1 /* 2 * Copyright (C) 2012 Red Hat. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-prison-v2.h" 9 #include "dm-bio-record.h" 10 #include "dm-cache-metadata.h" 11 #include "dm-io-tracker.h" 12 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/jiffies.h> 16 #include <linux/init.h> 17 #include <linux/mempool.h> 18 #include <linux/module.h> 19 #include <linux/rwsem.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 23 #define DM_MSG_PREFIX "cache" 24 25 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, 26 "A percentage of time allocated for copying to and/or from cache"); 27 28 /*----------------------------------------------------------------*/ 29 30 /* 31 * Glossary: 32 * 33 * oblock: index of an origin block 34 * cblock: index of a cache block 35 * promotion: movement of a block from origin to cache 36 * demotion: movement of a block from cache to origin 37 * migration: movement of a block between the origin and cache device, 38 * either direction 39 */ 40 41 /*----------------------------------------------------------------*/ 42 43 /* 44 * Represents a chunk of future work. 'input' allows continuations to pass 45 * values between themselves, typically error values. 46 */ 47 struct continuation { 48 struct work_struct ws; 49 blk_status_t input; 50 }; 51 52 static inline void init_continuation(struct continuation *k, 53 void (*fn)(struct work_struct *)) 54 { 55 INIT_WORK(&k->ws, fn); 56 k->input = 0; 57 } 58 59 static inline void queue_continuation(struct workqueue_struct *wq, 60 struct continuation *k) 61 { 62 queue_work(wq, &k->ws); 63 } 64 65 /*----------------------------------------------------------------*/ 66 67 /* 68 * The batcher collects together pieces of work that need a particular 69 * operation to occur before they can proceed (typically a commit). 70 */ 71 struct batcher { 72 /* 73 * The operation that everyone is waiting for. 74 */ 75 blk_status_t (*commit_op)(void *context); 76 void *commit_context; 77 78 /* 79 * This is how bios should be issued once the commit op is complete 80 * (accounted_request). 81 */ 82 void (*issue_op)(struct bio *bio, void *context); 83 void *issue_context; 84 85 /* 86 * Queued work gets put on here after commit. 87 */ 88 struct workqueue_struct *wq; 89 90 spinlock_t lock; 91 struct list_head work_items; 92 struct bio_list bios; 93 struct work_struct commit_work; 94 95 bool commit_scheduled; 96 }; 97 98 static void __commit(struct work_struct *_ws) 99 { 100 struct batcher *b = container_of(_ws, struct batcher, commit_work); 101 blk_status_t r; 102 struct list_head work_items; 103 struct work_struct *ws, *tmp; 104 struct continuation *k; 105 struct bio *bio; 106 struct bio_list bios; 107 108 INIT_LIST_HEAD(&work_items); 109 bio_list_init(&bios); 110 111 /* 112 * We have to grab these before the commit_op to avoid a race 113 * condition. 114 */ 115 spin_lock_irq(&b->lock); 116 list_splice_init(&b->work_items, &work_items); 117 bio_list_merge(&bios, &b->bios); 118 bio_list_init(&b->bios); 119 b->commit_scheduled = false; 120 spin_unlock_irq(&b->lock); 121 122 r = b->commit_op(b->commit_context); 123 124 list_for_each_entry_safe(ws, tmp, &work_items, entry) { 125 k = container_of(ws, struct continuation, ws); 126 k->input = r; 127 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */ 128 queue_work(b->wq, ws); 129 } 130 131 while ((bio = bio_list_pop(&bios))) { 132 if (r) { 133 bio->bi_status = r; 134 bio_endio(bio); 135 } else 136 b->issue_op(bio, b->issue_context); 137 } 138 } 139 140 static void batcher_init(struct batcher *b, 141 blk_status_t (*commit_op)(void *), 142 void *commit_context, 143 void (*issue_op)(struct bio *bio, void *), 144 void *issue_context, 145 struct workqueue_struct *wq) 146 { 147 b->commit_op = commit_op; 148 b->commit_context = commit_context; 149 b->issue_op = issue_op; 150 b->issue_context = issue_context; 151 b->wq = wq; 152 153 spin_lock_init(&b->lock); 154 INIT_LIST_HEAD(&b->work_items); 155 bio_list_init(&b->bios); 156 INIT_WORK(&b->commit_work, __commit); 157 b->commit_scheduled = false; 158 } 159 160 static void async_commit(struct batcher *b) 161 { 162 queue_work(b->wq, &b->commit_work); 163 } 164 165 static void continue_after_commit(struct batcher *b, struct continuation *k) 166 { 167 bool commit_scheduled; 168 169 spin_lock_irq(&b->lock); 170 commit_scheduled = b->commit_scheduled; 171 list_add_tail(&k->ws.entry, &b->work_items); 172 spin_unlock_irq(&b->lock); 173 174 if (commit_scheduled) 175 async_commit(b); 176 } 177 178 /* 179 * Bios are errored if commit failed. 180 */ 181 static void issue_after_commit(struct batcher *b, struct bio *bio) 182 { 183 bool commit_scheduled; 184 185 spin_lock_irq(&b->lock); 186 commit_scheduled = b->commit_scheduled; 187 bio_list_add(&b->bios, bio); 188 spin_unlock_irq(&b->lock); 189 190 if (commit_scheduled) 191 async_commit(b); 192 } 193 194 /* 195 * Call this if some urgent work is waiting for the commit to complete. 196 */ 197 static void schedule_commit(struct batcher *b) 198 { 199 bool immediate; 200 201 spin_lock_irq(&b->lock); 202 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios); 203 b->commit_scheduled = true; 204 spin_unlock_irq(&b->lock); 205 206 if (immediate) 207 async_commit(b); 208 } 209 210 /* 211 * There are a couple of places where we let a bio run, but want to do some 212 * work before calling its endio function. We do this by temporarily 213 * changing the endio fn. 214 */ 215 struct dm_hook_info { 216 bio_end_io_t *bi_end_io; 217 }; 218 219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio, 220 bio_end_io_t *bi_end_io, void *bi_private) 221 { 222 h->bi_end_io = bio->bi_end_io; 223 224 bio->bi_end_io = bi_end_io; 225 bio->bi_private = bi_private; 226 } 227 228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio) 229 { 230 bio->bi_end_io = h->bi_end_io; 231 } 232 233 /*----------------------------------------------------------------*/ 234 235 #define MIGRATION_POOL_SIZE 128 236 #define COMMIT_PERIOD HZ 237 #define MIGRATION_COUNT_WINDOW 10 238 239 /* 240 * The block size of the device holding cache data must be 241 * between 32KB and 1GB. 242 */ 243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) 244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 245 246 enum cache_metadata_mode { 247 CM_WRITE, /* metadata may be changed */ 248 CM_READ_ONLY, /* metadata may not be changed */ 249 CM_FAIL 250 }; 251 252 enum cache_io_mode { 253 /* 254 * Data is written to cached blocks only. These blocks are marked 255 * dirty. If you lose the cache device you will lose data. 256 * Potential performance increase for both reads and writes. 257 */ 258 CM_IO_WRITEBACK, 259 260 /* 261 * Data is written to both cache and origin. Blocks are never 262 * dirty. Potential performance benfit for reads only. 263 */ 264 CM_IO_WRITETHROUGH, 265 266 /* 267 * A degraded mode useful for various cache coherency situations 268 * (eg, rolling back snapshots). Reads and writes always go to the 269 * origin. If a write goes to a cached oblock, then the cache 270 * block is invalidated. 271 */ 272 CM_IO_PASSTHROUGH 273 }; 274 275 struct cache_features { 276 enum cache_metadata_mode mode; 277 enum cache_io_mode io_mode; 278 unsigned metadata_version; 279 bool discard_passdown:1; 280 }; 281 282 struct cache_stats { 283 atomic_t read_hit; 284 atomic_t read_miss; 285 atomic_t write_hit; 286 atomic_t write_miss; 287 atomic_t demotion; 288 atomic_t promotion; 289 atomic_t writeback; 290 atomic_t copies_avoided; 291 atomic_t cache_cell_clash; 292 atomic_t commit_count; 293 atomic_t discard_count; 294 }; 295 296 struct cache { 297 struct dm_target *ti; 298 spinlock_t lock; 299 300 /* 301 * Fields for converting from sectors to blocks. 302 */ 303 int sectors_per_block_shift; 304 sector_t sectors_per_block; 305 306 struct dm_cache_metadata *cmd; 307 308 /* 309 * Metadata is written to this device. 310 */ 311 struct dm_dev *metadata_dev; 312 313 /* 314 * The slower of the two data devices. Typically a spindle. 315 */ 316 struct dm_dev *origin_dev; 317 318 /* 319 * The faster of the two data devices. Typically an SSD. 320 */ 321 struct dm_dev *cache_dev; 322 323 /* 324 * Size of the origin device in _complete_ blocks and native sectors. 325 */ 326 dm_oblock_t origin_blocks; 327 sector_t origin_sectors; 328 329 /* 330 * Size of the cache device in blocks. 331 */ 332 dm_cblock_t cache_size; 333 334 /* 335 * Invalidation fields. 336 */ 337 spinlock_t invalidation_lock; 338 struct list_head invalidation_requests; 339 340 sector_t migration_threshold; 341 wait_queue_head_t migration_wait; 342 atomic_t nr_allocated_migrations; 343 344 /* 345 * The number of in flight migrations that are performing 346 * background io. eg, promotion, writeback. 347 */ 348 atomic_t nr_io_migrations; 349 350 struct bio_list deferred_bios; 351 352 struct rw_semaphore quiesce_lock; 353 354 /* 355 * origin_blocks entries, discarded if set. 356 */ 357 dm_dblock_t discard_nr_blocks; 358 unsigned long *discard_bitset; 359 uint32_t discard_block_size; /* a power of 2 times sectors per block */ 360 361 /* 362 * Rather than reconstructing the table line for the status we just 363 * save it and regurgitate. 364 */ 365 unsigned nr_ctr_args; 366 const char **ctr_args; 367 368 struct dm_kcopyd_client *copier; 369 struct work_struct deferred_bio_worker; 370 struct work_struct migration_worker; 371 struct workqueue_struct *wq; 372 struct delayed_work waker; 373 struct dm_bio_prison_v2 *prison; 374 375 /* 376 * cache_size entries, dirty if set 377 */ 378 unsigned long *dirty_bitset; 379 atomic_t nr_dirty; 380 381 unsigned policy_nr_args; 382 struct dm_cache_policy *policy; 383 384 /* 385 * Cache features such as write-through. 386 */ 387 struct cache_features features; 388 389 struct cache_stats stats; 390 391 bool need_tick_bio:1; 392 bool sized:1; 393 bool invalidate:1; 394 bool commit_requested:1; 395 bool loaded_mappings:1; 396 bool loaded_discards:1; 397 398 struct rw_semaphore background_work_lock; 399 400 struct batcher committer; 401 struct work_struct commit_ws; 402 403 struct dm_io_tracker tracker; 404 405 mempool_t migration_pool; 406 407 struct bio_set bs; 408 }; 409 410 struct per_bio_data { 411 bool tick:1; 412 unsigned req_nr:2; 413 struct dm_bio_prison_cell_v2 *cell; 414 struct dm_hook_info hook_info; 415 sector_t len; 416 }; 417 418 struct dm_cache_migration { 419 struct continuation k; 420 struct cache *cache; 421 422 struct policy_work *op; 423 struct bio *overwrite_bio; 424 struct dm_bio_prison_cell_v2 *cell; 425 426 dm_cblock_t invalidate_cblock; 427 dm_oblock_t invalidate_oblock; 428 }; 429 430 /*----------------------------------------------------------------*/ 431 432 static bool writethrough_mode(struct cache *cache) 433 { 434 return cache->features.io_mode == CM_IO_WRITETHROUGH; 435 } 436 437 static bool writeback_mode(struct cache *cache) 438 { 439 return cache->features.io_mode == CM_IO_WRITEBACK; 440 } 441 442 static inline bool passthrough_mode(struct cache *cache) 443 { 444 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH); 445 } 446 447 /*----------------------------------------------------------------*/ 448 449 static void wake_deferred_bio_worker(struct cache *cache) 450 { 451 queue_work(cache->wq, &cache->deferred_bio_worker); 452 } 453 454 static void wake_migration_worker(struct cache *cache) 455 { 456 if (passthrough_mode(cache)) 457 return; 458 459 queue_work(cache->wq, &cache->migration_worker); 460 } 461 462 /*----------------------------------------------------------------*/ 463 464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache) 465 { 466 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO); 467 } 468 469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell) 470 { 471 dm_bio_prison_free_cell_v2(cache->prison, cell); 472 } 473 474 static struct dm_cache_migration *alloc_migration(struct cache *cache) 475 { 476 struct dm_cache_migration *mg; 477 478 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO); 479 480 memset(mg, 0, sizeof(*mg)); 481 482 mg->cache = cache; 483 atomic_inc(&cache->nr_allocated_migrations); 484 485 return mg; 486 } 487 488 static void free_migration(struct dm_cache_migration *mg) 489 { 490 struct cache *cache = mg->cache; 491 492 if (atomic_dec_and_test(&cache->nr_allocated_migrations)) 493 wake_up(&cache->migration_wait); 494 495 mempool_free(mg, &cache->migration_pool); 496 } 497 498 /*----------------------------------------------------------------*/ 499 500 static inline dm_oblock_t oblock_succ(dm_oblock_t b) 501 { 502 return to_oblock(from_oblock(b) + 1ull); 503 } 504 505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key) 506 { 507 key->virtual = 0; 508 key->dev = 0; 509 key->block_begin = from_oblock(begin); 510 key->block_end = from_oblock(end); 511 } 512 513 /* 514 * We have two lock levels. Level 0, which is used to prevent WRITEs, and 515 * level 1 which prevents *both* READs and WRITEs. 516 */ 517 #define WRITE_LOCK_LEVEL 0 518 #define READ_WRITE_LOCK_LEVEL 1 519 520 static unsigned lock_level(struct bio *bio) 521 { 522 return bio_data_dir(bio) == WRITE ? 523 WRITE_LOCK_LEVEL : 524 READ_WRITE_LOCK_LEVEL; 525 } 526 527 /*---------------------------------------------------------------- 528 * Per bio data 529 *--------------------------------------------------------------*/ 530 531 static struct per_bio_data *get_per_bio_data(struct bio *bio) 532 { 533 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 534 BUG_ON(!pb); 535 return pb; 536 } 537 538 static struct per_bio_data *init_per_bio_data(struct bio *bio) 539 { 540 struct per_bio_data *pb = get_per_bio_data(bio); 541 542 pb->tick = false; 543 pb->req_nr = dm_bio_get_target_bio_nr(bio); 544 pb->cell = NULL; 545 pb->len = 0; 546 547 return pb; 548 } 549 550 /*----------------------------------------------------------------*/ 551 552 static void defer_bio(struct cache *cache, struct bio *bio) 553 { 554 spin_lock_irq(&cache->lock); 555 bio_list_add(&cache->deferred_bios, bio); 556 spin_unlock_irq(&cache->lock); 557 558 wake_deferred_bio_worker(cache); 559 } 560 561 static void defer_bios(struct cache *cache, struct bio_list *bios) 562 { 563 spin_lock_irq(&cache->lock); 564 bio_list_merge(&cache->deferred_bios, bios); 565 bio_list_init(bios); 566 spin_unlock_irq(&cache->lock); 567 568 wake_deferred_bio_worker(cache); 569 } 570 571 /*----------------------------------------------------------------*/ 572 573 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio) 574 { 575 bool r; 576 struct per_bio_data *pb; 577 struct dm_cell_key_v2 key; 578 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL); 579 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell; 580 581 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */ 582 583 build_key(oblock, end, &key); 584 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell); 585 if (!r) { 586 /* 587 * Failed to get the lock. 588 */ 589 free_prison_cell(cache, cell_prealloc); 590 return r; 591 } 592 593 if (cell != cell_prealloc) 594 free_prison_cell(cache, cell_prealloc); 595 596 pb = get_per_bio_data(bio); 597 pb->cell = cell; 598 599 return r; 600 } 601 602 /*----------------------------------------------------------------*/ 603 604 static bool is_dirty(struct cache *cache, dm_cblock_t b) 605 { 606 return test_bit(from_cblock(b), cache->dirty_bitset); 607 } 608 609 static void set_dirty(struct cache *cache, dm_cblock_t cblock) 610 { 611 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { 612 atomic_inc(&cache->nr_dirty); 613 policy_set_dirty(cache->policy, cblock); 614 } 615 } 616 617 /* 618 * These two are called when setting after migrations to force the policy 619 * and dirty bitset to be in sync. 620 */ 621 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock) 622 { 623 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) 624 atomic_inc(&cache->nr_dirty); 625 policy_set_dirty(cache->policy, cblock); 626 } 627 628 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock) 629 { 630 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { 631 if (atomic_dec_return(&cache->nr_dirty) == 0) 632 dm_table_event(cache->ti->table); 633 } 634 635 policy_clear_dirty(cache->policy, cblock); 636 } 637 638 /*----------------------------------------------------------------*/ 639 640 static bool block_size_is_power_of_two(struct cache *cache) 641 { 642 return cache->sectors_per_block_shift >= 0; 643 } 644 645 static dm_block_t block_div(dm_block_t b, uint32_t n) 646 { 647 do_div(b, n); 648 649 return b; 650 } 651 652 static dm_block_t oblocks_per_dblock(struct cache *cache) 653 { 654 dm_block_t oblocks = cache->discard_block_size; 655 656 if (block_size_is_power_of_two(cache)) 657 oblocks >>= cache->sectors_per_block_shift; 658 else 659 oblocks = block_div(oblocks, cache->sectors_per_block); 660 661 return oblocks; 662 } 663 664 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock) 665 { 666 return to_dblock(block_div(from_oblock(oblock), 667 oblocks_per_dblock(cache))); 668 } 669 670 static void set_discard(struct cache *cache, dm_dblock_t b) 671 { 672 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks)); 673 atomic_inc(&cache->stats.discard_count); 674 675 spin_lock_irq(&cache->lock); 676 set_bit(from_dblock(b), cache->discard_bitset); 677 spin_unlock_irq(&cache->lock); 678 } 679 680 static void clear_discard(struct cache *cache, dm_dblock_t b) 681 { 682 spin_lock_irq(&cache->lock); 683 clear_bit(from_dblock(b), cache->discard_bitset); 684 spin_unlock_irq(&cache->lock); 685 } 686 687 static bool is_discarded(struct cache *cache, dm_dblock_t b) 688 { 689 int r; 690 spin_lock_irq(&cache->lock); 691 r = test_bit(from_dblock(b), cache->discard_bitset); 692 spin_unlock_irq(&cache->lock); 693 694 return r; 695 } 696 697 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) 698 { 699 int r; 700 spin_lock_irq(&cache->lock); 701 r = test_bit(from_dblock(oblock_to_dblock(cache, b)), 702 cache->discard_bitset); 703 spin_unlock_irq(&cache->lock); 704 705 return r; 706 } 707 708 /*---------------------------------------------------------------- 709 * Remapping 710 *--------------------------------------------------------------*/ 711 static void remap_to_origin(struct cache *cache, struct bio *bio) 712 { 713 bio_set_dev(bio, cache->origin_dev->bdev); 714 } 715 716 static void remap_to_cache(struct cache *cache, struct bio *bio, 717 dm_cblock_t cblock) 718 { 719 sector_t bi_sector = bio->bi_iter.bi_sector; 720 sector_t block = from_cblock(cblock); 721 722 bio_set_dev(bio, cache->cache_dev->bdev); 723 if (!block_size_is_power_of_two(cache)) 724 bio->bi_iter.bi_sector = 725 (block * cache->sectors_per_block) + 726 sector_div(bi_sector, cache->sectors_per_block); 727 else 728 bio->bi_iter.bi_sector = 729 (block << cache->sectors_per_block_shift) | 730 (bi_sector & (cache->sectors_per_block - 1)); 731 } 732 733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) 734 { 735 struct per_bio_data *pb; 736 737 spin_lock_irq(&cache->lock); 738 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) && 739 bio_op(bio) != REQ_OP_DISCARD) { 740 pb = get_per_bio_data(bio); 741 pb->tick = true; 742 cache->need_tick_bio = false; 743 } 744 spin_unlock_irq(&cache->lock); 745 } 746 747 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, 748 dm_oblock_t oblock, bool bio_has_pbd) 749 { 750 if (bio_has_pbd) 751 check_if_tick_bio_needed(cache, bio); 752 remap_to_origin(cache, bio); 753 if (bio_data_dir(bio) == WRITE) 754 clear_discard(cache, oblock_to_dblock(cache, oblock)); 755 } 756 757 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, 758 dm_oblock_t oblock) 759 { 760 // FIXME: check_if_tick_bio_needed() is called way too much through this interface 761 __remap_to_origin_clear_discard(cache, bio, oblock, true); 762 } 763 764 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, 765 dm_oblock_t oblock, dm_cblock_t cblock) 766 { 767 check_if_tick_bio_needed(cache, bio); 768 remap_to_cache(cache, bio, cblock); 769 if (bio_data_dir(bio) == WRITE) { 770 set_dirty(cache, cblock); 771 clear_discard(cache, oblock_to_dblock(cache, oblock)); 772 } 773 } 774 775 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) 776 { 777 sector_t block_nr = bio->bi_iter.bi_sector; 778 779 if (!block_size_is_power_of_two(cache)) 780 (void) sector_div(block_nr, cache->sectors_per_block); 781 else 782 block_nr >>= cache->sectors_per_block_shift; 783 784 return to_oblock(block_nr); 785 } 786 787 static bool accountable_bio(struct cache *cache, struct bio *bio) 788 { 789 return bio_op(bio) != REQ_OP_DISCARD; 790 } 791 792 static void accounted_begin(struct cache *cache, struct bio *bio) 793 { 794 struct per_bio_data *pb; 795 796 if (accountable_bio(cache, bio)) { 797 pb = get_per_bio_data(bio); 798 pb->len = bio_sectors(bio); 799 dm_iot_io_begin(&cache->tracker, pb->len); 800 } 801 } 802 803 static void accounted_complete(struct cache *cache, struct bio *bio) 804 { 805 struct per_bio_data *pb = get_per_bio_data(bio); 806 807 dm_iot_io_end(&cache->tracker, pb->len); 808 } 809 810 static void accounted_request(struct cache *cache, struct bio *bio) 811 { 812 accounted_begin(cache, bio); 813 submit_bio_noacct(bio); 814 } 815 816 static void issue_op(struct bio *bio, void *context) 817 { 818 struct cache *cache = context; 819 accounted_request(cache, bio); 820 } 821 822 /* 823 * When running in writethrough mode we need to send writes to clean blocks 824 * to both the cache and origin devices. Clone the bio and send them in parallel. 825 */ 826 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio, 827 dm_oblock_t oblock, dm_cblock_t cblock) 828 { 829 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs); 830 831 BUG_ON(!origin_bio); 832 833 bio_chain(origin_bio, bio); 834 /* 835 * Passing false to __remap_to_origin_clear_discard() skips 836 * all code that might use per_bio_data (since clone doesn't have it) 837 */ 838 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false); 839 submit_bio(origin_bio); 840 841 remap_to_cache(cache, bio, cblock); 842 } 843 844 /*---------------------------------------------------------------- 845 * Failure modes 846 *--------------------------------------------------------------*/ 847 static enum cache_metadata_mode get_cache_mode(struct cache *cache) 848 { 849 return cache->features.mode; 850 } 851 852 static const char *cache_device_name(struct cache *cache) 853 { 854 return dm_table_device_name(cache->ti->table); 855 } 856 857 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode) 858 { 859 const char *descs[] = { 860 "write", 861 "read-only", 862 "fail" 863 }; 864 865 dm_table_event(cache->ti->table); 866 DMINFO("%s: switching cache to %s mode", 867 cache_device_name(cache), descs[(int)mode]); 868 } 869 870 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode) 871 { 872 bool needs_check; 873 enum cache_metadata_mode old_mode = get_cache_mode(cache); 874 875 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) { 876 DMERR("%s: unable to read needs_check flag, setting failure mode.", 877 cache_device_name(cache)); 878 new_mode = CM_FAIL; 879 } 880 881 if (new_mode == CM_WRITE && needs_check) { 882 DMERR("%s: unable to switch cache to write mode until repaired.", 883 cache_device_name(cache)); 884 if (old_mode != new_mode) 885 new_mode = old_mode; 886 else 887 new_mode = CM_READ_ONLY; 888 } 889 890 /* Never move out of fail mode */ 891 if (old_mode == CM_FAIL) 892 new_mode = CM_FAIL; 893 894 switch (new_mode) { 895 case CM_FAIL: 896 case CM_READ_ONLY: 897 dm_cache_metadata_set_read_only(cache->cmd); 898 break; 899 900 case CM_WRITE: 901 dm_cache_metadata_set_read_write(cache->cmd); 902 break; 903 } 904 905 cache->features.mode = new_mode; 906 907 if (new_mode != old_mode) 908 notify_mode_switch(cache, new_mode); 909 } 910 911 static void abort_transaction(struct cache *cache) 912 { 913 const char *dev_name = cache_device_name(cache); 914 915 if (get_cache_mode(cache) >= CM_READ_ONLY) 916 return; 917 918 if (dm_cache_metadata_set_needs_check(cache->cmd)) { 919 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 920 set_cache_mode(cache, CM_FAIL); 921 } 922 923 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 924 if (dm_cache_metadata_abort(cache->cmd)) { 925 DMERR("%s: failed to abort metadata transaction", dev_name); 926 set_cache_mode(cache, CM_FAIL); 927 } 928 } 929 930 static void metadata_operation_failed(struct cache *cache, const char *op, int r) 931 { 932 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 933 cache_device_name(cache), op, r); 934 abort_transaction(cache); 935 set_cache_mode(cache, CM_READ_ONLY); 936 } 937 938 /*----------------------------------------------------------------*/ 939 940 static void load_stats(struct cache *cache) 941 { 942 struct dm_cache_statistics stats; 943 944 dm_cache_metadata_get_stats(cache->cmd, &stats); 945 atomic_set(&cache->stats.read_hit, stats.read_hits); 946 atomic_set(&cache->stats.read_miss, stats.read_misses); 947 atomic_set(&cache->stats.write_hit, stats.write_hits); 948 atomic_set(&cache->stats.write_miss, stats.write_misses); 949 } 950 951 static void save_stats(struct cache *cache) 952 { 953 struct dm_cache_statistics stats; 954 955 if (get_cache_mode(cache) >= CM_READ_ONLY) 956 return; 957 958 stats.read_hits = atomic_read(&cache->stats.read_hit); 959 stats.read_misses = atomic_read(&cache->stats.read_miss); 960 stats.write_hits = atomic_read(&cache->stats.write_hit); 961 stats.write_misses = atomic_read(&cache->stats.write_miss); 962 963 dm_cache_metadata_set_stats(cache->cmd, &stats); 964 } 965 966 static void update_stats(struct cache_stats *stats, enum policy_operation op) 967 { 968 switch (op) { 969 case POLICY_PROMOTE: 970 atomic_inc(&stats->promotion); 971 break; 972 973 case POLICY_DEMOTE: 974 atomic_inc(&stats->demotion); 975 break; 976 977 case POLICY_WRITEBACK: 978 atomic_inc(&stats->writeback); 979 break; 980 } 981 } 982 983 /*---------------------------------------------------------------- 984 * Migration processing 985 * 986 * Migration covers moving data from the origin device to the cache, or 987 * vice versa. 988 *--------------------------------------------------------------*/ 989 990 static void inc_io_migrations(struct cache *cache) 991 { 992 atomic_inc(&cache->nr_io_migrations); 993 } 994 995 static void dec_io_migrations(struct cache *cache) 996 { 997 atomic_dec(&cache->nr_io_migrations); 998 } 999 1000 static bool discard_or_flush(struct bio *bio) 1001 { 1002 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf); 1003 } 1004 1005 static void calc_discard_block_range(struct cache *cache, struct bio *bio, 1006 dm_dblock_t *b, dm_dblock_t *e) 1007 { 1008 sector_t sb = bio->bi_iter.bi_sector; 1009 sector_t se = bio_end_sector(bio); 1010 1011 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size)); 1012 1013 if (se - sb < cache->discard_block_size) 1014 *e = *b; 1015 else 1016 *e = to_dblock(block_div(se, cache->discard_block_size)); 1017 } 1018 1019 /*----------------------------------------------------------------*/ 1020 1021 static void prevent_background_work(struct cache *cache) 1022 { 1023 lockdep_off(); 1024 down_write(&cache->background_work_lock); 1025 lockdep_on(); 1026 } 1027 1028 static void allow_background_work(struct cache *cache) 1029 { 1030 lockdep_off(); 1031 up_write(&cache->background_work_lock); 1032 lockdep_on(); 1033 } 1034 1035 static bool background_work_begin(struct cache *cache) 1036 { 1037 bool r; 1038 1039 lockdep_off(); 1040 r = down_read_trylock(&cache->background_work_lock); 1041 lockdep_on(); 1042 1043 return r; 1044 } 1045 1046 static void background_work_end(struct cache *cache) 1047 { 1048 lockdep_off(); 1049 up_read(&cache->background_work_lock); 1050 lockdep_on(); 1051 } 1052 1053 /*----------------------------------------------------------------*/ 1054 1055 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio) 1056 { 1057 return (bio_data_dir(bio) == WRITE) && 1058 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT)); 1059 } 1060 1061 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block) 1062 { 1063 return writeback_mode(cache) && 1064 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio)); 1065 } 1066 1067 static void quiesce(struct dm_cache_migration *mg, 1068 void (*continuation)(struct work_struct *)) 1069 { 1070 init_continuation(&mg->k, continuation); 1071 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws); 1072 } 1073 1074 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws) 1075 { 1076 struct continuation *k = container_of(ws, struct continuation, ws); 1077 return container_of(k, struct dm_cache_migration, k); 1078 } 1079 1080 static void copy_complete(int read_err, unsigned long write_err, void *context) 1081 { 1082 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k); 1083 1084 if (read_err || write_err) 1085 mg->k.input = BLK_STS_IOERR; 1086 1087 queue_continuation(mg->cache->wq, &mg->k); 1088 } 1089 1090 static void copy(struct dm_cache_migration *mg, bool promote) 1091 { 1092 struct dm_io_region o_region, c_region; 1093 struct cache *cache = mg->cache; 1094 1095 o_region.bdev = cache->origin_dev->bdev; 1096 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block; 1097 o_region.count = cache->sectors_per_block; 1098 1099 c_region.bdev = cache->cache_dev->bdev; 1100 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block; 1101 c_region.count = cache->sectors_per_block; 1102 1103 if (promote) 1104 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k); 1105 else 1106 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k); 1107 } 1108 1109 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio) 1110 { 1111 struct per_bio_data *pb = get_per_bio_data(bio); 1112 1113 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell)) 1114 free_prison_cell(cache, pb->cell); 1115 pb->cell = NULL; 1116 } 1117 1118 static void overwrite_endio(struct bio *bio) 1119 { 1120 struct dm_cache_migration *mg = bio->bi_private; 1121 struct cache *cache = mg->cache; 1122 struct per_bio_data *pb = get_per_bio_data(bio); 1123 1124 dm_unhook_bio(&pb->hook_info, bio); 1125 1126 if (bio->bi_status) 1127 mg->k.input = bio->bi_status; 1128 1129 queue_continuation(cache->wq, &mg->k); 1130 } 1131 1132 static void overwrite(struct dm_cache_migration *mg, 1133 void (*continuation)(struct work_struct *)) 1134 { 1135 struct bio *bio = mg->overwrite_bio; 1136 struct per_bio_data *pb = get_per_bio_data(bio); 1137 1138 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg); 1139 1140 /* 1141 * The overwrite bio is part of the copy operation, as such it does 1142 * not set/clear discard or dirty flags. 1143 */ 1144 if (mg->op->op == POLICY_PROMOTE) 1145 remap_to_cache(mg->cache, bio, mg->op->cblock); 1146 else 1147 remap_to_origin(mg->cache, bio); 1148 1149 init_continuation(&mg->k, continuation); 1150 accounted_request(mg->cache, bio); 1151 } 1152 1153 /* 1154 * Migration steps: 1155 * 1156 * 1) exclusive lock preventing WRITEs 1157 * 2) quiesce 1158 * 3) copy or issue overwrite bio 1159 * 4) upgrade to exclusive lock preventing READs and WRITEs 1160 * 5) quiesce 1161 * 6) update metadata and commit 1162 * 7) unlock 1163 */ 1164 static void mg_complete(struct dm_cache_migration *mg, bool success) 1165 { 1166 struct bio_list bios; 1167 struct cache *cache = mg->cache; 1168 struct policy_work *op = mg->op; 1169 dm_cblock_t cblock = op->cblock; 1170 1171 if (success) 1172 update_stats(&cache->stats, op->op); 1173 1174 switch (op->op) { 1175 case POLICY_PROMOTE: 1176 clear_discard(cache, oblock_to_dblock(cache, op->oblock)); 1177 policy_complete_background_work(cache->policy, op, success); 1178 1179 if (mg->overwrite_bio) { 1180 if (success) 1181 force_set_dirty(cache, cblock); 1182 else if (mg->k.input) 1183 mg->overwrite_bio->bi_status = mg->k.input; 1184 else 1185 mg->overwrite_bio->bi_status = BLK_STS_IOERR; 1186 bio_endio(mg->overwrite_bio); 1187 } else { 1188 if (success) 1189 force_clear_dirty(cache, cblock); 1190 dec_io_migrations(cache); 1191 } 1192 break; 1193 1194 case POLICY_DEMOTE: 1195 /* 1196 * We clear dirty here to update the nr_dirty counter. 1197 */ 1198 if (success) 1199 force_clear_dirty(cache, cblock); 1200 policy_complete_background_work(cache->policy, op, success); 1201 dec_io_migrations(cache); 1202 break; 1203 1204 case POLICY_WRITEBACK: 1205 if (success) 1206 force_clear_dirty(cache, cblock); 1207 policy_complete_background_work(cache->policy, op, success); 1208 dec_io_migrations(cache); 1209 break; 1210 } 1211 1212 bio_list_init(&bios); 1213 if (mg->cell) { 1214 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1215 free_prison_cell(cache, mg->cell); 1216 } 1217 1218 free_migration(mg); 1219 defer_bios(cache, &bios); 1220 wake_migration_worker(cache); 1221 1222 background_work_end(cache); 1223 } 1224 1225 static void mg_success(struct work_struct *ws) 1226 { 1227 struct dm_cache_migration *mg = ws_to_mg(ws); 1228 mg_complete(mg, mg->k.input == 0); 1229 } 1230 1231 static void mg_update_metadata(struct work_struct *ws) 1232 { 1233 int r; 1234 struct dm_cache_migration *mg = ws_to_mg(ws); 1235 struct cache *cache = mg->cache; 1236 struct policy_work *op = mg->op; 1237 1238 switch (op->op) { 1239 case POLICY_PROMOTE: 1240 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock); 1241 if (r) { 1242 DMERR_LIMIT("%s: migration failed; couldn't insert mapping", 1243 cache_device_name(cache)); 1244 metadata_operation_failed(cache, "dm_cache_insert_mapping", r); 1245 1246 mg_complete(mg, false); 1247 return; 1248 } 1249 mg_complete(mg, true); 1250 break; 1251 1252 case POLICY_DEMOTE: 1253 r = dm_cache_remove_mapping(cache->cmd, op->cblock); 1254 if (r) { 1255 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata", 1256 cache_device_name(cache)); 1257 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1258 1259 mg_complete(mg, false); 1260 return; 1261 } 1262 1263 /* 1264 * It would be nice if we only had to commit when a REQ_FLUSH 1265 * comes through. But there's one scenario that we have to 1266 * look out for: 1267 * 1268 * - vblock x in a cache block 1269 * - domotion occurs 1270 * - cache block gets reallocated and over written 1271 * - crash 1272 * 1273 * When we recover, because there was no commit the cache will 1274 * rollback to having the data for vblock x in the cache block. 1275 * But the cache block has since been overwritten, so it'll end 1276 * up pointing to data that was never in 'x' during the history 1277 * of the device. 1278 * 1279 * To avoid this issue we require a commit as part of the 1280 * demotion operation. 1281 */ 1282 init_continuation(&mg->k, mg_success); 1283 continue_after_commit(&cache->committer, &mg->k); 1284 schedule_commit(&cache->committer); 1285 break; 1286 1287 case POLICY_WRITEBACK: 1288 mg_complete(mg, true); 1289 break; 1290 } 1291 } 1292 1293 static void mg_update_metadata_after_copy(struct work_struct *ws) 1294 { 1295 struct dm_cache_migration *mg = ws_to_mg(ws); 1296 1297 /* 1298 * Did the copy succeed? 1299 */ 1300 if (mg->k.input) 1301 mg_complete(mg, false); 1302 else 1303 mg_update_metadata(ws); 1304 } 1305 1306 static void mg_upgrade_lock(struct work_struct *ws) 1307 { 1308 int r; 1309 struct dm_cache_migration *mg = ws_to_mg(ws); 1310 1311 /* 1312 * Did the copy succeed? 1313 */ 1314 if (mg->k.input) 1315 mg_complete(mg, false); 1316 1317 else { 1318 /* 1319 * Now we want the lock to prevent both reads and writes. 1320 */ 1321 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell, 1322 READ_WRITE_LOCK_LEVEL); 1323 if (r < 0) 1324 mg_complete(mg, false); 1325 1326 else if (r) 1327 quiesce(mg, mg_update_metadata); 1328 1329 else 1330 mg_update_metadata(ws); 1331 } 1332 } 1333 1334 static void mg_full_copy(struct work_struct *ws) 1335 { 1336 struct dm_cache_migration *mg = ws_to_mg(ws); 1337 struct cache *cache = mg->cache; 1338 struct policy_work *op = mg->op; 1339 bool is_policy_promote = (op->op == POLICY_PROMOTE); 1340 1341 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) || 1342 is_discarded_oblock(cache, op->oblock)) { 1343 mg_upgrade_lock(ws); 1344 return; 1345 } 1346 1347 init_continuation(&mg->k, mg_upgrade_lock); 1348 copy(mg, is_policy_promote); 1349 } 1350 1351 static void mg_copy(struct work_struct *ws) 1352 { 1353 struct dm_cache_migration *mg = ws_to_mg(ws); 1354 1355 if (mg->overwrite_bio) { 1356 /* 1357 * No exclusive lock was held when we last checked if the bio 1358 * was optimisable. So we have to check again in case things 1359 * have changed (eg, the block may no longer be discarded). 1360 */ 1361 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) { 1362 /* 1363 * Fallback to a real full copy after doing some tidying up. 1364 */ 1365 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio); 1366 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */ 1367 mg->overwrite_bio = NULL; 1368 inc_io_migrations(mg->cache); 1369 mg_full_copy(ws); 1370 return; 1371 } 1372 1373 /* 1374 * It's safe to do this here, even though it's new data 1375 * because all IO has been locked out of the block. 1376 * 1377 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL 1378 * so _not_ using mg_upgrade_lock() as continutation. 1379 */ 1380 overwrite(mg, mg_update_metadata_after_copy); 1381 1382 } else 1383 mg_full_copy(ws); 1384 } 1385 1386 static int mg_lock_writes(struct dm_cache_migration *mg) 1387 { 1388 int r; 1389 struct dm_cell_key_v2 key; 1390 struct cache *cache = mg->cache; 1391 struct dm_bio_prison_cell_v2 *prealloc; 1392 1393 prealloc = alloc_prison_cell(cache); 1394 1395 /* 1396 * Prevent writes to the block, but allow reads to continue. 1397 * Unless we're using an overwrite bio, in which case we lock 1398 * everything. 1399 */ 1400 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key); 1401 r = dm_cell_lock_v2(cache->prison, &key, 1402 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL, 1403 prealloc, &mg->cell); 1404 if (r < 0) { 1405 free_prison_cell(cache, prealloc); 1406 mg_complete(mg, false); 1407 return r; 1408 } 1409 1410 if (mg->cell != prealloc) 1411 free_prison_cell(cache, prealloc); 1412 1413 if (r == 0) 1414 mg_copy(&mg->k.ws); 1415 else 1416 quiesce(mg, mg_copy); 1417 1418 return 0; 1419 } 1420 1421 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio) 1422 { 1423 struct dm_cache_migration *mg; 1424 1425 if (!background_work_begin(cache)) { 1426 policy_complete_background_work(cache->policy, op, false); 1427 return -EPERM; 1428 } 1429 1430 mg = alloc_migration(cache); 1431 1432 mg->op = op; 1433 mg->overwrite_bio = bio; 1434 1435 if (!bio) 1436 inc_io_migrations(cache); 1437 1438 return mg_lock_writes(mg); 1439 } 1440 1441 /*---------------------------------------------------------------- 1442 * invalidation processing 1443 *--------------------------------------------------------------*/ 1444 1445 static void invalidate_complete(struct dm_cache_migration *mg, bool success) 1446 { 1447 struct bio_list bios; 1448 struct cache *cache = mg->cache; 1449 1450 bio_list_init(&bios); 1451 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1452 free_prison_cell(cache, mg->cell); 1453 1454 if (!success && mg->overwrite_bio) 1455 bio_io_error(mg->overwrite_bio); 1456 1457 free_migration(mg); 1458 defer_bios(cache, &bios); 1459 1460 background_work_end(cache); 1461 } 1462 1463 static void invalidate_completed(struct work_struct *ws) 1464 { 1465 struct dm_cache_migration *mg = ws_to_mg(ws); 1466 invalidate_complete(mg, !mg->k.input); 1467 } 1468 1469 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock) 1470 { 1471 int r = policy_invalidate_mapping(cache->policy, cblock); 1472 if (!r) { 1473 r = dm_cache_remove_mapping(cache->cmd, cblock); 1474 if (r) { 1475 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata", 1476 cache_device_name(cache)); 1477 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1478 } 1479 1480 } else if (r == -ENODATA) { 1481 /* 1482 * Harmless, already unmapped. 1483 */ 1484 r = 0; 1485 1486 } else 1487 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache)); 1488 1489 return r; 1490 } 1491 1492 static void invalidate_remove(struct work_struct *ws) 1493 { 1494 int r; 1495 struct dm_cache_migration *mg = ws_to_mg(ws); 1496 struct cache *cache = mg->cache; 1497 1498 r = invalidate_cblock(cache, mg->invalidate_cblock); 1499 if (r) { 1500 invalidate_complete(mg, false); 1501 return; 1502 } 1503 1504 init_continuation(&mg->k, invalidate_completed); 1505 continue_after_commit(&cache->committer, &mg->k); 1506 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock); 1507 mg->overwrite_bio = NULL; 1508 schedule_commit(&cache->committer); 1509 } 1510 1511 static int invalidate_lock(struct dm_cache_migration *mg) 1512 { 1513 int r; 1514 struct dm_cell_key_v2 key; 1515 struct cache *cache = mg->cache; 1516 struct dm_bio_prison_cell_v2 *prealloc; 1517 1518 prealloc = alloc_prison_cell(cache); 1519 1520 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key); 1521 r = dm_cell_lock_v2(cache->prison, &key, 1522 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell); 1523 if (r < 0) { 1524 free_prison_cell(cache, prealloc); 1525 invalidate_complete(mg, false); 1526 return r; 1527 } 1528 1529 if (mg->cell != prealloc) 1530 free_prison_cell(cache, prealloc); 1531 1532 if (r) 1533 quiesce(mg, invalidate_remove); 1534 1535 else { 1536 /* 1537 * We can't call invalidate_remove() directly here because we 1538 * might still be in request context. 1539 */ 1540 init_continuation(&mg->k, invalidate_remove); 1541 queue_work(cache->wq, &mg->k.ws); 1542 } 1543 1544 return 0; 1545 } 1546 1547 static int invalidate_start(struct cache *cache, dm_cblock_t cblock, 1548 dm_oblock_t oblock, struct bio *bio) 1549 { 1550 struct dm_cache_migration *mg; 1551 1552 if (!background_work_begin(cache)) 1553 return -EPERM; 1554 1555 mg = alloc_migration(cache); 1556 1557 mg->overwrite_bio = bio; 1558 mg->invalidate_cblock = cblock; 1559 mg->invalidate_oblock = oblock; 1560 1561 return invalidate_lock(mg); 1562 } 1563 1564 /*---------------------------------------------------------------- 1565 * bio processing 1566 *--------------------------------------------------------------*/ 1567 1568 enum busy { 1569 IDLE, 1570 BUSY 1571 }; 1572 1573 static enum busy spare_migration_bandwidth(struct cache *cache) 1574 { 1575 bool idle = dm_iot_idle_for(&cache->tracker, HZ); 1576 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) * 1577 cache->sectors_per_block; 1578 1579 if (idle && current_volume <= cache->migration_threshold) 1580 return IDLE; 1581 else 1582 return BUSY; 1583 } 1584 1585 static void inc_hit_counter(struct cache *cache, struct bio *bio) 1586 { 1587 atomic_inc(bio_data_dir(bio) == READ ? 1588 &cache->stats.read_hit : &cache->stats.write_hit); 1589 } 1590 1591 static void inc_miss_counter(struct cache *cache, struct bio *bio) 1592 { 1593 atomic_inc(bio_data_dir(bio) == READ ? 1594 &cache->stats.read_miss : &cache->stats.write_miss); 1595 } 1596 1597 /*----------------------------------------------------------------*/ 1598 1599 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block, 1600 bool *commit_needed) 1601 { 1602 int r, data_dir; 1603 bool rb, background_queued; 1604 dm_cblock_t cblock; 1605 1606 *commit_needed = false; 1607 1608 rb = bio_detain_shared(cache, block, bio); 1609 if (!rb) { 1610 /* 1611 * An exclusive lock is held for this block, so we have to 1612 * wait. We set the commit_needed flag so the current 1613 * transaction will be committed asap, allowing this lock 1614 * to be dropped. 1615 */ 1616 *commit_needed = true; 1617 return DM_MAPIO_SUBMITTED; 1618 } 1619 1620 data_dir = bio_data_dir(bio); 1621 1622 if (optimisable_bio(cache, bio, block)) { 1623 struct policy_work *op = NULL; 1624 1625 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op); 1626 if (unlikely(r && r != -ENOENT)) { 1627 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d", 1628 cache_device_name(cache), r); 1629 bio_io_error(bio); 1630 return DM_MAPIO_SUBMITTED; 1631 } 1632 1633 if (r == -ENOENT && op) { 1634 bio_drop_shared_lock(cache, bio); 1635 BUG_ON(op->op != POLICY_PROMOTE); 1636 mg_start(cache, op, bio); 1637 return DM_MAPIO_SUBMITTED; 1638 } 1639 } else { 1640 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued); 1641 if (unlikely(r && r != -ENOENT)) { 1642 DMERR_LIMIT("%s: policy_lookup() failed with r = %d", 1643 cache_device_name(cache), r); 1644 bio_io_error(bio); 1645 return DM_MAPIO_SUBMITTED; 1646 } 1647 1648 if (background_queued) 1649 wake_migration_worker(cache); 1650 } 1651 1652 if (r == -ENOENT) { 1653 struct per_bio_data *pb = get_per_bio_data(bio); 1654 1655 /* 1656 * Miss. 1657 */ 1658 inc_miss_counter(cache, bio); 1659 if (pb->req_nr == 0) { 1660 accounted_begin(cache, bio); 1661 remap_to_origin_clear_discard(cache, bio, block); 1662 } else { 1663 /* 1664 * This is a duplicate writethrough io that is no 1665 * longer needed because the block has been demoted. 1666 */ 1667 bio_endio(bio); 1668 return DM_MAPIO_SUBMITTED; 1669 } 1670 } else { 1671 /* 1672 * Hit. 1673 */ 1674 inc_hit_counter(cache, bio); 1675 1676 /* 1677 * Passthrough always maps to the origin, invalidating any 1678 * cache blocks that are written to. 1679 */ 1680 if (passthrough_mode(cache)) { 1681 if (bio_data_dir(bio) == WRITE) { 1682 bio_drop_shared_lock(cache, bio); 1683 atomic_inc(&cache->stats.demotion); 1684 invalidate_start(cache, cblock, block, bio); 1685 } else 1686 remap_to_origin_clear_discard(cache, bio, block); 1687 } else { 1688 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) && 1689 !is_dirty(cache, cblock)) { 1690 remap_to_origin_and_cache(cache, bio, block, cblock); 1691 accounted_begin(cache, bio); 1692 } else 1693 remap_to_cache_dirty(cache, bio, block, cblock); 1694 } 1695 } 1696 1697 /* 1698 * dm core turns FUA requests into a separate payload and FLUSH req. 1699 */ 1700 if (bio->bi_opf & REQ_FUA) { 1701 /* 1702 * issue_after_commit will call accounted_begin a second time. So 1703 * we call accounted_complete() to avoid double accounting. 1704 */ 1705 accounted_complete(cache, bio); 1706 issue_after_commit(&cache->committer, bio); 1707 *commit_needed = true; 1708 return DM_MAPIO_SUBMITTED; 1709 } 1710 1711 return DM_MAPIO_REMAPPED; 1712 } 1713 1714 static bool process_bio(struct cache *cache, struct bio *bio) 1715 { 1716 bool commit_needed; 1717 1718 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED) 1719 submit_bio_noacct(bio); 1720 1721 return commit_needed; 1722 } 1723 1724 /* 1725 * A non-zero return indicates read_only or fail_io mode. 1726 */ 1727 static int commit(struct cache *cache, bool clean_shutdown) 1728 { 1729 int r; 1730 1731 if (get_cache_mode(cache) >= CM_READ_ONLY) 1732 return -EINVAL; 1733 1734 atomic_inc(&cache->stats.commit_count); 1735 r = dm_cache_commit(cache->cmd, clean_shutdown); 1736 if (r) 1737 metadata_operation_failed(cache, "dm_cache_commit", r); 1738 1739 return r; 1740 } 1741 1742 /* 1743 * Used by the batcher. 1744 */ 1745 static blk_status_t commit_op(void *context) 1746 { 1747 struct cache *cache = context; 1748 1749 if (dm_cache_changed_this_transaction(cache->cmd)) 1750 return errno_to_blk_status(commit(cache, false)); 1751 1752 return 0; 1753 } 1754 1755 /*----------------------------------------------------------------*/ 1756 1757 static bool process_flush_bio(struct cache *cache, struct bio *bio) 1758 { 1759 struct per_bio_data *pb = get_per_bio_data(bio); 1760 1761 if (!pb->req_nr) 1762 remap_to_origin(cache, bio); 1763 else 1764 remap_to_cache(cache, bio, 0); 1765 1766 issue_after_commit(&cache->committer, bio); 1767 return true; 1768 } 1769 1770 static bool process_discard_bio(struct cache *cache, struct bio *bio) 1771 { 1772 dm_dblock_t b, e; 1773 1774 // FIXME: do we need to lock the region? Or can we just assume the 1775 // user wont be so foolish as to issue discard concurrently with 1776 // other IO? 1777 calc_discard_block_range(cache, bio, &b, &e); 1778 while (b != e) { 1779 set_discard(cache, b); 1780 b = to_dblock(from_dblock(b) + 1); 1781 } 1782 1783 if (cache->features.discard_passdown) { 1784 remap_to_origin(cache, bio); 1785 submit_bio_noacct(bio); 1786 } else 1787 bio_endio(bio); 1788 1789 return false; 1790 } 1791 1792 static void process_deferred_bios(struct work_struct *ws) 1793 { 1794 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker); 1795 1796 bool commit_needed = false; 1797 struct bio_list bios; 1798 struct bio *bio; 1799 1800 bio_list_init(&bios); 1801 1802 spin_lock_irq(&cache->lock); 1803 bio_list_merge(&bios, &cache->deferred_bios); 1804 bio_list_init(&cache->deferred_bios); 1805 spin_unlock_irq(&cache->lock); 1806 1807 while ((bio = bio_list_pop(&bios))) { 1808 if (bio->bi_opf & REQ_PREFLUSH) 1809 commit_needed = process_flush_bio(cache, bio) || commit_needed; 1810 1811 else if (bio_op(bio) == REQ_OP_DISCARD) 1812 commit_needed = process_discard_bio(cache, bio) || commit_needed; 1813 1814 else 1815 commit_needed = process_bio(cache, bio) || commit_needed; 1816 } 1817 1818 if (commit_needed) 1819 schedule_commit(&cache->committer); 1820 } 1821 1822 /*---------------------------------------------------------------- 1823 * Main worker loop 1824 *--------------------------------------------------------------*/ 1825 1826 static void requeue_deferred_bios(struct cache *cache) 1827 { 1828 struct bio *bio; 1829 struct bio_list bios; 1830 1831 bio_list_init(&bios); 1832 bio_list_merge(&bios, &cache->deferred_bios); 1833 bio_list_init(&cache->deferred_bios); 1834 1835 while ((bio = bio_list_pop(&bios))) { 1836 bio->bi_status = BLK_STS_DM_REQUEUE; 1837 bio_endio(bio); 1838 } 1839 } 1840 1841 /* 1842 * We want to commit periodically so that not too much 1843 * unwritten metadata builds up. 1844 */ 1845 static void do_waker(struct work_struct *ws) 1846 { 1847 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); 1848 1849 policy_tick(cache->policy, true); 1850 wake_migration_worker(cache); 1851 schedule_commit(&cache->committer); 1852 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); 1853 } 1854 1855 static void check_migrations(struct work_struct *ws) 1856 { 1857 int r; 1858 struct policy_work *op; 1859 struct cache *cache = container_of(ws, struct cache, migration_worker); 1860 enum busy b; 1861 1862 for (;;) { 1863 b = spare_migration_bandwidth(cache); 1864 1865 r = policy_get_background_work(cache->policy, b == IDLE, &op); 1866 if (r == -ENODATA) 1867 break; 1868 1869 if (r) { 1870 DMERR_LIMIT("%s: policy_background_work failed", 1871 cache_device_name(cache)); 1872 break; 1873 } 1874 1875 r = mg_start(cache, op, NULL); 1876 if (r) 1877 break; 1878 } 1879 } 1880 1881 /*---------------------------------------------------------------- 1882 * Target methods 1883 *--------------------------------------------------------------*/ 1884 1885 /* 1886 * This function gets called on the error paths of the constructor, so we 1887 * have to cope with a partially initialised struct. 1888 */ 1889 static void destroy(struct cache *cache) 1890 { 1891 unsigned i; 1892 1893 mempool_exit(&cache->migration_pool); 1894 1895 if (cache->prison) 1896 dm_bio_prison_destroy_v2(cache->prison); 1897 1898 if (cache->wq) 1899 destroy_workqueue(cache->wq); 1900 1901 if (cache->dirty_bitset) 1902 free_bitset(cache->dirty_bitset); 1903 1904 if (cache->discard_bitset) 1905 free_bitset(cache->discard_bitset); 1906 1907 if (cache->copier) 1908 dm_kcopyd_client_destroy(cache->copier); 1909 1910 if (cache->cmd) 1911 dm_cache_metadata_close(cache->cmd); 1912 1913 if (cache->metadata_dev) 1914 dm_put_device(cache->ti, cache->metadata_dev); 1915 1916 if (cache->origin_dev) 1917 dm_put_device(cache->ti, cache->origin_dev); 1918 1919 if (cache->cache_dev) 1920 dm_put_device(cache->ti, cache->cache_dev); 1921 1922 if (cache->policy) 1923 dm_cache_policy_destroy(cache->policy); 1924 1925 for (i = 0; i < cache->nr_ctr_args ; i++) 1926 kfree(cache->ctr_args[i]); 1927 kfree(cache->ctr_args); 1928 1929 bioset_exit(&cache->bs); 1930 1931 kfree(cache); 1932 } 1933 1934 static void cache_dtr(struct dm_target *ti) 1935 { 1936 struct cache *cache = ti->private; 1937 1938 destroy(cache); 1939 } 1940 1941 static sector_t get_dev_size(struct dm_dev *dev) 1942 { 1943 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; 1944 } 1945 1946 /*----------------------------------------------------------------*/ 1947 1948 /* 1949 * Construct a cache device mapping. 1950 * 1951 * cache <metadata dev> <cache dev> <origin dev> <block size> 1952 * <#feature args> [<feature arg>]* 1953 * <policy> <#policy args> [<policy arg>]* 1954 * 1955 * metadata dev : fast device holding the persistent metadata 1956 * cache dev : fast device holding cached data blocks 1957 * origin dev : slow device holding original data blocks 1958 * block size : cache unit size in sectors 1959 * 1960 * #feature args : number of feature arguments passed 1961 * feature args : writethrough. (The default is writeback.) 1962 * 1963 * policy : the replacement policy to use 1964 * #policy args : an even number of policy arguments corresponding 1965 * to key/value pairs passed to the policy 1966 * policy args : key/value pairs passed to the policy 1967 * E.g. 'sequential_threshold 1024' 1968 * See cache-policies.txt for details. 1969 * 1970 * Optional feature arguments are: 1971 * writethrough : write through caching that prohibits cache block 1972 * content from being different from origin block content. 1973 * Without this argument, the default behaviour is to write 1974 * back cache block contents later for performance reasons, 1975 * so they may differ from the corresponding origin blocks. 1976 */ 1977 struct cache_args { 1978 struct dm_target *ti; 1979 1980 struct dm_dev *metadata_dev; 1981 1982 struct dm_dev *cache_dev; 1983 sector_t cache_sectors; 1984 1985 struct dm_dev *origin_dev; 1986 sector_t origin_sectors; 1987 1988 uint32_t block_size; 1989 1990 const char *policy_name; 1991 int policy_argc; 1992 const char **policy_argv; 1993 1994 struct cache_features features; 1995 }; 1996 1997 static void destroy_cache_args(struct cache_args *ca) 1998 { 1999 if (ca->metadata_dev) 2000 dm_put_device(ca->ti, ca->metadata_dev); 2001 2002 if (ca->cache_dev) 2003 dm_put_device(ca->ti, ca->cache_dev); 2004 2005 if (ca->origin_dev) 2006 dm_put_device(ca->ti, ca->origin_dev); 2007 2008 kfree(ca); 2009 } 2010 2011 static bool at_least_one_arg(struct dm_arg_set *as, char **error) 2012 { 2013 if (!as->argc) { 2014 *error = "Insufficient args"; 2015 return false; 2016 } 2017 2018 return true; 2019 } 2020 2021 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, 2022 char **error) 2023 { 2024 int r; 2025 sector_t metadata_dev_size; 2026 char b[BDEVNAME_SIZE]; 2027 2028 if (!at_least_one_arg(as, error)) 2029 return -EINVAL; 2030 2031 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2032 &ca->metadata_dev); 2033 if (r) { 2034 *error = "Error opening metadata device"; 2035 return r; 2036 } 2037 2038 metadata_dev_size = get_dev_size(ca->metadata_dev); 2039 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) 2040 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2041 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); 2042 2043 return 0; 2044 } 2045 2046 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, 2047 char **error) 2048 { 2049 int r; 2050 2051 if (!at_least_one_arg(as, error)) 2052 return -EINVAL; 2053 2054 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2055 &ca->cache_dev); 2056 if (r) { 2057 *error = "Error opening cache device"; 2058 return r; 2059 } 2060 ca->cache_sectors = get_dev_size(ca->cache_dev); 2061 2062 return 0; 2063 } 2064 2065 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, 2066 char **error) 2067 { 2068 int r; 2069 2070 if (!at_least_one_arg(as, error)) 2071 return -EINVAL; 2072 2073 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2074 &ca->origin_dev); 2075 if (r) { 2076 *error = "Error opening origin device"; 2077 return r; 2078 } 2079 2080 ca->origin_sectors = get_dev_size(ca->origin_dev); 2081 if (ca->ti->len > ca->origin_sectors) { 2082 *error = "Device size larger than cached device"; 2083 return -EINVAL; 2084 } 2085 2086 return 0; 2087 } 2088 2089 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, 2090 char **error) 2091 { 2092 unsigned long block_size; 2093 2094 if (!at_least_one_arg(as, error)) 2095 return -EINVAL; 2096 2097 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || 2098 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2099 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2100 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2101 *error = "Invalid data block size"; 2102 return -EINVAL; 2103 } 2104 2105 if (block_size > ca->cache_sectors) { 2106 *error = "Data block size is larger than the cache device"; 2107 return -EINVAL; 2108 } 2109 2110 ca->block_size = block_size; 2111 2112 return 0; 2113 } 2114 2115 static void init_features(struct cache_features *cf) 2116 { 2117 cf->mode = CM_WRITE; 2118 cf->io_mode = CM_IO_WRITEBACK; 2119 cf->metadata_version = 1; 2120 cf->discard_passdown = true; 2121 } 2122 2123 static int parse_features(struct cache_args *ca, struct dm_arg_set *as, 2124 char **error) 2125 { 2126 static const struct dm_arg _args[] = { 2127 {0, 3, "Invalid number of cache feature arguments"}, 2128 }; 2129 2130 int r, mode_ctr = 0; 2131 unsigned argc; 2132 const char *arg; 2133 struct cache_features *cf = &ca->features; 2134 2135 init_features(cf); 2136 2137 r = dm_read_arg_group(_args, as, &argc, error); 2138 if (r) 2139 return -EINVAL; 2140 2141 while (argc--) { 2142 arg = dm_shift_arg(as); 2143 2144 if (!strcasecmp(arg, "writeback")) { 2145 cf->io_mode = CM_IO_WRITEBACK; 2146 mode_ctr++; 2147 } 2148 2149 else if (!strcasecmp(arg, "writethrough")) { 2150 cf->io_mode = CM_IO_WRITETHROUGH; 2151 mode_ctr++; 2152 } 2153 2154 else if (!strcasecmp(arg, "passthrough")) { 2155 cf->io_mode = CM_IO_PASSTHROUGH; 2156 mode_ctr++; 2157 } 2158 2159 else if (!strcasecmp(arg, "metadata2")) 2160 cf->metadata_version = 2; 2161 2162 else if (!strcasecmp(arg, "no_discard_passdown")) 2163 cf->discard_passdown = false; 2164 2165 else { 2166 *error = "Unrecognised cache feature requested"; 2167 return -EINVAL; 2168 } 2169 } 2170 2171 if (mode_ctr > 1) { 2172 *error = "Duplicate cache io_mode features requested"; 2173 return -EINVAL; 2174 } 2175 2176 return 0; 2177 } 2178 2179 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, 2180 char **error) 2181 { 2182 static const struct dm_arg _args[] = { 2183 {0, 1024, "Invalid number of policy arguments"}, 2184 }; 2185 2186 int r; 2187 2188 if (!at_least_one_arg(as, error)) 2189 return -EINVAL; 2190 2191 ca->policy_name = dm_shift_arg(as); 2192 2193 r = dm_read_arg_group(_args, as, &ca->policy_argc, error); 2194 if (r) 2195 return -EINVAL; 2196 2197 ca->policy_argv = (const char **)as->argv; 2198 dm_consume_args(as, ca->policy_argc); 2199 2200 return 0; 2201 } 2202 2203 static int parse_cache_args(struct cache_args *ca, int argc, char **argv, 2204 char **error) 2205 { 2206 int r; 2207 struct dm_arg_set as; 2208 2209 as.argc = argc; 2210 as.argv = argv; 2211 2212 r = parse_metadata_dev(ca, &as, error); 2213 if (r) 2214 return r; 2215 2216 r = parse_cache_dev(ca, &as, error); 2217 if (r) 2218 return r; 2219 2220 r = parse_origin_dev(ca, &as, error); 2221 if (r) 2222 return r; 2223 2224 r = parse_block_size(ca, &as, error); 2225 if (r) 2226 return r; 2227 2228 r = parse_features(ca, &as, error); 2229 if (r) 2230 return r; 2231 2232 r = parse_policy(ca, &as, error); 2233 if (r) 2234 return r; 2235 2236 return 0; 2237 } 2238 2239 /*----------------------------------------------------------------*/ 2240 2241 static struct kmem_cache *migration_cache; 2242 2243 #define NOT_CORE_OPTION 1 2244 2245 static int process_config_option(struct cache *cache, const char *key, const char *value) 2246 { 2247 unsigned long tmp; 2248 2249 if (!strcasecmp(key, "migration_threshold")) { 2250 if (kstrtoul(value, 10, &tmp)) 2251 return -EINVAL; 2252 2253 cache->migration_threshold = tmp; 2254 return 0; 2255 } 2256 2257 return NOT_CORE_OPTION; 2258 } 2259 2260 static int set_config_value(struct cache *cache, const char *key, const char *value) 2261 { 2262 int r = process_config_option(cache, key, value); 2263 2264 if (r == NOT_CORE_OPTION) 2265 r = policy_set_config_value(cache->policy, key, value); 2266 2267 if (r) 2268 DMWARN("bad config value for %s: %s", key, value); 2269 2270 return r; 2271 } 2272 2273 static int set_config_values(struct cache *cache, int argc, const char **argv) 2274 { 2275 int r = 0; 2276 2277 if (argc & 1) { 2278 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs."); 2279 return -EINVAL; 2280 } 2281 2282 while (argc) { 2283 r = set_config_value(cache, argv[0], argv[1]); 2284 if (r) 2285 break; 2286 2287 argc -= 2; 2288 argv += 2; 2289 } 2290 2291 return r; 2292 } 2293 2294 static int create_cache_policy(struct cache *cache, struct cache_args *ca, 2295 char **error) 2296 { 2297 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, 2298 cache->cache_size, 2299 cache->origin_sectors, 2300 cache->sectors_per_block); 2301 if (IS_ERR(p)) { 2302 *error = "Error creating cache's policy"; 2303 return PTR_ERR(p); 2304 } 2305 cache->policy = p; 2306 BUG_ON(!cache->policy); 2307 2308 return 0; 2309 } 2310 2311 /* 2312 * We want the discard block size to be at least the size of the cache 2313 * block size and have no more than 2^14 discard blocks across the origin. 2314 */ 2315 #define MAX_DISCARD_BLOCKS (1 << 14) 2316 2317 static bool too_many_discard_blocks(sector_t discard_block_size, 2318 sector_t origin_size) 2319 { 2320 (void) sector_div(origin_size, discard_block_size); 2321 2322 return origin_size > MAX_DISCARD_BLOCKS; 2323 } 2324 2325 static sector_t calculate_discard_block_size(sector_t cache_block_size, 2326 sector_t origin_size) 2327 { 2328 sector_t discard_block_size = cache_block_size; 2329 2330 if (origin_size) 2331 while (too_many_discard_blocks(discard_block_size, origin_size)) 2332 discard_block_size *= 2; 2333 2334 return discard_block_size; 2335 } 2336 2337 static void set_cache_size(struct cache *cache, dm_cblock_t size) 2338 { 2339 dm_block_t nr_blocks = from_cblock(size); 2340 2341 if (nr_blocks > (1 << 20) && cache->cache_size != size) 2342 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n" 2343 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n" 2344 "Please consider increasing the cache block size to reduce the overall cache block count.", 2345 (unsigned long long) nr_blocks); 2346 2347 cache->cache_size = size; 2348 } 2349 2350 #define DEFAULT_MIGRATION_THRESHOLD 2048 2351 2352 static int cache_create(struct cache_args *ca, struct cache **result) 2353 { 2354 int r = 0; 2355 char **error = &ca->ti->error; 2356 struct cache *cache; 2357 struct dm_target *ti = ca->ti; 2358 dm_block_t origin_blocks; 2359 struct dm_cache_metadata *cmd; 2360 bool may_format = ca->features.mode == CM_WRITE; 2361 2362 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 2363 if (!cache) 2364 return -ENOMEM; 2365 2366 cache->ti = ca->ti; 2367 ti->private = cache; 2368 ti->num_flush_bios = 2; 2369 ti->flush_supported = true; 2370 2371 ti->num_discard_bios = 1; 2372 ti->discards_supported = true; 2373 2374 ti->per_io_data_size = sizeof(struct per_bio_data); 2375 2376 cache->features = ca->features; 2377 if (writethrough_mode(cache)) { 2378 /* Create bioset for writethrough bios issued to origin */ 2379 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0); 2380 if (r) 2381 goto bad; 2382 } 2383 2384 cache->metadata_dev = ca->metadata_dev; 2385 cache->origin_dev = ca->origin_dev; 2386 cache->cache_dev = ca->cache_dev; 2387 2388 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; 2389 2390 origin_blocks = cache->origin_sectors = ca->origin_sectors; 2391 origin_blocks = block_div(origin_blocks, ca->block_size); 2392 cache->origin_blocks = to_oblock(origin_blocks); 2393 2394 cache->sectors_per_block = ca->block_size; 2395 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { 2396 r = -EINVAL; 2397 goto bad; 2398 } 2399 2400 if (ca->block_size & (ca->block_size - 1)) { 2401 dm_block_t cache_size = ca->cache_sectors; 2402 2403 cache->sectors_per_block_shift = -1; 2404 cache_size = block_div(cache_size, ca->block_size); 2405 set_cache_size(cache, to_cblock(cache_size)); 2406 } else { 2407 cache->sectors_per_block_shift = __ffs(ca->block_size); 2408 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift)); 2409 } 2410 2411 r = create_cache_policy(cache, ca, error); 2412 if (r) 2413 goto bad; 2414 2415 cache->policy_nr_args = ca->policy_argc; 2416 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; 2417 2418 r = set_config_values(cache, ca->policy_argc, ca->policy_argv); 2419 if (r) { 2420 *error = "Error setting cache policy's config values"; 2421 goto bad; 2422 } 2423 2424 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, 2425 ca->block_size, may_format, 2426 dm_cache_policy_get_hint_size(cache->policy), 2427 ca->features.metadata_version); 2428 if (IS_ERR(cmd)) { 2429 *error = "Error creating metadata object"; 2430 r = PTR_ERR(cmd); 2431 goto bad; 2432 } 2433 cache->cmd = cmd; 2434 set_cache_mode(cache, CM_WRITE); 2435 if (get_cache_mode(cache) != CM_WRITE) { 2436 *error = "Unable to get write access to metadata, please check/repair metadata."; 2437 r = -EINVAL; 2438 goto bad; 2439 } 2440 2441 if (passthrough_mode(cache)) { 2442 bool all_clean; 2443 2444 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean); 2445 if (r) { 2446 *error = "dm_cache_metadata_all_clean() failed"; 2447 goto bad; 2448 } 2449 2450 if (!all_clean) { 2451 *error = "Cannot enter passthrough mode unless all blocks are clean"; 2452 r = -EINVAL; 2453 goto bad; 2454 } 2455 2456 policy_allow_migrations(cache->policy, false); 2457 } 2458 2459 spin_lock_init(&cache->lock); 2460 bio_list_init(&cache->deferred_bios); 2461 atomic_set(&cache->nr_allocated_migrations, 0); 2462 atomic_set(&cache->nr_io_migrations, 0); 2463 init_waitqueue_head(&cache->migration_wait); 2464 2465 r = -ENOMEM; 2466 atomic_set(&cache->nr_dirty, 0); 2467 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); 2468 if (!cache->dirty_bitset) { 2469 *error = "could not allocate dirty bitset"; 2470 goto bad; 2471 } 2472 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); 2473 2474 cache->discard_block_size = 2475 calculate_discard_block_size(cache->sectors_per_block, 2476 cache->origin_sectors); 2477 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors, 2478 cache->discard_block_size)); 2479 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks)); 2480 if (!cache->discard_bitset) { 2481 *error = "could not allocate discard bitset"; 2482 goto bad; 2483 } 2484 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2485 2486 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2487 if (IS_ERR(cache->copier)) { 2488 *error = "could not create kcopyd client"; 2489 r = PTR_ERR(cache->copier); 2490 goto bad; 2491 } 2492 2493 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0); 2494 if (!cache->wq) { 2495 *error = "could not create workqueue for metadata object"; 2496 goto bad; 2497 } 2498 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios); 2499 INIT_WORK(&cache->migration_worker, check_migrations); 2500 INIT_DELAYED_WORK(&cache->waker, do_waker); 2501 2502 cache->prison = dm_bio_prison_create_v2(cache->wq); 2503 if (!cache->prison) { 2504 *error = "could not create bio prison"; 2505 goto bad; 2506 } 2507 2508 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE, 2509 migration_cache); 2510 if (r) { 2511 *error = "Error creating cache's migration mempool"; 2512 goto bad; 2513 } 2514 2515 cache->need_tick_bio = true; 2516 cache->sized = false; 2517 cache->invalidate = false; 2518 cache->commit_requested = false; 2519 cache->loaded_mappings = false; 2520 cache->loaded_discards = false; 2521 2522 load_stats(cache); 2523 2524 atomic_set(&cache->stats.demotion, 0); 2525 atomic_set(&cache->stats.promotion, 0); 2526 atomic_set(&cache->stats.copies_avoided, 0); 2527 atomic_set(&cache->stats.cache_cell_clash, 0); 2528 atomic_set(&cache->stats.commit_count, 0); 2529 atomic_set(&cache->stats.discard_count, 0); 2530 2531 spin_lock_init(&cache->invalidation_lock); 2532 INIT_LIST_HEAD(&cache->invalidation_requests); 2533 2534 batcher_init(&cache->committer, commit_op, cache, 2535 issue_op, cache, cache->wq); 2536 dm_iot_init(&cache->tracker); 2537 2538 init_rwsem(&cache->background_work_lock); 2539 prevent_background_work(cache); 2540 2541 *result = cache; 2542 return 0; 2543 bad: 2544 destroy(cache); 2545 return r; 2546 } 2547 2548 static int copy_ctr_args(struct cache *cache, int argc, const char **argv) 2549 { 2550 unsigned i; 2551 const char **copy; 2552 2553 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); 2554 if (!copy) 2555 return -ENOMEM; 2556 for (i = 0; i < argc; i++) { 2557 copy[i] = kstrdup(argv[i], GFP_KERNEL); 2558 if (!copy[i]) { 2559 while (i--) 2560 kfree(copy[i]); 2561 kfree(copy); 2562 return -ENOMEM; 2563 } 2564 } 2565 2566 cache->nr_ctr_args = argc; 2567 cache->ctr_args = copy; 2568 2569 return 0; 2570 } 2571 2572 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2573 { 2574 int r = -EINVAL; 2575 struct cache_args *ca; 2576 struct cache *cache = NULL; 2577 2578 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2579 if (!ca) { 2580 ti->error = "Error allocating memory for cache"; 2581 return -ENOMEM; 2582 } 2583 ca->ti = ti; 2584 2585 r = parse_cache_args(ca, argc, argv, &ti->error); 2586 if (r) 2587 goto out; 2588 2589 r = cache_create(ca, &cache); 2590 if (r) 2591 goto out; 2592 2593 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); 2594 if (r) { 2595 destroy(cache); 2596 goto out; 2597 } 2598 2599 ti->private = cache; 2600 out: 2601 destroy_cache_args(ca); 2602 return r; 2603 } 2604 2605 /*----------------------------------------------------------------*/ 2606 2607 static int cache_map(struct dm_target *ti, struct bio *bio) 2608 { 2609 struct cache *cache = ti->private; 2610 2611 int r; 2612 bool commit_needed; 2613 dm_oblock_t block = get_bio_block(cache, bio); 2614 2615 init_per_bio_data(bio); 2616 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) { 2617 /* 2618 * This can only occur if the io goes to a partial block at 2619 * the end of the origin device. We don't cache these. 2620 * Just remap to the origin and carry on. 2621 */ 2622 remap_to_origin(cache, bio); 2623 accounted_begin(cache, bio); 2624 return DM_MAPIO_REMAPPED; 2625 } 2626 2627 if (discard_or_flush(bio)) { 2628 defer_bio(cache, bio); 2629 return DM_MAPIO_SUBMITTED; 2630 } 2631 2632 r = map_bio(cache, bio, block, &commit_needed); 2633 if (commit_needed) 2634 schedule_commit(&cache->committer); 2635 2636 return r; 2637 } 2638 2639 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error) 2640 { 2641 struct cache *cache = ti->private; 2642 unsigned long flags; 2643 struct per_bio_data *pb = get_per_bio_data(bio); 2644 2645 if (pb->tick) { 2646 policy_tick(cache->policy, false); 2647 2648 spin_lock_irqsave(&cache->lock, flags); 2649 cache->need_tick_bio = true; 2650 spin_unlock_irqrestore(&cache->lock, flags); 2651 } 2652 2653 bio_drop_shared_lock(cache, bio); 2654 accounted_complete(cache, bio); 2655 2656 return DM_ENDIO_DONE; 2657 } 2658 2659 static int write_dirty_bitset(struct cache *cache) 2660 { 2661 int r; 2662 2663 if (get_cache_mode(cache) >= CM_READ_ONLY) 2664 return -EINVAL; 2665 2666 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset); 2667 if (r) 2668 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r); 2669 2670 return r; 2671 } 2672 2673 static int write_discard_bitset(struct cache *cache) 2674 { 2675 unsigned i, r; 2676 2677 if (get_cache_mode(cache) >= CM_READ_ONLY) 2678 return -EINVAL; 2679 2680 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size, 2681 cache->discard_nr_blocks); 2682 if (r) { 2683 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache)); 2684 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r); 2685 return r; 2686 } 2687 2688 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) { 2689 r = dm_cache_set_discard(cache->cmd, to_dblock(i), 2690 is_discarded(cache, to_dblock(i))); 2691 if (r) { 2692 metadata_operation_failed(cache, "dm_cache_set_discard", r); 2693 return r; 2694 } 2695 } 2696 2697 return 0; 2698 } 2699 2700 static int write_hints(struct cache *cache) 2701 { 2702 int r; 2703 2704 if (get_cache_mode(cache) >= CM_READ_ONLY) 2705 return -EINVAL; 2706 2707 r = dm_cache_write_hints(cache->cmd, cache->policy); 2708 if (r) { 2709 metadata_operation_failed(cache, "dm_cache_write_hints", r); 2710 return r; 2711 } 2712 2713 return 0; 2714 } 2715 2716 /* 2717 * returns true on success 2718 */ 2719 static bool sync_metadata(struct cache *cache) 2720 { 2721 int r1, r2, r3, r4; 2722 2723 r1 = write_dirty_bitset(cache); 2724 if (r1) 2725 DMERR("%s: could not write dirty bitset", cache_device_name(cache)); 2726 2727 r2 = write_discard_bitset(cache); 2728 if (r2) 2729 DMERR("%s: could not write discard bitset", cache_device_name(cache)); 2730 2731 save_stats(cache); 2732 2733 r3 = write_hints(cache); 2734 if (r3) 2735 DMERR("%s: could not write hints", cache_device_name(cache)); 2736 2737 /* 2738 * If writing the above metadata failed, we still commit, but don't 2739 * set the clean shutdown flag. This will effectively force every 2740 * dirty bit to be set on reload. 2741 */ 2742 r4 = commit(cache, !r1 && !r2 && !r3); 2743 if (r4) 2744 DMERR("%s: could not write cache metadata", cache_device_name(cache)); 2745 2746 return !r1 && !r2 && !r3 && !r4; 2747 } 2748 2749 static void cache_postsuspend(struct dm_target *ti) 2750 { 2751 struct cache *cache = ti->private; 2752 2753 prevent_background_work(cache); 2754 BUG_ON(atomic_read(&cache->nr_io_migrations)); 2755 2756 cancel_delayed_work_sync(&cache->waker); 2757 drain_workqueue(cache->wq); 2758 WARN_ON(cache->tracker.in_flight); 2759 2760 /* 2761 * If it's a flush suspend there won't be any deferred bios, so this 2762 * call is harmless. 2763 */ 2764 requeue_deferred_bios(cache); 2765 2766 if (get_cache_mode(cache) == CM_WRITE) 2767 (void) sync_metadata(cache); 2768 } 2769 2770 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, 2771 bool dirty, uint32_t hint, bool hint_valid) 2772 { 2773 struct cache *cache = context; 2774 2775 if (dirty) { 2776 set_bit(from_cblock(cblock), cache->dirty_bitset); 2777 atomic_inc(&cache->nr_dirty); 2778 } else 2779 clear_bit(from_cblock(cblock), cache->dirty_bitset); 2780 2781 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid); 2782 } 2783 2784 /* 2785 * The discard block size in the on disk metadata is not 2786 * neccessarily the same as we're currently using. So we have to 2787 * be careful to only set the discarded attribute if we know it 2788 * covers a complete block of the new size. 2789 */ 2790 struct discard_load_info { 2791 struct cache *cache; 2792 2793 /* 2794 * These blocks are sized using the on disk dblock size, rather 2795 * than the current one. 2796 */ 2797 dm_block_t block_size; 2798 dm_block_t discard_begin, discard_end; 2799 }; 2800 2801 static void discard_load_info_init(struct cache *cache, 2802 struct discard_load_info *li) 2803 { 2804 li->cache = cache; 2805 li->discard_begin = li->discard_end = 0; 2806 } 2807 2808 static void set_discard_range(struct discard_load_info *li) 2809 { 2810 sector_t b, e; 2811 2812 if (li->discard_begin == li->discard_end) 2813 return; 2814 2815 /* 2816 * Convert to sectors. 2817 */ 2818 b = li->discard_begin * li->block_size; 2819 e = li->discard_end * li->block_size; 2820 2821 /* 2822 * Then convert back to the current dblock size. 2823 */ 2824 b = dm_sector_div_up(b, li->cache->discard_block_size); 2825 sector_div(e, li->cache->discard_block_size); 2826 2827 /* 2828 * The origin may have shrunk, so we need to check we're still in 2829 * bounds. 2830 */ 2831 if (e > from_dblock(li->cache->discard_nr_blocks)) 2832 e = from_dblock(li->cache->discard_nr_blocks); 2833 2834 for (; b < e; b++) 2835 set_discard(li->cache, to_dblock(b)); 2836 } 2837 2838 static int load_discard(void *context, sector_t discard_block_size, 2839 dm_dblock_t dblock, bool discard) 2840 { 2841 struct discard_load_info *li = context; 2842 2843 li->block_size = discard_block_size; 2844 2845 if (discard) { 2846 if (from_dblock(dblock) == li->discard_end) 2847 /* 2848 * We're already in a discard range, just extend it. 2849 */ 2850 li->discard_end = li->discard_end + 1ULL; 2851 2852 else { 2853 /* 2854 * Emit the old range and start a new one. 2855 */ 2856 set_discard_range(li); 2857 li->discard_begin = from_dblock(dblock); 2858 li->discard_end = li->discard_begin + 1ULL; 2859 } 2860 } else { 2861 set_discard_range(li); 2862 li->discard_begin = li->discard_end = 0; 2863 } 2864 2865 return 0; 2866 } 2867 2868 static dm_cblock_t get_cache_dev_size(struct cache *cache) 2869 { 2870 sector_t size = get_dev_size(cache->cache_dev); 2871 (void) sector_div(size, cache->sectors_per_block); 2872 return to_cblock(size); 2873 } 2874 2875 static bool can_resize(struct cache *cache, dm_cblock_t new_size) 2876 { 2877 if (from_cblock(new_size) > from_cblock(cache->cache_size)) { 2878 if (cache->sized) { 2879 DMERR("%s: unable to extend cache due to missing cache table reload", 2880 cache_device_name(cache)); 2881 return false; 2882 } 2883 } 2884 2885 /* 2886 * We can't drop a dirty block when shrinking the cache. 2887 */ 2888 while (from_cblock(new_size) < from_cblock(cache->cache_size)) { 2889 new_size = to_cblock(from_cblock(new_size) + 1); 2890 if (is_dirty(cache, new_size)) { 2891 DMERR("%s: unable to shrink cache; cache block %llu is dirty", 2892 cache_device_name(cache), 2893 (unsigned long long) from_cblock(new_size)); 2894 return false; 2895 } 2896 } 2897 2898 return true; 2899 } 2900 2901 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size) 2902 { 2903 int r; 2904 2905 r = dm_cache_resize(cache->cmd, new_size); 2906 if (r) { 2907 DMERR("%s: could not resize cache metadata", cache_device_name(cache)); 2908 metadata_operation_failed(cache, "dm_cache_resize", r); 2909 return r; 2910 } 2911 2912 set_cache_size(cache, new_size); 2913 2914 return 0; 2915 } 2916 2917 static int cache_preresume(struct dm_target *ti) 2918 { 2919 int r = 0; 2920 struct cache *cache = ti->private; 2921 dm_cblock_t csize = get_cache_dev_size(cache); 2922 2923 /* 2924 * Check to see if the cache has resized. 2925 */ 2926 if (!cache->sized) { 2927 r = resize_cache_dev(cache, csize); 2928 if (r) 2929 return r; 2930 2931 cache->sized = true; 2932 2933 } else if (csize != cache->cache_size) { 2934 if (!can_resize(cache, csize)) 2935 return -EINVAL; 2936 2937 r = resize_cache_dev(cache, csize); 2938 if (r) 2939 return r; 2940 } 2941 2942 if (!cache->loaded_mappings) { 2943 r = dm_cache_load_mappings(cache->cmd, cache->policy, 2944 load_mapping, cache); 2945 if (r) { 2946 DMERR("%s: could not load cache mappings", cache_device_name(cache)); 2947 metadata_operation_failed(cache, "dm_cache_load_mappings", r); 2948 return r; 2949 } 2950 2951 cache->loaded_mappings = true; 2952 } 2953 2954 if (!cache->loaded_discards) { 2955 struct discard_load_info li; 2956 2957 /* 2958 * The discard bitset could have been resized, or the 2959 * discard block size changed. To be safe we start by 2960 * setting every dblock to not discarded. 2961 */ 2962 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2963 2964 discard_load_info_init(cache, &li); 2965 r = dm_cache_load_discards(cache->cmd, load_discard, &li); 2966 if (r) { 2967 DMERR("%s: could not load origin discards", cache_device_name(cache)); 2968 metadata_operation_failed(cache, "dm_cache_load_discards", r); 2969 return r; 2970 } 2971 set_discard_range(&li); 2972 2973 cache->loaded_discards = true; 2974 } 2975 2976 return r; 2977 } 2978 2979 static void cache_resume(struct dm_target *ti) 2980 { 2981 struct cache *cache = ti->private; 2982 2983 cache->need_tick_bio = true; 2984 allow_background_work(cache); 2985 do_waker(&cache->waker.work); 2986 } 2987 2988 static void emit_flags(struct cache *cache, char *result, 2989 unsigned maxlen, ssize_t *sz_ptr) 2990 { 2991 ssize_t sz = *sz_ptr; 2992 struct cache_features *cf = &cache->features; 2993 unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1; 2994 2995 DMEMIT("%u ", count); 2996 2997 if (cf->metadata_version == 2) 2998 DMEMIT("metadata2 "); 2999 3000 if (writethrough_mode(cache)) 3001 DMEMIT("writethrough "); 3002 3003 else if (passthrough_mode(cache)) 3004 DMEMIT("passthrough "); 3005 3006 else if (writeback_mode(cache)) 3007 DMEMIT("writeback "); 3008 3009 else { 3010 DMEMIT("unknown "); 3011 DMERR("%s: internal error: unknown io mode: %d", 3012 cache_device_name(cache), (int) cf->io_mode); 3013 } 3014 3015 if (!cf->discard_passdown) 3016 DMEMIT("no_discard_passdown "); 3017 3018 *sz_ptr = sz; 3019 } 3020 3021 /* 3022 * Status format: 3023 * 3024 * <metadata block size> <#used metadata blocks>/<#total metadata blocks> 3025 * <cache block size> <#used cache blocks>/<#total cache blocks> 3026 * <#read hits> <#read misses> <#write hits> <#write misses> 3027 * <#demotions> <#promotions> <#dirty> 3028 * <#features> <features>* 3029 * <#core args> <core args> 3030 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check> 3031 */ 3032 static void cache_status(struct dm_target *ti, status_type_t type, 3033 unsigned status_flags, char *result, unsigned maxlen) 3034 { 3035 int r = 0; 3036 unsigned i; 3037 ssize_t sz = 0; 3038 dm_block_t nr_free_blocks_metadata = 0; 3039 dm_block_t nr_blocks_metadata = 0; 3040 char buf[BDEVNAME_SIZE]; 3041 struct cache *cache = ti->private; 3042 dm_cblock_t residency; 3043 bool needs_check; 3044 3045 switch (type) { 3046 case STATUSTYPE_INFO: 3047 if (get_cache_mode(cache) == CM_FAIL) { 3048 DMEMIT("Fail"); 3049 break; 3050 } 3051 3052 /* Commit to ensure statistics aren't out-of-date */ 3053 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3054 (void) commit(cache, false); 3055 3056 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata); 3057 if (r) { 3058 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d", 3059 cache_device_name(cache), r); 3060 goto err; 3061 } 3062 3063 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); 3064 if (r) { 3065 DMERR("%s: dm_cache_get_metadata_dev_size returned %d", 3066 cache_device_name(cache), r); 3067 goto err; 3068 } 3069 3070 residency = policy_residency(cache->policy); 3071 3072 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ", 3073 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE, 3074 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3075 (unsigned long long)nr_blocks_metadata, 3076 (unsigned long long)cache->sectors_per_block, 3077 (unsigned long long) from_cblock(residency), 3078 (unsigned long long) from_cblock(cache->cache_size), 3079 (unsigned) atomic_read(&cache->stats.read_hit), 3080 (unsigned) atomic_read(&cache->stats.read_miss), 3081 (unsigned) atomic_read(&cache->stats.write_hit), 3082 (unsigned) atomic_read(&cache->stats.write_miss), 3083 (unsigned) atomic_read(&cache->stats.demotion), 3084 (unsigned) atomic_read(&cache->stats.promotion), 3085 (unsigned long) atomic_read(&cache->nr_dirty)); 3086 3087 emit_flags(cache, result, maxlen, &sz); 3088 3089 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); 3090 3091 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy)); 3092 if (sz < maxlen) { 3093 r = policy_emit_config_values(cache->policy, result, maxlen, &sz); 3094 if (r) 3095 DMERR("%s: policy_emit_config_values returned %d", 3096 cache_device_name(cache), r); 3097 } 3098 3099 if (get_cache_mode(cache) == CM_READ_ONLY) 3100 DMEMIT("ro "); 3101 else 3102 DMEMIT("rw "); 3103 3104 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check); 3105 3106 if (r || needs_check) 3107 DMEMIT("needs_check "); 3108 else 3109 DMEMIT("- "); 3110 3111 break; 3112 3113 case STATUSTYPE_TABLE: 3114 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3115 DMEMIT("%s ", buf); 3116 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3117 DMEMIT("%s ", buf); 3118 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3119 DMEMIT("%s", buf); 3120 3121 for (i = 0; i < cache->nr_ctr_args - 1; i++) 3122 DMEMIT(" %s", cache->ctr_args[i]); 3123 if (cache->nr_ctr_args) 3124 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); 3125 } 3126 3127 return; 3128 3129 err: 3130 DMEMIT("Error"); 3131 } 3132 3133 /* 3134 * Defines a range of cblocks, begin to (end - 1) are in the range. end is 3135 * the one-past-the-end value. 3136 */ 3137 struct cblock_range { 3138 dm_cblock_t begin; 3139 dm_cblock_t end; 3140 }; 3141 3142 /* 3143 * A cache block range can take two forms: 3144 * 3145 * i) A single cblock, eg. '3456' 3146 * ii) A begin and end cblock with a dash between, eg. 123-234 3147 */ 3148 static int parse_cblock_range(struct cache *cache, const char *str, 3149 struct cblock_range *result) 3150 { 3151 char dummy; 3152 uint64_t b, e; 3153 int r; 3154 3155 /* 3156 * Try and parse form (ii) first. 3157 */ 3158 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy); 3159 if (r < 0) 3160 return r; 3161 3162 if (r == 2) { 3163 result->begin = to_cblock(b); 3164 result->end = to_cblock(e); 3165 return 0; 3166 } 3167 3168 /* 3169 * That didn't work, try form (i). 3170 */ 3171 r = sscanf(str, "%llu%c", &b, &dummy); 3172 if (r < 0) 3173 return r; 3174 3175 if (r == 1) { 3176 result->begin = to_cblock(b); 3177 result->end = to_cblock(from_cblock(result->begin) + 1u); 3178 return 0; 3179 } 3180 3181 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str); 3182 return -EINVAL; 3183 } 3184 3185 static int validate_cblock_range(struct cache *cache, struct cblock_range *range) 3186 { 3187 uint64_t b = from_cblock(range->begin); 3188 uint64_t e = from_cblock(range->end); 3189 uint64_t n = from_cblock(cache->cache_size); 3190 3191 if (b >= n) { 3192 DMERR("%s: begin cblock out of range: %llu >= %llu", 3193 cache_device_name(cache), b, n); 3194 return -EINVAL; 3195 } 3196 3197 if (e > n) { 3198 DMERR("%s: end cblock out of range: %llu > %llu", 3199 cache_device_name(cache), e, n); 3200 return -EINVAL; 3201 } 3202 3203 if (b >= e) { 3204 DMERR("%s: invalid cblock range: %llu >= %llu", 3205 cache_device_name(cache), b, e); 3206 return -EINVAL; 3207 } 3208 3209 return 0; 3210 } 3211 3212 static inline dm_cblock_t cblock_succ(dm_cblock_t b) 3213 { 3214 return to_cblock(from_cblock(b) + 1); 3215 } 3216 3217 static int request_invalidation(struct cache *cache, struct cblock_range *range) 3218 { 3219 int r = 0; 3220 3221 /* 3222 * We don't need to do any locking here because we know we're in 3223 * passthrough mode. There's is potential for a race between an 3224 * invalidation triggered by an io and an invalidation message. This 3225 * is harmless, we must not worry if the policy call fails. 3226 */ 3227 while (range->begin != range->end) { 3228 r = invalidate_cblock(cache, range->begin); 3229 if (r) 3230 return r; 3231 3232 range->begin = cblock_succ(range->begin); 3233 } 3234 3235 cache->commit_requested = true; 3236 return r; 3237 } 3238 3239 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count, 3240 const char **cblock_ranges) 3241 { 3242 int r = 0; 3243 unsigned i; 3244 struct cblock_range range; 3245 3246 if (!passthrough_mode(cache)) { 3247 DMERR("%s: cache has to be in passthrough mode for invalidation", 3248 cache_device_name(cache)); 3249 return -EPERM; 3250 } 3251 3252 for (i = 0; i < count; i++) { 3253 r = parse_cblock_range(cache, cblock_ranges[i], &range); 3254 if (r) 3255 break; 3256 3257 r = validate_cblock_range(cache, &range); 3258 if (r) 3259 break; 3260 3261 /* 3262 * Pass begin and end origin blocks to the worker and wake it. 3263 */ 3264 r = request_invalidation(cache, &range); 3265 if (r) 3266 break; 3267 } 3268 3269 return r; 3270 } 3271 3272 /* 3273 * Supports 3274 * "<key> <value>" 3275 * and 3276 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]* 3277 * 3278 * The key migration_threshold is supported by the cache target core. 3279 */ 3280 static int cache_message(struct dm_target *ti, unsigned argc, char **argv, 3281 char *result, unsigned maxlen) 3282 { 3283 struct cache *cache = ti->private; 3284 3285 if (!argc) 3286 return -EINVAL; 3287 3288 if (get_cache_mode(cache) >= CM_READ_ONLY) { 3289 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode", 3290 cache_device_name(cache)); 3291 return -EOPNOTSUPP; 3292 } 3293 3294 if (!strcasecmp(argv[0], "invalidate_cblocks")) 3295 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1); 3296 3297 if (argc != 2) 3298 return -EINVAL; 3299 3300 return set_config_value(cache, argv[0], argv[1]); 3301 } 3302 3303 static int cache_iterate_devices(struct dm_target *ti, 3304 iterate_devices_callout_fn fn, void *data) 3305 { 3306 int r = 0; 3307 struct cache *cache = ti->private; 3308 3309 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); 3310 if (!r) 3311 r = fn(ti, cache->origin_dev, 0, ti->len, data); 3312 3313 return r; 3314 } 3315 3316 static bool origin_dev_supports_discard(struct block_device *origin_bdev) 3317 { 3318 struct request_queue *q = bdev_get_queue(origin_bdev); 3319 3320 return blk_queue_discard(q); 3321 } 3322 3323 /* 3324 * If discard_passdown was enabled verify that the origin device 3325 * supports discards. Disable discard_passdown if not. 3326 */ 3327 static void disable_passdown_if_not_supported(struct cache *cache) 3328 { 3329 struct block_device *origin_bdev = cache->origin_dev->bdev; 3330 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3331 const char *reason = NULL; 3332 char buf[BDEVNAME_SIZE]; 3333 3334 if (!cache->features.discard_passdown) 3335 return; 3336 3337 if (!origin_dev_supports_discard(origin_bdev)) 3338 reason = "discard unsupported"; 3339 3340 else if (origin_limits->max_discard_sectors < cache->sectors_per_block) 3341 reason = "max discard sectors smaller than a block"; 3342 3343 if (reason) { 3344 DMWARN("Origin device (%s) %s: Disabling discard passdown.", 3345 bdevname(origin_bdev, buf), reason); 3346 cache->features.discard_passdown = false; 3347 } 3348 } 3349 3350 static void set_discard_limits(struct cache *cache, struct queue_limits *limits) 3351 { 3352 struct block_device *origin_bdev = cache->origin_dev->bdev; 3353 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3354 3355 if (!cache->features.discard_passdown) { 3356 /* No passdown is done so setting own virtual limits */ 3357 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024, 3358 cache->origin_sectors); 3359 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT; 3360 return; 3361 } 3362 3363 /* 3364 * cache_iterate_devices() is stacking both origin and fast device limits 3365 * but discards aren't passed to fast device, so inherit origin's limits. 3366 */ 3367 limits->max_discard_sectors = origin_limits->max_discard_sectors; 3368 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors; 3369 limits->discard_granularity = origin_limits->discard_granularity; 3370 limits->discard_alignment = origin_limits->discard_alignment; 3371 limits->discard_misaligned = origin_limits->discard_misaligned; 3372 } 3373 3374 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) 3375 { 3376 struct cache *cache = ti->private; 3377 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3378 3379 /* 3380 * If the system-determined stacked limits are compatible with the 3381 * cache's blocksize (io_opt is a factor) do not override them. 3382 */ 3383 if (io_opt_sectors < cache->sectors_per_block || 3384 do_div(io_opt_sectors, cache->sectors_per_block)) { 3385 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT); 3386 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); 3387 } 3388 3389 disable_passdown_if_not_supported(cache); 3390 set_discard_limits(cache, limits); 3391 } 3392 3393 /*----------------------------------------------------------------*/ 3394 3395 static struct target_type cache_target = { 3396 .name = "cache", 3397 .version = {2, 2, 0}, 3398 .module = THIS_MODULE, 3399 .ctr = cache_ctr, 3400 .dtr = cache_dtr, 3401 .map = cache_map, 3402 .end_io = cache_end_io, 3403 .postsuspend = cache_postsuspend, 3404 .preresume = cache_preresume, 3405 .resume = cache_resume, 3406 .status = cache_status, 3407 .message = cache_message, 3408 .iterate_devices = cache_iterate_devices, 3409 .io_hints = cache_io_hints, 3410 }; 3411 3412 static int __init dm_cache_init(void) 3413 { 3414 int r; 3415 3416 migration_cache = KMEM_CACHE(dm_cache_migration, 0); 3417 if (!migration_cache) 3418 return -ENOMEM; 3419 3420 r = dm_register_target(&cache_target); 3421 if (r) { 3422 DMERR("cache target registration failed: %d", r); 3423 kmem_cache_destroy(migration_cache); 3424 return r; 3425 } 3426 3427 return 0; 3428 } 3429 3430 static void __exit dm_cache_exit(void) 3431 { 3432 dm_unregister_target(&cache_target); 3433 kmem_cache_destroy(migration_cache); 3434 } 3435 3436 module_init(dm_cache_init); 3437 module_exit(dm_cache_exit); 3438 3439 MODULE_DESCRIPTION(DM_NAME " cache target"); 3440 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); 3441 MODULE_LICENSE("GPL"); 3442