1 /* 2 * Copyright (C) 2012 Red Hat. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-prison.h" 9 #include "dm-bio-record.h" 10 #include "dm-cache-metadata.h" 11 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/init.h> 15 #include <linux/mempool.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/vmalloc.h> 19 20 #define DM_MSG_PREFIX "cache" 21 22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, 23 "A percentage of time allocated for copying to and/or from cache"); 24 25 /*----------------------------------------------------------------*/ 26 27 /* 28 * Glossary: 29 * 30 * oblock: index of an origin block 31 * cblock: index of a cache block 32 * promotion: movement of a block from origin to cache 33 * demotion: movement of a block from cache to origin 34 * migration: movement of a block between the origin and cache device, 35 * either direction 36 */ 37 38 /*----------------------------------------------------------------*/ 39 40 static size_t bitset_size_in_bytes(unsigned nr_entries) 41 { 42 return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG); 43 } 44 45 static unsigned long *alloc_bitset(unsigned nr_entries) 46 { 47 size_t s = bitset_size_in_bytes(nr_entries); 48 return vzalloc(s); 49 } 50 51 static void clear_bitset(void *bitset, unsigned nr_entries) 52 { 53 size_t s = bitset_size_in_bytes(nr_entries); 54 memset(bitset, 0, s); 55 } 56 57 static void free_bitset(unsigned long *bits) 58 { 59 vfree(bits); 60 } 61 62 /*----------------------------------------------------------------*/ 63 64 /* 65 * There are a couple of places where we let a bio run, but want to do some 66 * work before calling its endio function. We do this by temporarily 67 * changing the endio fn. 68 */ 69 struct dm_hook_info { 70 bio_end_io_t *bi_end_io; 71 void *bi_private; 72 }; 73 74 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio, 75 bio_end_io_t *bi_end_io, void *bi_private) 76 { 77 h->bi_end_io = bio->bi_end_io; 78 h->bi_private = bio->bi_private; 79 80 bio->bi_end_io = bi_end_io; 81 bio->bi_private = bi_private; 82 } 83 84 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio) 85 { 86 bio->bi_end_io = h->bi_end_io; 87 bio->bi_private = h->bi_private; 88 89 /* 90 * Must bump bi_remaining to allow bio to complete with 91 * restored bi_end_io. 92 */ 93 atomic_inc(&bio->bi_remaining); 94 } 95 96 /*----------------------------------------------------------------*/ 97 98 #define PRISON_CELLS 1024 99 #define MIGRATION_POOL_SIZE 128 100 #define COMMIT_PERIOD HZ 101 #define MIGRATION_COUNT_WINDOW 10 102 103 /* 104 * The block size of the device holding cache data must be 105 * between 32KB and 1GB. 106 */ 107 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) 108 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 109 110 /* 111 * FIXME: the cache is read/write for the time being. 112 */ 113 enum cache_metadata_mode { 114 CM_WRITE, /* metadata may be changed */ 115 CM_READ_ONLY, /* metadata may not be changed */ 116 }; 117 118 enum cache_io_mode { 119 /* 120 * Data is written to cached blocks only. These blocks are marked 121 * dirty. If you lose the cache device you will lose data. 122 * Potential performance increase for both reads and writes. 123 */ 124 CM_IO_WRITEBACK, 125 126 /* 127 * Data is written to both cache and origin. Blocks are never 128 * dirty. Potential performance benfit for reads only. 129 */ 130 CM_IO_WRITETHROUGH, 131 132 /* 133 * A degraded mode useful for various cache coherency situations 134 * (eg, rolling back snapshots). Reads and writes always go to the 135 * origin. If a write goes to a cached oblock, then the cache 136 * block is invalidated. 137 */ 138 CM_IO_PASSTHROUGH 139 }; 140 141 struct cache_features { 142 enum cache_metadata_mode mode; 143 enum cache_io_mode io_mode; 144 }; 145 146 struct cache_stats { 147 atomic_t read_hit; 148 atomic_t read_miss; 149 atomic_t write_hit; 150 atomic_t write_miss; 151 atomic_t demotion; 152 atomic_t promotion; 153 atomic_t copies_avoided; 154 atomic_t cache_cell_clash; 155 atomic_t commit_count; 156 atomic_t discard_count; 157 }; 158 159 /* 160 * Defines a range of cblocks, begin to (end - 1) are in the range. end is 161 * the one-past-the-end value. 162 */ 163 struct cblock_range { 164 dm_cblock_t begin; 165 dm_cblock_t end; 166 }; 167 168 struct invalidation_request { 169 struct list_head list; 170 struct cblock_range *cblocks; 171 172 atomic_t complete; 173 int err; 174 175 wait_queue_head_t result_wait; 176 }; 177 178 struct cache { 179 struct dm_target *ti; 180 struct dm_target_callbacks callbacks; 181 182 struct dm_cache_metadata *cmd; 183 184 /* 185 * Metadata is written to this device. 186 */ 187 struct dm_dev *metadata_dev; 188 189 /* 190 * The slower of the two data devices. Typically a spindle. 191 */ 192 struct dm_dev *origin_dev; 193 194 /* 195 * The faster of the two data devices. Typically an SSD. 196 */ 197 struct dm_dev *cache_dev; 198 199 /* 200 * Size of the origin device in _complete_ blocks and native sectors. 201 */ 202 dm_oblock_t origin_blocks; 203 sector_t origin_sectors; 204 205 /* 206 * Size of the cache device in blocks. 207 */ 208 dm_cblock_t cache_size; 209 210 /* 211 * Fields for converting from sectors to blocks. 212 */ 213 uint32_t sectors_per_block; 214 int sectors_per_block_shift; 215 216 spinlock_t lock; 217 struct bio_list deferred_bios; 218 struct bio_list deferred_flush_bios; 219 struct bio_list deferred_writethrough_bios; 220 struct list_head quiesced_migrations; 221 struct list_head completed_migrations; 222 struct list_head need_commit_migrations; 223 sector_t migration_threshold; 224 wait_queue_head_t migration_wait; 225 atomic_t nr_migrations; 226 227 wait_queue_head_t quiescing_wait; 228 atomic_t quiescing; 229 atomic_t quiescing_ack; 230 231 /* 232 * cache_size entries, dirty if set 233 */ 234 atomic_t nr_dirty; 235 unsigned long *dirty_bitset; 236 237 /* 238 * origin_blocks entries, discarded if set. 239 */ 240 dm_oblock_t discard_nr_blocks; 241 unsigned long *discard_bitset; 242 243 /* 244 * Rather than reconstructing the table line for the status we just 245 * save it and regurgitate. 246 */ 247 unsigned nr_ctr_args; 248 const char **ctr_args; 249 250 struct dm_kcopyd_client *copier; 251 struct workqueue_struct *wq; 252 struct work_struct worker; 253 254 struct delayed_work waker; 255 unsigned long last_commit_jiffies; 256 257 struct dm_bio_prison *prison; 258 struct dm_deferred_set *all_io_ds; 259 260 mempool_t *migration_pool; 261 struct dm_cache_migration *next_migration; 262 263 struct dm_cache_policy *policy; 264 unsigned policy_nr_args; 265 266 bool need_tick_bio:1; 267 bool sized:1; 268 bool invalidate:1; 269 bool commit_requested:1; 270 bool loaded_mappings:1; 271 bool loaded_discards:1; 272 273 /* 274 * Cache features such as write-through. 275 */ 276 struct cache_features features; 277 278 struct cache_stats stats; 279 280 /* 281 * Invalidation fields. 282 */ 283 spinlock_t invalidation_lock; 284 struct list_head invalidation_requests; 285 }; 286 287 struct per_bio_data { 288 bool tick:1; 289 unsigned req_nr:2; 290 struct dm_deferred_entry *all_io_entry; 291 struct dm_hook_info hook_info; 292 293 /* 294 * writethrough fields. These MUST remain at the end of this 295 * structure and the 'cache' member must be the first as it 296 * is used to determine the offset of the writethrough fields. 297 */ 298 struct cache *cache; 299 dm_cblock_t cblock; 300 struct dm_bio_details bio_details; 301 }; 302 303 struct dm_cache_migration { 304 struct list_head list; 305 struct cache *cache; 306 307 unsigned long start_jiffies; 308 dm_oblock_t old_oblock; 309 dm_oblock_t new_oblock; 310 dm_cblock_t cblock; 311 312 bool err:1; 313 bool writeback:1; 314 bool demote:1; 315 bool promote:1; 316 bool requeue_holder:1; 317 bool invalidate:1; 318 319 struct dm_bio_prison_cell *old_ocell; 320 struct dm_bio_prison_cell *new_ocell; 321 }; 322 323 /* 324 * Processing a bio in the worker thread may require these memory 325 * allocations. We prealloc to avoid deadlocks (the same worker thread 326 * frees them back to the mempool). 327 */ 328 struct prealloc { 329 struct dm_cache_migration *mg; 330 struct dm_bio_prison_cell *cell1; 331 struct dm_bio_prison_cell *cell2; 332 }; 333 334 static void wake_worker(struct cache *cache) 335 { 336 queue_work(cache->wq, &cache->worker); 337 } 338 339 /*----------------------------------------------------------------*/ 340 341 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache) 342 { 343 /* FIXME: change to use a local slab. */ 344 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT); 345 } 346 347 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell) 348 { 349 dm_bio_prison_free_cell(cache->prison, cell); 350 } 351 352 static int prealloc_data_structs(struct cache *cache, struct prealloc *p) 353 { 354 if (!p->mg) { 355 p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT); 356 if (!p->mg) 357 return -ENOMEM; 358 } 359 360 if (!p->cell1) { 361 p->cell1 = alloc_prison_cell(cache); 362 if (!p->cell1) 363 return -ENOMEM; 364 } 365 366 if (!p->cell2) { 367 p->cell2 = alloc_prison_cell(cache); 368 if (!p->cell2) 369 return -ENOMEM; 370 } 371 372 return 0; 373 } 374 375 static void prealloc_free_structs(struct cache *cache, struct prealloc *p) 376 { 377 if (p->cell2) 378 free_prison_cell(cache, p->cell2); 379 380 if (p->cell1) 381 free_prison_cell(cache, p->cell1); 382 383 if (p->mg) 384 mempool_free(p->mg, cache->migration_pool); 385 } 386 387 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p) 388 { 389 struct dm_cache_migration *mg = p->mg; 390 391 BUG_ON(!mg); 392 p->mg = NULL; 393 394 return mg; 395 } 396 397 /* 398 * You must have a cell within the prealloc struct to return. If not this 399 * function will BUG() rather than returning NULL. 400 */ 401 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p) 402 { 403 struct dm_bio_prison_cell *r = NULL; 404 405 if (p->cell1) { 406 r = p->cell1; 407 p->cell1 = NULL; 408 409 } else if (p->cell2) { 410 r = p->cell2; 411 p->cell2 = NULL; 412 } else 413 BUG(); 414 415 return r; 416 } 417 418 /* 419 * You can't have more than two cells in a prealloc struct. BUG() will be 420 * called if you try and overfill. 421 */ 422 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell) 423 { 424 if (!p->cell2) 425 p->cell2 = cell; 426 427 else if (!p->cell1) 428 p->cell1 = cell; 429 430 else 431 BUG(); 432 } 433 434 /*----------------------------------------------------------------*/ 435 436 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key) 437 { 438 key->virtual = 0; 439 key->dev = 0; 440 key->block = from_oblock(oblock); 441 } 442 443 /* 444 * The caller hands in a preallocated cell, and a free function for it. 445 * The cell will be freed if there's an error, or if it wasn't used because 446 * a cell with that key already exists. 447 */ 448 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell); 449 450 static int bio_detain(struct cache *cache, dm_oblock_t oblock, 451 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc, 452 cell_free_fn free_fn, void *free_context, 453 struct dm_bio_prison_cell **cell_result) 454 { 455 int r; 456 struct dm_cell_key key; 457 458 build_key(oblock, &key); 459 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result); 460 if (r) 461 free_fn(free_context, cell_prealloc); 462 463 return r; 464 } 465 466 static int get_cell(struct cache *cache, 467 dm_oblock_t oblock, 468 struct prealloc *structs, 469 struct dm_bio_prison_cell **cell_result) 470 { 471 int r; 472 struct dm_cell_key key; 473 struct dm_bio_prison_cell *cell_prealloc; 474 475 cell_prealloc = prealloc_get_cell(structs); 476 477 build_key(oblock, &key); 478 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result); 479 if (r) 480 prealloc_put_cell(structs, cell_prealloc); 481 482 return r; 483 } 484 485 /*----------------------------------------------------------------*/ 486 487 static bool is_dirty(struct cache *cache, dm_cblock_t b) 488 { 489 return test_bit(from_cblock(b), cache->dirty_bitset); 490 } 491 492 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock) 493 { 494 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { 495 atomic_inc(&cache->nr_dirty); 496 policy_set_dirty(cache->policy, oblock); 497 } 498 } 499 500 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock) 501 { 502 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { 503 policy_clear_dirty(cache->policy, oblock); 504 if (atomic_dec_return(&cache->nr_dirty) == 0) 505 dm_table_event(cache->ti->table); 506 } 507 } 508 509 /*----------------------------------------------------------------*/ 510 511 static bool block_size_is_power_of_two(struct cache *cache) 512 { 513 return cache->sectors_per_block_shift >= 0; 514 } 515 516 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */ 517 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6 518 __always_inline 519 #endif 520 static dm_block_t block_div(dm_block_t b, uint32_t n) 521 { 522 do_div(b, n); 523 524 return b; 525 } 526 527 static void set_discard(struct cache *cache, dm_oblock_t b) 528 { 529 unsigned long flags; 530 531 atomic_inc(&cache->stats.discard_count); 532 533 spin_lock_irqsave(&cache->lock, flags); 534 set_bit(from_oblock(b), cache->discard_bitset); 535 spin_unlock_irqrestore(&cache->lock, flags); 536 } 537 538 static void clear_discard(struct cache *cache, dm_oblock_t b) 539 { 540 unsigned long flags; 541 542 spin_lock_irqsave(&cache->lock, flags); 543 clear_bit(from_oblock(b), cache->discard_bitset); 544 spin_unlock_irqrestore(&cache->lock, flags); 545 } 546 547 static bool is_discarded(struct cache *cache, dm_oblock_t b) 548 { 549 int r; 550 unsigned long flags; 551 552 spin_lock_irqsave(&cache->lock, flags); 553 r = test_bit(from_oblock(b), cache->discard_bitset); 554 spin_unlock_irqrestore(&cache->lock, flags); 555 556 return r; 557 } 558 559 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) 560 { 561 int r; 562 unsigned long flags; 563 564 spin_lock_irqsave(&cache->lock, flags); 565 r = test_bit(from_oblock(b), cache->discard_bitset); 566 spin_unlock_irqrestore(&cache->lock, flags); 567 568 return r; 569 } 570 571 /*----------------------------------------------------------------*/ 572 573 static void load_stats(struct cache *cache) 574 { 575 struct dm_cache_statistics stats; 576 577 dm_cache_metadata_get_stats(cache->cmd, &stats); 578 atomic_set(&cache->stats.read_hit, stats.read_hits); 579 atomic_set(&cache->stats.read_miss, stats.read_misses); 580 atomic_set(&cache->stats.write_hit, stats.write_hits); 581 atomic_set(&cache->stats.write_miss, stats.write_misses); 582 } 583 584 static void save_stats(struct cache *cache) 585 { 586 struct dm_cache_statistics stats; 587 588 stats.read_hits = atomic_read(&cache->stats.read_hit); 589 stats.read_misses = atomic_read(&cache->stats.read_miss); 590 stats.write_hits = atomic_read(&cache->stats.write_hit); 591 stats.write_misses = atomic_read(&cache->stats.write_miss); 592 593 dm_cache_metadata_set_stats(cache->cmd, &stats); 594 } 595 596 /*---------------------------------------------------------------- 597 * Per bio data 598 *--------------------------------------------------------------*/ 599 600 /* 601 * If using writeback, leave out struct per_bio_data's writethrough fields. 602 */ 603 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache)) 604 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data)) 605 606 static bool writethrough_mode(struct cache_features *f) 607 { 608 return f->io_mode == CM_IO_WRITETHROUGH; 609 } 610 611 static bool writeback_mode(struct cache_features *f) 612 { 613 return f->io_mode == CM_IO_WRITEBACK; 614 } 615 616 static bool passthrough_mode(struct cache_features *f) 617 { 618 return f->io_mode == CM_IO_PASSTHROUGH; 619 } 620 621 static size_t get_per_bio_data_size(struct cache *cache) 622 { 623 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB; 624 } 625 626 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size) 627 { 628 struct per_bio_data *pb = dm_per_bio_data(bio, data_size); 629 BUG_ON(!pb); 630 return pb; 631 } 632 633 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size) 634 { 635 struct per_bio_data *pb = get_per_bio_data(bio, data_size); 636 637 pb->tick = false; 638 pb->req_nr = dm_bio_get_target_bio_nr(bio); 639 pb->all_io_entry = NULL; 640 641 return pb; 642 } 643 644 /*---------------------------------------------------------------- 645 * Remapping 646 *--------------------------------------------------------------*/ 647 static void remap_to_origin(struct cache *cache, struct bio *bio) 648 { 649 bio->bi_bdev = cache->origin_dev->bdev; 650 } 651 652 static void remap_to_cache(struct cache *cache, struct bio *bio, 653 dm_cblock_t cblock) 654 { 655 sector_t bi_sector = bio->bi_iter.bi_sector; 656 sector_t block = from_cblock(cblock); 657 658 bio->bi_bdev = cache->cache_dev->bdev; 659 if (!block_size_is_power_of_two(cache)) 660 bio->bi_iter.bi_sector = 661 (block * cache->sectors_per_block) + 662 sector_div(bi_sector, cache->sectors_per_block); 663 else 664 bio->bi_iter.bi_sector = 665 (block << cache->sectors_per_block_shift) | 666 (bi_sector & (cache->sectors_per_block - 1)); 667 } 668 669 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) 670 { 671 unsigned long flags; 672 size_t pb_data_size = get_per_bio_data_size(cache); 673 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 674 675 spin_lock_irqsave(&cache->lock, flags); 676 if (cache->need_tick_bio && 677 !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) { 678 pb->tick = true; 679 cache->need_tick_bio = false; 680 } 681 spin_unlock_irqrestore(&cache->lock, flags); 682 } 683 684 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, 685 dm_oblock_t oblock) 686 { 687 check_if_tick_bio_needed(cache, bio); 688 remap_to_origin(cache, bio); 689 if (bio_data_dir(bio) == WRITE) 690 clear_discard(cache, oblock); 691 } 692 693 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, 694 dm_oblock_t oblock, dm_cblock_t cblock) 695 { 696 check_if_tick_bio_needed(cache, bio); 697 remap_to_cache(cache, bio, cblock); 698 if (bio_data_dir(bio) == WRITE) { 699 set_dirty(cache, oblock, cblock); 700 clear_discard(cache, oblock); 701 } 702 } 703 704 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) 705 { 706 sector_t block_nr = bio->bi_iter.bi_sector; 707 708 if (!block_size_is_power_of_two(cache)) 709 (void) sector_div(block_nr, cache->sectors_per_block); 710 else 711 block_nr >>= cache->sectors_per_block_shift; 712 713 return to_oblock(block_nr); 714 } 715 716 static int bio_triggers_commit(struct cache *cache, struct bio *bio) 717 { 718 return bio->bi_rw & (REQ_FLUSH | REQ_FUA); 719 } 720 721 static void issue(struct cache *cache, struct bio *bio) 722 { 723 unsigned long flags; 724 725 if (!bio_triggers_commit(cache, bio)) { 726 generic_make_request(bio); 727 return; 728 } 729 730 /* 731 * Batch together any bios that trigger commits and then issue a 732 * single commit for them in do_worker(). 733 */ 734 spin_lock_irqsave(&cache->lock, flags); 735 cache->commit_requested = true; 736 bio_list_add(&cache->deferred_flush_bios, bio); 737 spin_unlock_irqrestore(&cache->lock, flags); 738 } 739 740 static void defer_writethrough_bio(struct cache *cache, struct bio *bio) 741 { 742 unsigned long flags; 743 744 spin_lock_irqsave(&cache->lock, flags); 745 bio_list_add(&cache->deferred_writethrough_bios, bio); 746 spin_unlock_irqrestore(&cache->lock, flags); 747 748 wake_worker(cache); 749 } 750 751 static void writethrough_endio(struct bio *bio, int err) 752 { 753 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT); 754 755 dm_unhook_bio(&pb->hook_info, bio); 756 757 if (err) { 758 bio_endio(bio, err); 759 return; 760 } 761 762 dm_bio_restore(&pb->bio_details, bio); 763 remap_to_cache(pb->cache, bio, pb->cblock); 764 765 /* 766 * We can't issue this bio directly, since we're in interrupt 767 * context. So it gets put on a bio list for processing by the 768 * worker thread. 769 */ 770 defer_writethrough_bio(pb->cache, bio); 771 } 772 773 /* 774 * When running in writethrough mode we need to send writes to clean blocks 775 * to both the cache and origin devices. In future we'd like to clone the 776 * bio and send them in parallel, but for now we're doing them in 777 * series as this is easier. 778 */ 779 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio, 780 dm_oblock_t oblock, dm_cblock_t cblock) 781 { 782 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT); 783 784 pb->cache = cache; 785 pb->cblock = cblock; 786 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL); 787 dm_bio_record(&pb->bio_details, bio); 788 789 remap_to_origin_clear_discard(pb->cache, bio, oblock); 790 } 791 792 /*---------------------------------------------------------------- 793 * Migration processing 794 * 795 * Migration covers moving data from the origin device to the cache, or 796 * vice versa. 797 *--------------------------------------------------------------*/ 798 static void free_migration(struct dm_cache_migration *mg) 799 { 800 mempool_free(mg, mg->cache->migration_pool); 801 } 802 803 static void inc_nr_migrations(struct cache *cache) 804 { 805 atomic_inc(&cache->nr_migrations); 806 } 807 808 static void dec_nr_migrations(struct cache *cache) 809 { 810 atomic_dec(&cache->nr_migrations); 811 812 /* 813 * Wake the worker in case we're suspending the target. 814 */ 815 wake_up(&cache->migration_wait); 816 } 817 818 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, 819 bool holder) 820 { 821 (holder ? dm_cell_release : dm_cell_release_no_holder) 822 (cache->prison, cell, &cache->deferred_bios); 823 free_prison_cell(cache, cell); 824 } 825 826 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, 827 bool holder) 828 { 829 unsigned long flags; 830 831 spin_lock_irqsave(&cache->lock, flags); 832 __cell_defer(cache, cell, holder); 833 spin_unlock_irqrestore(&cache->lock, flags); 834 835 wake_worker(cache); 836 } 837 838 static void cleanup_migration(struct dm_cache_migration *mg) 839 { 840 struct cache *cache = mg->cache; 841 free_migration(mg); 842 dec_nr_migrations(cache); 843 } 844 845 static void migration_failure(struct dm_cache_migration *mg) 846 { 847 struct cache *cache = mg->cache; 848 849 if (mg->writeback) { 850 DMWARN_LIMIT("writeback failed; couldn't copy block"); 851 set_dirty(cache, mg->old_oblock, mg->cblock); 852 cell_defer(cache, mg->old_ocell, false); 853 854 } else if (mg->demote) { 855 DMWARN_LIMIT("demotion failed; couldn't copy block"); 856 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock); 857 858 cell_defer(cache, mg->old_ocell, mg->promote ? false : true); 859 if (mg->promote) 860 cell_defer(cache, mg->new_ocell, true); 861 } else { 862 DMWARN_LIMIT("promotion failed; couldn't copy block"); 863 policy_remove_mapping(cache->policy, mg->new_oblock); 864 cell_defer(cache, mg->new_ocell, true); 865 } 866 867 cleanup_migration(mg); 868 } 869 870 static void migration_success_pre_commit(struct dm_cache_migration *mg) 871 { 872 unsigned long flags; 873 struct cache *cache = mg->cache; 874 875 if (mg->writeback) { 876 cell_defer(cache, mg->old_ocell, false); 877 clear_dirty(cache, mg->old_oblock, mg->cblock); 878 cleanup_migration(mg); 879 return; 880 881 } else if (mg->demote) { 882 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) { 883 DMWARN_LIMIT("demotion failed; couldn't update on disk metadata"); 884 policy_force_mapping(cache->policy, mg->new_oblock, 885 mg->old_oblock); 886 if (mg->promote) 887 cell_defer(cache, mg->new_ocell, true); 888 cleanup_migration(mg); 889 return; 890 } 891 } else { 892 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) { 893 DMWARN_LIMIT("promotion failed; couldn't update on disk metadata"); 894 policy_remove_mapping(cache->policy, mg->new_oblock); 895 cleanup_migration(mg); 896 return; 897 } 898 } 899 900 spin_lock_irqsave(&cache->lock, flags); 901 list_add_tail(&mg->list, &cache->need_commit_migrations); 902 cache->commit_requested = true; 903 spin_unlock_irqrestore(&cache->lock, flags); 904 } 905 906 static void migration_success_post_commit(struct dm_cache_migration *mg) 907 { 908 unsigned long flags; 909 struct cache *cache = mg->cache; 910 911 if (mg->writeback) { 912 DMWARN("writeback unexpectedly triggered commit"); 913 return; 914 915 } else if (mg->demote) { 916 cell_defer(cache, mg->old_ocell, mg->promote ? false : true); 917 918 if (mg->promote) { 919 mg->demote = false; 920 921 spin_lock_irqsave(&cache->lock, flags); 922 list_add_tail(&mg->list, &cache->quiesced_migrations); 923 spin_unlock_irqrestore(&cache->lock, flags); 924 925 } else { 926 if (mg->invalidate) 927 policy_remove_mapping(cache->policy, mg->old_oblock); 928 cleanup_migration(mg); 929 } 930 931 } else { 932 if (mg->requeue_holder) 933 cell_defer(cache, mg->new_ocell, true); 934 else { 935 bio_endio(mg->new_ocell->holder, 0); 936 cell_defer(cache, mg->new_ocell, false); 937 } 938 clear_dirty(cache, mg->new_oblock, mg->cblock); 939 cleanup_migration(mg); 940 } 941 } 942 943 static void copy_complete(int read_err, unsigned long write_err, void *context) 944 { 945 unsigned long flags; 946 struct dm_cache_migration *mg = (struct dm_cache_migration *) context; 947 struct cache *cache = mg->cache; 948 949 if (read_err || write_err) 950 mg->err = true; 951 952 spin_lock_irqsave(&cache->lock, flags); 953 list_add_tail(&mg->list, &cache->completed_migrations); 954 spin_unlock_irqrestore(&cache->lock, flags); 955 956 wake_worker(cache); 957 } 958 959 static void issue_copy_real(struct dm_cache_migration *mg) 960 { 961 int r; 962 struct dm_io_region o_region, c_region; 963 struct cache *cache = mg->cache; 964 sector_t cblock = from_cblock(mg->cblock); 965 966 o_region.bdev = cache->origin_dev->bdev; 967 o_region.count = cache->sectors_per_block; 968 969 c_region.bdev = cache->cache_dev->bdev; 970 c_region.sector = cblock * cache->sectors_per_block; 971 c_region.count = cache->sectors_per_block; 972 973 if (mg->writeback || mg->demote) { 974 /* demote */ 975 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block; 976 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg); 977 } else { 978 /* promote */ 979 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block; 980 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg); 981 } 982 983 if (r < 0) { 984 DMERR_LIMIT("issuing migration failed"); 985 migration_failure(mg); 986 } 987 } 988 989 static void overwrite_endio(struct bio *bio, int err) 990 { 991 struct dm_cache_migration *mg = bio->bi_private; 992 struct cache *cache = mg->cache; 993 size_t pb_data_size = get_per_bio_data_size(cache); 994 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 995 unsigned long flags; 996 997 dm_unhook_bio(&pb->hook_info, bio); 998 999 if (err) 1000 mg->err = true; 1001 1002 mg->requeue_holder = false; 1003 1004 spin_lock_irqsave(&cache->lock, flags); 1005 list_add_tail(&mg->list, &cache->completed_migrations); 1006 spin_unlock_irqrestore(&cache->lock, flags); 1007 1008 wake_worker(cache); 1009 } 1010 1011 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio) 1012 { 1013 size_t pb_data_size = get_per_bio_data_size(mg->cache); 1014 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 1015 1016 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg); 1017 remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock); 1018 generic_make_request(bio); 1019 } 1020 1021 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio) 1022 { 1023 return (bio_data_dir(bio) == WRITE) && 1024 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT)); 1025 } 1026 1027 static void avoid_copy(struct dm_cache_migration *mg) 1028 { 1029 atomic_inc(&mg->cache->stats.copies_avoided); 1030 migration_success_pre_commit(mg); 1031 } 1032 1033 static void issue_copy(struct dm_cache_migration *mg) 1034 { 1035 bool avoid; 1036 struct cache *cache = mg->cache; 1037 1038 if (mg->writeback || mg->demote) 1039 avoid = !is_dirty(cache, mg->cblock) || 1040 is_discarded_oblock(cache, mg->old_oblock); 1041 else { 1042 struct bio *bio = mg->new_ocell->holder; 1043 1044 avoid = is_discarded_oblock(cache, mg->new_oblock); 1045 1046 if (!avoid && bio_writes_complete_block(cache, bio)) { 1047 issue_overwrite(mg, bio); 1048 return; 1049 } 1050 } 1051 1052 avoid ? avoid_copy(mg) : issue_copy_real(mg); 1053 } 1054 1055 static void complete_migration(struct dm_cache_migration *mg) 1056 { 1057 if (mg->err) 1058 migration_failure(mg); 1059 else 1060 migration_success_pre_commit(mg); 1061 } 1062 1063 static void process_migrations(struct cache *cache, struct list_head *head, 1064 void (*fn)(struct dm_cache_migration *)) 1065 { 1066 unsigned long flags; 1067 struct list_head list; 1068 struct dm_cache_migration *mg, *tmp; 1069 1070 INIT_LIST_HEAD(&list); 1071 spin_lock_irqsave(&cache->lock, flags); 1072 list_splice_init(head, &list); 1073 spin_unlock_irqrestore(&cache->lock, flags); 1074 1075 list_for_each_entry_safe(mg, tmp, &list, list) 1076 fn(mg); 1077 } 1078 1079 static void __queue_quiesced_migration(struct dm_cache_migration *mg) 1080 { 1081 list_add_tail(&mg->list, &mg->cache->quiesced_migrations); 1082 } 1083 1084 static void queue_quiesced_migration(struct dm_cache_migration *mg) 1085 { 1086 unsigned long flags; 1087 struct cache *cache = mg->cache; 1088 1089 spin_lock_irqsave(&cache->lock, flags); 1090 __queue_quiesced_migration(mg); 1091 spin_unlock_irqrestore(&cache->lock, flags); 1092 1093 wake_worker(cache); 1094 } 1095 1096 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work) 1097 { 1098 unsigned long flags; 1099 struct dm_cache_migration *mg, *tmp; 1100 1101 spin_lock_irqsave(&cache->lock, flags); 1102 list_for_each_entry_safe(mg, tmp, work, list) 1103 __queue_quiesced_migration(mg); 1104 spin_unlock_irqrestore(&cache->lock, flags); 1105 1106 wake_worker(cache); 1107 } 1108 1109 static void check_for_quiesced_migrations(struct cache *cache, 1110 struct per_bio_data *pb) 1111 { 1112 struct list_head work; 1113 1114 if (!pb->all_io_entry) 1115 return; 1116 1117 INIT_LIST_HEAD(&work); 1118 if (pb->all_io_entry) 1119 dm_deferred_entry_dec(pb->all_io_entry, &work); 1120 1121 if (!list_empty(&work)) 1122 queue_quiesced_migrations(cache, &work); 1123 } 1124 1125 static void quiesce_migration(struct dm_cache_migration *mg) 1126 { 1127 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list)) 1128 queue_quiesced_migration(mg); 1129 } 1130 1131 static void promote(struct cache *cache, struct prealloc *structs, 1132 dm_oblock_t oblock, dm_cblock_t cblock, 1133 struct dm_bio_prison_cell *cell) 1134 { 1135 struct dm_cache_migration *mg = prealloc_get_migration(structs); 1136 1137 mg->err = false; 1138 mg->writeback = false; 1139 mg->demote = false; 1140 mg->promote = true; 1141 mg->requeue_holder = true; 1142 mg->invalidate = false; 1143 mg->cache = cache; 1144 mg->new_oblock = oblock; 1145 mg->cblock = cblock; 1146 mg->old_ocell = NULL; 1147 mg->new_ocell = cell; 1148 mg->start_jiffies = jiffies; 1149 1150 inc_nr_migrations(cache); 1151 quiesce_migration(mg); 1152 } 1153 1154 static void writeback(struct cache *cache, struct prealloc *structs, 1155 dm_oblock_t oblock, dm_cblock_t cblock, 1156 struct dm_bio_prison_cell *cell) 1157 { 1158 struct dm_cache_migration *mg = prealloc_get_migration(structs); 1159 1160 mg->err = false; 1161 mg->writeback = true; 1162 mg->demote = false; 1163 mg->promote = false; 1164 mg->requeue_holder = true; 1165 mg->invalidate = false; 1166 mg->cache = cache; 1167 mg->old_oblock = oblock; 1168 mg->cblock = cblock; 1169 mg->old_ocell = cell; 1170 mg->new_ocell = NULL; 1171 mg->start_jiffies = jiffies; 1172 1173 inc_nr_migrations(cache); 1174 quiesce_migration(mg); 1175 } 1176 1177 static void demote_then_promote(struct cache *cache, struct prealloc *structs, 1178 dm_oblock_t old_oblock, dm_oblock_t new_oblock, 1179 dm_cblock_t cblock, 1180 struct dm_bio_prison_cell *old_ocell, 1181 struct dm_bio_prison_cell *new_ocell) 1182 { 1183 struct dm_cache_migration *mg = prealloc_get_migration(structs); 1184 1185 mg->err = false; 1186 mg->writeback = false; 1187 mg->demote = true; 1188 mg->promote = true; 1189 mg->requeue_holder = true; 1190 mg->invalidate = false; 1191 mg->cache = cache; 1192 mg->old_oblock = old_oblock; 1193 mg->new_oblock = new_oblock; 1194 mg->cblock = cblock; 1195 mg->old_ocell = old_ocell; 1196 mg->new_ocell = new_ocell; 1197 mg->start_jiffies = jiffies; 1198 1199 inc_nr_migrations(cache); 1200 quiesce_migration(mg); 1201 } 1202 1203 /* 1204 * Invalidate a cache entry. No writeback occurs; any changes in the cache 1205 * block are thrown away. 1206 */ 1207 static void invalidate(struct cache *cache, struct prealloc *structs, 1208 dm_oblock_t oblock, dm_cblock_t cblock, 1209 struct dm_bio_prison_cell *cell) 1210 { 1211 struct dm_cache_migration *mg = prealloc_get_migration(structs); 1212 1213 mg->err = false; 1214 mg->writeback = false; 1215 mg->demote = true; 1216 mg->promote = false; 1217 mg->requeue_holder = true; 1218 mg->invalidate = true; 1219 mg->cache = cache; 1220 mg->old_oblock = oblock; 1221 mg->cblock = cblock; 1222 mg->old_ocell = cell; 1223 mg->new_ocell = NULL; 1224 mg->start_jiffies = jiffies; 1225 1226 inc_nr_migrations(cache); 1227 quiesce_migration(mg); 1228 } 1229 1230 /*---------------------------------------------------------------- 1231 * bio processing 1232 *--------------------------------------------------------------*/ 1233 static void defer_bio(struct cache *cache, struct bio *bio) 1234 { 1235 unsigned long flags; 1236 1237 spin_lock_irqsave(&cache->lock, flags); 1238 bio_list_add(&cache->deferred_bios, bio); 1239 spin_unlock_irqrestore(&cache->lock, flags); 1240 1241 wake_worker(cache); 1242 } 1243 1244 static void process_flush_bio(struct cache *cache, struct bio *bio) 1245 { 1246 size_t pb_data_size = get_per_bio_data_size(cache); 1247 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 1248 1249 BUG_ON(bio->bi_iter.bi_size); 1250 if (!pb->req_nr) 1251 remap_to_origin(cache, bio); 1252 else 1253 remap_to_cache(cache, bio, 0); 1254 1255 issue(cache, bio); 1256 } 1257 1258 /* 1259 * People generally discard large parts of a device, eg, the whole device 1260 * when formatting. Splitting these large discards up into cache block 1261 * sized ios and then quiescing (always neccessary for discard) takes too 1262 * long. 1263 * 1264 * We keep it simple, and allow any size of discard to come in, and just 1265 * mark off blocks on the discard bitset. No passdown occurs! 1266 * 1267 * To implement passdown we need to change the bio_prison such that a cell 1268 * can have a key that spans many blocks. 1269 */ 1270 static void process_discard_bio(struct cache *cache, struct bio *bio) 1271 { 1272 dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector, 1273 cache->sectors_per_block); 1274 dm_block_t end_block = bio_end_sector(bio); 1275 dm_block_t b; 1276 1277 end_block = block_div(end_block, cache->sectors_per_block); 1278 1279 for (b = start_block; b < end_block; b++) 1280 set_discard(cache, to_oblock(b)); 1281 1282 bio_endio(bio, 0); 1283 } 1284 1285 static bool spare_migration_bandwidth(struct cache *cache) 1286 { 1287 sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) * 1288 cache->sectors_per_block; 1289 return current_volume < cache->migration_threshold; 1290 } 1291 1292 static void inc_hit_counter(struct cache *cache, struct bio *bio) 1293 { 1294 atomic_inc(bio_data_dir(bio) == READ ? 1295 &cache->stats.read_hit : &cache->stats.write_hit); 1296 } 1297 1298 static void inc_miss_counter(struct cache *cache, struct bio *bio) 1299 { 1300 atomic_inc(bio_data_dir(bio) == READ ? 1301 &cache->stats.read_miss : &cache->stats.write_miss); 1302 } 1303 1304 static void issue_cache_bio(struct cache *cache, struct bio *bio, 1305 struct per_bio_data *pb, 1306 dm_oblock_t oblock, dm_cblock_t cblock) 1307 { 1308 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); 1309 remap_to_cache_dirty(cache, bio, oblock, cblock); 1310 issue(cache, bio); 1311 } 1312 1313 static void process_bio(struct cache *cache, struct prealloc *structs, 1314 struct bio *bio) 1315 { 1316 int r; 1317 bool release_cell = true; 1318 dm_oblock_t block = get_bio_block(cache, bio); 1319 struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell; 1320 struct policy_result lookup_result; 1321 size_t pb_data_size = get_per_bio_data_size(cache); 1322 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 1323 bool discarded_block = is_discarded_oblock(cache, block); 1324 bool passthrough = passthrough_mode(&cache->features); 1325 bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache)); 1326 1327 /* 1328 * Check to see if that block is currently migrating. 1329 */ 1330 cell_prealloc = prealloc_get_cell(structs); 1331 r = bio_detain(cache, block, bio, cell_prealloc, 1332 (cell_free_fn) prealloc_put_cell, 1333 structs, &new_ocell); 1334 if (r > 0) 1335 return; 1336 1337 r = policy_map(cache->policy, block, true, can_migrate, discarded_block, 1338 bio, &lookup_result); 1339 1340 if (r == -EWOULDBLOCK) 1341 /* migration has been denied */ 1342 lookup_result.op = POLICY_MISS; 1343 1344 switch (lookup_result.op) { 1345 case POLICY_HIT: 1346 if (passthrough) { 1347 inc_miss_counter(cache, bio); 1348 1349 /* 1350 * Passthrough always maps to the origin, 1351 * invalidating any cache blocks that are written 1352 * to. 1353 */ 1354 1355 if (bio_data_dir(bio) == WRITE) { 1356 atomic_inc(&cache->stats.demotion); 1357 invalidate(cache, structs, block, lookup_result.cblock, new_ocell); 1358 release_cell = false; 1359 1360 } else { 1361 /* FIXME: factor out issue_origin() */ 1362 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); 1363 remap_to_origin_clear_discard(cache, bio, block); 1364 issue(cache, bio); 1365 } 1366 } else { 1367 inc_hit_counter(cache, bio); 1368 1369 if (bio_data_dir(bio) == WRITE && 1370 writethrough_mode(&cache->features) && 1371 !is_dirty(cache, lookup_result.cblock)) { 1372 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); 1373 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock); 1374 issue(cache, bio); 1375 } else 1376 issue_cache_bio(cache, bio, pb, block, lookup_result.cblock); 1377 } 1378 1379 break; 1380 1381 case POLICY_MISS: 1382 inc_miss_counter(cache, bio); 1383 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); 1384 remap_to_origin_clear_discard(cache, bio, block); 1385 issue(cache, bio); 1386 break; 1387 1388 case POLICY_NEW: 1389 atomic_inc(&cache->stats.promotion); 1390 promote(cache, structs, block, lookup_result.cblock, new_ocell); 1391 release_cell = false; 1392 break; 1393 1394 case POLICY_REPLACE: 1395 cell_prealloc = prealloc_get_cell(structs); 1396 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc, 1397 (cell_free_fn) prealloc_put_cell, 1398 structs, &old_ocell); 1399 if (r > 0) { 1400 /* 1401 * We have to be careful to avoid lock inversion of 1402 * the cells. So we back off, and wait for the 1403 * old_ocell to become free. 1404 */ 1405 policy_force_mapping(cache->policy, block, 1406 lookup_result.old_oblock); 1407 atomic_inc(&cache->stats.cache_cell_clash); 1408 break; 1409 } 1410 atomic_inc(&cache->stats.demotion); 1411 atomic_inc(&cache->stats.promotion); 1412 1413 demote_then_promote(cache, structs, lookup_result.old_oblock, 1414 block, lookup_result.cblock, 1415 old_ocell, new_ocell); 1416 release_cell = false; 1417 break; 1418 1419 default: 1420 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__, 1421 (unsigned) lookup_result.op); 1422 bio_io_error(bio); 1423 } 1424 1425 if (release_cell) 1426 cell_defer(cache, new_ocell, false); 1427 } 1428 1429 static int need_commit_due_to_time(struct cache *cache) 1430 { 1431 return jiffies < cache->last_commit_jiffies || 1432 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD; 1433 } 1434 1435 static int commit_if_needed(struct cache *cache) 1436 { 1437 int r = 0; 1438 1439 if ((cache->commit_requested || need_commit_due_to_time(cache)) && 1440 dm_cache_changed_this_transaction(cache->cmd)) { 1441 atomic_inc(&cache->stats.commit_count); 1442 cache->commit_requested = false; 1443 r = dm_cache_commit(cache->cmd, false); 1444 cache->last_commit_jiffies = jiffies; 1445 } 1446 1447 return r; 1448 } 1449 1450 static void process_deferred_bios(struct cache *cache) 1451 { 1452 unsigned long flags; 1453 struct bio_list bios; 1454 struct bio *bio; 1455 struct prealloc structs; 1456 1457 memset(&structs, 0, sizeof(structs)); 1458 bio_list_init(&bios); 1459 1460 spin_lock_irqsave(&cache->lock, flags); 1461 bio_list_merge(&bios, &cache->deferred_bios); 1462 bio_list_init(&cache->deferred_bios); 1463 spin_unlock_irqrestore(&cache->lock, flags); 1464 1465 while (!bio_list_empty(&bios)) { 1466 /* 1467 * If we've got no free migration structs, and processing 1468 * this bio might require one, we pause until there are some 1469 * prepared mappings to process. 1470 */ 1471 if (prealloc_data_structs(cache, &structs)) { 1472 spin_lock_irqsave(&cache->lock, flags); 1473 bio_list_merge(&cache->deferred_bios, &bios); 1474 spin_unlock_irqrestore(&cache->lock, flags); 1475 break; 1476 } 1477 1478 bio = bio_list_pop(&bios); 1479 1480 if (bio->bi_rw & REQ_FLUSH) 1481 process_flush_bio(cache, bio); 1482 else if (bio->bi_rw & REQ_DISCARD) 1483 process_discard_bio(cache, bio); 1484 else 1485 process_bio(cache, &structs, bio); 1486 } 1487 1488 prealloc_free_structs(cache, &structs); 1489 } 1490 1491 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios) 1492 { 1493 unsigned long flags; 1494 struct bio_list bios; 1495 struct bio *bio; 1496 1497 bio_list_init(&bios); 1498 1499 spin_lock_irqsave(&cache->lock, flags); 1500 bio_list_merge(&bios, &cache->deferred_flush_bios); 1501 bio_list_init(&cache->deferred_flush_bios); 1502 spin_unlock_irqrestore(&cache->lock, flags); 1503 1504 while ((bio = bio_list_pop(&bios))) 1505 submit_bios ? generic_make_request(bio) : bio_io_error(bio); 1506 } 1507 1508 static void process_deferred_writethrough_bios(struct cache *cache) 1509 { 1510 unsigned long flags; 1511 struct bio_list bios; 1512 struct bio *bio; 1513 1514 bio_list_init(&bios); 1515 1516 spin_lock_irqsave(&cache->lock, flags); 1517 bio_list_merge(&bios, &cache->deferred_writethrough_bios); 1518 bio_list_init(&cache->deferred_writethrough_bios); 1519 spin_unlock_irqrestore(&cache->lock, flags); 1520 1521 while ((bio = bio_list_pop(&bios))) 1522 generic_make_request(bio); 1523 } 1524 1525 static void writeback_some_dirty_blocks(struct cache *cache) 1526 { 1527 int r = 0; 1528 dm_oblock_t oblock; 1529 dm_cblock_t cblock; 1530 struct prealloc structs; 1531 struct dm_bio_prison_cell *old_ocell; 1532 1533 memset(&structs, 0, sizeof(structs)); 1534 1535 while (spare_migration_bandwidth(cache)) { 1536 if (prealloc_data_structs(cache, &structs)) 1537 break; 1538 1539 r = policy_writeback_work(cache->policy, &oblock, &cblock); 1540 if (r) 1541 break; 1542 1543 r = get_cell(cache, oblock, &structs, &old_ocell); 1544 if (r) { 1545 policy_set_dirty(cache->policy, oblock); 1546 break; 1547 } 1548 1549 writeback(cache, &structs, oblock, cblock, old_ocell); 1550 } 1551 1552 prealloc_free_structs(cache, &structs); 1553 } 1554 1555 /*---------------------------------------------------------------- 1556 * Invalidations. 1557 * Dropping something from the cache *without* writing back. 1558 *--------------------------------------------------------------*/ 1559 1560 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req) 1561 { 1562 int r = 0; 1563 uint64_t begin = from_cblock(req->cblocks->begin); 1564 uint64_t end = from_cblock(req->cblocks->end); 1565 1566 while (begin != end) { 1567 r = policy_remove_cblock(cache->policy, to_cblock(begin)); 1568 if (!r) { 1569 r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin)); 1570 if (r) 1571 break; 1572 1573 } else if (r == -ENODATA) { 1574 /* harmless, already unmapped */ 1575 r = 0; 1576 1577 } else { 1578 DMERR("policy_remove_cblock failed"); 1579 break; 1580 } 1581 1582 begin++; 1583 } 1584 1585 cache->commit_requested = true; 1586 1587 req->err = r; 1588 atomic_set(&req->complete, 1); 1589 1590 wake_up(&req->result_wait); 1591 } 1592 1593 static void process_invalidation_requests(struct cache *cache) 1594 { 1595 struct list_head list; 1596 struct invalidation_request *req, *tmp; 1597 1598 INIT_LIST_HEAD(&list); 1599 spin_lock(&cache->invalidation_lock); 1600 list_splice_init(&cache->invalidation_requests, &list); 1601 spin_unlock(&cache->invalidation_lock); 1602 1603 list_for_each_entry_safe (req, tmp, &list, list) 1604 process_invalidation_request(cache, req); 1605 } 1606 1607 /*---------------------------------------------------------------- 1608 * Main worker loop 1609 *--------------------------------------------------------------*/ 1610 static bool is_quiescing(struct cache *cache) 1611 { 1612 return atomic_read(&cache->quiescing); 1613 } 1614 1615 static void ack_quiescing(struct cache *cache) 1616 { 1617 if (is_quiescing(cache)) { 1618 atomic_inc(&cache->quiescing_ack); 1619 wake_up(&cache->quiescing_wait); 1620 } 1621 } 1622 1623 static void wait_for_quiescing_ack(struct cache *cache) 1624 { 1625 wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack)); 1626 } 1627 1628 static void start_quiescing(struct cache *cache) 1629 { 1630 atomic_inc(&cache->quiescing); 1631 wait_for_quiescing_ack(cache); 1632 } 1633 1634 static void stop_quiescing(struct cache *cache) 1635 { 1636 atomic_set(&cache->quiescing, 0); 1637 atomic_set(&cache->quiescing_ack, 0); 1638 } 1639 1640 static void wait_for_migrations(struct cache *cache) 1641 { 1642 wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations)); 1643 } 1644 1645 static void stop_worker(struct cache *cache) 1646 { 1647 cancel_delayed_work(&cache->waker); 1648 flush_workqueue(cache->wq); 1649 } 1650 1651 static void requeue_deferred_io(struct cache *cache) 1652 { 1653 struct bio *bio; 1654 struct bio_list bios; 1655 1656 bio_list_init(&bios); 1657 bio_list_merge(&bios, &cache->deferred_bios); 1658 bio_list_init(&cache->deferred_bios); 1659 1660 while ((bio = bio_list_pop(&bios))) 1661 bio_endio(bio, DM_ENDIO_REQUEUE); 1662 } 1663 1664 static int more_work(struct cache *cache) 1665 { 1666 if (is_quiescing(cache)) 1667 return !list_empty(&cache->quiesced_migrations) || 1668 !list_empty(&cache->completed_migrations) || 1669 !list_empty(&cache->need_commit_migrations); 1670 else 1671 return !bio_list_empty(&cache->deferred_bios) || 1672 !bio_list_empty(&cache->deferred_flush_bios) || 1673 !bio_list_empty(&cache->deferred_writethrough_bios) || 1674 !list_empty(&cache->quiesced_migrations) || 1675 !list_empty(&cache->completed_migrations) || 1676 !list_empty(&cache->need_commit_migrations) || 1677 cache->invalidate; 1678 } 1679 1680 static void do_worker(struct work_struct *ws) 1681 { 1682 struct cache *cache = container_of(ws, struct cache, worker); 1683 1684 do { 1685 if (!is_quiescing(cache)) { 1686 writeback_some_dirty_blocks(cache); 1687 process_deferred_writethrough_bios(cache); 1688 process_deferred_bios(cache); 1689 process_invalidation_requests(cache); 1690 } 1691 1692 process_migrations(cache, &cache->quiesced_migrations, issue_copy); 1693 process_migrations(cache, &cache->completed_migrations, complete_migration); 1694 1695 if (commit_if_needed(cache)) { 1696 process_deferred_flush_bios(cache, false); 1697 1698 /* 1699 * FIXME: rollback metadata or just go into a 1700 * failure mode and error everything 1701 */ 1702 } else { 1703 process_deferred_flush_bios(cache, true); 1704 process_migrations(cache, &cache->need_commit_migrations, 1705 migration_success_post_commit); 1706 } 1707 1708 ack_quiescing(cache); 1709 1710 } while (more_work(cache)); 1711 } 1712 1713 /* 1714 * We want to commit periodically so that not too much 1715 * unwritten metadata builds up. 1716 */ 1717 static void do_waker(struct work_struct *ws) 1718 { 1719 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); 1720 policy_tick(cache->policy); 1721 wake_worker(cache); 1722 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); 1723 } 1724 1725 /*----------------------------------------------------------------*/ 1726 1727 static int is_congested(struct dm_dev *dev, int bdi_bits) 1728 { 1729 struct request_queue *q = bdev_get_queue(dev->bdev); 1730 return bdi_congested(&q->backing_dev_info, bdi_bits); 1731 } 1732 1733 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 1734 { 1735 struct cache *cache = container_of(cb, struct cache, callbacks); 1736 1737 return is_congested(cache->origin_dev, bdi_bits) || 1738 is_congested(cache->cache_dev, bdi_bits); 1739 } 1740 1741 /*---------------------------------------------------------------- 1742 * Target methods 1743 *--------------------------------------------------------------*/ 1744 1745 /* 1746 * This function gets called on the error paths of the constructor, so we 1747 * have to cope with a partially initialised struct. 1748 */ 1749 static void destroy(struct cache *cache) 1750 { 1751 unsigned i; 1752 1753 if (cache->next_migration) 1754 mempool_free(cache->next_migration, cache->migration_pool); 1755 1756 if (cache->migration_pool) 1757 mempool_destroy(cache->migration_pool); 1758 1759 if (cache->all_io_ds) 1760 dm_deferred_set_destroy(cache->all_io_ds); 1761 1762 if (cache->prison) 1763 dm_bio_prison_destroy(cache->prison); 1764 1765 if (cache->wq) 1766 destroy_workqueue(cache->wq); 1767 1768 if (cache->dirty_bitset) 1769 free_bitset(cache->dirty_bitset); 1770 1771 if (cache->discard_bitset) 1772 free_bitset(cache->discard_bitset); 1773 1774 if (cache->copier) 1775 dm_kcopyd_client_destroy(cache->copier); 1776 1777 if (cache->cmd) 1778 dm_cache_metadata_close(cache->cmd); 1779 1780 if (cache->metadata_dev) 1781 dm_put_device(cache->ti, cache->metadata_dev); 1782 1783 if (cache->origin_dev) 1784 dm_put_device(cache->ti, cache->origin_dev); 1785 1786 if (cache->cache_dev) 1787 dm_put_device(cache->ti, cache->cache_dev); 1788 1789 if (cache->policy) 1790 dm_cache_policy_destroy(cache->policy); 1791 1792 for (i = 0; i < cache->nr_ctr_args ; i++) 1793 kfree(cache->ctr_args[i]); 1794 kfree(cache->ctr_args); 1795 1796 kfree(cache); 1797 } 1798 1799 static void cache_dtr(struct dm_target *ti) 1800 { 1801 struct cache *cache = ti->private; 1802 1803 destroy(cache); 1804 } 1805 1806 static sector_t get_dev_size(struct dm_dev *dev) 1807 { 1808 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; 1809 } 1810 1811 /*----------------------------------------------------------------*/ 1812 1813 /* 1814 * Construct a cache device mapping. 1815 * 1816 * cache <metadata dev> <cache dev> <origin dev> <block size> 1817 * <#feature args> [<feature arg>]* 1818 * <policy> <#policy args> [<policy arg>]* 1819 * 1820 * metadata dev : fast device holding the persistent metadata 1821 * cache dev : fast device holding cached data blocks 1822 * origin dev : slow device holding original data blocks 1823 * block size : cache unit size in sectors 1824 * 1825 * #feature args : number of feature arguments passed 1826 * feature args : writethrough. (The default is writeback.) 1827 * 1828 * policy : the replacement policy to use 1829 * #policy args : an even number of policy arguments corresponding 1830 * to key/value pairs passed to the policy 1831 * policy args : key/value pairs passed to the policy 1832 * E.g. 'sequential_threshold 1024' 1833 * See cache-policies.txt for details. 1834 * 1835 * Optional feature arguments are: 1836 * writethrough : write through caching that prohibits cache block 1837 * content from being different from origin block content. 1838 * Without this argument, the default behaviour is to write 1839 * back cache block contents later for performance reasons, 1840 * so they may differ from the corresponding origin blocks. 1841 */ 1842 struct cache_args { 1843 struct dm_target *ti; 1844 1845 struct dm_dev *metadata_dev; 1846 1847 struct dm_dev *cache_dev; 1848 sector_t cache_sectors; 1849 1850 struct dm_dev *origin_dev; 1851 sector_t origin_sectors; 1852 1853 uint32_t block_size; 1854 1855 const char *policy_name; 1856 int policy_argc; 1857 const char **policy_argv; 1858 1859 struct cache_features features; 1860 }; 1861 1862 static void destroy_cache_args(struct cache_args *ca) 1863 { 1864 if (ca->metadata_dev) 1865 dm_put_device(ca->ti, ca->metadata_dev); 1866 1867 if (ca->cache_dev) 1868 dm_put_device(ca->ti, ca->cache_dev); 1869 1870 if (ca->origin_dev) 1871 dm_put_device(ca->ti, ca->origin_dev); 1872 1873 kfree(ca); 1874 } 1875 1876 static bool at_least_one_arg(struct dm_arg_set *as, char **error) 1877 { 1878 if (!as->argc) { 1879 *error = "Insufficient args"; 1880 return false; 1881 } 1882 1883 return true; 1884 } 1885 1886 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, 1887 char **error) 1888 { 1889 int r; 1890 sector_t metadata_dev_size; 1891 char b[BDEVNAME_SIZE]; 1892 1893 if (!at_least_one_arg(as, error)) 1894 return -EINVAL; 1895 1896 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 1897 &ca->metadata_dev); 1898 if (r) { 1899 *error = "Error opening metadata device"; 1900 return r; 1901 } 1902 1903 metadata_dev_size = get_dev_size(ca->metadata_dev); 1904 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) 1905 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 1906 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); 1907 1908 return 0; 1909 } 1910 1911 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, 1912 char **error) 1913 { 1914 int r; 1915 1916 if (!at_least_one_arg(as, error)) 1917 return -EINVAL; 1918 1919 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 1920 &ca->cache_dev); 1921 if (r) { 1922 *error = "Error opening cache device"; 1923 return r; 1924 } 1925 ca->cache_sectors = get_dev_size(ca->cache_dev); 1926 1927 return 0; 1928 } 1929 1930 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, 1931 char **error) 1932 { 1933 int r; 1934 1935 if (!at_least_one_arg(as, error)) 1936 return -EINVAL; 1937 1938 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 1939 &ca->origin_dev); 1940 if (r) { 1941 *error = "Error opening origin device"; 1942 return r; 1943 } 1944 1945 ca->origin_sectors = get_dev_size(ca->origin_dev); 1946 if (ca->ti->len > ca->origin_sectors) { 1947 *error = "Device size larger than cached device"; 1948 return -EINVAL; 1949 } 1950 1951 return 0; 1952 } 1953 1954 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, 1955 char **error) 1956 { 1957 unsigned long block_size; 1958 1959 if (!at_least_one_arg(as, error)) 1960 return -EINVAL; 1961 1962 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || 1963 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 1964 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 1965 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 1966 *error = "Invalid data block size"; 1967 return -EINVAL; 1968 } 1969 1970 if (block_size > ca->cache_sectors) { 1971 *error = "Data block size is larger than the cache device"; 1972 return -EINVAL; 1973 } 1974 1975 ca->block_size = block_size; 1976 1977 return 0; 1978 } 1979 1980 static void init_features(struct cache_features *cf) 1981 { 1982 cf->mode = CM_WRITE; 1983 cf->io_mode = CM_IO_WRITEBACK; 1984 } 1985 1986 static int parse_features(struct cache_args *ca, struct dm_arg_set *as, 1987 char **error) 1988 { 1989 static struct dm_arg _args[] = { 1990 {0, 1, "Invalid number of cache feature arguments"}, 1991 }; 1992 1993 int r; 1994 unsigned argc; 1995 const char *arg; 1996 struct cache_features *cf = &ca->features; 1997 1998 init_features(cf); 1999 2000 r = dm_read_arg_group(_args, as, &argc, error); 2001 if (r) 2002 return -EINVAL; 2003 2004 while (argc--) { 2005 arg = dm_shift_arg(as); 2006 2007 if (!strcasecmp(arg, "writeback")) 2008 cf->io_mode = CM_IO_WRITEBACK; 2009 2010 else if (!strcasecmp(arg, "writethrough")) 2011 cf->io_mode = CM_IO_WRITETHROUGH; 2012 2013 else if (!strcasecmp(arg, "passthrough")) 2014 cf->io_mode = CM_IO_PASSTHROUGH; 2015 2016 else { 2017 *error = "Unrecognised cache feature requested"; 2018 return -EINVAL; 2019 } 2020 } 2021 2022 return 0; 2023 } 2024 2025 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, 2026 char **error) 2027 { 2028 static struct dm_arg _args[] = { 2029 {0, 1024, "Invalid number of policy arguments"}, 2030 }; 2031 2032 int r; 2033 2034 if (!at_least_one_arg(as, error)) 2035 return -EINVAL; 2036 2037 ca->policy_name = dm_shift_arg(as); 2038 2039 r = dm_read_arg_group(_args, as, &ca->policy_argc, error); 2040 if (r) 2041 return -EINVAL; 2042 2043 ca->policy_argv = (const char **)as->argv; 2044 dm_consume_args(as, ca->policy_argc); 2045 2046 return 0; 2047 } 2048 2049 static int parse_cache_args(struct cache_args *ca, int argc, char **argv, 2050 char **error) 2051 { 2052 int r; 2053 struct dm_arg_set as; 2054 2055 as.argc = argc; 2056 as.argv = argv; 2057 2058 r = parse_metadata_dev(ca, &as, error); 2059 if (r) 2060 return r; 2061 2062 r = parse_cache_dev(ca, &as, error); 2063 if (r) 2064 return r; 2065 2066 r = parse_origin_dev(ca, &as, error); 2067 if (r) 2068 return r; 2069 2070 r = parse_block_size(ca, &as, error); 2071 if (r) 2072 return r; 2073 2074 r = parse_features(ca, &as, error); 2075 if (r) 2076 return r; 2077 2078 r = parse_policy(ca, &as, error); 2079 if (r) 2080 return r; 2081 2082 return 0; 2083 } 2084 2085 /*----------------------------------------------------------------*/ 2086 2087 static struct kmem_cache *migration_cache; 2088 2089 #define NOT_CORE_OPTION 1 2090 2091 static int process_config_option(struct cache *cache, const char *key, const char *value) 2092 { 2093 unsigned long tmp; 2094 2095 if (!strcasecmp(key, "migration_threshold")) { 2096 if (kstrtoul(value, 10, &tmp)) 2097 return -EINVAL; 2098 2099 cache->migration_threshold = tmp; 2100 return 0; 2101 } 2102 2103 return NOT_CORE_OPTION; 2104 } 2105 2106 static int set_config_value(struct cache *cache, const char *key, const char *value) 2107 { 2108 int r = process_config_option(cache, key, value); 2109 2110 if (r == NOT_CORE_OPTION) 2111 r = policy_set_config_value(cache->policy, key, value); 2112 2113 if (r) 2114 DMWARN("bad config value for %s: %s", key, value); 2115 2116 return r; 2117 } 2118 2119 static int set_config_values(struct cache *cache, int argc, const char **argv) 2120 { 2121 int r = 0; 2122 2123 if (argc & 1) { 2124 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs."); 2125 return -EINVAL; 2126 } 2127 2128 while (argc) { 2129 r = set_config_value(cache, argv[0], argv[1]); 2130 if (r) 2131 break; 2132 2133 argc -= 2; 2134 argv += 2; 2135 } 2136 2137 return r; 2138 } 2139 2140 static int create_cache_policy(struct cache *cache, struct cache_args *ca, 2141 char **error) 2142 { 2143 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, 2144 cache->cache_size, 2145 cache->origin_sectors, 2146 cache->sectors_per_block); 2147 if (IS_ERR(p)) { 2148 *error = "Error creating cache's policy"; 2149 return PTR_ERR(p); 2150 } 2151 cache->policy = p; 2152 2153 return 0; 2154 } 2155 2156 #define DEFAULT_MIGRATION_THRESHOLD 2048 2157 2158 static int cache_create(struct cache_args *ca, struct cache **result) 2159 { 2160 int r = 0; 2161 char **error = &ca->ti->error; 2162 struct cache *cache; 2163 struct dm_target *ti = ca->ti; 2164 dm_block_t origin_blocks; 2165 struct dm_cache_metadata *cmd; 2166 bool may_format = ca->features.mode == CM_WRITE; 2167 2168 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 2169 if (!cache) 2170 return -ENOMEM; 2171 2172 cache->ti = ca->ti; 2173 ti->private = cache; 2174 ti->num_flush_bios = 2; 2175 ti->flush_supported = true; 2176 2177 ti->num_discard_bios = 1; 2178 ti->discards_supported = true; 2179 ti->discard_zeroes_data_unsupported = true; 2180 /* Discard bios must be split on a block boundary */ 2181 ti->split_discard_bios = true; 2182 2183 cache->features = ca->features; 2184 ti->per_bio_data_size = get_per_bio_data_size(cache); 2185 2186 cache->callbacks.congested_fn = cache_is_congested; 2187 dm_table_add_target_callbacks(ti->table, &cache->callbacks); 2188 2189 cache->metadata_dev = ca->metadata_dev; 2190 cache->origin_dev = ca->origin_dev; 2191 cache->cache_dev = ca->cache_dev; 2192 2193 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; 2194 2195 /* FIXME: factor out this whole section */ 2196 origin_blocks = cache->origin_sectors = ca->origin_sectors; 2197 origin_blocks = block_div(origin_blocks, ca->block_size); 2198 cache->origin_blocks = to_oblock(origin_blocks); 2199 2200 cache->sectors_per_block = ca->block_size; 2201 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { 2202 r = -EINVAL; 2203 goto bad; 2204 } 2205 2206 if (ca->block_size & (ca->block_size - 1)) { 2207 dm_block_t cache_size = ca->cache_sectors; 2208 2209 cache->sectors_per_block_shift = -1; 2210 cache_size = block_div(cache_size, ca->block_size); 2211 cache->cache_size = to_cblock(cache_size); 2212 } else { 2213 cache->sectors_per_block_shift = __ffs(ca->block_size); 2214 cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift); 2215 } 2216 2217 r = create_cache_policy(cache, ca, error); 2218 if (r) 2219 goto bad; 2220 2221 cache->policy_nr_args = ca->policy_argc; 2222 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; 2223 2224 r = set_config_values(cache, ca->policy_argc, ca->policy_argv); 2225 if (r) { 2226 *error = "Error setting cache policy's config values"; 2227 goto bad; 2228 } 2229 2230 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, 2231 ca->block_size, may_format, 2232 dm_cache_policy_get_hint_size(cache->policy)); 2233 if (IS_ERR(cmd)) { 2234 *error = "Error creating metadata object"; 2235 r = PTR_ERR(cmd); 2236 goto bad; 2237 } 2238 cache->cmd = cmd; 2239 2240 if (passthrough_mode(&cache->features)) { 2241 bool all_clean; 2242 2243 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean); 2244 if (r) { 2245 *error = "dm_cache_metadata_all_clean() failed"; 2246 goto bad; 2247 } 2248 2249 if (!all_clean) { 2250 *error = "Cannot enter passthrough mode unless all blocks are clean"; 2251 r = -EINVAL; 2252 goto bad; 2253 } 2254 } 2255 2256 spin_lock_init(&cache->lock); 2257 bio_list_init(&cache->deferred_bios); 2258 bio_list_init(&cache->deferred_flush_bios); 2259 bio_list_init(&cache->deferred_writethrough_bios); 2260 INIT_LIST_HEAD(&cache->quiesced_migrations); 2261 INIT_LIST_HEAD(&cache->completed_migrations); 2262 INIT_LIST_HEAD(&cache->need_commit_migrations); 2263 atomic_set(&cache->nr_migrations, 0); 2264 init_waitqueue_head(&cache->migration_wait); 2265 2266 init_waitqueue_head(&cache->quiescing_wait); 2267 atomic_set(&cache->quiescing, 0); 2268 atomic_set(&cache->quiescing_ack, 0); 2269 2270 r = -ENOMEM; 2271 atomic_set(&cache->nr_dirty, 0); 2272 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); 2273 if (!cache->dirty_bitset) { 2274 *error = "could not allocate dirty bitset"; 2275 goto bad; 2276 } 2277 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); 2278 2279 cache->discard_nr_blocks = cache->origin_blocks; 2280 cache->discard_bitset = alloc_bitset(from_oblock(cache->discard_nr_blocks)); 2281 if (!cache->discard_bitset) { 2282 *error = "could not allocate discard bitset"; 2283 goto bad; 2284 } 2285 clear_bitset(cache->discard_bitset, from_oblock(cache->discard_nr_blocks)); 2286 2287 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2288 if (IS_ERR(cache->copier)) { 2289 *error = "could not create kcopyd client"; 2290 r = PTR_ERR(cache->copier); 2291 goto bad; 2292 } 2293 2294 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2295 if (!cache->wq) { 2296 *error = "could not create workqueue for metadata object"; 2297 goto bad; 2298 } 2299 INIT_WORK(&cache->worker, do_worker); 2300 INIT_DELAYED_WORK(&cache->waker, do_waker); 2301 cache->last_commit_jiffies = jiffies; 2302 2303 cache->prison = dm_bio_prison_create(PRISON_CELLS); 2304 if (!cache->prison) { 2305 *error = "could not create bio prison"; 2306 goto bad; 2307 } 2308 2309 cache->all_io_ds = dm_deferred_set_create(); 2310 if (!cache->all_io_ds) { 2311 *error = "could not create all_io deferred set"; 2312 goto bad; 2313 } 2314 2315 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE, 2316 migration_cache); 2317 if (!cache->migration_pool) { 2318 *error = "Error creating cache's migration mempool"; 2319 goto bad; 2320 } 2321 2322 cache->next_migration = NULL; 2323 2324 cache->need_tick_bio = true; 2325 cache->sized = false; 2326 cache->invalidate = false; 2327 cache->commit_requested = false; 2328 cache->loaded_mappings = false; 2329 cache->loaded_discards = false; 2330 2331 load_stats(cache); 2332 2333 atomic_set(&cache->stats.demotion, 0); 2334 atomic_set(&cache->stats.promotion, 0); 2335 atomic_set(&cache->stats.copies_avoided, 0); 2336 atomic_set(&cache->stats.cache_cell_clash, 0); 2337 atomic_set(&cache->stats.commit_count, 0); 2338 atomic_set(&cache->stats.discard_count, 0); 2339 2340 spin_lock_init(&cache->invalidation_lock); 2341 INIT_LIST_HEAD(&cache->invalidation_requests); 2342 2343 *result = cache; 2344 return 0; 2345 2346 bad: 2347 destroy(cache); 2348 return r; 2349 } 2350 2351 static int copy_ctr_args(struct cache *cache, int argc, const char **argv) 2352 { 2353 unsigned i; 2354 const char **copy; 2355 2356 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); 2357 if (!copy) 2358 return -ENOMEM; 2359 for (i = 0; i < argc; i++) { 2360 copy[i] = kstrdup(argv[i], GFP_KERNEL); 2361 if (!copy[i]) { 2362 while (i--) 2363 kfree(copy[i]); 2364 kfree(copy); 2365 return -ENOMEM; 2366 } 2367 } 2368 2369 cache->nr_ctr_args = argc; 2370 cache->ctr_args = copy; 2371 2372 return 0; 2373 } 2374 2375 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2376 { 2377 int r = -EINVAL; 2378 struct cache_args *ca; 2379 struct cache *cache = NULL; 2380 2381 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2382 if (!ca) { 2383 ti->error = "Error allocating memory for cache"; 2384 return -ENOMEM; 2385 } 2386 ca->ti = ti; 2387 2388 r = parse_cache_args(ca, argc, argv, &ti->error); 2389 if (r) 2390 goto out; 2391 2392 r = cache_create(ca, &cache); 2393 if (r) 2394 goto out; 2395 2396 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); 2397 if (r) { 2398 destroy(cache); 2399 goto out; 2400 } 2401 2402 ti->private = cache; 2403 2404 out: 2405 destroy_cache_args(ca); 2406 return r; 2407 } 2408 2409 static int cache_map(struct dm_target *ti, struct bio *bio) 2410 { 2411 struct cache *cache = ti->private; 2412 2413 int r; 2414 dm_oblock_t block = get_bio_block(cache, bio); 2415 size_t pb_data_size = get_per_bio_data_size(cache); 2416 bool can_migrate = false; 2417 bool discarded_block; 2418 struct dm_bio_prison_cell *cell; 2419 struct policy_result lookup_result; 2420 struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size); 2421 2422 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) { 2423 /* 2424 * This can only occur if the io goes to a partial block at 2425 * the end of the origin device. We don't cache these. 2426 * Just remap to the origin and carry on. 2427 */ 2428 remap_to_origin(cache, bio); 2429 return DM_MAPIO_REMAPPED; 2430 } 2431 2432 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) { 2433 defer_bio(cache, bio); 2434 return DM_MAPIO_SUBMITTED; 2435 } 2436 2437 /* 2438 * Check to see if that block is currently migrating. 2439 */ 2440 cell = alloc_prison_cell(cache); 2441 if (!cell) { 2442 defer_bio(cache, bio); 2443 return DM_MAPIO_SUBMITTED; 2444 } 2445 2446 r = bio_detain(cache, block, bio, cell, 2447 (cell_free_fn) free_prison_cell, 2448 cache, &cell); 2449 if (r) { 2450 if (r < 0) 2451 defer_bio(cache, bio); 2452 2453 return DM_MAPIO_SUBMITTED; 2454 } 2455 2456 discarded_block = is_discarded_oblock(cache, block); 2457 2458 r = policy_map(cache->policy, block, false, can_migrate, discarded_block, 2459 bio, &lookup_result); 2460 if (r == -EWOULDBLOCK) { 2461 cell_defer(cache, cell, true); 2462 return DM_MAPIO_SUBMITTED; 2463 2464 } else if (r) { 2465 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r); 2466 bio_io_error(bio); 2467 return DM_MAPIO_SUBMITTED; 2468 } 2469 2470 r = DM_MAPIO_REMAPPED; 2471 switch (lookup_result.op) { 2472 case POLICY_HIT: 2473 if (passthrough_mode(&cache->features)) { 2474 if (bio_data_dir(bio) == WRITE) { 2475 /* 2476 * We need to invalidate this block, so 2477 * defer for the worker thread. 2478 */ 2479 cell_defer(cache, cell, true); 2480 r = DM_MAPIO_SUBMITTED; 2481 2482 } else { 2483 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); 2484 inc_miss_counter(cache, bio); 2485 remap_to_origin_clear_discard(cache, bio, block); 2486 2487 cell_defer(cache, cell, false); 2488 } 2489 2490 } else { 2491 inc_hit_counter(cache, bio); 2492 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); 2493 2494 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) && 2495 !is_dirty(cache, lookup_result.cblock)) 2496 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock); 2497 else 2498 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock); 2499 2500 cell_defer(cache, cell, false); 2501 } 2502 break; 2503 2504 case POLICY_MISS: 2505 inc_miss_counter(cache, bio); 2506 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); 2507 2508 if (pb->req_nr != 0) { 2509 /* 2510 * This is a duplicate writethrough io that is no 2511 * longer needed because the block has been demoted. 2512 */ 2513 bio_endio(bio, 0); 2514 cell_defer(cache, cell, false); 2515 return DM_MAPIO_SUBMITTED; 2516 } else { 2517 remap_to_origin_clear_discard(cache, bio, block); 2518 cell_defer(cache, cell, false); 2519 } 2520 break; 2521 2522 default: 2523 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__, 2524 (unsigned) lookup_result.op); 2525 bio_io_error(bio); 2526 r = DM_MAPIO_SUBMITTED; 2527 } 2528 2529 return r; 2530 } 2531 2532 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error) 2533 { 2534 struct cache *cache = ti->private; 2535 unsigned long flags; 2536 size_t pb_data_size = get_per_bio_data_size(cache); 2537 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); 2538 2539 if (pb->tick) { 2540 policy_tick(cache->policy); 2541 2542 spin_lock_irqsave(&cache->lock, flags); 2543 cache->need_tick_bio = true; 2544 spin_unlock_irqrestore(&cache->lock, flags); 2545 } 2546 2547 check_for_quiesced_migrations(cache, pb); 2548 2549 return 0; 2550 } 2551 2552 static int write_dirty_bitset(struct cache *cache) 2553 { 2554 unsigned i, r; 2555 2556 for (i = 0; i < from_cblock(cache->cache_size); i++) { 2557 r = dm_cache_set_dirty(cache->cmd, to_cblock(i), 2558 is_dirty(cache, to_cblock(i))); 2559 if (r) 2560 return r; 2561 } 2562 2563 return 0; 2564 } 2565 2566 static int write_discard_bitset(struct cache *cache) 2567 { 2568 unsigned i, r; 2569 2570 r = dm_cache_discard_bitset_resize(cache->cmd, cache->sectors_per_block, 2571 cache->origin_blocks); 2572 if (r) { 2573 DMERR("could not resize on-disk discard bitset"); 2574 return r; 2575 } 2576 2577 for (i = 0; i < from_oblock(cache->discard_nr_blocks); i++) { 2578 r = dm_cache_set_discard(cache->cmd, to_oblock(i), 2579 is_discarded(cache, to_oblock(i))); 2580 if (r) 2581 return r; 2582 } 2583 2584 return 0; 2585 } 2586 2587 /* 2588 * returns true on success 2589 */ 2590 static bool sync_metadata(struct cache *cache) 2591 { 2592 int r1, r2, r3, r4; 2593 2594 r1 = write_dirty_bitset(cache); 2595 if (r1) 2596 DMERR("could not write dirty bitset"); 2597 2598 r2 = write_discard_bitset(cache); 2599 if (r2) 2600 DMERR("could not write discard bitset"); 2601 2602 save_stats(cache); 2603 2604 r3 = dm_cache_write_hints(cache->cmd, cache->policy); 2605 if (r3) 2606 DMERR("could not write hints"); 2607 2608 /* 2609 * If writing the above metadata failed, we still commit, but don't 2610 * set the clean shutdown flag. This will effectively force every 2611 * dirty bit to be set on reload. 2612 */ 2613 r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3); 2614 if (r4) 2615 DMERR("could not write cache metadata. Data loss may occur."); 2616 2617 return !r1 && !r2 && !r3 && !r4; 2618 } 2619 2620 static void cache_postsuspend(struct dm_target *ti) 2621 { 2622 struct cache *cache = ti->private; 2623 2624 start_quiescing(cache); 2625 wait_for_migrations(cache); 2626 stop_worker(cache); 2627 requeue_deferred_io(cache); 2628 stop_quiescing(cache); 2629 2630 (void) sync_metadata(cache); 2631 } 2632 2633 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, 2634 bool dirty, uint32_t hint, bool hint_valid) 2635 { 2636 int r; 2637 struct cache *cache = context; 2638 2639 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid); 2640 if (r) 2641 return r; 2642 2643 if (dirty) 2644 set_dirty(cache, oblock, cblock); 2645 else 2646 clear_dirty(cache, oblock, cblock); 2647 2648 return 0; 2649 } 2650 2651 static int load_discard(void *context, sector_t discard_block_size, 2652 dm_oblock_t oblock, bool discard) 2653 { 2654 struct cache *cache = context; 2655 2656 if (discard) 2657 set_discard(cache, oblock); 2658 else 2659 clear_discard(cache, oblock); 2660 2661 return 0; 2662 } 2663 2664 static dm_cblock_t get_cache_dev_size(struct cache *cache) 2665 { 2666 sector_t size = get_dev_size(cache->cache_dev); 2667 (void) sector_div(size, cache->sectors_per_block); 2668 return to_cblock(size); 2669 } 2670 2671 static bool can_resize(struct cache *cache, dm_cblock_t new_size) 2672 { 2673 if (from_cblock(new_size) > from_cblock(cache->cache_size)) 2674 return true; 2675 2676 /* 2677 * We can't drop a dirty block when shrinking the cache. 2678 */ 2679 while (from_cblock(new_size) < from_cblock(cache->cache_size)) { 2680 new_size = to_cblock(from_cblock(new_size) + 1); 2681 if (is_dirty(cache, new_size)) { 2682 DMERR("unable to shrink cache; cache block %llu is dirty", 2683 (unsigned long long) from_cblock(new_size)); 2684 return false; 2685 } 2686 } 2687 2688 return true; 2689 } 2690 2691 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size) 2692 { 2693 int r; 2694 2695 r = dm_cache_resize(cache->cmd, new_size); 2696 if (r) { 2697 DMERR("could not resize cache metadata"); 2698 return r; 2699 } 2700 2701 cache->cache_size = new_size; 2702 2703 return 0; 2704 } 2705 2706 static int cache_preresume(struct dm_target *ti) 2707 { 2708 int r = 0; 2709 struct cache *cache = ti->private; 2710 dm_cblock_t csize = get_cache_dev_size(cache); 2711 2712 /* 2713 * Check to see if the cache has resized. 2714 */ 2715 if (!cache->sized) { 2716 r = resize_cache_dev(cache, csize); 2717 if (r) 2718 return r; 2719 2720 cache->sized = true; 2721 2722 } else if (csize != cache->cache_size) { 2723 if (!can_resize(cache, csize)) 2724 return -EINVAL; 2725 2726 r = resize_cache_dev(cache, csize); 2727 if (r) 2728 return r; 2729 } 2730 2731 if (!cache->loaded_mappings) { 2732 r = dm_cache_load_mappings(cache->cmd, cache->policy, 2733 load_mapping, cache); 2734 if (r) { 2735 DMERR("could not load cache mappings"); 2736 return r; 2737 } 2738 2739 cache->loaded_mappings = true; 2740 } 2741 2742 if (!cache->loaded_discards) { 2743 r = dm_cache_load_discards(cache->cmd, load_discard, cache); 2744 if (r) { 2745 DMERR("could not load origin discards"); 2746 return r; 2747 } 2748 2749 cache->loaded_discards = true; 2750 } 2751 2752 return r; 2753 } 2754 2755 static void cache_resume(struct dm_target *ti) 2756 { 2757 struct cache *cache = ti->private; 2758 2759 cache->need_tick_bio = true; 2760 do_waker(&cache->waker.work); 2761 } 2762 2763 /* 2764 * Status format: 2765 * 2766 * <metadata block size> <#used metadata blocks>/<#total metadata blocks> 2767 * <cache block size> <#used cache blocks>/<#total cache blocks> 2768 * <#read hits> <#read misses> <#write hits> <#write misses> 2769 * <#demotions> <#promotions> <#dirty> 2770 * <#features> <features>* 2771 * <#core args> <core args> 2772 * <policy name> <#policy args> <policy args>* 2773 */ 2774 static void cache_status(struct dm_target *ti, status_type_t type, 2775 unsigned status_flags, char *result, unsigned maxlen) 2776 { 2777 int r = 0; 2778 unsigned i; 2779 ssize_t sz = 0; 2780 dm_block_t nr_free_blocks_metadata = 0; 2781 dm_block_t nr_blocks_metadata = 0; 2782 char buf[BDEVNAME_SIZE]; 2783 struct cache *cache = ti->private; 2784 dm_cblock_t residency; 2785 2786 switch (type) { 2787 case STATUSTYPE_INFO: 2788 /* Commit to ensure statistics aren't out-of-date */ 2789 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) { 2790 r = dm_cache_commit(cache->cmd, false); 2791 if (r) 2792 DMERR("could not commit metadata for accurate status"); 2793 } 2794 2795 r = dm_cache_get_free_metadata_block_count(cache->cmd, 2796 &nr_free_blocks_metadata); 2797 if (r) { 2798 DMERR("could not get metadata free block count"); 2799 goto err; 2800 } 2801 2802 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); 2803 if (r) { 2804 DMERR("could not get metadata device size"); 2805 goto err; 2806 } 2807 2808 residency = policy_residency(cache->policy); 2809 2810 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ", 2811 (unsigned)(DM_CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT), 2812 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 2813 (unsigned long long)nr_blocks_metadata, 2814 cache->sectors_per_block, 2815 (unsigned long long) from_cblock(residency), 2816 (unsigned long long) from_cblock(cache->cache_size), 2817 (unsigned) atomic_read(&cache->stats.read_hit), 2818 (unsigned) atomic_read(&cache->stats.read_miss), 2819 (unsigned) atomic_read(&cache->stats.write_hit), 2820 (unsigned) atomic_read(&cache->stats.write_miss), 2821 (unsigned) atomic_read(&cache->stats.demotion), 2822 (unsigned) atomic_read(&cache->stats.promotion), 2823 (unsigned long) atomic_read(&cache->nr_dirty)); 2824 2825 if (writethrough_mode(&cache->features)) 2826 DMEMIT("1 writethrough "); 2827 2828 else if (passthrough_mode(&cache->features)) 2829 DMEMIT("1 passthrough "); 2830 2831 else if (writeback_mode(&cache->features)) 2832 DMEMIT("1 writeback "); 2833 2834 else { 2835 DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode); 2836 goto err; 2837 } 2838 2839 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); 2840 2841 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy)); 2842 if (sz < maxlen) { 2843 r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz); 2844 if (r) 2845 DMERR("policy_emit_config_values returned %d", r); 2846 } 2847 2848 break; 2849 2850 case STATUSTYPE_TABLE: 2851 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 2852 DMEMIT("%s ", buf); 2853 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 2854 DMEMIT("%s ", buf); 2855 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 2856 DMEMIT("%s", buf); 2857 2858 for (i = 0; i < cache->nr_ctr_args - 1; i++) 2859 DMEMIT(" %s", cache->ctr_args[i]); 2860 if (cache->nr_ctr_args) 2861 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); 2862 } 2863 2864 return; 2865 2866 err: 2867 DMEMIT("Error"); 2868 } 2869 2870 /* 2871 * A cache block range can take two forms: 2872 * 2873 * i) A single cblock, eg. '3456' 2874 * ii) A begin and end cblock with dots between, eg. 123-234 2875 */ 2876 static int parse_cblock_range(struct cache *cache, const char *str, 2877 struct cblock_range *result) 2878 { 2879 char dummy; 2880 uint64_t b, e; 2881 int r; 2882 2883 /* 2884 * Try and parse form (ii) first. 2885 */ 2886 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy); 2887 if (r < 0) 2888 return r; 2889 2890 if (r == 2) { 2891 result->begin = to_cblock(b); 2892 result->end = to_cblock(e); 2893 return 0; 2894 } 2895 2896 /* 2897 * That didn't work, try form (i). 2898 */ 2899 r = sscanf(str, "%llu%c", &b, &dummy); 2900 if (r < 0) 2901 return r; 2902 2903 if (r == 1) { 2904 result->begin = to_cblock(b); 2905 result->end = to_cblock(from_cblock(result->begin) + 1u); 2906 return 0; 2907 } 2908 2909 DMERR("invalid cblock range '%s'", str); 2910 return -EINVAL; 2911 } 2912 2913 static int validate_cblock_range(struct cache *cache, struct cblock_range *range) 2914 { 2915 uint64_t b = from_cblock(range->begin); 2916 uint64_t e = from_cblock(range->end); 2917 uint64_t n = from_cblock(cache->cache_size); 2918 2919 if (b >= n) { 2920 DMERR("begin cblock out of range: %llu >= %llu", b, n); 2921 return -EINVAL; 2922 } 2923 2924 if (e > n) { 2925 DMERR("end cblock out of range: %llu > %llu", e, n); 2926 return -EINVAL; 2927 } 2928 2929 if (b >= e) { 2930 DMERR("invalid cblock range: %llu >= %llu", b, e); 2931 return -EINVAL; 2932 } 2933 2934 return 0; 2935 } 2936 2937 static int request_invalidation(struct cache *cache, struct cblock_range *range) 2938 { 2939 struct invalidation_request req; 2940 2941 INIT_LIST_HEAD(&req.list); 2942 req.cblocks = range; 2943 atomic_set(&req.complete, 0); 2944 req.err = 0; 2945 init_waitqueue_head(&req.result_wait); 2946 2947 spin_lock(&cache->invalidation_lock); 2948 list_add(&req.list, &cache->invalidation_requests); 2949 spin_unlock(&cache->invalidation_lock); 2950 wake_worker(cache); 2951 2952 wait_event(req.result_wait, atomic_read(&req.complete)); 2953 return req.err; 2954 } 2955 2956 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count, 2957 const char **cblock_ranges) 2958 { 2959 int r = 0; 2960 unsigned i; 2961 struct cblock_range range; 2962 2963 if (!passthrough_mode(&cache->features)) { 2964 DMERR("cache has to be in passthrough mode for invalidation"); 2965 return -EPERM; 2966 } 2967 2968 for (i = 0; i < count; i++) { 2969 r = parse_cblock_range(cache, cblock_ranges[i], &range); 2970 if (r) 2971 break; 2972 2973 r = validate_cblock_range(cache, &range); 2974 if (r) 2975 break; 2976 2977 /* 2978 * Pass begin and end origin blocks to the worker and wake it. 2979 */ 2980 r = request_invalidation(cache, &range); 2981 if (r) 2982 break; 2983 } 2984 2985 return r; 2986 } 2987 2988 /* 2989 * Supports 2990 * "<key> <value>" 2991 * and 2992 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]* 2993 * 2994 * The key migration_threshold is supported by the cache target core. 2995 */ 2996 static int cache_message(struct dm_target *ti, unsigned argc, char **argv) 2997 { 2998 struct cache *cache = ti->private; 2999 3000 if (!argc) 3001 return -EINVAL; 3002 3003 if (!strcasecmp(argv[0], "invalidate_cblocks")) 3004 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1); 3005 3006 if (argc != 2) 3007 return -EINVAL; 3008 3009 return set_config_value(cache, argv[0], argv[1]); 3010 } 3011 3012 static int cache_iterate_devices(struct dm_target *ti, 3013 iterate_devices_callout_fn fn, void *data) 3014 { 3015 int r = 0; 3016 struct cache *cache = ti->private; 3017 3018 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); 3019 if (!r) 3020 r = fn(ti, cache->origin_dev, 0, ti->len, data); 3021 3022 return r; 3023 } 3024 3025 /* 3026 * We assume I/O is going to the origin (which is the volume 3027 * more likely to have restrictions e.g. by being striped). 3028 * (Looking up the exact location of the data would be expensive 3029 * and could always be out of date by the time the bio is submitted.) 3030 */ 3031 static int cache_bvec_merge(struct dm_target *ti, 3032 struct bvec_merge_data *bvm, 3033 struct bio_vec *biovec, int max_size) 3034 { 3035 struct cache *cache = ti->private; 3036 struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev); 3037 3038 if (!q->merge_bvec_fn) 3039 return max_size; 3040 3041 bvm->bi_bdev = cache->origin_dev->bdev; 3042 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 3043 } 3044 3045 static void set_discard_limits(struct cache *cache, struct queue_limits *limits) 3046 { 3047 /* 3048 * FIXME: these limits may be incompatible with the cache device 3049 */ 3050 limits->max_discard_sectors = cache->sectors_per_block; 3051 limits->discard_granularity = cache->sectors_per_block << SECTOR_SHIFT; 3052 } 3053 3054 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) 3055 { 3056 struct cache *cache = ti->private; 3057 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3058 3059 /* 3060 * If the system-determined stacked limits are compatible with the 3061 * cache's blocksize (io_opt is a factor) do not override them. 3062 */ 3063 if (io_opt_sectors < cache->sectors_per_block || 3064 do_div(io_opt_sectors, cache->sectors_per_block)) { 3065 blk_limits_io_min(limits, 0); 3066 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); 3067 } 3068 set_discard_limits(cache, limits); 3069 } 3070 3071 /*----------------------------------------------------------------*/ 3072 3073 static struct target_type cache_target = { 3074 .name = "cache", 3075 .version = {1, 4, 0}, 3076 .module = THIS_MODULE, 3077 .ctr = cache_ctr, 3078 .dtr = cache_dtr, 3079 .map = cache_map, 3080 .end_io = cache_end_io, 3081 .postsuspend = cache_postsuspend, 3082 .preresume = cache_preresume, 3083 .resume = cache_resume, 3084 .status = cache_status, 3085 .message = cache_message, 3086 .iterate_devices = cache_iterate_devices, 3087 .merge = cache_bvec_merge, 3088 .io_hints = cache_io_hints, 3089 }; 3090 3091 static int __init dm_cache_init(void) 3092 { 3093 int r; 3094 3095 r = dm_register_target(&cache_target); 3096 if (r) { 3097 DMERR("cache target registration failed: %d", r); 3098 return r; 3099 } 3100 3101 migration_cache = KMEM_CACHE(dm_cache_migration, 0); 3102 if (!migration_cache) { 3103 dm_unregister_target(&cache_target); 3104 return -ENOMEM; 3105 } 3106 3107 return 0; 3108 } 3109 3110 static void __exit dm_cache_exit(void) 3111 { 3112 dm_unregister_target(&cache_target); 3113 kmem_cache_destroy(migration_cache); 3114 } 3115 3116 module_init(dm_cache_init); 3117 module_exit(dm_cache_exit); 3118 3119 MODULE_DESCRIPTION(DM_NAME " cache target"); 3120 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); 3121 MODULE_LICENSE("GPL"); 3122