xref: /linux/drivers/md/dm-cache-target.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #define DM_MSG_PREFIX "cache"
22 
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 	"A percentage of time allocated for copying to and/or from cache");
25 
26 /*----------------------------------------------------------------*/
27 
28 /*
29  * Glossary:
30  *
31  * oblock: index of an origin block
32  * cblock: index of a cache block
33  * promotion: movement of a block from origin to cache
34  * demotion: movement of a block from cache to origin
35  * migration: movement of a block between the origin and cache device,
36  *	      either direction
37  */
38 
39 /*----------------------------------------------------------------*/
40 
41 static size_t bitset_size_in_bytes(unsigned nr_entries)
42 {
43 	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
44 }
45 
46 static unsigned long *alloc_bitset(unsigned nr_entries)
47 {
48 	size_t s = bitset_size_in_bytes(nr_entries);
49 	return vzalloc(s);
50 }
51 
52 static void clear_bitset(void *bitset, unsigned nr_entries)
53 {
54 	size_t s = bitset_size_in_bytes(nr_entries);
55 	memset(bitset, 0, s);
56 }
57 
58 static void free_bitset(unsigned long *bits)
59 {
60 	vfree(bits);
61 }
62 
63 /*----------------------------------------------------------------*/
64 
65 /*
66  * There are a couple of places where we let a bio run, but want to do some
67  * work before calling its endio function.  We do this by temporarily
68  * changing the endio fn.
69  */
70 struct dm_hook_info {
71 	bio_end_io_t *bi_end_io;
72 	void *bi_private;
73 };
74 
75 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
76 			bio_end_io_t *bi_end_io, void *bi_private)
77 {
78 	h->bi_end_io = bio->bi_end_io;
79 	h->bi_private = bio->bi_private;
80 
81 	bio->bi_end_io = bi_end_io;
82 	bio->bi_private = bi_private;
83 }
84 
85 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
86 {
87 	bio->bi_end_io = h->bi_end_io;
88 	bio->bi_private = h->bi_private;
89 
90 	/*
91 	 * Must bump bi_remaining to allow bio to complete with
92 	 * restored bi_end_io.
93 	 */
94 	atomic_inc(&bio->bi_remaining);
95 }
96 
97 /*----------------------------------------------------------------*/
98 
99 #define MIGRATION_POOL_SIZE 128
100 #define COMMIT_PERIOD HZ
101 #define MIGRATION_COUNT_WINDOW 10
102 
103 /*
104  * The block size of the device holding cache data must be
105  * between 32KB and 1GB.
106  */
107 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
108 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
109 
110 /*
111  * FIXME: the cache is read/write for the time being.
112  */
113 enum cache_metadata_mode {
114 	CM_WRITE,		/* metadata may be changed */
115 	CM_READ_ONLY,		/* metadata may not be changed */
116 };
117 
118 enum cache_io_mode {
119 	/*
120 	 * Data is written to cached blocks only.  These blocks are marked
121 	 * dirty.  If you lose the cache device you will lose data.
122 	 * Potential performance increase for both reads and writes.
123 	 */
124 	CM_IO_WRITEBACK,
125 
126 	/*
127 	 * Data is written to both cache and origin.  Blocks are never
128 	 * dirty.  Potential performance benfit for reads only.
129 	 */
130 	CM_IO_WRITETHROUGH,
131 
132 	/*
133 	 * A degraded mode useful for various cache coherency situations
134 	 * (eg, rolling back snapshots).  Reads and writes always go to the
135 	 * origin.  If a write goes to a cached oblock, then the cache
136 	 * block is invalidated.
137 	 */
138 	CM_IO_PASSTHROUGH
139 };
140 
141 struct cache_features {
142 	enum cache_metadata_mode mode;
143 	enum cache_io_mode io_mode;
144 };
145 
146 struct cache_stats {
147 	atomic_t read_hit;
148 	atomic_t read_miss;
149 	atomic_t write_hit;
150 	atomic_t write_miss;
151 	atomic_t demotion;
152 	atomic_t promotion;
153 	atomic_t copies_avoided;
154 	atomic_t cache_cell_clash;
155 	atomic_t commit_count;
156 	atomic_t discard_count;
157 };
158 
159 /*
160  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
161  * the one-past-the-end value.
162  */
163 struct cblock_range {
164 	dm_cblock_t begin;
165 	dm_cblock_t end;
166 };
167 
168 struct invalidation_request {
169 	struct list_head list;
170 	struct cblock_range *cblocks;
171 
172 	atomic_t complete;
173 	int err;
174 
175 	wait_queue_head_t result_wait;
176 };
177 
178 struct cache {
179 	struct dm_target *ti;
180 	struct dm_target_callbacks callbacks;
181 
182 	struct dm_cache_metadata *cmd;
183 
184 	/*
185 	 * Metadata is written to this device.
186 	 */
187 	struct dm_dev *metadata_dev;
188 
189 	/*
190 	 * The slower of the two data devices.  Typically a spindle.
191 	 */
192 	struct dm_dev *origin_dev;
193 
194 	/*
195 	 * The faster of the two data devices.  Typically an SSD.
196 	 */
197 	struct dm_dev *cache_dev;
198 
199 	/*
200 	 * Size of the origin device in _complete_ blocks and native sectors.
201 	 */
202 	dm_oblock_t origin_blocks;
203 	sector_t origin_sectors;
204 
205 	/*
206 	 * Size of the cache device in blocks.
207 	 */
208 	dm_cblock_t cache_size;
209 
210 	/*
211 	 * Fields for converting from sectors to blocks.
212 	 */
213 	uint32_t sectors_per_block;
214 	int sectors_per_block_shift;
215 
216 	spinlock_t lock;
217 	struct bio_list deferred_bios;
218 	struct bio_list deferred_flush_bios;
219 	struct bio_list deferred_writethrough_bios;
220 	struct list_head quiesced_migrations;
221 	struct list_head completed_migrations;
222 	struct list_head need_commit_migrations;
223 	sector_t migration_threshold;
224 	wait_queue_head_t migration_wait;
225 	atomic_t nr_allocated_migrations;
226 
227 	/*
228 	 * The number of in flight migrations that are performing
229 	 * background io. eg, promotion, writeback.
230 	 */
231 	atomic_t nr_io_migrations;
232 
233 	wait_queue_head_t quiescing_wait;
234 	atomic_t quiescing;
235 	atomic_t quiescing_ack;
236 
237 	/*
238 	 * cache_size entries, dirty if set
239 	 */
240 	atomic_t nr_dirty;
241 	unsigned long *dirty_bitset;
242 
243 	/*
244 	 * origin_blocks entries, discarded if set.
245 	 */
246 	dm_dblock_t discard_nr_blocks;
247 	unsigned long *discard_bitset;
248 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
249 
250 	/*
251 	 * Rather than reconstructing the table line for the status we just
252 	 * save it and regurgitate.
253 	 */
254 	unsigned nr_ctr_args;
255 	const char **ctr_args;
256 
257 	struct dm_kcopyd_client *copier;
258 	struct workqueue_struct *wq;
259 	struct work_struct worker;
260 
261 	struct delayed_work waker;
262 	unsigned long last_commit_jiffies;
263 
264 	struct dm_bio_prison *prison;
265 	struct dm_deferred_set *all_io_ds;
266 
267 	mempool_t *migration_pool;
268 
269 	struct dm_cache_policy *policy;
270 	unsigned policy_nr_args;
271 
272 	bool need_tick_bio:1;
273 	bool sized:1;
274 	bool invalidate:1;
275 	bool commit_requested:1;
276 	bool loaded_mappings:1;
277 	bool loaded_discards:1;
278 
279 	/*
280 	 * Cache features such as write-through.
281 	 */
282 	struct cache_features features;
283 
284 	struct cache_stats stats;
285 
286 	/*
287 	 * Invalidation fields.
288 	 */
289 	spinlock_t invalidation_lock;
290 	struct list_head invalidation_requests;
291 };
292 
293 struct per_bio_data {
294 	bool tick:1;
295 	unsigned req_nr:2;
296 	struct dm_deferred_entry *all_io_entry;
297 	struct dm_hook_info hook_info;
298 
299 	/*
300 	 * writethrough fields.  These MUST remain at the end of this
301 	 * structure and the 'cache' member must be the first as it
302 	 * is used to determine the offset of the writethrough fields.
303 	 */
304 	struct cache *cache;
305 	dm_cblock_t cblock;
306 	struct dm_bio_details bio_details;
307 };
308 
309 struct dm_cache_migration {
310 	struct list_head list;
311 	struct cache *cache;
312 
313 	unsigned long start_jiffies;
314 	dm_oblock_t old_oblock;
315 	dm_oblock_t new_oblock;
316 	dm_cblock_t cblock;
317 
318 	bool err:1;
319 	bool discard:1;
320 	bool writeback:1;
321 	bool demote:1;
322 	bool promote:1;
323 	bool requeue_holder:1;
324 	bool invalidate:1;
325 
326 	struct dm_bio_prison_cell *old_ocell;
327 	struct dm_bio_prison_cell *new_ocell;
328 };
329 
330 /*
331  * Processing a bio in the worker thread may require these memory
332  * allocations.  We prealloc to avoid deadlocks (the same worker thread
333  * frees them back to the mempool).
334  */
335 struct prealloc {
336 	struct dm_cache_migration *mg;
337 	struct dm_bio_prison_cell *cell1;
338 	struct dm_bio_prison_cell *cell2;
339 };
340 
341 static void wake_worker(struct cache *cache)
342 {
343 	queue_work(cache->wq, &cache->worker);
344 }
345 
346 /*----------------------------------------------------------------*/
347 
348 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
349 {
350 	/* FIXME: change to use a local slab. */
351 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
352 }
353 
354 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
355 {
356 	dm_bio_prison_free_cell(cache->prison, cell);
357 }
358 
359 static struct dm_cache_migration *alloc_migration(struct cache *cache)
360 {
361 	struct dm_cache_migration *mg;
362 
363 	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
364 	if (mg) {
365 		mg->cache = cache;
366 		atomic_inc(&mg->cache->nr_allocated_migrations);
367 	}
368 
369 	return mg;
370 }
371 
372 static void free_migration(struct dm_cache_migration *mg)
373 {
374 	if (atomic_dec_and_test(&mg->cache->nr_allocated_migrations))
375 		wake_up(&mg->cache->migration_wait);
376 
377 	mempool_free(mg, mg->cache->migration_pool);
378 }
379 
380 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
381 {
382 	if (!p->mg) {
383 		p->mg = alloc_migration(cache);
384 		if (!p->mg)
385 			return -ENOMEM;
386 	}
387 
388 	if (!p->cell1) {
389 		p->cell1 = alloc_prison_cell(cache);
390 		if (!p->cell1)
391 			return -ENOMEM;
392 	}
393 
394 	if (!p->cell2) {
395 		p->cell2 = alloc_prison_cell(cache);
396 		if (!p->cell2)
397 			return -ENOMEM;
398 	}
399 
400 	return 0;
401 }
402 
403 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
404 {
405 	if (p->cell2)
406 		free_prison_cell(cache, p->cell2);
407 
408 	if (p->cell1)
409 		free_prison_cell(cache, p->cell1);
410 
411 	if (p->mg)
412 		free_migration(p->mg);
413 }
414 
415 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
416 {
417 	struct dm_cache_migration *mg = p->mg;
418 
419 	BUG_ON(!mg);
420 	p->mg = NULL;
421 
422 	return mg;
423 }
424 
425 /*
426  * You must have a cell within the prealloc struct to return.  If not this
427  * function will BUG() rather than returning NULL.
428  */
429 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
430 {
431 	struct dm_bio_prison_cell *r = NULL;
432 
433 	if (p->cell1) {
434 		r = p->cell1;
435 		p->cell1 = NULL;
436 
437 	} else if (p->cell2) {
438 		r = p->cell2;
439 		p->cell2 = NULL;
440 	} else
441 		BUG();
442 
443 	return r;
444 }
445 
446 /*
447  * You can't have more than two cells in a prealloc struct.  BUG() will be
448  * called if you try and overfill.
449  */
450 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
451 {
452 	if (!p->cell2)
453 		p->cell2 = cell;
454 
455 	else if (!p->cell1)
456 		p->cell1 = cell;
457 
458 	else
459 		BUG();
460 }
461 
462 /*----------------------------------------------------------------*/
463 
464 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
465 {
466 	key->virtual = 0;
467 	key->dev = 0;
468 	key->block_begin = from_oblock(begin);
469 	key->block_end = from_oblock(end);
470 }
471 
472 /*
473  * The caller hands in a preallocated cell, and a free function for it.
474  * The cell will be freed if there's an error, or if it wasn't used because
475  * a cell with that key already exists.
476  */
477 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
478 
479 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
480 			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
481 			    cell_free_fn free_fn, void *free_context,
482 			    struct dm_bio_prison_cell **cell_result)
483 {
484 	int r;
485 	struct dm_cell_key key;
486 
487 	build_key(oblock_begin, oblock_end, &key);
488 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
489 	if (r)
490 		free_fn(free_context, cell_prealloc);
491 
492 	return r;
493 }
494 
495 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
496 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
497 		      cell_free_fn free_fn, void *free_context,
498 		      struct dm_bio_prison_cell **cell_result)
499 {
500 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
501 	return bio_detain_range(cache, oblock, end, bio,
502 				cell_prealloc, free_fn, free_context, cell_result);
503 }
504 
505 static int get_cell(struct cache *cache,
506 		    dm_oblock_t oblock,
507 		    struct prealloc *structs,
508 		    struct dm_bio_prison_cell **cell_result)
509 {
510 	int r;
511 	struct dm_cell_key key;
512 	struct dm_bio_prison_cell *cell_prealloc;
513 
514 	cell_prealloc = prealloc_get_cell(structs);
515 
516 	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
517 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
518 	if (r)
519 		prealloc_put_cell(structs, cell_prealloc);
520 
521 	return r;
522 }
523 
524 /*----------------------------------------------------------------*/
525 
526 static bool is_dirty(struct cache *cache, dm_cblock_t b)
527 {
528 	return test_bit(from_cblock(b), cache->dirty_bitset);
529 }
530 
531 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
532 {
533 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
534 		atomic_inc(&cache->nr_dirty);
535 		policy_set_dirty(cache->policy, oblock);
536 	}
537 }
538 
539 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
540 {
541 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
542 		policy_clear_dirty(cache->policy, oblock);
543 		if (atomic_dec_return(&cache->nr_dirty) == 0)
544 			dm_table_event(cache->ti->table);
545 	}
546 }
547 
548 /*----------------------------------------------------------------*/
549 
550 static bool block_size_is_power_of_two(struct cache *cache)
551 {
552 	return cache->sectors_per_block_shift >= 0;
553 }
554 
555 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
556 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
557 __always_inline
558 #endif
559 static dm_block_t block_div(dm_block_t b, uint32_t n)
560 {
561 	do_div(b, n);
562 
563 	return b;
564 }
565 
566 static dm_block_t oblocks_per_dblock(struct cache *cache)
567 {
568 	dm_block_t oblocks = cache->discard_block_size;
569 
570 	if (block_size_is_power_of_two(cache))
571 		oblocks >>= cache->sectors_per_block_shift;
572 	else
573 		oblocks = block_div(oblocks, cache->sectors_per_block);
574 
575 	return oblocks;
576 }
577 
578 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
579 {
580 	return to_dblock(block_div(from_oblock(oblock),
581 				   oblocks_per_dblock(cache)));
582 }
583 
584 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
585 {
586 	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
587 }
588 
589 static void set_discard(struct cache *cache, dm_dblock_t b)
590 {
591 	unsigned long flags;
592 
593 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
594 	atomic_inc(&cache->stats.discard_count);
595 
596 	spin_lock_irqsave(&cache->lock, flags);
597 	set_bit(from_dblock(b), cache->discard_bitset);
598 	spin_unlock_irqrestore(&cache->lock, flags);
599 }
600 
601 static void clear_discard(struct cache *cache, dm_dblock_t b)
602 {
603 	unsigned long flags;
604 
605 	spin_lock_irqsave(&cache->lock, flags);
606 	clear_bit(from_dblock(b), cache->discard_bitset);
607 	spin_unlock_irqrestore(&cache->lock, flags);
608 }
609 
610 static bool is_discarded(struct cache *cache, dm_dblock_t b)
611 {
612 	int r;
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&cache->lock, flags);
616 	r = test_bit(from_dblock(b), cache->discard_bitset);
617 	spin_unlock_irqrestore(&cache->lock, flags);
618 
619 	return r;
620 }
621 
622 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
623 {
624 	int r;
625 	unsigned long flags;
626 
627 	spin_lock_irqsave(&cache->lock, flags);
628 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
629 		     cache->discard_bitset);
630 	spin_unlock_irqrestore(&cache->lock, flags);
631 
632 	return r;
633 }
634 
635 /*----------------------------------------------------------------*/
636 
637 static void load_stats(struct cache *cache)
638 {
639 	struct dm_cache_statistics stats;
640 
641 	dm_cache_metadata_get_stats(cache->cmd, &stats);
642 	atomic_set(&cache->stats.read_hit, stats.read_hits);
643 	atomic_set(&cache->stats.read_miss, stats.read_misses);
644 	atomic_set(&cache->stats.write_hit, stats.write_hits);
645 	atomic_set(&cache->stats.write_miss, stats.write_misses);
646 }
647 
648 static void save_stats(struct cache *cache)
649 {
650 	struct dm_cache_statistics stats;
651 
652 	stats.read_hits = atomic_read(&cache->stats.read_hit);
653 	stats.read_misses = atomic_read(&cache->stats.read_miss);
654 	stats.write_hits = atomic_read(&cache->stats.write_hit);
655 	stats.write_misses = atomic_read(&cache->stats.write_miss);
656 
657 	dm_cache_metadata_set_stats(cache->cmd, &stats);
658 }
659 
660 /*----------------------------------------------------------------
661  * Per bio data
662  *--------------------------------------------------------------*/
663 
664 /*
665  * If using writeback, leave out struct per_bio_data's writethrough fields.
666  */
667 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
668 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
669 
670 static bool writethrough_mode(struct cache_features *f)
671 {
672 	return f->io_mode == CM_IO_WRITETHROUGH;
673 }
674 
675 static bool writeback_mode(struct cache_features *f)
676 {
677 	return f->io_mode == CM_IO_WRITEBACK;
678 }
679 
680 static bool passthrough_mode(struct cache_features *f)
681 {
682 	return f->io_mode == CM_IO_PASSTHROUGH;
683 }
684 
685 static size_t get_per_bio_data_size(struct cache *cache)
686 {
687 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
688 }
689 
690 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
691 {
692 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
693 	BUG_ON(!pb);
694 	return pb;
695 }
696 
697 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
698 {
699 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
700 
701 	pb->tick = false;
702 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
703 	pb->all_io_entry = NULL;
704 
705 	return pb;
706 }
707 
708 /*----------------------------------------------------------------
709  * Remapping
710  *--------------------------------------------------------------*/
711 static void remap_to_origin(struct cache *cache, struct bio *bio)
712 {
713 	bio->bi_bdev = cache->origin_dev->bdev;
714 }
715 
716 static void remap_to_cache(struct cache *cache, struct bio *bio,
717 			   dm_cblock_t cblock)
718 {
719 	sector_t bi_sector = bio->bi_iter.bi_sector;
720 	sector_t block = from_cblock(cblock);
721 
722 	bio->bi_bdev = cache->cache_dev->bdev;
723 	if (!block_size_is_power_of_two(cache))
724 		bio->bi_iter.bi_sector =
725 			(block * cache->sectors_per_block) +
726 			sector_div(bi_sector, cache->sectors_per_block);
727 	else
728 		bio->bi_iter.bi_sector =
729 			(block << cache->sectors_per_block_shift) |
730 			(bi_sector & (cache->sectors_per_block - 1));
731 }
732 
733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734 {
735 	unsigned long flags;
736 	size_t pb_data_size = get_per_bio_data_size(cache);
737 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
738 
739 	spin_lock_irqsave(&cache->lock, flags);
740 	if (cache->need_tick_bio &&
741 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
742 		pb->tick = true;
743 		cache->need_tick_bio = false;
744 	}
745 	spin_unlock_irqrestore(&cache->lock, flags);
746 }
747 
748 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
749 				  dm_oblock_t oblock)
750 {
751 	check_if_tick_bio_needed(cache, bio);
752 	remap_to_origin(cache, bio);
753 	if (bio_data_dir(bio) == WRITE)
754 		clear_discard(cache, oblock_to_dblock(cache, oblock));
755 }
756 
757 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
758 				 dm_oblock_t oblock, dm_cblock_t cblock)
759 {
760 	check_if_tick_bio_needed(cache, bio);
761 	remap_to_cache(cache, bio, cblock);
762 	if (bio_data_dir(bio) == WRITE) {
763 		set_dirty(cache, oblock, cblock);
764 		clear_discard(cache, oblock_to_dblock(cache, oblock));
765 	}
766 }
767 
768 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
769 {
770 	sector_t block_nr = bio->bi_iter.bi_sector;
771 
772 	if (!block_size_is_power_of_two(cache))
773 		(void) sector_div(block_nr, cache->sectors_per_block);
774 	else
775 		block_nr >>= cache->sectors_per_block_shift;
776 
777 	return to_oblock(block_nr);
778 }
779 
780 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
781 {
782 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
783 }
784 
785 /*
786  * You must increment the deferred set whilst the prison cell is held.  To
787  * encourage this, we ask for 'cell' to be passed in.
788  */
789 static void inc_ds(struct cache *cache, struct bio *bio,
790 		   struct dm_bio_prison_cell *cell)
791 {
792 	size_t pb_data_size = get_per_bio_data_size(cache);
793 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
794 
795 	BUG_ON(!cell);
796 	BUG_ON(pb->all_io_entry);
797 
798 	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
799 }
800 
801 static void issue(struct cache *cache, struct bio *bio)
802 {
803 	unsigned long flags;
804 
805 	if (!bio_triggers_commit(cache, bio)) {
806 		generic_make_request(bio);
807 		return;
808 	}
809 
810 	/*
811 	 * Batch together any bios that trigger commits and then issue a
812 	 * single commit for them in do_worker().
813 	 */
814 	spin_lock_irqsave(&cache->lock, flags);
815 	cache->commit_requested = true;
816 	bio_list_add(&cache->deferred_flush_bios, bio);
817 	spin_unlock_irqrestore(&cache->lock, flags);
818 }
819 
820 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
821 {
822 	inc_ds(cache, bio, cell);
823 	issue(cache, bio);
824 }
825 
826 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
827 {
828 	unsigned long flags;
829 
830 	spin_lock_irqsave(&cache->lock, flags);
831 	bio_list_add(&cache->deferred_writethrough_bios, bio);
832 	spin_unlock_irqrestore(&cache->lock, flags);
833 
834 	wake_worker(cache);
835 }
836 
837 static void writethrough_endio(struct bio *bio, int err)
838 {
839 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
840 
841 	dm_unhook_bio(&pb->hook_info, bio);
842 
843 	if (err) {
844 		bio_endio(bio, err);
845 		return;
846 	}
847 
848 	dm_bio_restore(&pb->bio_details, bio);
849 	remap_to_cache(pb->cache, bio, pb->cblock);
850 
851 	/*
852 	 * We can't issue this bio directly, since we're in interrupt
853 	 * context.  So it gets put on a bio list for processing by the
854 	 * worker thread.
855 	 */
856 	defer_writethrough_bio(pb->cache, bio);
857 }
858 
859 /*
860  * When running in writethrough mode we need to send writes to clean blocks
861  * to both the cache and origin devices.  In future we'd like to clone the
862  * bio and send them in parallel, but for now we're doing them in
863  * series as this is easier.
864  */
865 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
866 				       dm_oblock_t oblock, dm_cblock_t cblock)
867 {
868 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
869 
870 	pb->cache = cache;
871 	pb->cblock = cblock;
872 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
873 	dm_bio_record(&pb->bio_details, bio);
874 
875 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
876 }
877 
878 /*----------------------------------------------------------------
879  * Migration processing
880  *
881  * Migration covers moving data from the origin device to the cache, or
882  * vice versa.
883  *--------------------------------------------------------------*/
884 static void inc_io_migrations(struct cache *cache)
885 {
886 	atomic_inc(&cache->nr_io_migrations);
887 }
888 
889 static void dec_io_migrations(struct cache *cache)
890 {
891 	atomic_dec(&cache->nr_io_migrations);
892 }
893 
894 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
895 			 bool holder)
896 {
897 	(holder ? dm_cell_release : dm_cell_release_no_holder)
898 		(cache->prison, cell, &cache->deferred_bios);
899 	free_prison_cell(cache, cell);
900 }
901 
902 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
903 		       bool holder)
904 {
905 	unsigned long flags;
906 
907 	spin_lock_irqsave(&cache->lock, flags);
908 	__cell_defer(cache, cell, holder);
909 	spin_unlock_irqrestore(&cache->lock, flags);
910 
911 	wake_worker(cache);
912 }
913 
914 static void free_io_migration(struct dm_cache_migration *mg)
915 {
916 	dec_io_migrations(mg->cache);
917 	free_migration(mg);
918 }
919 
920 static void migration_failure(struct dm_cache_migration *mg)
921 {
922 	struct cache *cache = mg->cache;
923 
924 	if (mg->writeback) {
925 		DMWARN_LIMIT("writeback failed; couldn't copy block");
926 		set_dirty(cache, mg->old_oblock, mg->cblock);
927 		cell_defer(cache, mg->old_ocell, false);
928 
929 	} else if (mg->demote) {
930 		DMWARN_LIMIT("demotion failed; couldn't copy block");
931 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
932 
933 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
934 		if (mg->promote)
935 			cell_defer(cache, mg->new_ocell, true);
936 	} else {
937 		DMWARN_LIMIT("promotion failed; couldn't copy block");
938 		policy_remove_mapping(cache->policy, mg->new_oblock);
939 		cell_defer(cache, mg->new_ocell, true);
940 	}
941 
942 	free_io_migration(mg);
943 }
944 
945 static void migration_success_pre_commit(struct dm_cache_migration *mg)
946 {
947 	unsigned long flags;
948 	struct cache *cache = mg->cache;
949 
950 	if (mg->writeback) {
951 		clear_dirty(cache, mg->old_oblock, mg->cblock);
952 		cell_defer(cache, mg->old_ocell, false);
953 		free_io_migration(mg);
954 		return;
955 
956 	} else if (mg->demote) {
957 		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
958 			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
959 			policy_force_mapping(cache->policy, mg->new_oblock,
960 					     mg->old_oblock);
961 			if (mg->promote)
962 				cell_defer(cache, mg->new_ocell, true);
963 			free_io_migration(mg);
964 			return;
965 		}
966 	} else {
967 		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
968 			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
969 			policy_remove_mapping(cache->policy, mg->new_oblock);
970 			free_io_migration(mg);
971 			return;
972 		}
973 	}
974 
975 	spin_lock_irqsave(&cache->lock, flags);
976 	list_add_tail(&mg->list, &cache->need_commit_migrations);
977 	cache->commit_requested = true;
978 	spin_unlock_irqrestore(&cache->lock, flags);
979 }
980 
981 static void migration_success_post_commit(struct dm_cache_migration *mg)
982 {
983 	unsigned long flags;
984 	struct cache *cache = mg->cache;
985 
986 	if (mg->writeback) {
987 		DMWARN("writeback unexpectedly triggered commit");
988 		return;
989 
990 	} else if (mg->demote) {
991 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
992 
993 		if (mg->promote) {
994 			mg->demote = false;
995 
996 			spin_lock_irqsave(&cache->lock, flags);
997 			list_add_tail(&mg->list, &cache->quiesced_migrations);
998 			spin_unlock_irqrestore(&cache->lock, flags);
999 
1000 		} else {
1001 			if (mg->invalidate)
1002 				policy_remove_mapping(cache->policy, mg->old_oblock);
1003 			free_io_migration(mg);
1004 		}
1005 
1006 	} else {
1007 		if (mg->requeue_holder) {
1008 			clear_dirty(cache, mg->new_oblock, mg->cblock);
1009 			cell_defer(cache, mg->new_ocell, true);
1010 		} else {
1011 			/*
1012 			 * The block was promoted via an overwrite, so it's dirty.
1013 			 */
1014 			set_dirty(cache, mg->new_oblock, mg->cblock);
1015 			bio_endio(mg->new_ocell->holder, 0);
1016 			cell_defer(cache, mg->new_ocell, false);
1017 		}
1018 		free_io_migration(mg);
1019 	}
1020 }
1021 
1022 static void copy_complete(int read_err, unsigned long write_err, void *context)
1023 {
1024 	unsigned long flags;
1025 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1026 	struct cache *cache = mg->cache;
1027 
1028 	if (read_err || write_err)
1029 		mg->err = true;
1030 
1031 	spin_lock_irqsave(&cache->lock, flags);
1032 	list_add_tail(&mg->list, &cache->completed_migrations);
1033 	spin_unlock_irqrestore(&cache->lock, flags);
1034 
1035 	wake_worker(cache);
1036 }
1037 
1038 static void issue_copy(struct dm_cache_migration *mg)
1039 {
1040 	int r;
1041 	struct dm_io_region o_region, c_region;
1042 	struct cache *cache = mg->cache;
1043 	sector_t cblock = from_cblock(mg->cblock);
1044 
1045 	o_region.bdev = cache->origin_dev->bdev;
1046 	o_region.count = cache->sectors_per_block;
1047 
1048 	c_region.bdev = cache->cache_dev->bdev;
1049 	c_region.sector = cblock * cache->sectors_per_block;
1050 	c_region.count = cache->sectors_per_block;
1051 
1052 	if (mg->writeback || mg->demote) {
1053 		/* demote */
1054 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1055 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1056 	} else {
1057 		/* promote */
1058 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1059 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1060 	}
1061 
1062 	if (r < 0) {
1063 		DMERR_LIMIT("issuing migration failed");
1064 		migration_failure(mg);
1065 	}
1066 }
1067 
1068 static void overwrite_endio(struct bio *bio, int err)
1069 {
1070 	struct dm_cache_migration *mg = bio->bi_private;
1071 	struct cache *cache = mg->cache;
1072 	size_t pb_data_size = get_per_bio_data_size(cache);
1073 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1074 	unsigned long flags;
1075 
1076 	dm_unhook_bio(&pb->hook_info, bio);
1077 
1078 	if (err)
1079 		mg->err = true;
1080 
1081 	mg->requeue_holder = false;
1082 
1083 	spin_lock_irqsave(&cache->lock, flags);
1084 	list_add_tail(&mg->list, &cache->completed_migrations);
1085 	spin_unlock_irqrestore(&cache->lock, flags);
1086 
1087 	wake_worker(cache);
1088 }
1089 
1090 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1091 {
1092 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1093 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1094 
1095 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1096 	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1097 
1098 	/*
1099 	 * No need to inc_ds() here, since the cell will be held for the
1100 	 * duration of the io.
1101 	 */
1102 	generic_make_request(bio);
1103 }
1104 
1105 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1106 {
1107 	return (bio_data_dir(bio) == WRITE) &&
1108 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1109 }
1110 
1111 static void avoid_copy(struct dm_cache_migration *mg)
1112 {
1113 	atomic_inc(&mg->cache->stats.copies_avoided);
1114 	migration_success_pre_commit(mg);
1115 }
1116 
1117 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1118 				     dm_dblock_t *b, dm_dblock_t *e)
1119 {
1120 	sector_t sb = bio->bi_iter.bi_sector;
1121 	sector_t se = bio_end_sector(bio);
1122 
1123 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1124 
1125 	if (se - sb < cache->discard_block_size)
1126 		*e = *b;
1127 	else
1128 		*e = to_dblock(block_div(se, cache->discard_block_size));
1129 }
1130 
1131 static void issue_discard(struct dm_cache_migration *mg)
1132 {
1133 	dm_dblock_t b, e;
1134 	struct bio *bio = mg->new_ocell->holder;
1135 
1136 	calc_discard_block_range(mg->cache, bio, &b, &e);
1137 	while (b != e) {
1138 		set_discard(mg->cache, b);
1139 		b = to_dblock(from_dblock(b) + 1);
1140 	}
1141 
1142 	bio_endio(bio, 0);
1143 	cell_defer(mg->cache, mg->new_ocell, false);
1144 	free_migration(mg);
1145 }
1146 
1147 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1148 {
1149 	bool avoid;
1150 	struct cache *cache = mg->cache;
1151 
1152 	if (mg->discard) {
1153 		issue_discard(mg);
1154 		return;
1155 	}
1156 
1157 	if (mg->writeback || mg->demote)
1158 		avoid = !is_dirty(cache, mg->cblock) ||
1159 			is_discarded_oblock(cache, mg->old_oblock);
1160 	else {
1161 		struct bio *bio = mg->new_ocell->holder;
1162 
1163 		avoid = is_discarded_oblock(cache, mg->new_oblock);
1164 
1165 		if (writeback_mode(&cache->features) &&
1166 		    !avoid && bio_writes_complete_block(cache, bio)) {
1167 			issue_overwrite(mg, bio);
1168 			return;
1169 		}
1170 	}
1171 
1172 	avoid ? avoid_copy(mg) : issue_copy(mg);
1173 }
1174 
1175 static void complete_migration(struct dm_cache_migration *mg)
1176 {
1177 	if (mg->err)
1178 		migration_failure(mg);
1179 	else
1180 		migration_success_pre_commit(mg);
1181 }
1182 
1183 static void process_migrations(struct cache *cache, struct list_head *head,
1184 			       void (*fn)(struct dm_cache_migration *))
1185 {
1186 	unsigned long flags;
1187 	struct list_head list;
1188 	struct dm_cache_migration *mg, *tmp;
1189 
1190 	INIT_LIST_HEAD(&list);
1191 	spin_lock_irqsave(&cache->lock, flags);
1192 	list_splice_init(head, &list);
1193 	spin_unlock_irqrestore(&cache->lock, flags);
1194 
1195 	list_for_each_entry_safe(mg, tmp, &list, list)
1196 		fn(mg);
1197 }
1198 
1199 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1200 {
1201 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1202 }
1203 
1204 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1205 {
1206 	unsigned long flags;
1207 	struct cache *cache = mg->cache;
1208 
1209 	spin_lock_irqsave(&cache->lock, flags);
1210 	__queue_quiesced_migration(mg);
1211 	spin_unlock_irqrestore(&cache->lock, flags);
1212 
1213 	wake_worker(cache);
1214 }
1215 
1216 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1217 {
1218 	unsigned long flags;
1219 	struct dm_cache_migration *mg, *tmp;
1220 
1221 	spin_lock_irqsave(&cache->lock, flags);
1222 	list_for_each_entry_safe(mg, tmp, work, list)
1223 		__queue_quiesced_migration(mg);
1224 	spin_unlock_irqrestore(&cache->lock, flags);
1225 
1226 	wake_worker(cache);
1227 }
1228 
1229 static void check_for_quiesced_migrations(struct cache *cache,
1230 					  struct per_bio_data *pb)
1231 {
1232 	struct list_head work;
1233 
1234 	if (!pb->all_io_entry)
1235 		return;
1236 
1237 	INIT_LIST_HEAD(&work);
1238 	dm_deferred_entry_dec(pb->all_io_entry, &work);
1239 
1240 	if (!list_empty(&work))
1241 		queue_quiesced_migrations(cache, &work);
1242 }
1243 
1244 static void quiesce_migration(struct dm_cache_migration *mg)
1245 {
1246 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1247 		queue_quiesced_migration(mg);
1248 }
1249 
1250 static void promote(struct cache *cache, struct prealloc *structs,
1251 		    dm_oblock_t oblock, dm_cblock_t cblock,
1252 		    struct dm_bio_prison_cell *cell)
1253 {
1254 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1255 
1256 	mg->err = false;
1257 	mg->discard = false;
1258 	mg->writeback = false;
1259 	mg->demote = false;
1260 	mg->promote = true;
1261 	mg->requeue_holder = true;
1262 	mg->invalidate = false;
1263 	mg->cache = cache;
1264 	mg->new_oblock = oblock;
1265 	mg->cblock = cblock;
1266 	mg->old_ocell = NULL;
1267 	mg->new_ocell = cell;
1268 	mg->start_jiffies = jiffies;
1269 
1270 	inc_io_migrations(cache);
1271 	quiesce_migration(mg);
1272 }
1273 
1274 static void writeback(struct cache *cache, struct prealloc *structs,
1275 		      dm_oblock_t oblock, dm_cblock_t cblock,
1276 		      struct dm_bio_prison_cell *cell)
1277 {
1278 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1279 
1280 	mg->err = false;
1281 	mg->discard = false;
1282 	mg->writeback = true;
1283 	mg->demote = false;
1284 	mg->promote = false;
1285 	mg->requeue_holder = true;
1286 	mg->invalidate = false;
1287 	mg->cache = cache;
1288 	mg->old_oblock = oblock;
1289 	mg->cblock = cblock;
1290 	mg->old_ocell = cell;
1291 	mg->new_ocell = NULL;
1292 	mg->start_jiffies = jiffies;
1293 
1294 	inc_io_migrations(cache);
1295 	quiesce_migration(mg);
1296 }
1297 
1298 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1299 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1300 				dm_cblock_t cblock,
1301 				struct dm_bio_prison_cell *old_ocell,
1302 				struct dm_bio_prison_cell *new_ocell)
1303 {
1304 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1305 
1306 	mg->err = false;
1307 	mg->discard = false;
1308 	mg->writeback = false;
1309 	mg->demote = true;
1310 	mg->promote = true;
1311 	mg->requeue_holder = true;
1312 	mg->invalidate = false;
1313 	mg->cache = cache;
1314 	mg->old_oblock = old_oblock;
1315 	mg->new_oblock = new_oblock;
1316 	mg->cblock = cblock;
1317 	mg->old_ocell = old_ocell;
1318 	mg->new_ocell = new_ocell;
1319 	mg->start_jiffies = jiffies;
1320 
1321 	inc_io_migrations(cache);
1322 	quiesce_migration(mg);
1323 }
1324 
1325 /*
1326  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1327  * block are thrown away.
1328  */
1329 static void invalidate(struct cache *cache, struct prealloc *structs,
1330 		       dm_oblock_t oblock, dm_cblock_t cblock,
1331 		       struct dm_bio_prison_cell *cell)
1332 {
1333 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1334 
1335 	mg->err = false;
1336 	mg->discard = false;
1337 	mg->writeback = false;
1338 	mg->demote = true;
1339 	mg->promote = false;
1340 	mg->requeue_holder = true;
1341 	mg->invalidate = true;
1342 	mg->cache = cache;
1343 	mg->old_oblock = oblock;
1344 	mg->cblock = cblock;
1345 	mg->old_ocell = cell;
1346 	mg->new_ocell = NULL;
1347 	mg->start_jiffies = jiffies;
1348 
1349 	inc_io_migrations(cache);
1350 	quiesce_migration(mg);
1351 }
1352 
1353 static void discard(struct cache *cache, struct prealloc *structs,
1354 		    struct dm_bio_prison_cell *cell)
1355 {
1356 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1357 
1358 	mg->err = false;
1359 	mg->discard = true;
1360 	mg->writeback = false;
1361 	mg->demote = false;
1362 	mg->promote = false;
1363 	mg->requeue_holder = false;
1364 	mg->invalidate = false;
1365 	mg->cache = cache;
1366 	mg->old_ocell = NULL;
1367 	mg->new_ocell = cell;
1368 	mg->start_jiffies = jiffies;
1369 
1370 	quiesce_migration(mg);
1371 }
1372 
1373 /*----------------------------------------------------------------
1374  * bio processing
1375  *--------------------------------------------------------------*/
1376 static void defer_bio(struct cache *cache, struct bio *bio)
1377 {
1378 	unsigned long flags;
1379 
1380 	spin_lock_irqsave(&cache->lock, flags);
1381 	bio_list_add(&cache->deferred_bios, bio);
1382 	spin_unlock_irqrestore(&cache->lock, flags);
1383 
1384 	wake_worker(cache);
1385 }
1386 
1387 static void process_flush_bio(struct cache *cache, struct bio *bio)
1388 {
1389 	size_t pb_data_size = get_per_bio_data_size(cache);
1390 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1391 
1392 	BUG_ON(bio->bi_iter.bi_size);
1393 	if (!pb->req_nr)
1394 		remap_to_origin(cache, bio);
1395 	else
1396 		remap_to_cache(cache, bio, 0);
1397 
1398 	/*
1399 	 * REQ_FLUSH is not directed at any particular block so we don't
1400 	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1401 	 * by dm-core.
1402 	 */
1403 	issue(cache, bio);
1404 }
1405 
1406 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1407 				struct bio *bio)
1408 {
1409 	int r;
1410 	dm_dblock_t b, e;
1411 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1412 
1413 	calc_discard_block_range(cache, bio, &b, &e);
1414 	if (b == e) {
1415 		bio_endio(bio, 0);
1416 		return;
1417 	}
1418 
1419 	cell_prealloc = prealloc_get_cell(structs);
1420 	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1421 			     (cell_free_fn) prealloc_put_cell,
1422 			     structs, &new_ocell);
1423 	if (r > 0)
1424 		return;
1425 
1426 	discard(cache, structs, new_ocell);
1427 }
1428 
1429 static bool spare_migration_bandwidth(struct cache *cache)
1430 {
1431 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1432 		cache->sectors_per_block;
1433 	return current_volume < cache->migration_threshold;
1434 }
1435 
1436 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1437 {
1438 	atomic_inc(bio_data_dir(bio) == READ ?
1439 		   &cache->stats.read_hit : &cache->stats.write_hit);
1440 }
1441 
1442 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1443 {
1444 	atomic_inc(bio_data_dir(bio) == READ ?
1445 		   &cache->stats.read_miss : &cache->stats.write_miss);
1446 }
1447 
1448 static void process_bio(struct cache *cache, struct prealloc *structs,
1449 			struct bio *bio)
1450 {
1451 	int r;
1452 	bool release_cell = true;
1453 	dm_oblock_t block = get_bio_block(cache, bio);
1454 	struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1455 	struct policy_result lookup_result;
1456 	bool passthrough = passthrough_mode(&cache->features);
1457 	bool discarded_block, can_migrate;
1458 
1459 	/*
1460 	 * Check to see if that block is currently migrating.
1461 	 */
1462 	cell_prealloc = prealloc_get_cell(structs);
1463 	r = bio_detain(cache, block, bio, cell_prealloc,
1464 		       (cell_free_fn) prealloc_put_cell,
1465 		       structs, &new_ocell);
1466 	if (r > 0)
1467 		return;
1468 
1469 	discarded_block = is_discarded_oblock(cache, block);
1470 	can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1471 
1472 	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1473 		       bio, &lookup_result);
1474 
1475 	if (r == -EWOULDBLOCK)
1476 		/* migration has been denied */
1477 		lookup_result.op = POLICY_MISS;
1478 
1479 	switch (lookup_result.op) {
1480 	case POLICY_HIT:
1481 		if (passthrough) {
1482 			inc_miss_counter(cache, bio);
1483 
1484 			/*
1485 			 * Passthrough always maps to the origin,
1486 			 * invalidating any cache blocks that are written
1487 			 * to.
1488 			 */
1489 
1490 			if (bio_data_dir(bio) == WRITE) {
1491 				atomic_inc(&cache->stats.demotion);
1492 				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1493 				release_cell = false;
1494 
1495 			} else {
1496 				/* FIXME: factor out issue_origin() */
1497 				remap_to_origin_clear_discard(cache, bio, block);
1498 				inc_and_issue(cache, bio, new_ocell);
1499 			}
1500 		} else {
1501 			inc_hit_counter(cache, bio);
1502 
1503 			if (bio_data_dir(bio) == WRITE &&
1504 			    writethrough_mode(&cache->features) &&
1505 			    !is_dirty(cache, lookup_result.cblock)) {
1506 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1507 				inc_and_issue(cache, bio, new_ocell);
1508 
1509 			} else  {
1510 				remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1511 				inc_and_issue(cache, bio, new_ocell);
1512 			}
1513 		}
1514 
1515 		break;
1516 
1517 	case POLICY_MISS:
1518 		inc_miss_counter(cache, bio);
1519 		remap_to_origin_clear_discard(cache, bio, block);
1520 		inc_and_issue(cache, bio, new_ocell);
1521 		break;
1522 
1523 	case POLICY_NEW:
1524 		atomic_inc(&cache->stats.promotion);
1525 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1526 		release_cell = false;
1527 		break;
1528 
1529 	case POLICY_REPLACE:
1530 		cell_prealloc = prealloc_get_cell(structs);
1531 		r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1532 			       (cell_free_fn) prealloc_put_cell,
1533 			       structs, &old_ocell);
1534 		if (r > 0) {
1535 			/*
1536 			 * We have to be careful to avoid lock inversion of
1537 			 * the cells.  So we back off, and wait for the
1538 			 * old_ocell to become free.
1539 			 */
1540 			policy_force_mapping(cache->policy, block,
1541 					     lookup_result.old_oblock);
1542 			atomic_inc(&cache->stats.cache_cell_clash);
1543 			break;
1544 		}
1545 		atomic_inc(&cache->stats.demotion);
1546 		atomic_inc(&cache->stats.promotion);
1547 
1548 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1549 				    block, lookup_result.cblock,
1550 				    old_ocell, new_ocell);
1551 		release_cell = false;
1552 		break;
1553 
1554 	default:
1555 		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1556 			    (unsigned) lookup_result.op);
1557 		bio_io_error(bio);
1558 	}
1559 
1560 	if (release_cell)
1561 		cell_defer(cache, new_ocell, false);
1562 }
1563 
1564 static int need_commit_due_to_time(struct cache *cache)
1565 {
1566 	return !time_in_range(jiffies, cache->last_commit_jiffies,
1567 			      cache->last_commit_jiffies + COMMIT_PERIOD);
1568 }
1569 
1570 static int commit_if_needed(struct cache *cache)
1571 {
1572 	int r = 0;
1573 
1574 	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1575 	    dm_cache_changed_this_transaction(cache->cmd)) {
1576 		atomic_inc(&cache->stats.commit_count);
1577 		cache->commit_requested = false;
1578 		r = dm_cache_commit(cache->cmd, false);
1579 		cache->last_commit_jiffies = jiffies;
1580 	}
1581 
1582 	return r;
1583 }
1584 
1585 static void process_deferred_bios(struct cache *cache)
1586 {
1587 	unsigned long flags;
1588 	struct bio_list bios;
1589 	struct bio *bio;
1590 	struct prealloc structs;
1591 
1592 	memset(&structs, 0, sizeof(structs));
1593 	bio_list_init(&bios);
1594 
1595 	spin_lock_irqsave(&cache->lock, flags);
1596 	bio_list_merge(&bios, &cache->deferred_bios);
1597 	bio_list_init(&cache->deferred_bios);
1598 	spin_unlock_irqrestore(&cache->lock, flags);
1599 
1600 	while (!bio_list_empty(&bios)) {
1601 		/*
1602 		 * If we've got no free migration structs, and processing
1603 		 * this bio might require one, we pause until there are some
1604 		 * prepared mappings to process.
1605 		 */
1606 		if (prealloc_data_structs(cache, &structs)) {
1607 			spin_lock_irqsave(&cache->lock, flags);
1608 			bio_list_merge(&cache->deferred_bios, &bios);
1609 			spin_unlock_irqrestore(&cache->lock, flags);
1610 			break;
1611 		}
1612 
1613 		bio = bio_list_pop(&bios);
1614 
1615 		if (bio->bi_rw & REQ_FLUSH)
1616 			process_flush_bio(cache, bio);
1617 		else if (bio->bi_rw & REQ_DISCARD)
1618 			process_discard_bio(cache, &structs, bio);
1619 		else
1620 			process_bio(cache, &structs, bio);
1621 	}
1622 
1623 	prealloc_free_structs(cache, &structs);
1624 }
1625 
1626 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1627 {
1628 	unsigned long flags;
1629 	struct bio_list bios;
1630 	struct bio *bio;
1631 
1632 	bio_list_init(&bios);
1633 
1634 	spin_lock_irqsave(&cache->lock, flags);
1635 	bio_list_merge(&bios, &cache->deferred_flush_bios);
1636 	bio_list_init(&cache->deferred_flush_bios);
1637 	spin_unlock_irqrestore(&cache->lock, flags);
1638 
1639 	/*
1640 	 * These bios have already been through inc_ds()
1641 	 */
1642 	while ((bio = bio_list_pop(&bios)))
1643 		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1644 }
1645 
1646 static void process_deferred_writethrough_bios(struct cache *cache)
1647 {
1648 	unsigned long flags;
1649 	struct bio_list bios;
1650 	struct bio *bio;
1651 
1652 	bio_list_init(&bios);
1653 
1654 	spin_lock_irqsave(&cache->lock, flags);
1655 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1656 	bio_list_init(&cache->deferred_writethrough_bios);
1657 	spin_unlock_irqrestore(&cache->lock, flags);
1658 
1659 	/*
1660 	 * These bios have already been through inc_ds()
1661 	 */
1662 	while ((bio = bio_list_pop(&bios)))
1663 		generic_make_request(bio);
1664 }
1665 
1666 static void writeback_some_dirty_blocks(struct cache *cache)
1667 {
1668 	int r = 0;
1669 	dm_oblock_t oblock;
1670 	dm_cblock_t cblock;
1671 	struct prealloc structs;
1672 	struct dm_bio_prison_cell *old_ocell;
1673 
1674 	memset(&structs, 0, sizeof(structs));
1675 
1676 	while (spare_migration_bandwidth(cache)) {
1677 		if (prealloc_data_structs(cache, &structs))
1678 			break;
1679 
1680 		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1681 		if (r)
1682 			break;
1683 
1684 		r = get_cell(cache, oblock, &structs, &old_ocell);
1685 		if (r) {
1686 			policy_set_dirty(cache->policy, oblock);
1687 			break;
1688 		}
1689 
1690 		writeback(cache, &structs, oblock, cblock, old_ocell);
1691 	}
1692 
1693 	prealloc_free_structs(cache, &structs);
1694 }
1695 
1696 /*----------------------------------------------------------------
1697  * Invalidations.
1698  * Dropping something from the cache *without* writing back.
1699  *--------------------------------------------------------------*/
1700 
1701 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1702 {
1703 	int r = 0;
1704 	uint64_t begin = from_cblock(req->cblocks->begin);
1705 	uint64_t end = from_cblock(req->cblocks->end);
1706 
1707 	while (begin != end) {
1708 		r = policy_remove_cblock(cache->policy, to_cblock(begin));
1709 		if (!r) {
1710 			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1711 			if (r)
1712 				break;
1713 
1714 		} else if (r == -ENODATA) {
1715 			/* harmless, already unmapped */
1716 			r = 0;
1717 
1718 		} else {
1719 			DMERR("policy_remove_cblock failed");
1720 			break;
1721 		}
1722 
1723 		begin++;
1724         }
1725 
1726 	cache->commit_requested = true;
1727 
1728 	req->err = r;
1729 	atomic_set(&req->complete, 1);
1730 
1731 	wake_up(&req->result_wait);
1732 }
1733 
1734 static void process_invalidation_requests(struct cache *cache)
1735 {
1736 	struct list_head list;
1737 	struct invalidation_request *req, *tmp;
1738 
1739 	INIT_LIST_HEAD(&list);
1740 	spin_lock(&cache->invalidation_lock);
1741 	list_splice_init(&cache->invalidation_requests, &list);
1742 	spin_unlock(&cache->invalidation_lock);
1743 
1744 	list_for_each_entry_safe (req, tmp, &list, list)
1745 		process_invalidation_request(cache, req);
1746 }
1747 
1748 /*----------------------------------------------------------------
1749  * Main worker loop
1750  *--------------------------------------------------------------*/
1751 static bool is_quiescing(struct cache *cache)
1752 {
1753 	return atomic_read(&cache->quiescing);
1754 }
1755 
1756 static void ack_quiescing(struct cache *cache)
1757 {
1758 	if (is_quiescing(cache)) {
1759 		atomic_inc(&cache->quiescing_ack);
1760 		wake_up(&cache->quiescing_wait);
1761 	}
1762 }
1763 
1764 static void wait_for_quiescing_ack(struct cache *cache)
1765 {
1766 	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1767 }
1768 
1769 static void start_quiescing(struct cache *cache)
1770 {
1771 	atomic_inc(&cache->quiescing);
1772 	wait_for_quiescing_ack(cache);
1773 }
1774 
1775 static void stop_quiescing(struct cache *cache)
1776 {
1777 	atomic_set(&cache->quiescing, 0);
1778 	atomic_set(&cache->quiescing_ack, 0);
1779 }
1780 
1781 static void wait_for_migrations(struct cache *cache)
1782 {
1783 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
1784 }
1785 
1786 static void stop_worker(struct cache *cache)
1787 {
1788 	cancel_delayed_work(&cache->waker);
1789 	flush_workqueue(cache->wq);
1790 }
1791 
1792 static void requeue_deferred_io(struct cache *cache)
1793 {
1794 	struct bio *bio;
1795 	struct bio_list bios;
1796 
1797 	bio_list_init(&bios);
1798 	bio_list_merge(&bios, &cache->deferred_bios);
1799 	bio_list_init(&cache->deferred_bios);
1800 
1801 	while ((bio = bio_list_pop(&bios)))
1802 		bio_endio(bio, DM_ENDIO_REQUEUE);
1803 }
1804 
1805 static int more_work(struct cache *cache)
1806 {
1807 	if (is_quiescing(cache))
1808 		return !list_empty(&cache->quiesced_migrations) ||
1809 			!list_empty(&cache->completed_migrations) ||
1810 			!list_empty(&cache->need_commit_migrations);
1811 	else
1812 		return !bio_list_empty(&cache->deferred_bios) ||
1813 			!bio_list_empty(&cache->deferred_flush_bios) ||
1814 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1815 			!list_empty(&cache->quiesced_migrations) ||
1816 			!list_empty(&cache->completed_migrations) ||
1817 			!list_empty(&cache->need_commit_migrations) ||
1818 			cache->invalidate;
1819 }
1820 
1821 static void do_worker(struct work_struct *ws)
1822 {
1823 	struct cache *cache = container_of(ws, struct cache, worker);
1824 
1825 	do {
1826 		if (!is_quiescing(cache)) {
1827 			writeback_some_dirty_blocks(cache);
1828 			process_deferred_writethrough_bios(cache);
1829 			process_deferred_bios(cache);
1830 			process_invalidation_requests(cache);
1831 		}
1832 
1833 		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
1834 		process_migrations(cache, &cache->completed_migrations, complete_migration);
1835 
1836 		if (commit_if_needed(cache)) {
1837 			process_deferred_flush_bios(cache, false);
1838 			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
1839 
1840 			/*
1841 			 * FIXME: rollback metadata or just go into a
1842 			 * failure mode and error everything
1843 			 */
1844 		} else {
1845 			process_deferred_flush_bios(cache, true);
1846 			process_migrations(cache, &cache->need_commit_migrations,
1847 					   migration_success_post_commit);
1848 		}
1849 
1850 		ack_quiescing(cache);
1851 
1852 	} while (more_work(cache));
1853 }
1854 
1855 /*
1856  * We want to commit periodically so that not too much
1857  * unwritten metadata builds up.
1858  */
1859 static void do_waker(struct work_struct *ws)
1860 {
1861 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1862 	policy_tick(cache->policy);
1863 	wake_worker(cache);
1864 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1865 }
1866 
1867 /*----------------------------------------------------------------*/
1868 
1869 static int is_congested(struct dm_dev *dev, int bdi_bits)
1870 {
1871 	struct request_queue *q = bdev_get_queue(dev->bdev);
1872 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1873 }
1874 
1875 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1876 {
1877 	struct cache *cache = container_of(cb, struct cache, callbacks);
1878 
1879 	return is_congested(cache->origin_dev, bdi_bits) ||
1880 		is_congested(cache->cache_dev, bdi_bits);
1881 }
1882 
1883 /*----------------------------------------------------------------
1884  * Target methods
1885  *--------------------------------------------------------------*/
1886 
1887 /*
1888  * This function gets called on the error paths of the constructor, so we
1889  * have to cope with a partially initialised struct.
1890  */
1891 static void destroy(struct cache *cache)
1892 {
1893 	unsigned i;
1894 
1895 	if (cache->migration_pool)
1896 		mempool_destroy(cache->migration_pool);
1897 
1898 	if (cache->all_io_ds)
1899 		dm_deferred_set_destroy(cache->all_io_ds);
1900 
1901 	if (cache->prison)
1902 		dm_bio_prison_destroy(cache->prison);
1903 
1904 	if (cache->wq)
1905 		destroy_workqueue(cache->wq);
1906 
1907 	if (cache->dirty_bitset)
1908 		free_bitset(cache->dirty_bitset);
1909 
1910 	if (cache->discard_bitset)
1911 		free_bitset(cache->discard_bitset);
1912 
1913 	if (cache->copier)
1914 		dm_kcopyd_client_destroy(cache->copier);
1915 
1916 	if (cache->cmd)
1917 		dm_cache_metadata_close(cache->cmd);
1918 
1919 	if (cache->metadata_dev)
1920 		dm_put_device(cache->ti, cache->metadata_dev);
1921 
1922 	if (cache->origin_dev)
1923 		dm_put_device(cache->ti, cache->origin_dev);
1924 
1925 	if (cache->cache_dev)
1926 		dm_put_device(cache->ti, cache->cache_dev);
1927 
1928 	if (cache->policy)
1929 		dm_cache_policy_destroy(cache->policy);
1930 
1931 	for (i = 0; i < cache->nr_ctr_args ; i++)
1932 		kfree(cache->ctr_args[i]);
1933 	kfree(cache->ctr_args);
1934 
1935 	kfree(cache);
1936 }
1937 
1938 static void cache_dtr(struct dm_target *ti)
1939 {
1940 	struct cache *cache = ti->private;
1941 
1942 	destroy(cache);
1943 }
1944 
1945 static sector_t get_dev_size(struct dm_dev *dev)
1946 {
1947 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1948 }
1949 
1950 /*----------------------------------------------------------------*/
1951 
1952 /*
1953  * Construct a cache device mapping.
1954  *
1955  * cache <metadata dev> <cache dev> <origin dev> <block size>
1956  *       <#feature args> [<feature arg>]*
1957  *       <policy> <#policy args> [<policy arg>]*
1958  *
1959  * metadata dev    : fast device holding the persistent metadata
1960  * cache dev	   : fast device holding cached data blocks
1961  * origin dev	   : slow device holding original data blocks
1962  * block size	   : cache unit size in sectors
1963  *
1964  * #feature args   : number of feature arguments passed
1965  * feature args    : writethrough.  (The default is writeback.)
1966  *
1967  * policy	   : the replacement policy to use
1968  * #policy args    : an even number of policy arguments corresponding
1969  *		     to key/value pairs passed to the policy
1970  * policy args	   : key/value pairs passed to the policy
1971  *		     E.g. 'sequential_threshold 1024'
1972  *		     See cache-policies.txt for details.
1973  *
1974  * Optional feature arguments are:
1975  *   writethrough  : write through caching that prohibits cache block
1976  *		     content from being different from origin block content.
1977  *		     Without this argument, the default behaviour is to write
1978  *		     back cache block contents later for performance reasons,
1979  *		     so they may differ from the corresponding origin blocks.
1980  */
1981 struct cache_args {
1982 	struct dm_target *ti;
1983 
1984 	struct dm_dev *metadata_dev;
1985 
1986 	struct dm_dev *cache_dev;
1987 	sector_t cache_sectors;
1988 
1989 	struct dm_dev *origin_dev;
1990 	sector_t origin_sectors;
1991 
1992 	uint32_t block_size;
1993 
1994 	const char *policy_name;
1995 	int policy_argc;
1996 	const char **policy_argv;
1997 
1998 	struct cache_features features;
1999 };
2000 
2001 static void destroy_cache_args(struct cache_args *ca)
2002 {
2003 	if (ca->metadata_dev)
2004 		dm_put_device(ca->ti, ca->metadata_dev);
2005 
2006 	if (ca->cache_dev)
2007 		dm_put_device(ca->ti, ca->cache_dev);
2008 
2009 	if (ca->origin_dev)
2010 		dm_put_device(ca->ti, ca->origin_dev);
2011 
2012 	kfree(ca);
2013 }
2014 
2015 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2016 {
2017 	if (!as->argc) {
2018 		*error = "Insufficient args";
2019 		return false;
2020 	}
2021 
2022 	return true;
2023 }
2024 
2025 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2026 			      char **error)
2027 {
2028 	int r;
2029 	sector_t metadata_dev_size;
2030 	char b[BDEVNAME_SIZE];
2031 
2032 	if (!at_least_one_arg(as, error))
2033 		return -EINVAL;
2034 
2035 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2036 			  &ca->metadata_dev);
2037 	if (r) {
2038 		*error = "Error opening metadata device";
2039 		return r;
2040 	}
2041 
2042 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2043 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2044 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2045 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2046 
2047 	return 0;
2048 }
2049 
2050 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2051 			   char **error)
2052 {
2053 	int r;
2054 
2055 	if (!at_least_one_arg(as, error))
2056 		return -EINVAL;
2057 
2058 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2059 			  &ca->cache_dev);
2060 	if (r) {
2061 		*error = "Error opening cache device";
2062 		return r;
2063 	}
2064 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2065 
2066 	return 0;
2067 }
2068 
2069 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2070 			    char **error)
2071 {
2072 	int r;
2073 
2074 	if (!at_least_one_arg(as, error))
2075 		return -EINVAL;
2076 
2077 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2078 			  &ca->origin_dev);
2079 	if (r) {
2080 		*error = "Error opening origin device";
2081 		return r;
2082 	}
2083 
2084 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2085 	if (ca->ti->len > ca->origin_sectors) {
2086 		*error = "Device size larger than cached device";
2087 		return -EINVAL;
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2094 			    char **error)
2095 {
2096 	unsigned long block_size;
2097 
2098 	if (!at_least_one_arg(as, error))
2099 		return -EINVAL;
2100 
2101 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2102 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2103 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2104 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2105 		*error = "Invalid data block size";
2106 		return -EINVAL;
2107 	}
2108 
2109 	if (block_size > ca->cache_sectors) {
2110 		*error = "Data block size is larger than the cache device";
2111 		return -EINVAL;
2112 	}
2113 
2114 	ca->block_size = block_size;
2115 
2116 	return 0;
2117 }
2118 
2119 static void init_features(struct cache_features *cf)
2120 {
2121 	cf->mode = CM_WRITE;
2122 	cf->io_mode = CM_IO_WRITEBACK;
2123 }
2124 
2125 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2126 			  char **error)
2127 {
2128 	static struct dm_arg _args[] = {
2129 		{0, 1, "Invalid number of cache feature arguments"},
2130 	};
2131 
2132 	int r;
2133 	unsigned argc;
2134 	const char *arg;
2135 	struct cache_features *cf = &ca->features;
2136 
2137 	init_features(cf);
2138 
2139 	r = dm_read_arg_group(_args, as, &argc, error);
2140 	if (r)
2141 		return -EINVAL;
2142 
2143 	while (argc--) {
2144 		arg = dm_shift_arg(as);
2145 
2146 		if (!strcasecmp(arg, "writeback"))
2147 			cf->io_mode = CM_IO_WRITEBACK;
2148 
2149 		else if (!strcasecmp(arg, "writethrough"))
2150 			cf->io_mode = CM_IO_WRITETHROUGH;
2151 
2152 		else if (!strcasecmp(arg, "passthrough"))
2153 			cf->io_mode = CM_IO_PASSTHROUGH;
2154 
2155 		else {
2156 			*error = "Unrecognised cache feature requested";
2157 			return -EINVAL;
2158 		}
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2165 			char **error)
2166 {
2167 	static struct dm_arg _args[] = {
2168 		{0, 1024, "Invalid number of policy arguments"},
2169 	};
2170 
2171 	int r;
2172 
2173 	if (!at_least_one_arg(as, error))
2174 		return -EINVAL;
2175 
2176 	ca->policy_name = dm_shift_arg(as);
2177 
2178 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2179 	if (r)
2180 		return -EINVAL;
2181 
2182 	ca->policy_argv = (const char **)as->argv;
2183 	dm_consume_args(as, ca->policy_argc);
2184 
2185 	return 0;
2186 }
2187 
2188 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2189 			    char **error)
2190 {
2191 	int r;
2192 	struct dm_arg_set as;
2193 
2194 	as.argc = argc;
2195 	as.argv = argv;
2196 
2197 	r = parse_metadata_dev(ca, &as, error);
2198 	if (r)
2199 		return r;
2200 
2201 	r = parse_cache_dev(ca, &as, error);
2202 	if (r)
2203 		return r;
2204 
2205 	r = parse_origin_dev(ca, &as, error);
2206 	if (r)
2207 		return r;
2208 
2209 	r = parse_block_size(ca, &as, error);
2210 	if (r)
2211 		return r;
2212 
2213 	r = parse_features(ca, &as, error);
2214 	if (r)
2215 		return r;
2216 
2217 	r = parse_policy(ca, &as, error);
2218 	if (r)
2219 		return r;
2220 
2221 	return 0;
2222 }
2223 
2224 /*----------------------------------------------------------------*/
2225 
2226 static struct kmem_cache *migration_cache;
2227 
2228 #define NOT_CORE_OPTION 1
2229 
2230 static int process_config_option(struct cache *cache, const char *key, const char *value)
2231 {
2232 	unsigned long tmp;
2233 
2234 	if (!strcasecmp(key, "migration_threshold")) {
2235 		if (kstrtoul(value, 10, &tmp))
2236 			return -EINVAL;
2237 
2238 		cache->migration_threshold = tmp;
2239 		return 0;
2240 	}
2241 
2242 	return NOT_CORE_OPTION;
2243 }
2244 
2245 static int set_config_value(struct cache *cache, const char *key, const char *value)
2246 {
2247 	int r = process_config_option(cache, key, value);
2248 
2249 	if (r == NOT_CORE_OPTION)
2250 		r = policy_set_config_value(cache->policy, key, value);
2251 
2252 	if (r)
2253 		DMWARN("bad config value for %s: %s", key, value);
2254 
2255 	return r;
2256 }
2257 
2258 static int set_config_values(struct cache *cache, int argc, const char **argv)
2259 {
2260 	int r = 0;
2261 
2262 	if (argc & 1) {
2263 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2264 		return -EINVAL;
2265 	}
2266 
2267 	while (argc) {
2268 		r = set_config_value(cache, argv[0], argv[1]);
2269 		if (r)
2270 			break;
2271 
2272 		argc -= 2;
2273 		argv += 2;
2274 	}
2275 
2276 	return r;
2277 }
2278 
2279 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2280 			       char **error)
2281 {
2282 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2283 							   cache->cache_size,
2284 							   cache->origin_sectors,
2285 							   cache->sectors_per_block);
2286 	if (IS_ERR(p)) {
2287 		*error = "Error creating cache's policy";
2288 		return PTR_ERR(p);
2289 	}
2290 	cache->policy = p;
2291 
2292 	return 0;
2293 }
2294 
2295 /*
2296  * We want the discard block size to be at least the size of the cache
2297  * block size and have no more than 2^14 discard blocks across the origin.
2298  */
2299 #define MAX_DISCARD_BLOCKS (1 << 14)
2300 
2301 static bool too_many_discard_blocks(sector_t discard_block_size,
2302 				    sector_t origin_size)
2303 {
2304 	(void) sector_div(origin_size, discard_block_size);
2305 
2306 	return origin_size > MAX_DISCARD_BLOCKS;
2307 }
2308 
2309 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2310 					     sector_t origin_size)
2311 {
2312 	sector_t discard_block_size = cache_block_size;
2313 
2314 	if (origin_size)
2315 		while (too_many_discard_blocks(discard_block_size, origin_size))
2316 			discard_block_size *= 2;
2317 
2318 	return discard_block_size;
2319 }
2320 
2321 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2322 {
2323 	dm_block_t nr_blocks = from_cblock(size);
2324 
2325 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2326 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2327 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2328 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2329 			     (unsigned long long) nr_blocks);
2330 
2331 	cache->cache_size = size;
2332 }
2333 
2334 #define DEFAULT_MIGRATION_THRESHOLD 2048
2335 
2336 static int cache_create(struct cache_args *ca, struct cache **result)
2337 {
2338 	int r = 0;
2339 	char **error = &ca->ti->error;
2340 	struct cache *cache;
2341 	struct dm_target *ti = ca->ti;
2342 	dm_block_t origin_blocks;
2343 	struct dm_cache_metadata *cmd;
2344 	bool may_format = ca->features.mode == CM_WRITE;
2345 
2346 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2347 	if (!cache)
2348 		return -ENOMEM;
2349 
2350 	cache->ti = ca->ti;
2351 	ti->private = cache;
2352 	ti->num_flush_bios = 2;
2353 	ti->flush_supported = true;
2354 
2355 	ti->num_discard_bios = 1;
2356 	ti->discards_supported = true;
2357 	ti->discard_zeroes_data_unsupported = true;
2358 	ti->split_discard_bios = false;
2359 
2360 	cache->features = ca->features;
2361 	ti->per_bio_data_size = get_per_bio_data_size(cache);
2362 
2363 	cache->callbacks.congested_fn = cache_is_congested;
2364 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2365 
2366 	cache->metadata_dev = ca->metadata_dev;
2367 	cache->origin_dev = ca->origin_dev;
2368 	cache->cache_dev = ca->cache_dev;
2369 
2370 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2371 
2372 	/* FIXME: factor out this whole section */
2373 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2374 	origin_blocks = block_div(origin_blocks, ca->block_size);
2375 	cache->origin_blocks = to_oblock(origin_blocks);
2376 
2377 	cache->sectors_per_block = ca->block_size;
2378 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2379 		r = -EINVAL;
2380 		goto bad;
2381 	}
2382 
2383 	if (ca->block_size & (ca->block_size - 1)) {
2384 		dm_block_t cache_size = ca->cache_sectors;
2385 
2386 		cache->sectors_per_block_shift = -1;
2387 		cache_size = block_div(cache_size, ca->block_size);
2388 		set_cache_size(cache, to_cblock(cache_size));
2389 	} else {
2390 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2391 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2392 	}
2393 
2394 	r = create_cache_policy(cache, ca, error);
2395 	if (r)
2396 		goto bad;
2397 
2398 	cache->policy_nr_args = ca->policy_argc;
2399 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2400 
2401 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2402 	if (r) {
2403 		*error = "Error setting cache policy's config values";
2404 		goto bad;
2405 	}
2406 
2407 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2408 				     ca->block_size, may_format,
2409 				     dm_cache_policy_get_hint_size(cache->policy));
2410 	if (IS_ERR(cmd)) {
2411 		*error = "Error creating metadata object";
2412 		r = PTR_ERR(cmd);
2413 		goto bad;
2414 	}
2415 	cache->cmd = cmd;
2416 
2417 	if (passthrough_mode(&cache->features)) {
2418 		bool all_clean;
2419 
2420 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2421 		if (r) {
2422 			*error = "dm_cache_metadata_all_clean() failed";
2423 			goto bad;
2424 		}
2425 
2426 		if (!all_clean) {
2427 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2428 			r = -EINVAL;
2429 			goto bad;
2430 		}
2431 	}
2432 
2433 	spin_lock_init(&cache->lock);
2434 	bio_list_init(&cache->deferred_bios);
2435 	bio_list_init(&cache->deferred_flush_bios);
2436 	bio_list_init(&cache->deferred_writethrough_bios);
2437 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2438 	INIT_LIST_HEAD(&cache->completed_migrations);
2439 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2440 	atomic_set(&cache->nr_allocated_migrations, 0);
2441 	atomic_set(&cache->nr_io_migrations, 0);
2442 	init_waitqueue_head(&cache->migration_wait);
2443 
2444 	init_waitqueue_head(&cache->quiescing_wait);
2445 	atomic_set(&cache->quiescing, 0);
2446 	atomic_set(&cache->quiescing_ack, 0);
2447 
2448 	r = -ENOMEM;
2449 	atomic_set(&cache->nr_dirty, 0);
2450 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2451 	if (!cache->dirty_bitset) {
2452 		*error = "could not allocate dirty bitset";
2453 		goto bad;
2454 	}
2455 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2456 
2457 	cache->discard_block_size =
2458 		calculate_discard_block_size(cache->sectors_per_block,
2459 					     cache->origin_sectors);
2460 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2461 							      cache->discard_block_size));
2462 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2463 	if (!cache->discard_bitset) {
2464 		*error = "could not allocate discard bitset";
2465 		goto bad;
2466 	}
2467 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2468 
2469 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2470 	if (IS_ERR(cache->copier)) {
2471 		*error = "could not create kcopyd client";
2472 		r = PTR_ERR(cache->copier);
2473 		goto bad;
2474 	}
2475 
2476 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2477 	if (!cache->wq) {
2478 		*error = "could not create workqueue for metadata object";
2479 		goto bad;
2480 	}
2481 	INIT_WORK(&cache->worker, do_worker);
2482 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2483 	cache->last_commit_jiffies = jiffies;
2484 
2485 	cache->prison = dm_bio_prison_create();
2486 	if (!cache->prison) {
2487 		*error = "could not create bio prison";
2488 		goto bad;
2489 	}
2490 
2491 	cache->all_io_ds = dm_deferred_set_create();
2492 	if (!cache->all_io_ds) {
2493 		*error = "could not create all_io deferred set";
2494 		goto bad;
2495 	}
2496 
2497 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2498 							 migration_cache);
2499 	if (!cache->migration_pool) {
2500 		*error = "Error creating cache's migration mempool";
2501 		goto bad;
2502 	}
2503 
2504 	cache->need_tick_bio = true;
2505 	cache->sized = false;
2506 	cache->invalidate = false;
2507 	cache->commit_requested = false;
2508 	cache->loaded_mappings = false;
2509 	cache->loaded_discards = false;
2510 
2511 	load_stats(cache);
2512 
2513 	atomic_set(&cache->stats.demotion, 0);
2514 	atomic_set(&cache->stats.promotion, 0);
2515 	atomic_set(&cache->stats.copies_avoided, 0);
2516 	atomic_set(&cache->stats.cache_cell_clash, 0);
2517 	atomic_set(&cache->stats.commit_count, 0);
2518 	atomic_set(&cache->stats.discard_count, 0);
2519 
2520 	spin_lock_init(&cache->invalidation_lock);
2521 	INIT_LIST_HEAD(&cache->invalidation_requests);
2522 
2523 	*result = cache;
2524 	return 0;
2525 
2526 bad:
2527 	destroy(cache);
2528 	return r;
2529 }
2530 
2531 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2532 {
2533 	unsigned i;
2534 	const char **copy;
2535 
2536 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2537 	if (!copy)
2538 		return -ENOMEM;
2539 	for (i = 0; i < argc; i++) {
2540 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2541 		if (!copy[i]) {
2542 			while (i--)
2543 				kfree(copy[i]);
2544 			kfree(copy);
2545 			return -ENOMEM;
2546 		}
2547 	}
2548 
2549 	cache->nr_ctr_args = argc;
2550 	cache->ctr_args = copy;
2551 
2552 	return 0;
2553 }
2554 
2555 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2556 {
2557 	int r = -EINVAL;
2558 	struct cache_args *ca;
2559 	struct cache *cache = NULL;
2560 
2561 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2562 	if (!ca) {
2563 		ti->error = "Error allocating memory for cache";
2564 		return -ENOMEM;
2565 	}
2566 	ca->ti = ti;
2567 
2568 	r = parse_cache_args(ca, argc, argv, &ti->error);
2569 	if (r)
2570 		goto out;
2571 
2572 	r = cache_create(ca, &cache);
2573 	if (r)
2574 		goto out;
2575 
2576 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2577 	if (r) {
2578 		destroy(cache);
2579 		goto out;
2580 	}
2581 
2582 	ti->private = cache;
2583 
2584 out:
2585 	destroy_cache_args(ca);
2586 	return r;
2587 }
2588 
2589 static int __cache_map(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell **cell)
2590 {
2591 	int r;
2592 	dm_oblock_t block = get_bio_block(cache, bio);
2593 	size_t pb_data_size = get_per_bio_data_size(cache);
2594 	bool can_migrate = false;
2595 	bool discarded_block;
2596 	struct policy_result lookup_result;
2597 	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
2598 
2599 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2600 		/*
2601 		 * This can only occur if the io goes to a partial block at
2602 		 * the end of the origin device.  We don't cache these.
2603 		 * Just remap to the origin and carry on.
2604 		 */
2605 		remap_to_origin(cache, bio);
2606 		return DM_MAPIO_REMAPPED;
2607 	}
2608 
2609 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2610 		defer_bio(cache, bio);
2611 		return DM_MAPIO_SUBMITTED;
2612 	}
2613 
2614 	/*
2615 	 * Check to see if that block is currently migrating.
2616 	 */
2617 	*cell = alloc_prison_cell(cache);
2618 	if (!*cell) {
2619 		defer_bio(cache, bio);
2620 		return DM_MAPIO_SUBMITTED;
2621 	}
2622 
2623 	r = bio_detain(cache, block, bio, *cell,
2624 		       (cell_free_fn) free_prison_cell,
2625 		       cache, cell);
2626 	if (r) {
2627 		if (r < 0)
2628 			defer_bio(cache, bio);
2629 
2630 		return DM_MAPIO_SUBMITTED;
2631 	}
2632 
2633 	discarded_block = is_discarded_oblock(cache, block);
2634 
2635 	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2636 		       bio, &lookup_result);
2637 	if (r == -EWOULDBLOCK) {
2638 		cell_defer(cache, *cell, true);
2639 		return DM_MAPIO_SUBMITTED;
2640 
2641 	} else if (r) {
2642 		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2643 		cell_defer(cache, *cell, false);
2644 		bio_io_error(bio);
2645 		return DM_MAPIO_SUBMITTED;
2646 	}
2647 
2648 	r = DM_MAPIO_REMAPPED;
2649 	switch (lookup_result.op) {
2650 	case POLICY_HIT:
2651 		if (passthrough_mode(&cache->features)) {
2652 			if (bio_data_dir(bio) == WRITE) {
2653 				/*
2654 				 * We need to invalidate this block, so
2655 				 * defer for the worker thread.
2656 				 */
2657 				cell_defer(cache, *cell, true);
2658 				r = DM_MAPIO_SUBMITTED;
2659 
2660 			} else {
2661 				inc_miss_counter(cache, bio);
2662 				remap_to_origin_clear_discard(cache, bio, block);
2663 			}
2664 
2665 		} else {
2666 			inc_hit_counter(cache, bio);
2667 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2668 			    !is_dirty(cache, lookup_result.cblock))
2669 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2670 			else
2671 				remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2672 		}
2673 		break;
2674 
2675 	case POLICY_MISS:
2676 		inc_miss_counter(cache, bio);
2677 		if (pb->req_nr != 0) {
2678 			/*
2679 			 * This is a duplicate writethrough io that is no
2680 			 * longer needed because the block has been demoted.
2681 			 */
2682 			bio_endio(bio, 0);
2683 			cell_defer(cache, *cell, false);
2684 			r = DM_MAPIO_SUBMITTED;
2685 
2686 		} else
2687 			remap_to_origin_clear_discard(cache, bio, block);
2688 
2689 		break;
2690 
2691 	default:
2692 		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2693 			    (unsigned) lookup_result.op);
2694 		cell_defer(cache, *cell, false);
2695 		bio_io_error(bio);
2696 		r = DM_MAPIO_SUBMITTED;
2697 	}
2698 
2699 	return r;
2700 }
2701 
2702 static int cache_map(struct dm_target *ti, struct bio *bio)
2703 {
2704 	int r;
2705 	struct dm_bio_prison_cell *cell = NULL;
2706 	struct cache *cache = ti->private;
2707 
2708 	r = __cache_map(cache, bio, &cell);
2709 	if (r == DM_MAPIO_REMAPPED && cell) {
2710 		inc_ds(cache, bio, cell);
2711 		cell_defer(cache, cell, false);
2712 	}
2713 
2714 	return r;
2715 }
2716 
2717 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2718 {
2719 	struct cache *cache = ti->private;
2720 	unsigned long flags;
2721 	size_t pb_data_size = get_per_bio_data_size(cache);
2722 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2723 
2724 	if (pb->tick) {
2725 		policy_tick(cache->policy);
2726 
2727 		spin_lock_irqsave(&cache->lock, flags);
2728 		cache->need_tick_bio = true;
2729 		spin_unlock_irqrestore(&cache->lock, flags);
2730 	}
2731 
2732 	check_for_quiesced_migrations(cache, pb);
2733 
2734 	return 0;
2735 }
2736 
2737 static int write_dirty_bitset(struct cache *cache)
2738 {
2739 	unsigned i, r;
2740 
2741 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2742 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2743 				       is_dirty(cache, to_cblock(i)));
2744 		if (r)
2745 			return r;
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 static int write_discard_bitset(struct cache *cache)
2752 {
2753 	unsigned i, r;
2754 
2755 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2756 					   cache->discard_nr_blocks);
2757 	if (r) {
2758 		DMERR("could not resize on-disk discard bitset");
2759 		return r;
2760 	}
2761 
2762 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2763 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2764 					 is_discarded(cache, to_dblock(i)));
2765 		if (r)
2766 			return r;
2767 	}
2768 
2769 	return 0;
2770 }
2771 
2772 /*
2773  * returns true on success
2774  */
2775 static bool sync_metadata(struct cache *cache)
2776 {
2777 	int r1, r2, r3, r4;
2778 
2779 	r1 = write_dirty_bitset(cache);
2780 	if (r1)
2781 		DMERR("could not write dirty bitset");
2782 
2783 	r2 = write_discard_bitset(cache);
2784 	if (r2)
2785 		DMERR("could not write discard bitset");
2786 
2787 	save_stats(cache);
2788 
2789 	r3 = dm_cache_write_hints(cache->cmd, cache->policy);
2790 	if (r3)
2791 		DMERR("could not write hints");
2792 
2793 	/*
2794 	 * If writing the above metadata failed, we still commit, but don't
2795 	 * set the clean shutdown flag.  This will effectively force every
2796 	 * dirty bit to be set on reload.
2797 	 */
2798 	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2799 	if (r4)
2800 		DMERR("could not write cache metadata.  Data loss may occur.");
2801 
2802 	return !r1 && !r2 && !r3 && !r4;
2803 }
2804 
2805 static void cache_postsuspend(struct dm_target *ti)
2806 {
2807 	struct cache *cache = ti->private;
2808 
2809 	start_quiescing(cache);
2810 	wait_for_migrations(cache);
2811 	stop_worker(cache);
2812 	requeue_deferred_io(cache);
2813 	stop_quiescing(cache);
2814 
2815 	(void) sync_metadata(cache);
2816 }
2817 
2818 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2819 			bool dirty, uint32_t hint, bool hint_valid)
2820 {
2821 	int r;
2822 	struct cache *cache = context;
2823 
2824 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2825 	if (r)
2826 		return r;
2827 
2828 	if (dirty)
2829 		set_dirty(cache, oblock, cblock);
2830 	else
2831 		clear_dirty(cache, oblock, cblock);
2832 
2833 	return 0;
2834 }
2835 
2836 /*
2837  * The discard block size in the on disk metadata is not
2838  * neccessarily the same as we're currently using.  So we have to
2839  * be careful to only set the discarded attribute if we know it
2840  * covers a complete block of the new size.
2841  */
2842 struct discard_load_info {
2843 	struct cache *cache;
2844 
2845 	/*
2846 	 * These blocks are sized using the on disk dblock size, rather
2847 	 * than the current one.
2848 	 */
2849 	dm_block_t block_size;
2850 	dm_block_t discard_begin, discard_end;
2851 };
2852 
2853 static void discard_load_info_init(struct cache *cache,
2854 				   struct discard_load_info *li)
2855 {
2856 	li->cache = cache;
2857 	li->discard_begin = li->discard_end = 0;
2858 }
2859 
2860 static void set_discard_range(struct discard_load_info *li)
2861 {
2862 	sector_t b, e;
2863 
2864 	if (li->discard_begin == li->discard_end)
2865 		return;
2866 
2867 	/*
2868 	 * Convert to sectors.
2869 	 */
2870 	b = li->discard_begin * li->block_size;
2871 	e = li->discard_end * li->block_size;
2872 
2873 	/*
2874 	 * Then convert back to the current dblock size.
2875 	 */
2876 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2877 	sector_div(e, li->cache->discard_block_size);
2878 
2879 	/*
2880 	 * The origin may have shrunk, so we need to check we're still in
2881 	 * bounds.
2882 	 */
2883 	if (e > from_dblock(li->cache->discard_nr_blocks))
2884 		e = from_dblock(li->cache->discard_nr_blocks);
2885 
2886 	for (; b < e; b++)
2887 		set_discard(li->cache, to_dblock(b));
2888 }
2889 
2890 static int load_discard(void *context, sector_t discard_block_size,
2891 			dm_dblock_t dblock, bool discard)
2892 {
2893 	struct discard_load_info *li = context;
2894 
2895 	li->block_size = discard_block_size;
2896 
2897 	if (discard) {
2898 		if (from_dblock(dblock) == li->discard_end)
2899 			/*
2900 			 * We're already in a discard range, just extend it.
2901 			 */
2902 			li->discard_end = li->discard_end + 1ULL;
2903 
2904 		else {
2905 			/*
2906 			 * Emit the old range and start a new one.
2907 			 */
2908 			set_discard_range(li);
2909 			li->discard_begin = from_dblock(dblock);
2910 			li->discard_end = li->discard_begin + 1ULL;
2911 		}
2912 	} else {
2913 		set_discard_range(li);
2914 		li->discard_begin = li->discard_end = 0;
2915 	}
2916 
2917 	return 0;
2918 }
2919 
2920 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2921 {
2922 	sector_t size = get_dev_size(cache->cache_dev);
2923 	(void) sector_div(size, cache->sectors_per_block);
2924 	return to_cblock(size);
2925 }
2926 
2927 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2928 {
2929 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
2930 		return true;
2931 
2932 	/*
2933 	 * We can't drop a dirty block when shrinking the cache.
2934 	 */
2935 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2936 		new_size = to_cblock(from_cblock(new_size) + 1);
2937 		if (is_dirty(cache, new_size)) {
2938 			DMERR("unable to shrink cache; cache block %llu is dirty",
2939 			      (unsigned long long) from_cblock(new_size));
2940 			return false;
2941 		}
2942 	}
2943 
2944 	return true;
2945 }
2946 
2947 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2948 {
2949 	int r;
2950 
2951 	r = dm_cache_resize(cache->cmd, new_size);
2952 	if (r) {
2953 		DMERR("could not resize cache metadata");
2954 		return r;
2955 	}
2956 
2957 	set_cache_size(cache, new_size);
2958 
2959 	return 0;
2960 }
2961 
2962 static int cache_preresume(struct dm_target *ti)
2963 {
2964 	int r = 0;
2965 	struct cache *cache = ti->private;
2966 	dm_cblock_t csize = get_cache_dev_size(cache);
2967 
2968 	/*
2969 	 * Check to see if the cache has resized.
2970 	 */
2971 	if (!cache->sized) {
2972 		r = resize_cache_dev(cache, csize);
2973 		if (r)
2974 			return r;
2975 
2976 		cache->sized = true;
2977 
2978 	} else if (csize != cache->cache_size) {
2979 		if (!can_resize(cache, csize))
2980 			return -EINVAL;
2981 
2982 		r = resize_cache_dev(cache, csize);
2983 		if (r)
2984 			return r;
2985 	}
2986 
2987 	if (!cache->loaded_mappings) {
2988 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2989 					   load_mapping, cache);
2990 		if (r) {
2991 			DMERR("could not load cache mappings");
2992 			return r;
2993 		}
2994 
2995 		cache->loaded_mappings = true;
2996 	}
2997 
2998 	if (!cache->loaded_discards) {
2999 		struct discard_load_info li;
3000 
3001 		/*
3002 		 * The discard bitset could have been resized, or the
3003 		 * discard block size changed.  To be safe we start by
3004 		 * setting every dblock to not discarded.
3005 		 */
3006 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3007 
3008 		discard_load_info_init(cache, &li);
3009 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3010 		if (r) {
3011 			DMERR("could not load origin discards");
3012 			return r;
3013 		}
3014 		set_discard_range(&li);
3015 
3016 		cache->loaded_discards = true;
3017 	}
3018 
3019 	return r;
3020 }
3021 
3022 static void cache_resume(struct dm_target *ti)
3023 {
3024 	struct cache *cache = ti->private;
3025 
3026 	cache->need_tick_bio = true;
3027 	do_waker(&cache->waker.work);
3028 }
3029 
3030 /*
3031  * Status format:
3032  *
3033  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3034  * <cache block size> <#used cache blocks>/<#total cache blocks>
3035  * <#read hits> <#read misses> <#write hits> <#write misses>
3036  * <#demotions> <#promotions> <#dirty>
3037  * <#features> <features>*
3038  * <#core args> <core args>
3039  * <policy name> <#policy args> <policy args>*
3040  */
3041 static void cache_status(struct dm_target *ti, status_type_t type,
3042 			 unsigned status_flags, char *result, unsigned maxlen)
3043 {
3044 	int r = 0;
3045 	unsigned i;
3046 	ssize_t sz = 0;
3047 	dm_block_t nr_free_blocks_metadata = 0;
3048 	dm_block_t nr_blocks_metadata = 0;
3049 	char buf[BDEVNAME_SIZE];
3050 	struct cache *cache = ti->private;
3051 	dm_cblock_t residency;
3052 
3053 	switch (type) {
3054 	case STATUSTYPE_INFO:
3055 		/* Commit to ensure statistics aren't out-of-date */
3056 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
3057 			r = dm_cache_commit(cache->cmd, false);
3058 			if (r)
3059 				DMERR("could not commit metadata for accurate status");
3060 		}
3061 
3062 		r = dm_cache_get_free_metadata_block_count(cache->cmd,
3063 							   &nr_free_blocks_metadata);
3064 		if (r) {
3065 			DMERR("could not get metadata free block count");
3066 			goto err;
3067 		}
3068 
3069 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3070 		if (r) {
3071 			DMERR("could not get metadata device size");
3072 			goto err;
3073 		}
3074 
3075 		residency = policy_residency(cache->policy);
3076 
3077 		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3078 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3079 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3080 		       (unsigned long long)nr_blocks_metadata,
3081 		       cache->sectors_per_block,
3082 		       (unsigned long long) from_cblock(residency),
3083 		       (unsigned long long) from_cblock(cache->cache_size),
3084 		       (unsigned) atomic_read(&cache->stats.read_hit),
3085 		       (unsigned) atomic_read(&cache->stats.read_miss),
3086 		       (unsigned) atomic_read(&cache->stats.write_hit),
3087 		       (unsigned) atomic_read(&cache->stats.write_miss),
3088 		       (unsigned) atomic_read(&cache->stats.demotion),
3089 		       (unsigned) atomic_read(&cache->stats.promotion),
3090 		       (unsigned long) atomic_read(&cache->nr_dirty));
3091 
3092 		if (writethrough_mode(&cache->features))
3093 			DMEMIT("1 writethrough ");
3094 
3095 		else if (passthrough_mode(&cache->features))
3096 			DMEMIT("1 passthrough ");
3097 
3098 		else if (writeback_mode(&cache->features))
3099 			DMEMIT("1 writeback ");
3100 
3101 		else {
3102 			DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
3103 			goto err;
3104 		}
3105 
3106 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3107 
3108 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3109 		if (sz < maxlen) {
3110 			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
3111 			if (r)
3112 				DMERR("policy_emit_config_values returned %d", r);
3113 		}
3114 
3115 		break;
3116 
3117 	case STATUSTYPE_TABLE:
3118 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3119 		DMEMIT("%s ", buf);
3120 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3121 		DMEMIT("%s ", buf);
3122 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3123 		DMEMIT("%s", buf);
3124 
3125 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3126 			DMEMIT(" %s", cache->ctr_args[i]);
3127 		if (cache->nr_ctr_args)
3128 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3129 	}
3130 
3131 	return;
3132 
3133 err:
3134 	DMEMIT("Error");
3135 }
3136 
3137 /*
3138  * A cache block range can take two forms:
3139  *
3140  * i) A single cblock, eg. '3456'
3141  * ii) A begin and end cblock with dots between, eg. 123-234
3142  */
3143 static int parse_cblock_range(struct cache *cache, const char *str,
3144 			      struct cblock_range *result)
3145 {
3146 	char dummy;
3147 	uint64_t b, e;
3148 	int r;
3149 
3150 	/*
3151 	 * Try and parse form (ii) first.
3152 	 */
3153 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3154 	if (r < 0)
3155 		return r;
3156 
3157 	if (r == 2) {
3158 		result->begin = to_cblock(b);
3159 		result->end = to_cblock(e);
3160 		return 0;
3161 	}
3162 
3163 	/*
3164 	 * That didn't work, try form (i).
3165 	 */
3166 	r = sscanf(str, "%llu%c", &b, &dummy);
3167 	if (r < 0)
3168 		return r;
3169 
3170 	if (r == 1) {
3171 		result->begin = to_cblock(b);
3172 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3173 		return 0;
3174 	}
3175 
3176 	DMERR("invalid cblock range '%s'", str);
3177 	return -EINVAL;
3178 }
3179 
3180 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3181 {
3182 	uint64_t b = from_cblock(range->begin);
3183 	uint64_t e = from_cblock(range->end);
3184 	uint64_t n = from_cblock(cache->cache_size);
3185 
3186 	if (b >= n) {
3187 		DMERR("begin cblock out of range: %llu >= %llu", b, n);
3188 		return -EINVAL;
3189 	}
3190 
3191 	if (e > n) {
3192 		DMERR("end cblock out of range: %llu > %llu", e, n);
3193 		return -EINVAL;
3194 	}
3195 
3196 	if (b >= e) {
3197 		DMERR("invalid cblock range: %llu >= %llu", b, e);
3198 		return -EINVAL;
3199 	}
3200 
3201 	return 0;
3202 }
3203 
3204 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3205 {
3206 	struct invalidation_request req;
3207 
3208 	INIT_LIST_HEAD(&req.list);
3209 	req.cblocks = range;
3210 	atomic_set(&req.complete, 0);
3211 	req.err = 0;
3212 	init_waitqueue_head(&req.result_wait);
3213 
3214 	spin_lock(&cache->invalidation_lock);
3215 	list_add(&req.list, &cache->invalidation_requests);
3216 	spin_unlock(&cache->invalidation_lock);
3217 	wake_worker(cache);
3218 
3219 	wait_event(req.result_wait, atomic_read(&req.complete));
3220 	return req.err;
3221 }
3222 
3223 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3224 					      const char **cblock_ranges)
3225 {
3226 	int r = 0;
3227 	unsigned i;
3228 	struct cblock_range range;
3229 
3230 	if (!passthrough_mode(&cache->features)) {
3231 		DMERR("cache has to be in passthrough mode for invalidation");
3232 		return -EPERM;
3233 	}
3234 
3235 	for (i = 0; i < count; i++) {
3236 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3237 		if (r)
3238 			break;
3239 
3240 		r = validate_cblock_range(cache, &range);
3241 		if (r)
3242 			break;
3243 
3244 		/*
3245 		 * Pass begin and end origin blocks to the worker and wake it.
3246 		 */
3247 		r = request_invalidation(cache, &range);
3248 		if (r)
3249 			break;
3250 	}
3251 
3252 	return r;
3253 }
3254 
3255 /*
3256  * Supports
3257  *	"<key> <value>"
3258  * and
3259  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3260  *
3261  * The key migration_threshold is supported by the cache target core.
3262  */
3263 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3264 {
3265 	struct cache *cache = ti->private;
3266 
3267 	if (!argc)
3268 		return -EINVAL;
3269 
3270 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3271 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3272 
3273 	if (argc != 2)
3274 		return -EINVAL;
3275 
3276 	return set_config_value(cache, argv[0], argv[1]);
3277 }
3278 
3279 static int cache_iterate_devices(struct dm_target *ti,
3280 				 iterate_devices_callout_fn fn, void *data)
3281 {
3282 	int r = 0;
3283 	struct cache *cache = ti->private;
3284 
3285 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3286 	if (!r)
3287 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3288 
3289 	return r;
3290 }
3291 
3292 /*
3293  * We assume I/O is going to the origin (which is the volume
3294  * more likely to have restrictions e.g. by being striped).
3295  * (Looking up the exact location of the data would be expensive
3296  * and could always be out of date by the time the bio is submitted.)
3297  */
3298 static int cache_bvec_merge(struct dm_target *ti,
3299 			    struct bvec_merge_data *bvm,
3300 			    struct bio_vec *biovec, int max_size)
3301 {
3302 	struct cache *cache = ti->private;
3303 	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3304 
3305 	if (!q->merge_bvec_fn)
3306 		return max_size;
3307 
3308 	bvm->bi_bdev = cache->origin_dev->bdev;
3309 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3310 }
3311 
3312 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3313 {
3314 	/*
3315 	 * FIXME: these limits may be incompatible with the cache device
3316 	 */
3317 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3318 					    cache->origin_sectors);
3319 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3320 }
3321 
3322 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3323 {
3324 	struct cache *cache = ti->private;
3325 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3326 
3327 	/*
3328 	 * If the system-determined stacked limits are compatible with the
3329 	 * cache's blocksize (io_opt is a factor) do not override them.
3330 	 */
3331 	if (io_opt_sectors < cache->sectors_per_block ||
3332 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3333 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3334 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3335 	}
3336 	set_discard_limits(cache, limits);
3337 }
3338 
3339 /*----------------------------------------------------------------*/
3340 
3341 static struct target_type cache_target = {
3342 	.name = "cache",
3343 	.version = {1, 6, 0},
3344 	.module = THIS_MODULE,
3345 	.ctr = cache_ctr,
3346 	.dtr = cache_dtr,
3347 	.map = cache_map,
3348 	.end_io = cache_end_io,
3349 	.postsuspend = cache_postsuspend,
3350 	.preresume = cache_preresume,
3351 	.resume = cache_resume,
3352 	.status = cache_status,
3353 	.message = cache_message,
3354 	.iterate_devices = cache_iterate_devices,
3355 	.merge = cache_bvec_merge,
3356 	.io_hints = cache_io_hints,
3357 };
3358 
3359 static int __init dm_cache_init(void)
3360 {
3361 	int r;
3362 
3363 	r = dm_register_target(&cache_target);
3364 	if (r) {
3365 		DMERR("cache target registration failed: %d", r);
3366 		return r;
3367 	}
3368 
3369 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3370 	if (!migration_cache) {
3371 		dm_unregister_target(&cache_target);
3372 		return -ENOMEM;
3373 	}
3374 
3375 	return 0;
3376 }
3377 
3378 static void __exit dm_cache_exit(void)
3379 {
3380 	dm_unregister_target(&cache_target);
3381 	kmem_cache_destroy(migration_cache);
3382 }
3383 
3384 module_init(dm_cache_init);
3385 module_exit(dm_cache_exit);
3386 
3387 MODULE_DESCRIPTION(DM_NAME " cache target");
3388 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3389 MODULE_LICENSE("GPL");
3390