
1852 
1853 	uint32_t block_size;
1854 
1855 	const char *policy_name;
1856 	int policy_argc;
1857 	const char **policy_argv;
1858 
1859 	struct cache_features features;
1860 };
1861 
1862 static void destroy_cache_args(struct cache_args *ca)
1863 {
1864 	if (ca->metadata_dev)
1865 		dm_put_device(ca->ti, ca->metadata_dev);
1866 
1867 	if (ca->cache_dev)
1868 		dm_put_device(ca->ti, ca->cache_dev);
1869 
1870 	if (ca->origin_dev)
1871 		dm_put_device(ca->ti, ca->origin_dev);
1872 
1873 	kfree(ca);
1874 }
1875 
1876 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1877 {
1878 	if (!as->argc) {
1879 		*error = "Insufficient args";
1880 		return false;
1881 	}
1882 
1883 	return true;
1884 }
1885 
1886 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1887 			      char **error)
1888 {
1889 	int r;
1890 	sector_t metadata_dev_size;
1891 	char b[BDEVNAME_SIZE];
1892 
1893 	if (!at_least_one_arg(as, error))
1894 		return -EINVAL;
1895 
1896 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1897 			  &ca->metadata_dev);
1898 	if (r) {
1899 		*error = "Error opening metadata device";
1900 		return r;
1901 	}
1902 
1903 	metadata_dev_size = get_dev_size(ca->metadata_dev);
1904 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1905 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1906 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1907 
1908 	return 0;
1909 }
1910 
1911 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1912 			   char **error)
1913 {
1914 	int r;
1915 
1916 	if (!at_least_one_arg(as, error))
1917 		return -EINVAL;
1918 
1919 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1920 			  &ca->cache_dev);
1921 	if (r) {
1922 		*error = "Error opening cache device";
1923 		return r;
1924 	}
1925 	ca->cache_sectors = get_dev_size(ca->cache_dev);
1926 
1927 	return 0;
1928 }
1929 
1930 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1931 			    char **error)
1932 {
1933 	int r;
1934 
1935 	if (!at_least_one_arg(as, error))
1936 		return -EINVAL;
1937 
1938 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1939 			  &ca->origin_dev);
1940 	if (r) {
1941 		*error = "Error opening origin device";
1942 		return r;
1943 	}
1944 
1945 	ca->origin_sectors = get_dev_size(ca->origin_dev);
1946 	if (ca->ti->len > ca->origin_sectors) {
1947 		*error = "Device size larger than cached device";
1948 		return -EINVAL;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1955 			    char **error)
1956 {
1957 	unsigned long block_size;
1958 
1959 	if (!at_least_one_arg(as, error))
1960 		return -EINVAL;
1961 
1962 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1963 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1964 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1965 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1966 		*error = "Invalid data block size";
1967 		return -EINVAL;
1968 	}
1969 
1970 	if (block_size > ca->cache_sectors) {
1971 		*error = "Data block size is larger than the cache device";
1972 		return -EINVAL;
1973 	}
1974 
1975 	ca->block_size = block_size;
1976 
1977 	return 0;
1978 }
1979 
1980 static void init_features(struct cache_features *cf)
1981 {
1982 	cf->mode = CM_WRITE;
1983 	cf->io_mode = CM_IO_WRITEBACK;
1984 }
1985 
1986 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1987 			  char **error)
1988 {
1989 	static struct dm_arg _args[] = {
1990 		{0, 1, "Invalid number of cache feature arguments"},
1991 	};
1992 
1993 	int r;
1994 	unsigned argc;
1995 	const char *arg;
1996 	struct cache_features *cf = &ca->features;
1997 
1998 	init_features(cf);
1999 
2000 	r = dm_read_arg_group(_args, as, &argc, error);
2001 	if (r)
2002 		return -EINVAL;
2003 
2004 	while (argc--) {
2005 		arg = dm_shift_arg(as);
2006 
2007 		if (!strcasecmp(arg, "writeback"))
2008 			cf->io_mode = CM_IO_WRITEBACK;
2009 
2010 		else if (!strcasecmp(arg, "writethrough"))
2011 			cf->io_mode = CM_IO_WRITETHROUGH;
2012 
2013 		else if (!strcasecmp(arg, "passthrough"))
2014 			cf->io_mode = CM_IO_PASSTHROUGH;
2015 
2016 		else {
2017 			*error = "Unrecognised cache feature requested";
2018 			return -EINVAL;
2019 		}
2020 	}
2021 
2022 	return 0;
2023 }
2024 
2025 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2026 			char **error)
2027 {
2028 	static struct dm_arg _args[] = {
2029 		{0, 1024, "Invalid number of policy arguments"},
2030 	};
2031 
2032 	int r;
2033 
2034 	if (!at_least_one_arg(as, error))
2035 		return -EINVAL;
2036 
2037 	ca->policy_name = dm_shift_arg(as);
2038 
2039 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2040 	if (r)
2041 		return -EINVAL;
2042 
2043 	ca->policy_argv = (const char **)as->argv;
2044 	dm_consume_args(as, ca->policy_argc);
2045 
2046 	return 0;
2047 }
2048 
2049 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2050 			    char **error)
2051 {
2052 	int r;
2053 	struct dm_arg_set as;
2054 
2055 	as.argc = argc;
2056 	as.argv = argv;
2057 
2058 	r = parse_metadata_dev(ca, &as, error);
2059 	if (r)
2060 		return r;
2061 
2062 	r = parse_cache_dev(ca, &as, error);
2063 	if (r)
2064 		return r;
2065 
2066 	r = parse_origin_dev(ca, &as, error);
2067 	if (r)
2068 		return r;
2069 
2070 	r = parse_block_size(ca, &as, error);
2071 	if (r)
2072 		return r;
2073 
2074 	r = parse_features(ca, &as, error);
2075 	if (r)
2076 		return r;
2077 
2078 	r = parse_policy(ca, &as, error);
2079 	if (r)
2080 		return r;
2081 
2082 	return 0;
2083 }
2084 
2085 /*----------------------------------------------------------------*/
2086 
2087 static struct kmem_cache *migration_cache;
2088 
2089 #define NOT_CORE_OPTION 1
2090 
2091 static int process_config_option(struct cache *cache, const char *key, const char *value)
2092 {
2093 	unsigned long tmp;
2094 
2095 	if (!strcasecmp(key, "migration_threshold")) {
2096 		if (kstrtoul(value, 10, &tmp))
2097 			return -EINVAL;
2098 
2099 		cache->migration_threshold = tmp;
2100 		return 0;
2101 	}
2102 
2103 	return NOT_CORE_OPTION;
2104 }
2105 
2106 static int set_config_value(struct cache *cache, const char *key, const char *value)
2107 {
2108 	int r = process_config_option(cache, key, value);
2109 
2110 	if (r == NOT_CORE_OPTION)
2111 		r = policy_set_config_value(cache->policy, key, value);
2112 
2113 	if (r)
2114 		DMWARN("bad config value for %s: %s", key, value);
2115 
2116 	return r;
2117 }
2118 
2119 static int set_config_values(struct cache *cache, int argc, const char **argv)
2120 {
2121 	int r = 0;
2122 
2123 	if (argc & 1) {
2124 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2125 		return -EINVAL;
2126 	}
2127 
2128 	while (argc) {
2129 		r = set_config_value(cache, argv[0], argv[1]);
2130 		if (r)
2131 			break;
2132 
2133 		argc -= 2;
2134 		argv += 2;
2135 	}
2136 
2137 	return r;
2138 }
2139 
2140 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2141 			       char **error)
2142 {
2143 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2144 							   cache->cache_size,
2145 							   cache->origin_sectors,
2146 							   cache->sectors_per_block);
2147 	if (IS_ERR(p)) {
2148 		*error = "Error creating cache's policy";
2149 		return PTR_ERR(p);
2150 	}
2151 	cache->policy = p;
2152 
2153 	return 0;
2154 }
2155 
2156 #define DEFAULT_MIGRATION_THRESHOLD 2048
2157 
2158 static int cache_create(struct cache_args *ca, struct cache **result)
2159 {
2160 	int r = 0;
2161 	char **error = &ca->ti->error;
2162 	struct cache *cache;
2163 	struct dm_target *ti = ca->ti;
2164 	dm_block_t origin_blocks;
2165 	struct dm_cache_metadata *cmd;
2166 	bool may_format = ca->features.mode == CM_WRITE;
2167 
2168 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2169 	if (!cache)
2170 		return -ENOMEM;
2171 
2172 	cache->ti = ca->ti;
2173 	ti->private = cache;
2174 	ti->num_flush_bios = 2;
2175 	ti->flush_supported = true;
2176 
2177 	ti->num_discard_bios = 1;
2178 	ti->discards_supported = true;
2179 	ti->discard_zeroes_data_unsupported = true;
2180 	/* Discard bios must be split on a block boundary */
2181 	ti->split_discard_bios = true;
2182 
2183 	cache->features = ca->features;
2184 	ti->per_bio_data_size = get_per_bio_data_size(cache);
2185 
2186 	cache->callbacks.congested_fn = cache_is_congested;
2187 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2188 
2189 	cache->metadata_dev = ca->metadata_dev;
2190 	cache->origin_dev = ca->origin_dev;
2191 	cache->cache_dev = ca->cache_dev;
2192 
2193 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2194 
2195 	/* FIXME: factor out this whole section */
2196 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2197 	origin_blocks = block_div(origin_blocks, ca->block_size);
2198 	cache->origin_blocks = to_oblock(origin_blocks);
2199 
2200 	cache->sectors_per_block = ca->block_size;
2201 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2202 		r = -EINVAL;
2203 		goto bad;
2204 	}
2205 
2206 	if (ca->block_size & (ca->block_size - 1)) {
2207 		dm_block_t cache_size = ca->cache_sectors;
2208 
2209 		cache->sectors_per_block_shift = -1;
2210 		cache_size = block_div(cache_size, ca->block_size);
2211 		cache->cache_size = to_cblock(cache_size);
2212 	} else {
2213 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2214 		cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
2215 	}
2216 
2217 	r = create_cache_policy(cache, ca, error);
2218 	if (r)
2219 		goto bad;
2220 
2221 	cache->policy_nr_args = ca->policy_argc;
2222 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2223 
2224 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2225 	if (r) {
2226 		*error = "Error setting cache policy's config values";
2227 		goto bad;
2228 	}
2229 
2230 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2231 				     ca->block_size, may_format,
2232 				     dm_cache_policy_get_hint_size(cache->policy));
2233 	if (IS_ERR(cmd)) {
2234 		*error = "Error creating metadata object";
2235 		r = PTR_ERR(cmd);
2236 		goto bad;
2237 	}
2238 	cache->cmd = cmd;
2239 
2240 	if (passthrough_mode(&cache->features)) {
2241 		bool all_clean;
2242 
2243 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2244 		if (r) {
2245 			*error = "dm_cache_metadata_all_clean() failed";
2246 			goto bad;
2247 		}
2248 
2249 		if (!all_clean) {
2250 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2251 			r = -EINVAL;
2252 			goto bad;
2253 		}
2254 	}
2255 
2256 	spin_lock_init(&cache->lock);
2257 	bio_list_init(&cache->deferred_bios);
2258 	bio_list_init(&cache->deferred_flush_bios);
2259 	bio_list_init(&cache->deferred_writethrough_bios);
2260 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2261 	INIT_LIST_HEAD(&cache->completed_migrations);
2262 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2263 	atomic_set(&cache->nr_migrations, 0);
2264 	init_waitqueue_head(&cache->migration_wait);
2265 
2266 	init_waitqueue_head(&cache->quiescing_wait);
2267 	atomic_set(&cache->quiescing, 0);
2268 	atomic_set(&cache->quiescing_ack, 0);
2269 
2270 	r = -ENOMEM;
2271 	atomic_set(&cache->nr_dirty, 0);
2272 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2273 	if (!cache->dirty_bitset) {
2274 		*error = "could not allocate dirty bitset";
2275 		goto bad;
2276 	}
2277 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2278 
2279 	cache->discard_nr_blocks = cache->origin_blocks;
2280 	cache->discard_bitset = alloc_bitset(from_oblock(cache->discard_nr_blocks));
2281 	if (!cache->discard_bitset) {
2282 		*error = "could not allocate discard bitset";
2283 		goto bad;
2284 	}
2285 	clear_bitset(cache->discard_bitset, from_oblock(cache->discard_nr_blocks));
2286 
2287 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2288 	if (IS_ERR(cache->copier)) {
2289 		*error = "could not create kcopyd client";
2290 		r = PTR_ERR(cache->copier);
2291 		goto bad;
2292 	}
2293 
2294 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2295 	if (!cache->wq) {
2296 		*error = "could not create workqueue for metadata object";
2297 		goto bad;
2298 	}
2299 	INIT_WORK(&cache->worker, do_worker);
2300 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2301 	cache->last_commit_jiffies = jiffies;
2302 
2303 	cache->prison = dm_bio_prison_create(PRISON_CELLS);
2304 	if (!cache->prison) {
2305 		*error = "could not create bio prison";
2306 		goto bad;
2307 	}
2308 
2309 	cache->all_io_ds = dm_deferred_set_create();
2310 	if (!cache->all_io_ds) {
2311 		*error = "could not create all_io deferred set";
2312 		goto bad;
2313 	}
2314 
2315 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2316 							 migration_cache);
2317 	if (!cache->migration_pool) {
2318 		*error = "Error creating cache's migration mempool";
2319 		goto bad;
2320 	}
2321 
2322 	cache->next_migration = NULL;
2323 
2324 	cache->need_tick_bio = true;
2325 	cache->sized = false;
2326 	cache->invalidate = false;
2327 	cache->commit_requested = false;
2328 	cache->loaded_mappings = false;
2329 	cache->loaded_discards = false;
2330 
2331 	load_stats(cache);
2332 
2333 	atomic_set(&cache->stats.demotion, 0);
2334 	atomic_set(&cache->stats.promotion, 0);
2335 	atomic_set(&cache->stats.copies_avoided, 0);
2336 	atomic_set(&cache->stats.cache_cell_clash, 0);
2337 	atomic_set(&cache->stats.commit_count, 0);
2338 	atomic_set(&cache->stats.discard_count, 0);
2339 
2340 	spin_lock_init(&cache->invalidation_lock);
2341 	INIT_LIST_HEAD(&cache->invalidation_requests);
2342 
2343 	*result = cache;
2344 	return 0;
2345 
2346 bad:
2347 	destroy(cache);
2348 	return r;
2349 }
2350 
2351 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2352 {
2353 	unsigned i;
2354 	const char **copy;
2355 
2356 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2357 	if (!copy)
2358 		return -ENOMEM;
2359 	for (i = 0; i < argc; i++) {
2360 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2361 		if (!copy[i]) {
2362 			while (i--)
2363 				kfree(copy[i]);
2364 			kfree(copy);
2365 			return -ENOMEM;
2366 		}
2367 	}
2368 
2369 	cache->nr_ctr_args = argc;
2370 	cache->ctr_args = copy;
2371 
2372 	return 0;
2373 }
2374 
2375 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2376 {
2377 	int r = -EINVAL;
2378 	struct cache_args *ca;
2379 	struct cache *cache = NULL;
2380 
2381 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2382 	if (!ca) {
2383 		ti->error = "Error allocating memory for cache";
2384 		return -ENOMEM;
2385 	}
2386 	ca->ti = ti;
2387 
2388 	r = parse_cache_args(ca, argc, argv, &ti->error);
2389 	if (r)
2390 		goto out;
2391 
2392 	r = cache_create(ca, &cache);
2393 	if (r)
2394 		goto out;
2395 
2396 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2397 	if (r) {
2398 		destroy(cache);
2399 		goto out;
2400 	}
2401 
2402 	ti->private = cache;
2403 
2404 out:
2405 	destroy_cache_args(ca);
2406 	return r;
2407 }
2408 
2409 static int cache_map(struct dm_target *ti, struct bio *bio)
2410 {
2411 	struct cache *cache = ti->private;
2412 
2413 	int r;
2414 	dm_oblock_t block = get_bio_block(cache, bio);
2415 	size_t pb_data_size = get_per_bio_data_size(cache);
2416 	bool can_migrate = false;
2417 	bool discarded_block;
2418 	struct dm_bio_prison_cell *cell;
2419 	struct policy_result lookup_result;
2420 	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
2421 
2422 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2423 		/*
2424 		 * This can only occur if the io goes to a partial block at
2425 		 * the end of the origin device.  We don't cache these.
2426 		 * Just remap to the origin and carry on.
2427 		 */
2428 		remap_to_origin(cache, bio);
2429 		return DM_MAPIO_REMAPPED;
2430 	}
2431 
2432 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2433 		defer_bio(cache, bio);
2434 		return DM_MAPIO_SUBMITTED;
2435 	}
2436 
2437 	/*
2438 	 * Check to see if that block is currently migrating.
2439 	 */
2440 	cell = alloc_prison_cell(cache);
2441 	if (!cell) {
2442 		defer_bio(cache, bio);
2443 		return DM_MAPIO_SUBMITTED;
2444 	}
2445 
2446 	r = bio_detain(cache, block, bio, cell,
2447 		       (cell_free_fn) free_prison_cell,
2448 		       cache, &cell);
2449 	if (r) {
2450 		if (r < 0)
2451 			defer_bio(cache, bio);
2452 
2453 		return DM_MAPIO_SUBMITTED;
2454 	}
2455 
2456 	discarded_block = is_discarded_oblock(cache, block);
2457 
2458 	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2459 		       bio, &lookup_result);
2460 	if (r == -EWOULDBLOCK) {
2461 		cell_defer(cache, cell, true);
2462 		return DM_MAPIO_SUBMITTED;
2463 
2464 	} else if (r) {
2465 		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2466 		bio_io_error(bio);
2467 		return DM_MAPIO_SUBMITTED;
2468 	}
2469 
2470 	r = DM_MAPIO_REMAPPED;
2471 	switch (lookup_result.op) {
2472 	case POLICY_HIT:
2473 		if (passthrough_mode(&cache->features)) {
2474 			if (bio_data_dir(bio) == WRITE) {
2475 				/*
2476 				 * We need to invalidate this block, so
2477 				 * defer for the worker thread.
2478 				 */
2479 				cell_defer(cache, cell, true);
2480 				r = DM_MAPIO_SUBMITTED;
2481 
2482 			} else {
2483 				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2484 				inc_miss_counter(cache, bio);
2485 				remap_to_origin_clear_discard(cache, bio, block);
2486 
2487 				cell_defer(cache, cell, false);
2488 			}
2489 
2490 		} else {
2491 			inc_hit_counter(cache, bio);
2492 			pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2493 
2494 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2495 			    !is_dirty(cache, lookup_result.cblock))
2496 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2497 			else
2498 				remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2499 
2500 			cell_defer(cache, cell, false);
2501 		}
2502 		break;
2503 
2504 	case POLICY_MISS:
2505 		inc_miss_counter(cache, bio);
2506 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2507 
2508 		if (pb->req_nr != 0) {
2509 			/*
2510 			 * This is a duplicate writethrough io that is no
2511 			 * longer needed because the block has been demoted.
2512 			 */
2513 			bio_endio(bio, 0);
2514 			cell_defer(cache, cell, false);
2515 			return DM_MAPIO_SUBMITTED;
2516 		} else {
2517 			remap_to_origin_clear_discard(cache, bio, block);
2518 			cell_defer(cache, cell, false);
2519 		}
2520 		break;
2521 
2522 	default:
2523 		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2524 			    (unsigned) lookup_result.op);
2525 		bio_io_error(bio);
2526 		r = DM_MAPIO_SUBMITTED;
2527 	}
2528 
2529 	return r;
2530 }
2531 
2532 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2533 {
2534 	struct cache *cache = ti->private;
2535 	unsigned long flags;
2536 	size_t pb_data_size = get_per_bio_data_size(cache);
2537 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2538 
2539 	if (pb->tick) {
2540 		policy_tick(cache->policy);
2541 
2542 		spin_lock_irqsave(&cache->lock, flags);
2543 		cache->need_tick_bio = true;
2544 		spin_unlock_irqrestore(&cache->lock, flags);
2545 	}
2546 
2547 	check_for_quiesced_migrations(cache, pb);
2548 
2549 	return 0;
2550 }
2551 
2552 static int write_dirty_bitset(struct cache *cache)
2553 {
2554 	unsigned i, r;
2555 
2556 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2557 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2558 				       is_dirty(cache, to_cblock(i)));
2559 		if (r)
2560 			return r;
2561 	}
2562 
2563 	return 0;
2564 }
2565 
2566 static int write_discard_bitset(struct cache *cache)
2567 {
2568 	unsigned i, r;
2569 
2570 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->sectors_per_block,
2571 					   cache->origin_blocks);
2572 	if (r) {
2573 		DMERR("could not resize on-disk discard bitset");
2574 		return r;
2575 	}
2576 
2577 	for (i = 0; i < from_oblock(cache->discard_nr_blocks); i++) {
2578 		r = dm_cache_set_discard(cache->cmd, to_oblock(i),
2579 					 is_discarded(cache, to_oblock(i)));
2580 		if (r)
2581 			return r;
2582 	}
2583 
2584 	return 0;
2585 }
2586 
2587 /*
2588  * returns true on success
2589  */
2590 static bool sync_metadata(struct cache *cache)
2591 {
2592 	int r1, r2, r3, r4;
2593 
2594 	r1 = write_dirty_bitset(cache);
2595 	if (r1)
2596 		DMERR("could not write dirty bitset");
2597 
2598 	r2 = write_discard_bitset(cache);
2599 	if (r2)
2600 		DMERR("could not write discard bitset");
2601 
2602 	save_stats(cache);
2603 
2604 	r3 = dm_cache_write_hints(cache->cmd, cache->policy);
2605 	if (r3)
2606 		DMERR("could not write hints");
2607 
2608 	/*
2609 	 * If writing the above metadata failed, we still commit, but don't
2610 	 * set the clean shutdown flag.  This will effectively force every
2611 	 * dirty bit to be set on reload.
2612 	 */
2613 	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2614 	if (r4)
2615 		DMERR("could not write cache metadata.  Data loss may occur.");
2616 
2617 	return !r1 && !r2 && !r3 && !r4;
2618 }
2619 
2620 static void cache_postsuspend(struct dm_target *ti)
2621 {
2622 	struct cache *cache = ti->private;
2623 
2624 	start_quiescing(cache);
2625 	wait_for_migrations(cache);
2626 	stop_worker(cache);
2627 	requeue_deferred_io(cache);
2628 	stop_quiescing(cache);
2629 
2630 	(void) sync_metadata(cache);
2631 }
2632 
2633 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2634 			bool dirty, uint32_t hint, bool hint_valid)
2635 {
2636 	int r;
2637 	struct cache *cache = context;
2638 
2639 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2640 	if (r)
2641 		return r;
2642 
2643 	if (dirty)
2644 		set_dirty(cache, oblock, cblock);
2645 	else
2646 		clear_dirty(cache, oblock, cblock);
2647 
2648 	return 0;
2649 }
2650 
2651 static int load_discard(void *context, sector_t discard_block_size,
2652 			dm_oblock_t oblock, bool discard)
2653 {
2654 	struct cache *cache = context;
2655 
2656 	if (discard)
2657 		set_discard(cache, oblock);
2658 	else
2659 		clear_discard(cache, oblock);
2660 
2661 	return 0;
2662 }
2663 
2664 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2665 {
2666 	sector_t size = get_dev_size(cache->cache_dev);
2667 	(void) sector_div(size, cache->sectors_per_block);
2668 	return to_cblock(size);
2669 }
2670 
2671 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2672 {
2673 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
2674 		return true;
2675 
2676 	/*
2677 	 * We can't drop a dirty block when shrinking the cache.
2678 	 */
2679 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2680 		new_size = to_cblock(from_cblock(new_size) + 1);
2681 		if (is_dirty(cache, new_size)) {
2682 			DMERR("unable to shrink cache; cache block %llu is dirty",
2683 			      (unsigned long long) from_cblock(new_size));
2684 			return false;
2685 		}
2686 	}
2687 
2688 	return true;
2689 }
2690 
2691 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2692 {
2693 	int r;
2694 
2695 	r = dm_cache_resize(cache->cmd, new_size);
2696 	if (r) {
2697 		DMERR("could not resize cache metadata");
2698 		return r;
2699 	}
2700 
2701 	cache->cache_size = new_size;
2702 
2703 	return 0;
2704 }
2705 
2706 static int cache_preresume(struct dm_target *ti)
2707 {
2708 	int r = 0;
2709 	struct cache *cache = ti->private;
2710 	dm_cblock_t csize = get_cache_dev_size(cache);
2711 
2712 	/*
2713 	 * Check to see if the cache has resized.
2714 	 */
2715 	if (!cache->sized) {
2716 		r = resize_cache_dev(cache, csize);
2717 		if (r)
2718 			return r;
2719 
2720 		cache->sized = true;
2721 
2722 	} else if (csize != cache->cache_size) {
2723 		if (!can_resize(cache, csize))
2724 			return -EINVAL;
2725 
2726 		r = resize_cache_dev(cache, csize);
2727 		if (r)
2728 			return r;
2729 	}
2730 
2731 	if (!cache->loaded_mappings) {
2732 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2733 					   load_mapping, cache);
2734 		if (r) {
2735 			DMERR("could not load cache mappings");
2736 			return r;
2737 		}
2738 
2739 		cache->loaded_mappings = true;
2740 	}
2741 
2742 	if (!cache->loaded_discards) {
2743 		r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2744 		if (r) {
2745 			DMERR("could not load origin discards");
2746 			return r;
2747 		}
2748 
2749 		cache->loaded_discards = true;
2750 	}
2751 
2752 	return r;
2753 }
2754 
2755 static void cache_resume(struct dm_target *ti)
2756 {
2757 	struct cache *cache = ti->private;
2758 
2759 	cache->need_tick_bio = true;
2760 	do_waker(&cache->waker.work);
2761 }
2762 
2763 /*
2764  * Status format:
2765  *
2766  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
2767  * <cache block size> <#used cache blocks>/<#total cache blocks>
2768  * <#read hits> <#read misses> <#write hits> <#write misses>
2769  * <#demotions> <#promotions> <#dirty>
2770  * <#features> <features>*
2771  * <#core args> <core args>
2772  * <policy name> <#policy args> <policy args>*
2773  */
2774 static void cache_status(struct dm_target *ti, status_type_t type,
2775 			 unsigned status_flags, char *result, unsigned maxlen)
2776 {
2777 	int r = 0;
2778 	unsigned i;
2779 	ssize_t sz = 0;
2780 	dm_block_t nr_free_blocks_metadata = 0;
2781 	dm_block_t nr_blocks_metadata = 0;
2782 	char buf[BDEVNAME_SIZE];
2783 	struct cache *cache = ti->private;
2784 	dm_cblock_t residency;
2785 
2786 	switch (type) {
2787 	case STATUSTYPE_INFO:
2788 		/* Commit to ensure statistics aren't out-of-date */
2789 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2790 			r = dm_cache_commit(cache->cmd, false);
2791 			if (r)
2792 				DMERR("could not commit metadata for accurate status");
2793 		}
2794 
2795 		r = dm_cache_get_free_metadata_block_count(cache->cmd,
2796 							   &nr_free_blocks_metadata);
2797 		if (r) {
2798 			DMERR("could not get metadata free block count");
2799 			goto err;
2800 		}
2801 
2802 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2803 		if (r) {
2804 			DMERR("could not get metadata device size");
2805 			goto err;
2806 		}
2807 
2808 		residency = policy_residency(cache->policy);
2809 
2810 		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
2811 		       (unsigned)(DM_CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT),
2812 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2813 		       (unsigned long long)nr_blocks_metadata,
2814 		       cache->sectors_per_block,
2815 		       (unsigned long long) from_cblock(residency),
2816 		       (unsigned long long) from_cblock(cache->cache_size),
2817 		       (unsigned) atomic_read(&cache->stats.read_hit),
2818 		       (unsigned) atomic_read(&cache->stats.read_miss),
2819 		       (unsigned) atomic_read(&cache->stats.write_hit),
2820 		       (unsigned) atomic_read(&cache->stats.write_miss),
2821 		       (unsigned) atomic_read(&cache->stats.demotion),
2822 		       (unsigned) atomic_read(&cache->stats.promotion),
2823 		       (unsigned long) atomic_read(&cache->nr_dirty));
2824 
2825 		if (writethrough_mode(&cache->features))
2826 			DMEMIT("1 writethrough ");
2827 
2828 		else if (passthrough_mode(&cache->features))
2829 			DMEMIT("1 passthrough ");
2830 
2831 		else if (writeback_mode(&cache->features))
2832 			DMEMIT("1 writeback ");
2833 
2834 		else {
2835 			DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
2836 			goto err;
2837 		}
2838 
2839 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2840 
2841 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
2842 		if (sz < maxlen) {
2843 			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2844 			if (r)
2845 				DMERR("policy_emit_config_values returned %d", r);
2846 		}
2847 
2848 		break;
2849 
2850 	case STATUSTYPE_TABLE:
2851 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2852 		DMEMIT("%s ", buf);
2853 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2854 		DMEMIT("%s ", buf);
2855 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2856 		DMEMIT("%s", buf);
2857 
2858 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
2859 			DMEMIT(" %s", cache->ctr_args[i]);
2860 		if (cache->nr_ctr_args)
2861 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2862 	}
2863 
2864 	return;
2865 
2866 err:
2867 	DMEMIT("Error");
2868 }
2869 
2870 /*
2871  * A cache block range can take two forms:
2872  *
2873  * i) A single cblock, eg. '3456'
2874  * ii) A begin and end cblock with dots between, eg. 123-234
2875  */
2876 static int parse_cblock_range(struct cache *cache, const char *str,
2877 			      struct cblock_range *result)
2878 {
2879 	char dummy;
2880 	uint64_t b, e;
2881 	int r;
2882 
2883 	/*
2884 	 * Try and parse form (ii) first.
2885 	 */
2886 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
2887 	if (r < 0)
2888 		return r;
2889 
2890 	if (r == 2) {
2891 		result->begin = to_cblock(b);
2892 		result->end = to_cblock(e);
2893 		return 0;
2894 	}
2895 
2896 	/*
2897 	 * That didn't work, try form (i).
2898 	 */
2899 	r = sscanf(str, "%llu%c", &b, &dummy);
2900 	if (r < 0)
2901 		return r;
2902 
2903 	if (r == 1) {
2904 		result->begin = to_cblock(b);
2905 		result->end = to_cblock(from_cblock(result->begin) + 1u);
2906 		return 0;
2907 	}
2908 
2909 	DMERR("invalid cblock range '%s'", str);
2910 	return -EINVAL;
2911 }
2912 
2913 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
2914 {
2915 	uint64_t b = from_cblock(range->begin);
2916 	uint64_t e = from_cblock(range->end);
2917 	uint64_t n = from_cblock(cache->cache_size);
2918 
2919 	if (b >= n) {
2920 		DMERR("begin cblock out of range: %llu >= %llu", b, n);
2921 		return -EINVAL;
2922 	}
2923 
2924 	if (e > n) {
2925 		DMERR("end cblock out of range: %llu > %llu", e, n);
2926 		return -EINVAL;
2927 	}
2928 
2929 	if (b >= e) {
2930 		DMERR("invalid cblock range: %llu >= %llu", b, e);
2931 		return -EINVAL;
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 static int request_invalidation(struct cache *cache, struct cblock_range *range)
2938 {
2939 	struct invalidation_request req;
2940 
2941 	INIT_LIST_HEAD(&req.list);
2942 	req.cblocks = range;
2943 	atomic_set(&req.complete, 0);
2944 	req.err = 0;
2945 	init_waitqueue_head(&req.result_wait);
2946 
2947 	spin_lock(&cache->invalidation_lock);
2948 	list_add(&req.list, &cache->invalidation_requests);
2949 	spin_unlock(&cache->invalidation_lock);
2950 	wake_worker(cache);
2951 
2952 	wait_event(req.result_wait, atomic_read(&req.complete));
2953 	return req.err;
2954 }
2955 
2956 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
2957 					      const char **cblock_ranges)
2958 {
2959 	int r = 0;
2960 	unsigned i;
2961 	struct cblock_range range;
2962 
2963 	if (!passthrough_mode(&cache->features)) {
2964 		DMERR("cache has to be in passthrough mode for invalidation");
2965 		return -EPERM;
2966 	}
2967 
2968 	for (i = 0; i < count; i++) {
2969 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
2970 		if (r)
2971 			break;
2972 
2973 		r = validate_cblock_range(cache, &range);
2974 		if (r)
2975 			break;
2976 
2977 		/*
2978 		 * Pass begin and end origin blocks to the worker and wake it.
2979 		 */
2980 		r = request_invalidation(cache, &range);
2981 		if (r)
2982 			break;
2983 	}
2984 
2985 	return r;
2986 }
2987 
2988 /*
2989  * Supports
2990  *	"<key> <value>"
2991  * and
2992  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
2993  *
2994  * The key migration_threshold is supported by the cache target core.
2995  */
2996 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2997 {
2998 	struct cache *cache = ti->private;
2999 
3000 	if (!argc)
3001 		return -EINVAL;
3002 
3003 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3004 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3005 
3006 	if (argc != 2)
3007 		return -EINVAL;
3008 
3009 	return set_config_value(cache, argv[0], argv[1]);
3010 }
3011 
3012 static int cache_iterate_devices(struct dm_target *ti,
3013 				 iterate_devices_callout_fn fn, void *data)
3014 {
3015 	int r = 0;
3016 	struct cache *cache = ti->private;
3017 
3018 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3019 	if (!r)
3020 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3021 
3022 	return r;
3023 }
3024 
3025 /*
3026  * We assume I/O is going to the origin (which is the volume
3027  * more likely to have restrictions e.g. by being striped).
3028  * (Looking up the exact location of the data would be expensive
3029  * and could always be out of date by the time the bio is submitted.)
3030  */
3031 static int cache_bvec_merge(struct dm_target *ti,
3032 			    struct bvec_merge_data *bvm,
3033 			    struct bio_vec *biovec, int max_size)
3034 {
3035 	struct cache *cache = ti->private;
3036 	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3037 
3038 	if (!q->merge_bvec_fn)
3039 		return max_size;
3040 
3041 	bvm->bi_bdev = cache->origin_dev->bdev;
3042 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3043 }
3044 
3045 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3046 {
3047 	/*
3048 	 * FIXME: these limits may be incompatible with the cache device
3049 	 */
3050 	limits->max_discard_sectors = cache->sectors_per_block;
3051 	limits->discard_granularity = cache->sectors_per_block << SECTOR_SHIFT;
3052 }
3053 
3054 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3055 {
3056 	struct cache *cache = ti->private;
3057 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3058 
3059 	/*
3060 	 * If the system-determined stacked limits are compatible with the
3061 	 * cache's blocksize (io_opt is a factor) do not override them.
3062 	 */
3063 	if (io_opt_sectors < cache->sectors_per_block ||
3064 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3065 		blk_limits_io_min(limits, 0);
3066 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3067 	}
3068 	set_discard_limits(cache, limits);
3069 }
3070 
3071 /*----------------------------------------------------------------*/
3072 
3073 static struct target_type cache_target = {
3074 	.name = "cache",
3075 	.version = {1, 4, 0},
3076 	.module = THIS_MODULE,
3077 	.ctr = cache_ctr,
3078 	.dtr = cache_dtr,
3079 	.map = cache_map,
3080 	.end_io = cache_end_io,
3081 	.postsuspend = cache_postsuspend,
3082 	.preresume = cache_preresume,
3083 	.resume = cache_resume,
3084 	.status = cache_status,
3085 	.message = cache_message,
3086 	.iterate_devices = cache_iterate_devices,
3087 	.merge = cache_bvec_merge,
3088 	.io_hints = cache_io_hints,
3089 };
3090 
3091 static int __init dm_cache_init(void)
3092 {
3093 	int r;
3094 
3095 	r = dm_register_target(&cache_target);
3096 	if (r) {
3097 		DMERR("cache target registration failed: %d", r);
3098 		return r;
3099 	}
3100 
3101 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3102 	if (!migration_cache) {
3103 		dm_unregister_target(&cache_target);
3104 		return -ENOMEM;
3105 	}
3106 
3107 	return 0;
3108 }
3109 
3110 static void __exit dm_cache_exit(void)
3111 {
3112 	dm_unregister_target(&cache_target);
3113 	kmem_cache_destroy(migration_cache);
3114 }
3115 
3116 module_init(dm_cache_init);
3117 module_exit(dm_cache_exit);
3118 
3119 MODULE_DESCRIPTION(DM_NAME " cache target");
3120 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3121 MODULE_LICENSE("GPL");
3122