xref: /linux/drivers/md/dm-cache-target.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-prison-v2.h"
10 #include "dm-bio-record.h"
11 #include "dm-cache-metadata.h"
12 #include "dm-io-tracker.h"
13 #include "dm-cache-background-tracker.h"
14 
15 #include <linux/dm-io.h>
16 #include <linux/dm-kcopyd.h>
17 #include <linux/jiffies.h>
18 #include <linux/init.h>
19 #include <linux/mempool.h>
20 #include <linux/module.h>
21 #include <linux/rwsem.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 
25 #define DM_MSG_PREFIX "cache"
26 
27 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
28 	"A percentage of time allocated for copying to and/or from cache");
29 
30 /*----------------------------------------------------------------*/
31 
32 /*
33  * Glossary:
34  *
35  * oblock: index of an origin block
36  * cblock: index of a cache block
37  * promotion: movement of a block from origin to cache
38  * demotion: movement of a block from cache to origin
39  * migration: movement of a block between the origin and cache device,
40  *	      either direction
41  */
42 
43 /*----------------------------------------------------------------*/
44 
45 /*
46  * Represents a chunk of future work.  'input' allows continuations to pass
47  * values between themselves, typically error values.
48  */
49 struct continuation {
50 	struct work_struct ws;
51 	blk_status_t input;
52 };
53 
54 static inline void init_continuation(struct continuation *k,
55 				     void (*fn)(struct work_struct *))
56 {
57 	INIT_WORK(&k->ws, fn);
58 	k->input = 0;
59 }
60 
61 static inline void queue_continuation(struct workqueue_struct *wq,
62 				      struct continuation *k)
63 {
64 	queue_work(wq, &k->ws);
65 }
66 
67 /*----------------------------------------------------------------*/
68 
69 /*
70  * The batcher collects together pieces of work that need a particular
71  * operation to occur before they can proceed (typically a commit).
72  */
73 struct batcher {
74 	/*
75 	 * The operation that everyone is waiting for.
76 	 */
77 	blk_status_t (*commit_op)(void *context);
78 	void *commit_context;
79 
80 	/*
81 	 * This is how bios should be issued once the commit op is complete
82 	 * (accounted_request).
83 	 */
84 	void (*issue_op)(struct bio *bio, void *context);
85 	void *issue_context;
86 
87 	/*
88 	 * Queued work gets put on here after commit.
89 	 */
90 	struct workqueue_struct *wq;
91 
92 	spinlock_t lock;
93 	struct list_head work_items;
94 	struct bio_list bios;
95 	struct work_struct commit_work;
96 
97 	bool commit_scheduled;
98 };
99 
100 static void __commit(struct work_struct *_ws)
101 {
102 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
103 	blk_status_t r;
104 	struct list_head work_items;
105 	struct work_struct *ws, *tmp;
106 	struct continuation *k;
107 	struct bio *bio;
108 	struct bio_list bios;
109 
110 	INIT_LIST_HEAD(&work_items);
111 	bio_list_init(&bios);
112 
113 	/*
114 	 * We have to grab these before the commit_op to avoid a race
115 	 * condition.
116 	 */
117 	spin_lock_irq(&b->lock);
118 	list_splice_init(&b->work_items, &work_items);
119 	bio_list_merge_init(&bios, &b->bios);
120 	b->commit_scheduled = false;
121 	spin_unlock_irq(&b->lock);
122 
123 	r = b->commit_op(b->commit_context);
124 
125 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
126 		k = container_of(ws, struct continuation, ws);
127 		k->input = r;
128 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
129 		queue_work(b->wq, ws);
130 	}
131 
132 	while ((bio = bio_list_pop(&bios))) {
133 		if (r) {
134 			bio->bi_status = r;
135 			bio_endio(bio);
136 		} else
137 			b->issue_op(bio, b->issue_context);
138 	}
139 }
140 
141 static void batcher_init(struct batcher *b,
142 			 blk_status_t (*commit_op)(void *),
143 			 void *commit_context,
144 			 void (*issue_op)(struct bio *bio, void *),
145 			 void *issue_context,
146 			 struct workqueue_struct *wq)
147 {
148 	b->commit_op = commit_op;
149 	b->commit_context = commit_context;
150 	b->issue_op = issue_op;
151 	b->issue_context = issue_context;
152 	b->wq = wq;
153 
154 	spin_lock_init(&b->lock);
155 	INIT_LIST_HEAD(&b->work_items);
156 	bio_list_init(&b->bios);
157 	INIT_WORK(&b->commit_work, __commit);
158 	b->commit_scheduled = false;
159 }
160 
161 static void async_commit(struct batcher *b)
162 {
163 	queue_work(b->wq, &b->commit_work);
164 }
165 
166 static void continue_after_commit(struct batcher *b, struct continuation *k)
167 {
168 	bool commit_scheduled;
169 
170 	spin_lock_irq(&b->lock);
171 	commit_scheduled = b->commit_scheduled;
172 	list_add_tail(&k->ws.entry, &b->work_items);
173 	spin_unlock_irq(&b->lock);
174 
175 	if (commit_scheduled)
176 		async_commit(b);
177 }
178 
179 /*
180  * Bios are errored if commit failed.
181  */
182 static void issue_after_commit(struct batcher *b, struct bio *bio)
183 {
184 	bool commit_scheduled;
185 
186 	spin_lock_irq(&b->lock);
187 	commit_scheduled = b->commit_scheduled;
188 	bio_list_add(&b->bios, bio);
189 	spin_unlock_irq(&b->lock);
190 
191 	if (commit_scheduled)
192 		async_commit(b);
193 }
194 
195 /*
196  * Call this if some urgent work is waiting for the commit to complete.
197  */
198 static void schedule_commit(struct batcher *b)
199 {
200 	bool immediate;
201 
202 	spin_lock_irq(&b->lock);
203 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
204 	b->commit_scheduled = true;
205 	spin_unlock_irq(&b->lock);
206 
207 	if (immediate)
208 		async_commit(b);
209 }
210 
211 /*
212  * There are a couple of places where we let a bio run, but want to do some
213  * work before calling its endio function.  We do this by temporarily
214  * changing the endio fn.
215  */
216 struct dm_hook_info {
217 	bio_end_io_t *bi_end_io;
218 };
219 
220 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
221 			bio_end_io_t *bi_end_io, void *bi_private)
222 {
223 	h->bi_end_io = bio->bi_end_io;
224 
225 	bio->bi_end_io = bi_end_io;
226 	bio->bi_private = bi_private;
227 }
228 
229 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
230 {
231 	bio->bi_end_io = h->bi_end_io;
232 }
233 
234 /*----------------------------------------------------------------*/
235 
236 #define MIGRATION_POOL_SIZE 128
237 #define COMMIT_PERIOD HZ
238 #define MIGRATION_COUNT_WINDOW 10
239 
240 /*
241  * The block size of the device holding cache data must be
242  * between 32KB and 1GB.
243  */
244 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
245 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
246 
247 enum cache_metadata_mode {
248 	CM_WRITE,		/* metadata may be changed */
249 	CM_READ_ONLY,		/* metadata may not be changed */
250 	CM_FAIL
251 };
252 
253 enum cache_io_mode {
254 	/*
255 	 * Data is written to cached blocks only.  These blocks are marked
256 	 * dirty.  If you lose the cache device you will lose data.
257 	 * Potential performance increase for both reads and writes.
258 	 */
259 	CM_IO_WRITEBACK,
260 
261 	/*
262 	 * Data is written to both cache and origin.  Blocks are never
263 	 * dirty.  Potential performance benfit for reads only.
264 	 */
265 	CM_IO_WRITETHROUGH,
266 
267 	/*
268 	 * A degraded mode useful for various cache coherency situations
269 	 * (eg, rolling back snapshots).  Reads and writes always go to the
270 	 * origin.  If a write goes to a cached oblock, then the cache
271 	 * block is invalidated.
272 	 */
273 	CM_IO_PASSTHROUGH
274 };
275 
276 struct cache_features {
277 	enum cache_metadata_mode mode;
278 	enum cache_io_mode io_mode;
279 	unsigned int metadata_version;
280 	bool discard_passdown:1;
281 };
282 
283 struct cache_stats {
284 	atomic_t read_hit;
285 	atomic_t read_miss;
286 	atomic_t write_hit;
287 	atomic_t write_miss;
288 	atomic_t demotion;
289 	atomic_t promotion;
290 	atomic_t writeback;
291 	atomic_t copies_avoided;
292 	atomic_t cache_cell_clash;
293 	atomic_t commit_count;
294 	atomic_t discard_count;
295 };
296 
297 struct cache {
298 	struct dm_target *ti;
299 	spinlock_t lock;
300 
301 	/*
302 	 * Fields for converting from sectors to blocks.
303 	 */
304 	int sectors_per_block_shift;
305 	sector_t sectors_per_block;
306 
307 	struct dm_cache_metadata *cmd;
308 
309 	/*
310 	 * Metadata is written to this device.
311 	 */
312 	struct dm_dev *metadata_dev;
313 
314 	/*
315 	 * The slower of the two data devices.  Typically a spindle.
316 	 */
317 	struct dm_dev *origin_dev;
318 
319 	/*
320 	 * The faster of the two data devices.  Typically an SSD.
321 	 */
322 	struct dm_dev *cache_dev;
323 
324 	/*
325 	 * Size of the origin device in _complete_ blocks and native sectors.
326 	 */
327 	dm_oblock_t origin_blocks;
328 	sector_t origin_sectors;
329 
330 	/*
331 	 * Size of the cache device in blocks.
332 	 */
333 	dm_cblock_t cache_size;
334 
335 	/*
336 	 * Invalidation fields.
337 	 */
338 	spinlock_t invalidation_lock;
339 	struct list_head invalidation_requests;
340 
341 	sector_t migration_threshold;
342 	wait_queue_head_t migration_wait;
343 	atomic_t nr_allocated_migrations;
344 
345 	/*
346 	 * The number of in flight migrations that are performing
347 	 * background io. eg, promotion, writeback.
348 	 */
349 	atomic_t nr_io_migrations;
350 
351 	struct bio_list deferred_bios;
352 
353 	struct rw_semaphore quiesce_lock;
354 
355 	/*
356 	 * origin_blocks entries, discarded if set.
357 	 */
358 	dm_dblock_t discard_nr_blocks;
359 	unsigned long *discard_bitset;
360 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
361 
362 	/*
363 	 * Rather than reconstructing the table line for the status we just
364 	 * save it and regurgitate.
365 	 */
366 	unsigned int nr_ctr_args;
367 	const char **ctr_args;
368 
369 	struct dm_kcopyd_client *copier;
370 	struct work_struct deferred_bio_worker;
371 	struct work_struct migration_worker;
372 	struct workqueue_struct *wq;
373 	struct delayed_work waker;
374 	struct dm_bio_prison_v2 *prison;
375 
376 	/*
377 	 * cache_size entries, dirty if set
378 	 */
379 	unsigned long *dirty_bitset;
380 	atomic_t nr_dirty;
381 
382 	unsigned int policy_nr_args;
383 	struct dm_cache_policy *policy;
384 
385 	/*
386 	 * Cache features such as write-through.
387 	 */
388 	struct cache_features features;
389 
390 	struct cache_stats stats;
391 
392 	bool need_tick_bio:1;
393 	bool sized:1;
394 	bool invalidate:1;
395 	bool commit_requested:1;
396 	bool loaded_mappings:1;
397 	bool loaded_discards:1;
398 
399 	struct rw_semaphore background_work_lock;
400 
401 	struct batcher committer;
402 	struct work_struct commit_ws;
403 
404 	struct dm_io_tracker tracker;
405 
406 	mempool_t migration_pool;
407 
408 	struct bio_set bs;
409 };
410 
411 struct per_bio_data {
412 	bool tick:1;
413 	unsigned int req_nr:2;
414 	struct dm_bio_prison_cell_v2 *cell;
415 	struct dm_hook_info hook_info;
416 	sector_t len;
417 };
418 
419 struct dm_cache_migration {
420 	struct continuation k;
421 	struct cache *cache;
422 
423 	struct policy_work *op;
424 	struct bio *overwrite_bio;
425 	struct dm_bio_prison_cell_v2 *cell;
426 
427 	dm_cblock_t invalidate_cblock;
428 	dm_oblock_t invalidate_oblock;
429 };
430 
431 /*----------------------------------------------------------------*/
432 
433 static bool writethrough_mode(struct cache *cache)
434 {
435 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
436 }
437 
438 static bool writeback_mode(struct cache *cache)
439 {
440 	return cache->features.io_mode == CM_IO_WRITEBACK;
441 }
442 
443 static inline bool passthrough_mode(struct cache *cache)
444 {
445 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
446 }
447 
448 /*----------------------------------------------------------------*/
449 
450 static void wake_deferred_bio_worker(struct cache *cache)
451 {
452 	queue_work(cache->wq, &cache->deferred_bio_worker);
453 }
454 
455 static void wake_migration_worker(struct cache *cache)
456 {
457 	if (passthrough_mode(cache))
458 		return;
459 
460 	queue_work(cache->wq, &cache->migration_worker);
461 }
462 
463 /*----------------------------------------------------------------*/
464 
465 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
466 {
467 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
468 }
469 
470 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
471 {
472 	dm_bio_prison_free_cell_v2(cache->prison, cell);
473 }
474 
475 static struct dm_cache_migration *alloc_migration(struct cache *cache)
476 {
477 	struct dm_cache_migration *mg;
478 
479 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
480 
481 	memset(mg, 0, sizeof(*mg));
482 
483 	mg->cache = cache;
484 	atomic_inc(&cache->nr_allocated_migrations);
485 
486 	return mg;
487 }
488 
489 static void free_migration(struct dm_cache_migration *mg)
490 {
491 	struct cache *cache = mg->cache;
492 
493 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
494 		wake_up(&cache->migration_wait);
495 
496 	mempool_free(mg, &cache->migration_pool);
497 }
498 
499 /*----------------------------------------------------------------*/
500 
501 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
502 {
503 	return to_oblock(from_oblock(b) + 1ull);
504 }
505 
506 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
507 {
508 	key->virtual = 0;
509 	key->dev = 0;
510 	key->block_begin = from_oblock(begin);
511 	key->block_end = from_oblock(end);
512 }
513 
514 /*
515  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
516  * level 1 which prevents *both* READs and WRITEs.
517  */
518 #define WRITE_LOCK_LEVEL 0
519 #define READ_WRITE_LOCK_LEVEL 1
520 
521 static unsigned int lock_level(struct bio *bio)
522 {
523 	return bio_data_dir(bio) == WRITE ?
524 		WRITE_LOCK_LEVEL :
525 		READ_WRITE_LOCK_LEVEL;
526 }
527 
528 /*
529  *--------------------------------------------------------------
530  * Per bio data
531  *--------------------------------------------------------------
532  */
533 
534 static struct per_bio_data *get_per_bio_data(struct bio *bio)
535 {
536 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
537 
538 	BUG_ON(!pb);
539 	return pb;
540 }
541 
542 static struct per_bio_data *init_per_bio_data(struct bio *bio)
543 {
544 	struct per_bio_data *pb = get_per_bio_data(bio);
545 
546 	pb->tick = false;
547 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
548 	pb->cell = NULL;
549 	pb->len = 0;
550 
551 	return pb;
552 }
553 
554 /*----------------------------------------------------------------*/
555 
556 static void defer_bio(struct cache *cache, struct bio *bio)
557 {
558 	spin_lock_irq(&cache->lock);
559 	bio_list_add(&cache->deferred_bios, bio);
560 	spin_unlock_irq(&cache->lock);
561 
562 	wake_deferred_bio_worker(cache);
563 }
564 
565 static void defer_bios(struct cache *cache, struct bio_list *bios)
566 {
567 	spin_lock_irq(&cache->lock);
568 	bio_list_merge_init(&cache->deferred_bios, bios);
569 	spin_unlock_irq(&cache->lock);
570 
571 	wake_deferred_bio_worker(cache);
572 }
573 
574 /*----------------------------------------------------------------*/
575 
576 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
577 {
578 	bool r;
579 	struct per_bio_data *pb;
580 	struct dm_cell_key_v2 key;
581 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
582 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
583 
584 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
585 
586 	build_key(oblock, end, &key);
587 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
588 	if (!r) {
589 		/*
590 		 * Failed to get the lock.
591 		 */
592 		free_prison_cell(cache, cell_prealloc);
593 		return r;
594 	}
595 
596 	if (cell != cell_prealloc)
597 		free_prison_cell(cache, cell_prealloc);
598 
599 	pb = get_per_bio_data(bio);
600 	pb->cell = cell;
601 
602 	return r;
603 }
604 
605 /*----------------------------------------------------------------*/
606 
607 static bool is_dirty(struct cache *cache, dm_cblock_t b)
608 {
609 	return test_bit(from_cblock(b), cache->dirty_bitset);
610 }
611 
612 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
613 {
614 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
615 		atomic_inc(&cache->nr_dirty);
616 		policy_set_dirty(cache->policy, cblock);
617 	}
618 }
619 
620 /*
621  * These two are called when setting after migrations to force the policy
622  * and dirty bitset to be in sync.
623  */
624 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
625 {
626 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
627 		atomic_inc(&cache->nr_dirty);
628 	policy_set_dirty(cache->policy, cblock);
629 }
630 
631 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
632 {
633 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
634 		if (atomic_dec_return(&cache->nr_dirty) == 0)
635 			dm_table_event(cache->ti->table);
636 	}
637 
638 	policy_clear_dirty(cache->policy, cblock);
639 }
640 
641 /*----------------------------------------------------------------*/
642 
643 static bool block_size_is_power_of_two(struct cache *cache)
644 {
645 	return cache->sectors_per_block_shift >= 0;
646 }
647 
648 static dm_block_t block_div(dm_block_t b, uint32_t n)
649 {
650 	do_div(b, n);
651 
652 	return b;
653 }
654 
655 static dm_block_t oblocks_per_dblock(struct cache *cache)
656 {
657 	dm_block_t oblocks = cache->discard_block_size;
658 
659 	if (block_size_is_power_of_two(cache))
660 		oblocks >>= cache->sectors_per_block_shift;
661 	else
662 		oblocks = block_div(oblocks, cache->sectors_per_block);
663 
664 	return oblocks;
665 }
666 
667 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
668 {
669 	return to_dblock(block_div(from_oblock(oblock),
670 				   oblocks_per_dblock(cache)));
671 }
672 
673 static void set_discard(struct cache *cache, dm_dblock_t b)
674 {
675 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
676 	atomic_inc(&cache->stats.discard_count);
677 
678 	spin_lock_irq(&cache->lock);
679 	set_bit(from_dblock(b), cache->discard_bitset);
680 	spin_unlock_irq(&cache->lock);
681 }
682 
683 static void clear_discard(struct cache *cache, dm_dblock_t b)
684 {
685 	spin_lock_irq(&cache->lock);
686 	clear_bit(from_dblock(b), cache->discard_bitset);
687 	spin_unlock_irq(&cache->lock);
688 }
689 
690 static bool is_discarded(struct cache *cache, dm_dblock_t b)
691 {
692 	int r;
693 
694 	spin_lock_irq(&cache->lock);
695 	r = test_bit(from_dblock(b), cache->discard_bitset);
696 	spin_unlock_irq(&cache->lock);
697 
698 	return r;
699 }
700 
701 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
702 {
703 	int r;
704 
705 	spin_lock_irq(&cache->lock);
706 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
707 		     cache->discard_bitset);
708 	spin_unlock_irq(&cache->lock);
709 
710 	return r;
711 }
712 
713 /*
714  * -------------------------------------------------------------
715  * Remapping
716  *--------------------------------------------------------------
717  */
718 static void remap_to_origin(struct cache *cache, struct bio *bio)
719 {
720 	bio_set_dev(bio, cache->origin_dev->bdev);
721 }
722 
723 static void remap_to_cache(struct cache *cache, struct bio *bio,
724 			   dm_cblock_t cblock)
725 {
726 	sector_t bi_sector = bio->bi_iter.bi_sector;
727 	sector_t block = from_cblock(cblock);
728 
729 	bio_set_dev(bio, cache->cache_dev->bdev);
730 	if (!block_size_is_power_of_two(cache))
731 		bio->bi_iter.bi_sector =
732 			(block * cache->sectors_per_block) +
733 			sector_div(bi_sector, cache->sectors_per_block);
734 	else
735 		bio->bi_iter.bi_sector =
736 			(block << cache->sectors_per_block_shift) |
737 			(bi_sector & (cache->sectors_per_block - 1));
738 }
739 
740 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
741 {
742 	struct per_bio_data *pb;
743 
744 	spin_lock_irq(&cache->lock);
745 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
746 	    bio_op(bio) != REQ_OP_DISCARD) {
747 		pb = get_per_bio_data(bio);
748 		pb->tick = true;
749 		cache->need_tick_bio = false;
750 	}
751 	spin_unlock_irq(&cache->lock);
752 }
753 
754 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
755 					  dm_oblock_t oblock)
756 {
757 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
758 	check_if_tick_bio_needed(cache, bio);
759 	remap_to_origin(cache, bio);
760 	if (bio_data_dir(bio) == WRITE)
761 		clear_discard(cache, oblock_to_dblock(cache, oblock));
762 }
763 
764 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
765 				 dm_oblock_t oblock, dm_cblock_t cblock)
766 {
767 	check_if_tick_bio_needed(cache, bio);
768 	remap_to_cache(cache, bio, cblock);
769 	if (bio_data_dir(bio) == WRITE) {
770 		set_dirty(cache, cblock);
771 		clear_discard(cache, oblock_to_dblock(cache, oblock));
772 	}
773 }
774 
775 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
776 {
777 	sector_t block_nr = bio->bi_iter.bi_sector;
778 
779 	if (!block_size_is_power_of_two(cache))
780 		(void) sector_div(block_nr, cache->sectors_per_block);
781 	else
782 		block_nr >>= cache->sectors_per_block_shift;
783 
784 	return to_oblock(block_nr);
785 }
786 
787 static bool accountable_bio(struct cache *cache, struct bio *bio)
788 {
789 	return bio_op(bio) != REQ_OP_DISCARD;
790 }
791 
792 static void accounted_begin(struct cache *cache, struct bio *bio)
793 {
794 	struct per_bio_data *pb;
795 
796 	if (accountable_bio(cache, bio)) {
797 		pb = get_per_bio_data(bio);
798 		pb->len = bio_sectors(bio);
799 		dm_iot_io_begin(&cache->tracker, pb->len);
800 	}
801 }
802 
803 static void accounted_complete(struct cache *cache, struct bio *bio)
804 {
805 	struct per_bio_data *pb = get_per_bio_data(bio);
806 
807 	dm_iot_io_end(&cache->tracker, pb->len);
808 }
809 
810 static void accounted_request(struct cache *cache, struct bio *bio)
811 {
812 	accounted_begin(cache, bio);
813 	dm_submit_bio_remap(bio, NULL);
814 }
815 
816 static void issue_op(struct bio *bio, void *context)
817 {
818 	struct cache *cache = context;
819 
820 	accounted_request(cache, bio);
821 }
822 
823 /*
824  * When running in writethrough mode we need to send writes to clean blocks
825  * to both the cache and origin devices.  Clone the bio and send them in parallel.
826  */
827 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
828 				      dm_oblock_t oblock, dm_cblock_t cblock)
829 {
830 	struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
831 						 GFP_NOIO, &cache->bs);
832 
833 	BUG_ON(!origin_bio);
834 
835 	bio_chain(origin_bio, bio);
836 
837 	if (bio_data_dir(origin_bio) == WRITE)
838 		clear_discard(cache, oblock_to_dblock(cache, oblock));
839 	submit_bio(origin_bio);
840 
841 	remap_to_cache(cache, bio, cblock);
842 }
843 
844 /*
845  *--------------------------------------------------------------
846  * Failure modes
847  *--------------------------------------------------------------
848  */
849 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
850 {
851 	return cache->features.mode;
852 }
853 
854 static const char *cache_device_name(struct cache *cache)
855 {
856 	return dm_table_device_name(cache->ti->table);
857 }
858 
859 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
860 {
861 	static const char *descs[] = {
862 		"write",
863 		"read-only",
864 		"fail"
865 	};
866 
867 	dm_table_event(cache->ti->table);
868 	DMINFO("%s: switching cache to %s mode",
869 	       cache_device_name(cache), descs[(int)mode]);
870 }
871 
872 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
873 {
874 	bool needs_check;
875 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
876 
877 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
878 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
879 		      cache_device_name(cache));
880 		new_mode = CM_FAIL;
881 	}
882 
883 	if (new_mode == CM_WRITE && needs_check) {
884 		DMERR("%s: unable to switch cache to write mode until repaired.",
885 		      cache_device_name(cache));
886 		if (old_mode != new_mode)
887 			new_mode = old_mode;
888 		else
889 			new_mode = CM_READ_ONLY;
890 	}
891 
892 	/* Never move out of fail mode */
893 	if (old_mode == CM_FAIL)
894 		new_mode = CM_FAIL;
895 
896 	switch (new_mode) {
897 	case CM_FAIL:
898 	case CM_READ_ONLY:
899 		dm_cache_metadata_set_read_only(cache->cmd);
900 		break;
901 
902 	case CM_WRITE:
903 		dm_cache_metadata_set_read_write(cache->cmd);
904 		break;
905 	}
906 
907 	cache->features.mode = new_mode;
908 
909 	if (new_mode != old_mode)
910 		notify_mode_switch(cache, new_mode);
911 }
912 
913 static void abort_transaction(struct cache *cache)
914 {
915 	const char *dev_name = cache_device_name(cache);
916 
917 	if (get_cache_mode(cache) >= CM_READ_ONLY)
918 		return;
919 
920 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
921 	if (dm_cache_metadata_abort(cache->cmd)) {
922 		DMERR("%s: failed to abort metadata transaction", dev_name);
923 		set_cache_mode(cache, CM_FAIL);
924 	}
925 
926 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
927 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
928 		set_cache_mode(cache, CM_FAIL);
929 	}
930 }
931 
932 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
933 {
934 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
935 		    cache_device_name(cache), op, r);
936 	abort_transaction(cache);
937 	set_cache_mode(cache, CM_READ_ONLY);
938 }
939 
940 /*----------------------------------------------------------------*/
941 
942 static void load_stats(struct cache *cache)
943 {
944 	struct dm_cache_statistics stats;
945 
946 	dm_cache_metadata_get_stats(cache->cmd, &stats);
947 	atomic_set(&cache->stats.read_hit, stats.read_hits);
948 	atomic_set(&cache->stats.read_miss, stats.read_misses);
949 	atomic_set(&cache->stats.write_hit, stats.write_hits);
950 	atomic_set(&cache->stats.write_miss, stats.write_misses);
951 }
952 
953 static void save_stats(struct cache *cache)
954 {
955 	struct dm_cache_statistics stats;
956 
957 	if (get_cache_mode(cache) >= CM_READ_ONLY)
958 		return;
959 
960 	stats.read_hits = atomic_read(&cache->stats.read_hit);
961 	stats.read_misses = atomic_read(&cache->stats.read_miss);
962 	stats.write_hits = atomic_read(&cache->stats.write_hit);
963 	stats.write_misses = atomic_read(&cache->stats.write_miss);
964 
965 	dm_cache_metadata_set_stats(cache->cmd, &stats);
966 }
967 
968 static void update_stats(struct cache_stats *stats, enum policy_operation op)
969 {
970 	switch (op) {
971 	case POLICY_PROMOTE:
972 		atomic_inc(&stats->promotion);
973 		break;
974 
975 	case POLICY_DEMOTE:
976 		atomic_inc(&stats->demotion);
977 		break;
978 
979 	case POLICY_WRITEBACK:
980 		atomic_inc(&stats->writeback);
981 		break;
982 	}
983 }
984 
985 /*
986  *---------------------------------------------------------------------
987  * Migration processing
988  *
989  * Migration covers moving data from the origin device to the cache, or
990  * vice versa.
991  *---------------------------------------------------------------------
992  */
993 static void inc_io_migrations(struct cache *cache)
994 {
995 	atomic_inc(&cache->nr_io_migrations);
996 }
997 
998 static void dec_io_migrations(struct cache *cache)
999 {
1000 	atomic_dec(&cache->nr_io_migrations);
1001 }
1002 
1003 static bool discard_or_flush(struct bio *bio)
1004 {
1005 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1006 }
1007 
1008 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1009 				     dm_dblock_t *b, dm_dblock_t *e)
1010 {
1011 	sector_t sb = bio->bi_iter.bi_sector;
1012 	sector_t se = bio_end_sector(bio);
1013 
1014 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1015 
1016 	if (se - sb < cache->discard_block_size)
1017 		*e = *b;
1018 	else
1019 		*e = to_dblock(block_div(se, cache->discard_block_size));
1020 }
1021 
1022 /*----------------------------------------------------------------*/
1023 
1024 static void prevent_background_work(struct cache *cache)
1025 {
1026 	lockdep_off();
1027 	down_write(&cache->background_work_lock);
1028 	lockdep_on();
1029 }
1030 
1031 static void allow_background_work(struct cache *cache)
1032 {
1033 	lockdep_off();
1034 	up_write(&cache->background_work_lock);
1035 	lockdep_on();
1036 }
1037 
1038 static bool background_work_begin(struct cache *cache)
1039 {
1040 	bool r;
1041 
1042 	lockdep_off();
1043 	r = down_read_trylock(&cache->background_work_lock);
1044 	lockdep_on();
1045 
1046 	return r;
1047 }
1048 
1049 static void background_work_end(struct cache *cache)
1050 {
1051 	lockdep_off();
1052 	up_read(&cache->background_work_lock);
1053 	lockdep_on();
1054 }
1055 
1056 /*----------------------------------------------------------------*/
1057 
1058 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1059 {
1060 	return (bio_data_dir(bio) == WRITE) &&
1061 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1062 }
1063 
1064 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1065 {
1066 	return writeback_mode(cache) &&
1067 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1068 }
1069 
1070 static void quiesce(struct dm_cache_migration *mg,
1071 		    void (*continuation)(struct work_struct *))
1072 {
1073 	init_continuation(&mg->k, continuation);
1074 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1075 }
1076 
1077 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1078 {
1079 	struct continuation *k = container_of(ws, struct continuation, ws);
1080 
1081 	return container_of(k, struct dm_cache_migration, k);
1082 }
1083 
1084 static void copy_complete(int read_err, unsigned long write_err, void *context)
1085 {
1086 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1087 
1088 	if (read_err || write_err)
1089 		mg->k.input = BLK_STS_IOERR;
1090 
1091 	queue_continuation(mg->cache->wq, &mg->k);
1092 }
1093 
1094 static void copy(struct dm_cache_migration *mg, bool promote)
1095 {
1096 	struct dm_io_region o_region, c_region;
1097 	struct cache *cache = mg->cache;
1098 
1099 	o_region.bdev = cache->origin_dev->bdev;
1100 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1101 	o_region.count = cache->sectors_per_block;
1102 
1103 	c_region.bdev = cache->cache_dev->bdev;
1104 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1105 	c_region.count = cache->sectors_per_block;
1106 
1107 	if (promote)
1108 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1109 	else
1110 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1111 }
1112 
1113 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1114 {
1115 	struct per_bio_data *pb = get_per_bio_data(bio);
1116 
1117 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1118 		free_prison_cell(cache, pb->cell);
1119 	pb->cell = NULL;
1120 }
1121 
1122 static void overwrite_endio(struct bio *bio)
1123 {
1124 	struct dm_cache_migration *mg = bio->bi_private;
1125 	struct cache *cache = mg->cache;
1126 	struct per_bio_data *pb = get_per_bio_data(bio);
1127 
1128 	dm_unhook_bio(&pb->hook_info, bio);
1129 
1130 	if (bio->bi_status)
1131 		mg->k.input = bio->bi_status;
1132 
1133 	queue_continuation(cache->wq, &mg->k);
1134 }
1135 
1136 static void overwrite(struct dm_cache_migration *mg,
1137 		      void (*continuation)(struct work_struct *))
1138 {
1139 	struct bio *bio = mg->overwrite_bio;
1140 	struct per_bio_data *pb = get_per_bio_data(bio);
1141 
1142 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1143 
1144 	/*
1145 	 * The overwrite bio is part of the copy operation, as such it does
1146 	 * not set/clear discard or dirty flags.
1147 	 */
1148 	if (mg->op->op == POLICY_PROMOTE)
1149 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1150 	else
1151 		remap_to_origin(mg->cache, bio);
1152 
1153 	init_continuation(&mg->k, continuation);
1154 	accounted_request(mg->cache, bio);
1155 }
1156 
1157 /*
1158  * Migration steps:
1159  *
1160  * 1) exclusive lock preventing WRITEs
1161  * 2) quiesce
1162  * 3) copy or issue overwrite bio
1163  * 4) upgrade to exclusive lock preventing READs and WRITEs
1164  * 5) quiesce
1165  * 6) update metadata and commit
1166  * 7) unlock
1167  */
1168 static void mg_complete(struct dm_cache_migration *mg, bool success)
1169 {
1170 	struct bio_list bios;
1171 	struct cache *cache = mg->cache;
1172 	struct policy_work *op = mg->op;
1173 	dm_cblock_t cblock = op->cblock;
1174 
1175 	if (success)
1176 		update_stats(&cache->stats, op->op);
1177 
1178 	switch (op->op) {
1179 	case POLICY_PROMOTE:
1180 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1181 		policy_complete_background_work(cache->policy, op, success);
1182 
1183 		if (mg->overwrite_bio) {
1184 			if (success)
1185 				force_set_dirty(cache, cblock);
1186 			else if (mg->k.input)
1187 				mg->overwrite_bio->bi_status = mg->k.input;
1188 			else
1189 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1190 			bio_endio(mg->overwrite_bio);
1191 		} else {
1192 			if (success)
1193 				force_clear_dirty(cache, cblock);
1194 			dec_io_migrations(cache);
1195 		}
1196 		break;
1197 
1198 	case POLICY_DEMOTE:
1199 		/*
1200 		 * We clear dirty here to update the nr_dirty counter.
1201 		 */
1202 		if (success)
1203 			force_clear_dirty(cache, cblock);
1204 		policy_complete_background_work(cache->policy, op, success);
1205 		dec_io_migrations(cache);
1206 		break;
1207 
1208 	case POLICY_WRITEBACK:
1209 		if (success)
1210 			force_clear_dirty(cache, cblock);
1211 		policy_complete_background_work(cache->policy, op, success);
1212 		dec_io_migrations(cache);
1213 		break;
1214 	}
1215 
1216 	bio_list_init(&bios);
1217 	if (mg->cell) {
1218 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1219 			free_prison_cell(cache, mg->cell);
1220 	}
1221 
1222 	free_migration(mg);
1223 	defer_bios(cache, &bios);
1224 	wake_migration_worker(cache);
1225 
1226 	background_work_end(cache);
1227 }
1228 
1229 static void mg_success(struct work_struct *ws)
1230 {
1231 	struct dm_cache_migration *mg = ws_to_mg(ws);
1232 
1233 	mg_complete(mg, mg->k.input == 0);
1234 }
1235 
1236 static void mg_update_metadata(struct work_struct *ws)
1237 {
1238 	int r;
1239 	struct dm_cache_migration *mg = ws_to_mg(ws);
1240 	struct cache *cache = mg->cache;
1241 	struct policy_work *op = mg->op;
1242 
1243 	switch (op->op) {
1244 	case POLICY_PROMOTE:
1245 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1246 		if (r) {
1247 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1248 				    cache_device_name(cache));
1249 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1250 
1251 			mg_complete(mg, false);
1252 			return;
1253 		}
1254 		mg_complete(mg, true);
1255 		break;
1256 
1257 	case POLICY_DEMOTE:
1258 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1259 		if (r) {
1260 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1261 				    cache_device_name(cache));
1262 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1263 
1264 			mg_complete(mg, false);
1265 			return;
1266 		}
1267 
1268 		/*
1269 		 * It would be nice if we only had to commit when a REQ_FLUSH
1270 		 * comes through.  But there's one scenario that we have to
1271 		 * look out for:
1272 		 *
1273 		 * - vblock x in a cache block
1274 		 * - domotion occurs
1275 		 * - cache block gets reallocated and over written
1276 		 * - crash
1277 		 *
1278 		 * When we recover, because there was no commit the cache will
1279 		 * rollback to having the data for vblock x in the cache block.
1280 		 * But the cache block has since been overwritten, so it'll end
1281 		 * up pointing to data that was never in 'x' during the history
1282 		 * of the device.
1283 		 *
1284 		 * To avoid this issue we require a commit as part of the
1285 		 * demotion operation.
1286 		 */
1287 		init_continuation(&mg->k, mg_success);
1288 		continue_after_commit(&cache->committer, &mg->k);
1289 		schedule_commit(&cache->committer);
1290 		break;
1291 
1292 	case POLICY_WRITEBACK:
1293 		mg_complete(mg, true);
1294 		break;
1295 	}
1296 }
1297 
1298 static void mg_update_metadata_after_copy(struct work_struct *ws)
1299 {
1300 	struct dm_cache_migration *mg = ws_to_mg(ws);
1301 
1302 	/*
1303 	 * Did the copy succeed?
1304 	 */
1305 	if (mg->k.input)
1306 		mg_complete(mg, false);
1307 	else
1308 		mg_update_metadata(ws);
1309 }
1310 
1311 static void mg_upgrade_lock(struct work_struct *ws)
1312 {
1313 	int r;
1314 	struct dm_cache_migration *mg = ws_to_mg(ws);
1315 
1316 	/*
1317 	 * Did the copy succeed?
1318 	 */
1319 	if (mg->k.input)
1320 		mg_complete(mg, false);
1321 
1322 	else {
1323 		/*
1324 		 * Now we want the lock to prevent both reads and writes.
1325 		 */
1326 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1327 					    READ_WRITE_LOCK_LEVEL);
1328 		if (r < 0)
1329 			mg_complete(mg, false);
1330 
1331 		else if (r)
1332 			quiesce(mg, mg_update_metadata);
1333 
1334 		else
1335 			mg_update_metadata(ws);
1336 	}
1337 }
1338 
1339 static void mg_full_copy(struct work_struct *ws)
1340 {
1341 	struct dm_cache_migration *mg = ws_to_mg(ws);
1342 	struct cache *cache = mg->cache;
1343 	struct policy_work *op = mg->op;
1344 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1345 
1346 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1347 	    is_discarded_oblock(cache, op->oblock)) {
1348 		mg_upgrade_lock(ws);
1349 		return;
1350 	}
1351 
1352 	init_continuation(&mg->k, mg_upgrade_lock);
1353 	copy(mg, is_policy_promote);
1354 }
1355 
1356 static void mg_copy(struct work_struct *ws)
1357 {
1358 	struct dm_cache_migration *mg = ws_to_mg(ws);
1359 
1360 	if (mg->overwrite_bio) {
1361 		/*
1362 		 * No exclusive lock was held when we last checked if the bio
1363 		 * was optimisable.  So we have to check again in case things
1364 		 * have changed (eg, the block may no longer be discarded).
1365 		 */
1366 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1367 			/*
1368 			 * Fallback to a real full copy after doing some tidying up.
1369 			 */
1370 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1371 
1372 			BUG_ON(rb); /* An exclusive lock must _not_ be held for this block */
1373 			mg->overwrite_bio = NULL;
1374 			inc_io_migrations(mg->cache);
1375 			mg_full_copy(ws);
1376 			return;
1377 		}
1378 
1379 		/*
1380 		 * It's safe to do this here, even though it's new data
1381 		 * because all IO has been locked out of the block.
1382 		 *
1383 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1384 		 * so _not_ using mg_upgrade_lock() as continutation.
1385 		 */
1386 		overwrite(mg, mg_update_metadata_after_copy);
1387 
1388 	} else
1389 		mg_full_copy(ws);
1390 }
1391 
1392 static int mg_lock_writes(struct dm_cache_migration *mg)
1393 {
1394 	int r;
1395 	struct dm_cell_key_v2 key;
1396 	struct cache *cache = mg->cache;
1397 	struct dm_bio_prison_cell_v2 *prealloc;
1398 
1399 	prealloc = alloc_prison_cell(cache);
1400 
1401 	/*
1402 	 * Prevent writes to the block, but allow reads to continue.
1403 	 * Unless we're using an overwrite bio, in which case we lock
1404 	 * everything.
1405 	 */
1406 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1407 	r = dm_cell_lock_v2(cache->prison, &key,
1408 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1409 			    prealloc, &mg->cell);
1410 	if (r < 0) {
1411 		free_prison_cell(cache, prealloc);
1412 		mg_complete(mg, false);
1413 		return r;
1414 	}
1415 
1416 	if (mg->cell != prealloc)
1417 		free_prison_cell(cache, prealloc);
1418 
1419 	if (r == 0)
1420 		mg_copy(&mg->k.ws);
1421 	else
1422 		quiesce(mg, mg_copy);
1423 
1424 	return 0;
1425 }
1426 
1427 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1428 {
1429 	struct dm_cache_migration *mg;
1430 
1431 	if (!background_work_begin(cache)) {
1432 		policy_complete_background_work(cache->policy, op, false);
1433 		return -EPERM;
1434 	}
1435 
1436 	mg = alloc_migration(cache);
1437 
1438 	mg->op = op;
1439 	mg->overwrite_bio = bio;
1440 
1441 	if (!bio)
1442 		inc_io_migrations(cache);
1443 
1444 	return mg_lock_writes(mg);
1445 }
1446 
1447 /*
1448  *--------------------------------------------------------------
1449  * invalidation processing
1450  *--------------------------------------------------------------
1451  */
1452 
1453 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1454 {
1455 	struct bio_list bios;
1456 	struct cache *cache = mg->cache;
1457 
1458 	bio_list_init(&bios);
1459 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1460 		free_prison_cell(cache, mg->cell);
1461 
1462 	if (!success && mg->overwrite_bio)
1463 		bio_io_error(mg->overwrite_bio);
1464 
1465 	free_migration(mg);
1466 	defer_bios(cache, &bios);
1467 
1468 	background_work_end(cache);
1469 }
1470 
1471 static void invalidate_completed(struct work_struct *ws)
1472 {
1473 	struct dm_cache_migration *mg = ws_to_mg(ws);
1474 
1475 	invalidate_complete(mg, !mg->k.input);
1476 }
1477 
1478 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1479 {
1480 	int r;
1481 
1482 	r = policy_invalidate_mapping(cache->policy, cblock);
1483 	if (!r) {
1484 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1485 		if (r) {
1486 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1487 				    cache_device_name(cache));
1488 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1489 		}
1490 
1491 	} else if (r == -ENODATA) {
1492 		/*
1493 		 * Harmless, already unmapped.
1494 		 */
1495 		r = 0;
1496 
1497 	} else
1498 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1499 
1500 	return r;
1501 }
1502 
1503 static void invalidate_remove(struct work_struct *ws)
1504 {
1505 	int r;
1506 	struct dm_cache_migration *mg = ws_to_mg(ws);
1507 	struct cache *cache = mg->cache;
1508 
1509 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1510 	if (r) {
1511 		invalidate_complete(mg, false);
1512 		return;
1513 	}
1514 
1515 	init_continuation(&mg->k, invalidate_completed);
1516 	continue_after_commit(&cache->committer, &mg->k);
1517 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1518 	mg->overwrite_bio = NULL;
1519 	schedule_commit(&cache->committer);
1520 }
1521 
1522 static int invalidate_lock(struct dm_cache_migration *mg)
1523 {
1524 	int r;
1525 	struct dm_cell_key_v2 key;
1526 	struct cache *cache = mg->cache;
1527 	struct dm_bio_prison_cell_v2 *prealloc;
1528 
1529 	prealloc = alloc_prison_cell(cache);
1530 
1531 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1532 	r = dm_cell_lock_v2(cache->prison, &key,
1533 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1534 	if (r < 0) {
1535 		free_prison_cell(cache, prealloc);
1536 		invalidate_complete(mg, false);
1537 		return r;
1538 	}
1539 
1540 	if (mg->cell != prealloc)
1541 		free_prison_cell(cache, prealloc);
1542 
1543 	if (r)
1544 		quiesce(mg, invalidate_remove);
1545 
1546 	else {
1547 		/*
1548 		 * We can't call invalidate_remove() directly here because we
1549 		 * might still be in request context.
1550 		 */
1551 		init_continuation(&mg->k, invalidate_remove);
1552 		queue_work(cache->wq, &mg->k.ws);
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1559 			    dm_oblock_t oblock, struct bio *bio)
1560 {
1561 	struct dm_cache_migration *mg;
1562 
1563 	if (!background_work_begin(cache))
1564 		return -EPERM;
1565 
1566 	mg = alloc_migration(cache);
1567 
1568 	mg->overwrite_bio = bio;
1569 	mg->invalidate_cblock = cblock;
1570 	mg->invalidate_oblock = oblock;
1571 
1572 	return invalidate_lock(mg);
1573 }
1574 
1575 /*
1576  *--------------------------------------------------------------
1577  * bio processing
1578  *--------------------------------------------------------------
1579  */
1580 
1581 enum busy {
1582 	IDLE,
1583 	BUSY
1584 };
1585 
1586 static enum busy spare_migration_bandwidth(struct cache *cache)
1587 {
1588 	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1589 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1590 		cache->sectors_per_block;
1591 
1592 	if (idle && current_volume <= cache->migration_threshold)
1593 		return IDLE;
1594 	else
1595 		return BUSY;
1596 }
1597 
1598 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1599 {
1600 	atomic_inc(bio_data_dir(bio) == READ ?
1601 		   &cache->stats.read_hit : &cache->stats.write_hit);
1602 }
1603 
1604 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1605 {
1606 	atomic_inc(bio_data_dir(bio) == READ ?
1607 		   &cache->stats.read_miss : &cache->stats.write_miss);
1608 }
1609 
1610 /*----------------------------------------------------------------*/
1611 
1612 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1613 		   bool *commit_needed)
1614 {
1615 	int r, data_dir;
1616 	bool rb, background_queued;
1617 	dm_cblock_t cblock;
1618 
1619 	*commit_needed = false;
1620 
1621 	rb = bio_detain_shared(cache, block, bio);
1622 	if (!rb) {
1623 		/*
1624 		 * An exclusive lock is held for this block, so we have to
1625 		 * wait.  We set the commit_needed flag so the current
1626 		 * transaction will be committed asap, allowing this lock
1627 		 * to be dropped.
1628 		 */
1629 		*commit_needed = true;
1630 		return DM_MAPIO_SUBMITTED;
1631 	}
1632 
1633 	data_dir = bio_data_dir(bio);
1634 
1635 	if (optimisable_bio(cache, bio, block)) {
1636 		struct policy_work *op = NULL;
1637 
1638 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1639 		if (unlikely(r && r != -ENOENT)) {
1640 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1641 				    cache_device_name(cache), r);
1642 			bio_io_error(bio);
1643 			return DM_MAPIO_SUBMITTED;
1644 		}
1645 
1646 		if (r == -ENOENT && op) {
1647 			bio_drop_shared_lock(cache, bio);
1648 			BUG_ON(op->op != POLICY_PROMOTE);
1649 			mg_start(cache, op, bio);
1650 			return DM_MAPIO_SUBMITTED;
1651 		}
1652 	} else {
1653 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1654 		if (unlikely(r && r != -ENOENT)) {
1655 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1656 				    cache_device_name(cache), r);
1657 			bio_io_error(bio);
1658 			return DM_MAPIO_SUBMITTED;
1659 		}
1660 
1661 		if (background_queued)
1662 			wake_migration_worker(cache);
1663 	}
1664 
1665 	if (r == -ENOENT) {
1666 		struct per_bio_data *pb = get_per_bio_data(bio);
1667 
1668 		/*
1669 		 * Miss.
1670 		 */
1671 		inc_miss_counter(cache, bio);
1672 		if (pb->req_nr == 0) {
1673 			accounted_begin(cache, bio);
1674 			remap_to_origin_clear_discard(cache, bio, block);
1675 		} else {
1676 			/*
1677 			 * This is a duplicate writethrough io that is no
1678 			 * longer needed because the block has been demoted.
1679 			 */
1680 			bio_endio(bio);
1681 			return DM_MAPIO_SUBMITTED;
1682 		}
1683 	} else {
1684 		/*
1685 		 * Hit.
1686 		 */
1687 		inc_hit_counter(cache, bio);
1688 
1689 		/*
1690 		 * Passthrough always maps to the origin, invalidating any
1691 		 * cache blocks that are written to.
1692 		 */
1693 		if (passthrough_mode(cache)) {
1694 			if (bio_data_dir(bio) == WRITE) {
1695 				bio_drop_shared_lock(cache, bio);
1696 				atomic_inc(&cache->stats.demotion);
1697 				invalidate_start(cache, cblock, block, bio);
1698 			} else
1699 				remap_to_origin_clear_discard(cache, bio, block);
1700 		} else {
1701 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1702 			    !is_dirty(cache, cblock)) {
1703 				remap_to_origin_and_cache(cache, bio, block, cblock);
1704 				accounted_begin(cache, bio);
1705 			} else
1706 				remap_to_cache_dirty(cache, bio, block, cblock);
1707 		}
1708 	}
1709 
1710 	/*
1711 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1712 	 */
1713 	if (bio->bi_opf & REQ_FUA) {
1714 		/*
1715 		 * issue_after_commit will call accounted_begin a second time.  So
1716 		 * we call accounted_complete() to avoid double accounting.
1717 		 */
1718 		accounted_complete(cache, bio);
1719 		issue_after_commit(&cache->committer, bio);
1720 		*commit_needed = true;
1721 		return DM_MAPIO_SUBMITTED;
1722 	}
1723 
1724 	return DM_MAPIO_REMAPPED;
1725 }
1726 
1727 static bool process_bio(struct cache *cache, struct bio *bio)
1728 {
1729 	bool commit_needed;
1730 
1731 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1732 		dm_submit_bio_remap(bio, NULL);
1733 
1734 	return commit_needed;
1735 }
1736 
1737 /*
1738  * A non-zero return indicates read_only or fail_io mode.
1739  */
1740 static int commit(struct cache *cache, bool clean_shutdown)
1741 {
1742 	int r;
1743 
1744 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1745 		return -EINVAL;
1746 
1747 	atomic_inc(&cache->stats.commit_count);
1748 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1749 	if (r)
1750 		metadata_operation_failed(cache, "dm_cache_commit", r);
1751 
1752 	return r;
1753 }
1754 
1755 /*
1756  * Used by the batcher.
1757  */
1758 static blk_status_t commit_op(void *context)
1759 {
1760 	struct cache *cache = context;
1761 
1762 	if (dm_cache_changed_this_transaction(cache->cmd))
1763 		return errno_to_blk_status(commit(cache, false));
1764 
1765 	return 0;
1766 }
1767 
1768 /*----------------------------------------------------------------*/
1769 
1770 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1771 {
1772 	struct per_bio_data *pb = get_per_bio_data(bio);
1773 
1774 	if (!pb->req_nr)
1775 		remap_to_origin(cache, bio);
1776 	else
1777 		remap_to_cache(cache, bio, 0);
1778 
1779 	issue_after_commit(&cache->committer, bio);
1780 	return true;
1781 }
1782 
1783 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1784 {
1785 	dm_dblock_t b, e;
1786 
1787 	/*
1788 	 * FIXME: do we need to lock the region?  Or can we just assume the
1789 	 * user wont be so foolish as to issue discard concurrently with
1790 	 * other IO?
1791 	 */
1792 	calc_discard_block_range(cache, bio, &b, &e);
1793 	while (b != e) {
1794 		set_discard(cache, b);
1795 		b = to_dblock(from_dblock(b) + 1);
1796 	}
1797 
1798 	if (cache->features.discard_passdown) {
1799 		remap_to_origin(cache, bio);
1800 		dm_submit_bio_remap(bio, NULL);
1801 	} else
1802 		bio_endio(bio);
1803 
1804 	return false;
1805 }
1806 
1807 static void process_deferred_bios(struct work_struct *ws)
1808 {
1809 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1810 
1811 	bool commit_needed = false;
1812 	struct bio_list bios;
1813 	struct bio *bio;
1814 
1815 	bio_list_init(&bios);
1816 
1817 	spin_lock_irq(&cache->lock);
1818 	bio_list_merge_init(&bios, &cache->deferred_bios);
1819 	spin_unlock_irq(&cache->lock);
1820 
1821 	while ((bio = bio_list_pop(&bios))) {
1822 		if (bio->bi_opf & REQ_PREFLUSH)
1823 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1824 
1825 		else if (bio_op(bio) == REQ_OP_DISCARD)
1826 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1827 
1828 		else
1829 			commit_needed = process_bio(cache, bio) || commit_needed;
1830 		cond_resched();
1831 	}
1832 
1833 	if (commit_needed)
1834 		schedule_commit(&cache->committer);
1835 }
1836 
1837 /*
1838  *--------------------------------------------------------------
1839  * Main worker loop
1840  *--------------------------------------------------------------
1841  */
1842 static void requeue_deferred_bios(struct cache *cache)
1843 {
1844 	struct bio *bio;
1845 	struct bio_list bios;
1846 
1847 	bio_list_init(&bios);
1848 	bio_list_merge_init(&bios, &cache->deferred_bios);
1849 
1850 	while ((bio = bio_list_pop(&bios))) {
1851 		bio->bi_status = BLK_STS_DM_REQUEUE;
1852 		bio_endio(bio);
1853 		cond_resched();
1854 	}
1855 }
1856 
1857 /*
1858  * We want to commit periodically so that not too much
1859  * unwritten metadata builds up.
1860  */
1861 static void do_waker(struct work_struct *ws)
1862 {
1863 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1864 
1865 	policy_tick(cache->policy, true);
1866 	wake_migration_worker(cache);
1867 	schedule_commit(&cache->committer);
1868 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1869 }
1870 
1871 static void check_migrations(struct work_struct *ws)
1872 {
1873 	int r;
1874 	struct policy_work *op;
1875 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1876 	enum busy b;
1877 
1878 	for (;;) {
1879 		b = spare_migration_bandwidth(cache);
1880 
1881 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1882 		if (r == -ENODATA)
1883 			break;
1884 
1885 		if (r) {
1886 			DMERR_LIMIT("%s: policy_background_work failed",
1887 				    cache_device_name(cache));
1888 			break;
1889 		}
1890 
1891 		r = mg_start(cache, op, NULL);
1892 		if (r)
1893 			break;
1894 
1895 		cond_resched();
1896 	}
1897 }
1898 
1899 /*
1900  *--------------------------------------------------------------
1901  * Target methods
1902  *--------------------------------------------------------------
1903  */
1904 
1905 /*
1906  * This function gets called on the error paths of the constructor, so we
1907  * have to cope with a partially initialised struct.
1908  */
1909 static void __destroy(struct cache *cache)
1910 {
1911 	mempool_exit(&cache->migration_pool);
1912 
1913 	if (cache->prison)
1914 		dm_bio_prison_destroy_v2(cache->prison);
1915 
1916 	if (cache->wq)
1917 		destroy_workqueue(cache->wq);
1918 
1919 	if (cache->dirty_bitset)
1920 		free_bitset(cache->dirty_bitset);
1921 
1922 	if (cache->discard_bitset)
1923 		free_bitset(cache->discard_bitset);
1924 
1925 	if (cache->copier)
1926 		dm_kcopyd_client_destroy(cache->copier);
1927 
1928 	if (cache->cmd)
1929 		dm_cache_metadata_close(cache->cmd);
1930 
1931 	if (cache->metadata_dev)
1932 		dm_put_device(cache->ti, cache->metadata_dev);
1933 
1934 	if (cache->origin_dev)
1935 		dm_put_device(cache->ti, cache->origin_dev);
1936 
1937 	if (cache->cache_dev)
1938 		dm_put_device(cache->ti, cache->cache_dev);
1939 
1940 	if (cache->policy)
1941 		dm_cache_policy_destroy(cache->policy);
1942 
1943 	bioset_exit(&cache->bs);
1944 
1945 	kfree(cache);
1946 }
1947 
1948 static void destroy(struct cache *cache)
1949 {
1950 	unsigned int i;
1951 
1952 	cancel_delayed_work_sync(&cache->waker);
1953 
1954 	for (i = 0; i < cache->nr_ctr_args ; i++)
1955 		kfree(cache->ctr_args[i]);
1956 	kfree(cache->ctr_args);
1957 
1958 	__destroy(cache);
1959 }
1960 
1961 static void cache_dtr(struct dm_target *ti)
1962 {
1963 	struct cache *cache = ti->private;
1964 
1965 	destroy(cache);
1966 }
1967 
1968 static sector_t get_dev_size(struct dm_dev *dev)
1969 {
1970 	return bdev_nr_sectors(dev->bdev);
1971 }
1972 
1973 /*----------------------------------------------------------------*/
1974 
1975 /*
1976  * Construct a cache device mapping.
1977  *
1978  * cache <metadata dev> <cache dev> <origin dev> <block size>
1979  *       <#feature args> [<feature arg>]*
1980  *       <policy> <#policy args> [<policy arg>]*
1981  *
1982  * metadata dev    : fast device holding the persistent metadata
1983  * cache dev	   : fast device holding cached data blocks
1984  * origin dev	   : slow device holding original data blocks
1985  * block size	   : cache unit size in sectors
1986  *
1987  * #feature args   : number of feature arguments passed
1988  * feature args    : writethrough.  (The default is writeback.)
1989  *
1990  * policy	   : the replacement policy to use
1991  * #policy args    : an even number of policy arguments corresponding
1992  *		     to key/value pairs passed to the policy
1993  * policy args	   : key/value pairs passed to the policy
1994  *		     E.g. 'sequential_threshold 1024'
1995  *		     See cache-policies.txt for details.
1996  *
1997  * Optional feature arguments are:
1998  *   writethrough  : write through caching that prohibits cache block
1999  *		     content from being different from origin block content.
2000  *		     Without this argument, the default behaviour is to write
2001  *		     back cache block contents later for performance reasons,
2002  *		     so they may differ from the corresponding origin blocks.
2003  */
2004 struct cache_args {
2005 	struct dm_target *ti;
2006 
2007 	struct dm_dev *metadata_dev;
2008 
2009 	struct dm_dev *cache_dev;
2010 	sector_t cache_sectors;
2011 
2012 	struct dm_dev *origin_dev;
2013 
2014 	uint32_t block_size;
2015 
2016 	const char *policy_name;
2017 	int policy_argc;
2018 	const char **policy_argv;
2019 
2020 	struct cache_features features;
2021 };
2022 
2023 static void destroy_cache_args(struct cache_args *ca)
2024 {
2025 	if (ca->metadata_dev)
2026 		dm_put_device(ca->ti, ca->metadata_dev);
2027 
2028 	if (ca->cache_dev)
2029 		dm_put_device(ca->ti, ca->cache_dev);
2030 
2031 	if (ca->origin_dev)
2032 		dm_put_device(ca->ti, ca->origin_dev);
2033 
2034 	kfree(ca);
2035 }
2036 
2037 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2038 {
2039 	if (!as->argc) {
2040 		*error = "Insufficient args";
2041 		return false;
2042 	}
2043 
2044 	return true;
2045 }
2046 
2047 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2048 			      char **error)
2049 {
2050 	int r;
2051 	sector_t metadata_dev_size;
2052 
2053 	if (!at_least_one_arg(as, error))
2054 		return -EINVAL;
2055 
2056 	r = dm_get_device(ca->ti, dm_shift_arg(as),
2057 			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2058 	if (r) {
2059 		*error = "Error opening metadata device";
2060 		return r;
2061 	}
2062 
2063 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2064 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2065 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2066 		       ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2067 
2068 	return 0;
2069 }
2070 
2071 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2072 			   char **error)
2073 {
2074 	int r;
2075 
2076 	if (!at_least_one_arg(as, error))
2077 		return -EINVAL;
2078 
2079 	r = dm_get_device(ca->ti, dm_shift_arg(as),
2080 			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2081 	if (r) {
2082 		*error = "Error opening cache device";
2083 		return r;
2084 	}
2085 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2086 
2087 	return 0;
2088 }
2089 
2090 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2091 			    char **error)
2092 {
2093 	sector_t origin_sectors;
2094 	int r;
2095 
2096 	if (!at_least_one_arg(as, error))
2097 		return -EINVAL;
2098 
2099 	r = dm_get_device(ca->ti, dm_shift_arg(as),
2100 			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2101 	if (r) {
2102 		*error = "Error opening origin device";
2103 		return r;
2104 	}
2105 
2106 	origin_sectors = get_dev_size(ca->origin_dev);
2107 	if (ca->ti->len > origin_sectors) {
2108 		*error = "Device size larger than cached device";
2109 		return -EINVAL;
2110 	}
2111 
2112 	return 0;
2113 }
2114 
2115 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2116 			    char **error)
2117 {
2118 	unsigned long block_size;
2119 
2120 	if (!at_least_one_arg(as, error))
2121 		return -EINVAL;
2122 
2123 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2124 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2125 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2126 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2127 		*error = "Invalid data block size";
2128 		return -EINVAL;
2129 	}
2130 
2131 	if (block_size > ca->cache_sectors) {
2132 		*error = "Data block size is larger than the cache device";
2133 		return -EINVAL;
2134 	}
2135 
2136 	ca->block_size = block_size;
2137 
2138 	return 0;
2139 }
2140 
2141 static void init_features(struct cache_features *cf)
2142 {
2143 	cf->mode = CM_WRITE;
2144 	cf->io_mode = CM_IO_WRITEBACK;
2145 	cf->metadata_version = 1;
2146 	cf->discard_passdown = true;
2147 }
2148 
2149 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2150 			  char **error)
2151 {
2152 	static const struct dm_arg _args[] = {
2153 		{0, 3, "Invalid number of cache feature arguments"},
2154 	};
2155 
2156 	int r, mode_ctr = 0;
2157 	unsigned int argc;
2158 	const char *arg;
2159 	struct cache_features *cf = &ca->features;
2160 
2161 	init_features(cf);
2162 
2163 	r = dm_read_arg_group(_args, as, &argc, error);
2164 	if (r)
2165 		return -EINVAL;
2166 
2167 	while (argc--) {
2168 		arg = dm_shift_arg(as);
2169 
2170 		if (!strcasecmp(arg, "writeback")) {
2171 			cf->io_mode = CM_IO_WRITEBACK;
2172 			mode_ctr++;
2173 		}
2174 
2175 		else if (!strcasecmp(arg, "writethrough")) {
2176 			cf->io_mode = CM_IO_WRITETHROUGH;
2177 			mode_ctr++;
2178 		}
2179 
2180 		else if (!strcasecmp(arg, "passthrough")) {
2181 			cf->io_mode = CM_IO_PASSTHROUGH;
2182 			mode_ctr++;
2183 		}
2184 
2185 		else if (!strcasecmp(arg, "metadata2"))
2186 			cf->metadata_version = 2;
2187 
2188 		else if (!strcasecmp(arg, "no_discard_passdown"))
2189 			cf->discard_passdown = false;
2190 
2191 		else {
2192 			*error = "Unrecognised cache feature requested";
2193 			return -EINVAL;
2194 		}
2195 	}
2196 
2197 	if (mode_ctr > 1) {
2198 		*error = "Duplicate cache io_mode features requested";
2199 		return -EINVAL;
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2206 			char **error)
2207 {
2208 	static const struct dm_arg _args[] = {
2209 		{0, 1024, "Invalid number of policy arguments"},
2210 	};
2211 
2212 	int r;
2213 
2214 	if (!at_least_one_arg(as, error))
2215 		return -EINVAL;
2216 
2217 	ca->policy_name = dm_shift_arg(as);
2218 
2219 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2220 	if (r)
2221 		return -EINVAL;
2222 
2223 	ca->policy_argv = (const char **)as->argv;
2224 	dm_consume_args(as, ca->policy_argc);
2225 
2226 	return 0;
2227 }
2228 
2229 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2230 			    char **error)
2231 {
2232 	int r;
2233 	struct dm_arg_set as;
2234 
2235 	as.argc = argc;
2236 	as.argv = argv;
2237 
2238 	r = parse_metadata_dev(ca, &as, error);
2239 	if (r)
2240 		return r;
2241 
2242 	r = parse_cache_dev(ca, &as, error);
2243 	if (r)
2244 		return r;
2245 
2246 	r = parse_origin_dev(ca, &as, error);
2247 	if (r)
2248 		return r;
2249 
2250 	r = parse_block_size(ca, &as, error);
2251 	if (r)
2252 		return r;
2253 
2254 	r = parse_features(ca, &as, error);
2255 	if (r)
2256 		return r;
2257 
2258 	r = parse_policy(ca, &as, error);
2259 	if (r)
2260 		return r;
2261 
2262 	return 0;
2263 }
2264 
2265 /*----------------------------------------------------------------*/
2266 
2267 static struct kmem_cache *migration_cache = NULL;
2268 
2269 #define NOT_CORE_OPTION 1
2270 
2271 static int process_config_option(struct cache *cache, const char *key, const char *value)
2272 {
2273 	unsigned long tmp;
2274 
2275 	if (!strcasecmp(key, "migration_threshold")) {
2276 		if (kstrtoul(value, 10, &tmp))
2277 			return -EINVAL;
2278 
2279 		cache->migration_threshold = tmp;
2280 		return 0;
2281 	}
2282 
2283 	return NOT_CORE_OPTION;
2284 }
2285 
2286 static int set_config_value(struct cache *cache, const char *key, const char *value)
2287 {
2288 	int r = process_config_option(cache, key, value);
2289 
2290 	if (r == NOT_CORE_OPTION)
2291 		r = policy_set_config_value(cache->policy, key, value);
2292 
2293 	if (r)
2294 		DMWARN("bad config value for %s: %s", key, value);
2295 
2296 	return r;
2297 }
2298 
2299 static int set_config_values(struct cache *cache, int argc, const char **argv)
2300 {
2301 	int r = 0;
2302 
2303 	if (argc & 1) {
2304 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2305 		return -EINVAL;
2306 	}
2307 
2308 	while (argc) {
2309 		r = set_config_value(cache, argv[0], argv[1]);
2310 		if (r)
2311 			break;
2312 
2313 		argc -= 2;
2314 		argv += 2;
2315 	}
2316 
2317 	return r;
2318 }
2319 
2320 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2321 			       char **error)
2322 {
2323 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2324 							   cache->cache_size,
2325 							   cache->origin_sectors,
2326 							   cache->sectors_per_block);
2327 	if (IS_ERR(p)) {
2328 		*error = "Error creating cache's policy";
2329 		return PTR_ERR(p);
2330 	}
2331 	cache->policy = p;
2332 	BUG_ON(!cache->policy);
2333 
2334 	return 0;
2335 }
2336 
2337 /*
2338  * We want the discard block size to be at least the size of the cache
2339  * block size and have no more than 2^14 discard blocks across the origin.
2340  */
2341 #define MAX_DISCARD_BLOCKS (1 << 14)
2342 
2343 static bool too_many_discard_blocks(sector_t discard_block_size,
2344 				    sector_t origin_size)
2345 {
2346 	(void) sector_div(origin_size, discard_block_size);
2347 
2348 	return origin_size > MAX_DISCARD_BLOCKS;
2349 }
2350 
2351 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2352 					     sector_t origin_size)
2353 {
2354 	sector_t discard_block_size = cache_block_size;
2355 
2356 	if (origin_size)
2357 		while (too_many_discard_blocks(discard_block_size, origin_size))
2358 			discard_block_size *= 2;
2359 
2360 	return discard_block_size;
2361 }
2362 
2363 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2364 {
2365 	dm_block_t nr_blocks = from_cblock(size);
2366 
2367 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2368 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2369 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2370 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2371 			     (unsigned long long) nr_blocks);
2372 
2373 	cache->cache_size = size;
2374 }
2375 
2376 #define DEFAULT_MIGRATION_THRESHOLD 2048
2377 
2378 static int cache_create(struct cache_args *ca, struct cache **result)
2379 {
2380 	int r = 0;
2381 	char **error = &ca->ti->error;
2382 	struct cache *cache;
2383 	struct dm_target *ti = ca->ti;
2384 	dm_block_t origin_blocks;
2385 	struct dm_cache_metadata *cmd;
2386 	bool may_format = ca->features.mode == CM_WRITE;
2387 
2388 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2389 	if (!cache)
2390 		return -ENOMEM;
2391 
2392 	cache->ti = ca->ti;
2393 	ti->private = cache;
2394 	ti->accounts_remapped_io = true;
2395 	ti->num_flush_bios = 2;
2396 	ti->flush_supported = true;
2397 
2398 	ti->num_discard_bios = 1;
2399 	ti->discards_supported = true;
2400 
2401 	ti->per_io_data_size = sizeof(struct per_bio_data);
2402 
2403 	cache->features = ca->features;
2404 	if (writethrough_mode(cache)) {
2405 		/* Create bioset for writethrough bios issued to origin */
2406 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2407 		if (r)
2408 			goto bad;
2409 	}
2410 
2411 	cache->metadata_dev = ca->metadata_dev;
2412 	cache->origin_dev = ca->origin_dev;
2413 	cache->cache_dev = ca->cache_dev;
2414 
2415 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2416 
2417 	origin_blocks = cache->origin_sectors = ti->len;
2418 	origin_blocks = block_div(origin_blocks, ca->block_size);
2419 	cache->origin_blocks = to_oblock(origin_blocks);
2420 
2421 	cache->sectors_per_block = ca->block_size;
2422 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2423 		r = -EINVAL;
2424 		goto bad;
2425 	}
2426 
2427 	if (ca->block_size & (ca->block_size - 1)) {
2428 		dm_block_t cache_size = ca->cache_sectors;
2429 
2430 		cache->sectors_per_block_shift = -1;
2431 		cache_size = block_div(cache_size, ca->block_size);
2432 		set_cache_size(cache, to_cblock(cache_size));
2433 	} else {
2434 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2435 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2436 	}
2437 
2438 	r = create_cache_policy(cache, ca, error);
2439 	if (r)
2440 		goto bad;
2441 
2442 	cache->policy_nr_args = ca->policy_argc;
2443 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2444 
2445 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2446 	if (r) {
2447 		*error = "Error setting cache policy's config values";
2448 		goto bad;
2449 	}
2450 
2451 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2452 				     ca->block_size, may_format,
2453 				     dm_cache_policy_get_hint_size(cache->policy),
2454 				     ca->features.metadata_version);
2455 	if (IS_ERR(cmd)) {
2456 		*error = "Error creating metadata object";
2457 		r = PTR_ERR(cmd);
2458 		goto bad;
2459 	}
2460 	cache->cmd = cmd;
2461 	set_cache_mode(cache, CM_WRITE);
2462 	if (get_cache_mode(cache) != CM_WRITE) {
2463 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2464 		r = -EINVAL;
2465 		goto bad;
2466 	}
2467 
2468 	if (passthrough_mode(cache)) {
2469 		bool all_clean;
2470 
2471 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2472 		if (r) {
2473 			*error = "dm_cache_metadata_all_clean() failed";
2474 			goto bad;
2475 		}
2476 
2477 		if (!all_clean) {
2478 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2479 			r = -EINVAL;
2480 			goto bad;
2481 		}
2482 
2483 		policy_allow_migrations(cache->policy, false);
2484 	}
2485 
2486 	spin_lock_init(&cache->lock);
2487 	bio_list_init(&cache->deferred_bios);
2488 	atomic_set(&cache->nr_allocated_migrations, 0);
2489 	atomic_set(&cache->nr_io_migrations, 0);
2490 	init_waitqueue_head(&cache->migration_wait);
2491 
2492 	r = -ENOMEM;
2493 	atomic_set(&cache->nr_dirty, 0);
2494 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2495 	if (!cache->dirty_bitset) {
2496 		*error = "could not allocate dirty bitset";
2497 		goto bad;
2498 	}
2499 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2500 
2501 	cache->discard_block_size =
2502 		calculate_discard_block_size(cache->sectors_per_block,
2503 					     cache->origin_sectors);
2504 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2505 							      cache->discard_block_size));
2506 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2507 	if (!cache->discard_bitset) {
2508 		*error = "could not allocate discard bitset";
2509 		goto bad;
2510 	}
2511 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2512 
2513 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2514 	if (IS_ERR(cache->copier)) {
2515 		*error = "could not create kcopyd client";
2516 		r = PTR_ERR(cache->copier);
2517 		goto bad;
2518 	}
2519 
2520 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2521 	if (!cache->wq) {
2522 		*error = "could not create workqueue for metadata object";
2523 		goto bad;
2524 	}
2525 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2526 	INIT_WORK(&cache->migration_worker, check_migrations);
2527 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2528 
2529 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2530 	if (!cache->prison) {
2531 		*error = "could not create bio prison";
2532 		goto bad;
2533 	}
2534 
2535 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2536 				   migration_cache);
2537 	if (r) {
2538 		*error = "Error creating cache's migration mempool";
2539 		goto bad;
2540 	}
2541 
2542 	cache->need_tick_bio = true;
2543 	cache->sized = false;
2544 	cache->invalidate = false;
2545 	cache->commit_requested = false;
2546 	cache->loaded_mappings = false;
2547 	cache->loaded_discards = false;
2548 
2549 	load_stats(cache);
2550 
2551 	atomic_set(&cache->stats.demotion, 0);
2552 	atomic_set(&cache->stats.promotion, 0);
2553 	atomic_set(&cache->stats.copies_avoided, 0);
2554 	atomic_set(&cache->stats.cache_cell_clash, 0);
2555 	atomic_set(&cache->stats.commit_count, 0);
2556 	atomic_set(&cache->stats.discard_count, 0);
2557 
2558 	spin_lock_init(&cache->invalidation_lock);
2559 	INIT_LIST_HEAD(&cache->invalidation_requests);
2560 
2561 	batcher_init(&cache->committer, commit_op, cache,
2562 		     issue_op, cache, cache->wq);
2563 	dm_iot_init(&cache->tracker);
2564 
2565 	init_rwsem(&cache->background_work_lock);
2566 	prevent_background_work(cache);
2567 
2568 	*result = cache;
2569 	return 0;
2570 bad:
2571 	__destroy(cache);
2572 	return r;
2573 }
2574 
2575 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2576 {
2577 	unsigned int i;
2578 	const char **copy;
2579 
2580 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2581 	if (!copy)
2582 		return -ENOMEM;
2583 	for (i = 0; i < argc; i++) {
2584 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2585 		if (!copy[i]) {
2586 			while (i--)
2587 				kfree(copy[i]);
2588 			kfree(copy);
2589 			return -ENOMEM;
2590 		}
2591 	}
2592 
2593 	cache->nr_ctr_args = argc;
2594 	cache->ctr_args = copy;
2595 
2596 	return 0;
2597 }
2598 
2599 static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2600 {
2601 	int r = -EINVAL;
2602 	struct cache_args *ca;
2603 	struct cache *cache = NULL;
2604 
2605 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2606 	if (!ca) {
2607 		ti->error = "Error allocating memory for cache";
2608 		return -ENOMEM;
2609 	}
2610 	ca->ti = ti;
2611 
2612 	r = parse_cache_args(ca, argc, argv, &ti->error);
2613 	if (r)
2614 		goto out;
2615 
2616 	r = cache_create(ca, &cache);
2617 	if (r)
2618 		goto out;
2619 
2620 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2621 	if (r) {
2622 		__destroy(cache);
2623 		goto out;
2624 	}
2625 
2626 	ti->private = cache;
2627 out:
2628 	destroy_cache_args(ca);
2629 	return r;
2630 }
2631 
2632 /*----------------------------------------------------------------*/
2633 
2634 static int cache_map(struct dm_target *ti, struct bio *bio)
2635 {
2636 	struct cache *cache = ti->private;
2637 
2638 	int r;
2639 	bool commit_needed;
2640 	dm_oblock_t block = get_bio_block(cache, bio);
2641 
2642 	init_per_bio_data(bio);
2643 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2644 		/*
2645 		 * This can only occur if the io goes to a partial block at
2646 		 * the end of the origin device.  We don't cache these.
2647 		 * Just remap to the origin and carry on.
2648 		 */
2649 		remap_to_origin(cache, bio);
2650 		accounted_begin(cache, bio);
2651 		return DM_MAPIO_REMAPPED;
2652 	}
2653 
2654 	if (discard_or_flush(bio)) {
2655 		defer_bio(cache, bio);
2656 		return DM_MAPIO_SUBMITTED;
2657 	}
2658 
2659 	r = map_bio(cache, bio, block, &commit_needed);
2660 	if (commit_needed)
2661 		schedule_commit(&cache->committer);
2662 
2663 	return r;
2664 }
2665 
2666 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2667 {
2668 	struct cache *cache = ti->private;
2669 	unsigned long flags;
2670 	struct per_bio_data *pb = get_per_bio_data(bio);
2671 
2672 	if (pb->tick) {
2673 		policy_tick(cache->policy, false);
2674 
2675 		spin_lock_irqsave(&cache->lock, flags);
2676 		cache->need_tick_bio = true;
2677 		spin_unlock_irqrestore(&cache->lock, flags);
2678 	}
2679 
2680 	bio_drop_shared_lock(cache, bio);
2681 	accounted_complete(cache, bio);
2682 
2683 	return DM_ENDIO_DONE;
2684 }
2685 
2686 static int write_dirty_bitset(struct cache *cache)
2687 {
2688 	int r;
2689 
2690 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2691 		return -EINVAL;
2692 
2693 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2694 	if (r)
2695 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2696 
2697 	return r;
2698 }
2699 
2700 static int write_discard_bitset(struct cache *cache)
2701 {
2702 	unsigned int i, r;
2703 
2704 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2705 		return -EINVAL;
2706 
2707 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2708 					   cache->discard_nr_blocks);
2709 	if (r) {
2710 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2711 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2712 		return r;
2713 	}
2714 
2715 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2716 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2717 					 is_discarded(cache, to_dblock(i)));
2718 		if (r) {
2719 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2720 			return r;
2721 		}
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 static int write_hints(struct cache *cache)
2728 {
2729 	int r;
2730 
2731 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2732 		return -EINVAL;
2733 
2734 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2735 	if (r) {
2736 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2737 		return r;
2738 	}
2739 
2740 	return 0;
2741 }
2742 
2743 /*
2744  * returns true on success
2745  */
2746 static bool sync_metadata(struct cache *cache)
2747 {
2748 	int r1, r2, r3, r4;
2749 
2750 	r1 = write_dirty_bitset(cache);
2751 	if (r1)
2752 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2753 
2754 	r2 = write_discard_bitset(cache);
2755 	if (r2)
2756 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2757 
2758 	save_stats(cache);
2759 
2760 	r3 = write_hints(cache);
2761 	if (r3)
2762 		DMERR("%s: could not write hints", cache_device_name(cache));
2763 
2764 	/*
2765 	 * If writing the above metadata failed, we still commit, but don't
2766 	 * set the clean shutdown flag.  This will effectively force every
2767 	 * dirty bit to be set on reload.
2768 	 */
2769 	r4 = commit(cache, !r1 && !r2 && !r3);
2770 	if (r4)
2771 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2772 
2773 	return !r1 && !r2 && !r3 && !r4;
2774 }
2775 
2776 static void cache_postsuspend(struct dm_target *ti)
2777 {
2778 	struct cache *cache = ti->private;
2779 
2780 	prevent_background_work(cache);
2781 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2782 
2783 	cancel_delayed_work_sync(&cache->waker);
2784 	drain_workqueue(cache->wq);
2785 	WARN_ON(cache->tracker.in_flight);
2786 
2787 	/*
2788 	 * If it's a flush suspend there won't be any deferred bios, so this
2789 	 * call is harmless.
2790 	 */
2791 	requeue_deferred_bios(cache);
2792 
2793 	if (get_cache_mode(cache) == CM_WRITE)
2794 		(void) sync_metadata(cache);
2795 }
2796 
2797 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2798 			bool dirty, uint32_t hint, bool hint_valid)
2799 {
2800 	struct cache *cache = context;
2801 
2802 	if (dirty) {
2803 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2804 		atomic_inc(&cache->nr_dirty);
2805 	} else
2806 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2807 
2808 	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2809 }
2810 
2811 /*
2812  * The discard block size in the on disk metadata is not
2813  * necessarily the same as we're currently using.  So we have to
2814  * be careful to only set the discarded attribute if we know it
2815  * covers a complete block of the new size.
2816  */
2817 struct discard_load_info {
2818 	struct cache *cache;
2819 
2820 	/*
2821 	 * These blocks are sized using the on disk dblock size, rather
2822 	 * than the current one.
2823 	 */
2824 	dm_block_t block_size;
2825 	dm_block_t discard_begin, discard_end;
2826 };
2827 
2828 static void discard_load_info_init(struct cache *cache,
2829 				   struct discard_load_info *li)
2830 {
2831 	li->cache = cache;
2832 	li->discard_begin = li->discard_end = 0;
2833 }
2834 
2835 static void set_discard_range(struct discard_load_info *li)
2836 {
2837 	sector_t b, e;
2838 
2839 	if (li->discard_begin == li->discard_end)
2840 		return;
2841 
2842 	/*
2843 	 * Convert to sectors.
2844 	 */
2845 	b = li->discard_begin * li->block_size;
2846 	e = li->discard_end * li->block_size;
2847 
2848 	/*
2849 	 * Then convert back to the current dblock size.
2850 	 */
2851 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2852 	sector_div(e, li->cache->discard_block_size);
2853 
2854 	/*
2855 	 * The origin may have shrunk, so we need to check we're still in
2856 	 * bounds.
2857 	 */
2858 	if (e > from_dblock(li->cache->discard_nr_blocks))
2859 		e = from_dblock(li->cache->discard_nr_blocks);
2860 
2861 	for (; b < e; b++)
2862 		set_discard(li->cache, to_dblock(b));
2863 }
2864 
2865 static int load_discard(void *context, sector_t discard_block_size,
2866 			dm_dblock_t dblock, bool discard)
2867 {
2868 	struct discard_load_info *li = context;
2869 
2870 	li->block_size = discard_block_size;
2871 
2872 	if (discard) {
2873 		if (from_dblock(dblock) == li->discard_end)
2874 			/*
2875 			 * We're already in a discard range, just extend it.
2876 			 */
2877 			li->discard_end = li->discard_end + 1ULL;
2878 
2879 		else {
2880 			/*
2881 			 * Emit the old range and start a new one.
2882 			 */
2883 			set_discard_range(li);
2884 			li->discard_begin = from_dblock(dblock);
2885 			li->discard_end = li->discard_begin + 1ULL;
2886 		}
2887 	} else {
2888 		set_discard_range(li);
2889 		li->discard_begin = li->discard_end = 0;
2890 	}
2891 
2892 	return 0;
2893 }
2894 
2895 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2896 {
2897 	sector_t size = get_dev_size(cache->cache_dev);
2898 	(void) sector_div(size, cache->sectors_per_block);
2899 	return to_cblock(size);
2900 }
2901 
2902 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2903 {
2904 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2905 		DMERR("%s: unable to extend cache due to missing cache table reload",
2906 		      cache_device_name(cache));
2907 		return false;
2908 	}
2909 
2910 	/*
2911 	 * We can't drop a dirty block when shrinking the cache.
2912 	 */
2913 	if (cache->loaded_mappings) {
2914 		new_size = to_cblock(find_next_bit(cache->dirty_bitset,
2915 						   from_cblock(cache->cache_size),
2916 						   from_cblock(new_size)));
2917 		if (new_size != cache->cache_size) {
2918 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2919 			      cache_device_name(cache),
2920 			      (unsigned long long) from_cblock(new_size));
2921 			return false;
2922 		}
2923 	}
2924 
2925 	return true;
2926 }
2927 
2928 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2929 {
2930 	int r;
2931 
2932 	r = dm_cache_resize(cache->cmd, new_size);
2933 	if (r) {
2934 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2935 		metadata_operation_failed(cache, "dm_cache_resize", r);
2936 		return r;
2937 	}
2938 
2939 	set_cache_size(cache, new_size);
2940 
2941 	return 0;
2942 }
2943 
2944 static int cache_preresume(struct dm_target *ti)
2945 {
2946 	int r = 0;
2947 	struct cache *cache = ti->private;
2948 	dm_cblock_t csize = get_cache_dev_size(cache);
2949 
2950 	/*
2951 	 * Check to see if the cache has resized.
2952 	 */
2953 	if (!cache->sized || csize != cache->cache_size) {
2954 		if (!can_resize(cache, csize))
2955 			return -EINVAL;
2956 
2957 		r = resize_cache_dev(cache, csize);
2958 		if (r)
2959 			return r;
2960 
2961 		cache->sized = true;
2962 	}
2963 
2964 	if (!cache->loaded_mappings) {
2965 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2966 					   load_mapping, cache);
2967 		if (r) {
2968 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2969 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2970 			return r;
2971 		}
2972 
2973 		cache->loaded_mappings = true;
2974 	}
2975 
2976 	if (!cache->loaded_discards) {
2977 		struct discard_load_info li;
2978 
2979 		/*
2980 		 * The discard bitset could have been resized, or the
2981 		 * discard block size changed.  To be safe we start by
2982 		 * setting every dblock to not discarded.
2983 		 */
2984 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2985 
2986 		discard_load_info_init(cache, &li);
2987 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2988 		if (r) {
2989 			DMERR("%s: could not load origin discards", cache_device_name(cache));
2990 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2991 			return r;
2992 		}
2993 		set_discard_range(&li);
2994 
2995 		cache->loaded_discards = true;
2996 	}
2997 
2998 	return r;
2999 }
3000 
3001 static void cache_resume(struct dm_target *ti)
3002 {
3003 	struct cache *cache = ti->private;
3004 
3005 	cache->need_tick_bio = true;
3006 	allow_background_work(cache);
3007 	do_waker(&cache->waker.work);
3008 }
3009 
3010 static void emit_flags(struct cache *cache, char *result,
3011 		       unsigned int maxlen, ssize_t *sz_ptr)
3012 {
3013 	ssize_t sz = *sz_ptr;
3014 	struct cache_features *cf = &cache->features;
3015 	unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3016 
3017 	DMEMIT("%u ", count);
3018 
3019 	if (cf->metadata_version == 2)
3020 		DMEMIT("metadata2 ");
3021 
3022 	if (writethrough_mode(cache))
3023 		DMEMIT("writethrough ");
3024 
3025 	else if (passthrough_mode(cache))
3026 		DMEMIT("passthrough ");
3027 
3028 	else if (writeback_mode(cache))
3029 		DMEMIT("writeback ");
3030 
3031 	else {
3032 		DMEMIT("unknown ");
3033 		DMERR("%s: internal error: unknown io mode: %d",
3034 		      cache_device_name(cache), (int) cf->io_mode);
3035 	}
3036 
3037 	if (!cf->discard_passdown)
3038 		DMEMIT("no_discard_passdown ");
3039 
3040 	*sz_ptr = sz;
3041 }
3042 
3043 /*
3044  * Status format:
3045  *
3046  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3047  * <cache block size> <#used cache blocks>/<#total cache blocks>
3048  * <#read hits> <#read misses> <#write hits> <#write misses>
3049  * <#demotions> <#promotions> <#dirty>
3050  * <#features> <features>*
3051  * <#core args> <core args>
3052  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3053  */
3054 static void cache_status(struct dm_target *ti, status_type_t type,
3055 			 unsigned int status_flags, char *result, unsigned int maxlen)
3056 {
3057 	int r = 0;
3058 	unsigned int i;
3059 	ssize_t sz = 0;
3060 	dm_block_t nr_free_blocks_metadata = 0;
3061 	dm_block_t nr_blocks_metadata = 0;
3062 	char buf[BDEVNAME_SIZE];
3063 	struct cache *cache = ti->private;
3064 	dm_cblock_t residency;
3065 	bool needs_check;
3066 
3067 	switch (type) {
3068 	case STATUSTYPE_INFO:
3069 		if (get_cache_mode(cache) == CM_FAIL) {
3070 			DMEMIT("Fail");
3071 			break;
3072 		}
3073 
3074 		/* Commit to ensure statistics aren't out-of-date */
3075 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3076 			(void) commit(cache, false);
3077 
3078 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3079 		if (r) {
3080 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3081 			      cache_device_name(cache), r);
3082 			goto err;
3083 		}
3084 
3085 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3086 		if (r) {
3087 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3088 			      cache_device_name(cache), r);
3089 			goto err;
3090 		}
3091 
3092 		residency = policy_residency(cache->policy);
3093 
3094 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3095 		       (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3096 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3097 		       (unsigned long long)nr_blocks_metadata,
3098 		       (unsigned long long)cache->sectors_per_block,
3099 		       (unsigned long long) from_cblock(residency),
3100 		       (unsigned long long) from_cblock(cache->cache_size),
3101 		       (unsigned int) atomic_read(&cache->stats.read_hit),
3102 		       (unsigned int) atomic_read(&cache->stats.read_miss),
3103 		       (unsigned int) atomic_read(&cache->stats.write_hit),
3104 		       (unsigned int) atomic_read(&cache->stats.write_miss),
3105 		       (unsigned int) atomic_read(&cache->stats.demotion),
3106 		       (unsigned int) atomic_read(&cache->stats.promotion),
3107 		       (unsigned long) atomic_read(&cache->nr_dirty));
3108 
3109 		emit_flags(cache, result, maxlen, &sz);
3110 
3111 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3112 
3113 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3114 		if (sz < maxlen) {
3115 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3116 			if (r)
3117 				DMERR("%s: policy_emit_config_values returned %d",
3118 				      cache_device_name(cache), r);
3119 		}
3120 
3121 		if (get_cache_mode(cache) == CM_READ_ONLY)
3122 			DMEMIT("ro ");
3123 		else
3124 			DMEMIT("rw ");
3125 
3126 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3127 
3128 		if (r || needs_check)
3129 			DMEMIT("needs_check ");
3130 		else
3131 			DMEMIT("- ");
3132 
3133 		break;
3134 
3135 	case STATUSTYPE_TABLE:
3136 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3137 		DMEMIT("%s ", buf);
3138 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3139 		DMEMIT("%s ", buf);
3140 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3141 		DMEMIT("%s", buf);
3142 
3143 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3144 			DMEMIT(" %s", cache->ctr_args[i]);
3145 		if (cache->nr_ctr_args)
3146 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3147 		break;
3148 
3149 	case STATUSTYPE_IMA:
3150 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3151 		if (get_cache_mode(cache) == CM_FAIL)
3152 			DMEMIT(",metadata_mode=fail");
3153 		else if (get_cache_mode(cache) == CM_READ_ONLY)
3154 			DMEMIT(",metadata_mode=ro");
3155 		else
3156 			DMEMIT(",metadata_mode=rw");
3157 
3158 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3159 		DMEMIT(",cache_metadata_device=%s", buf);
3160 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3161 		DMEMIT(",cache_device=%s", buf);
3162 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3163 		DMEMIT(",cache_origin_device=%s", buf);
3164 		DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3165 		DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3166 		DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3167 		DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3168 		DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3169 		DMEMIT(";");
3170 		break;
3171 	}
3172 
3173 	return;
3174 
3175 err:
3176 	DMEMIT("Error");
3177 }
3178 
3179 /*
3180  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3181  * the one-past-the-end value.
3182  */
3183 struct cblock_range {
3184 	dm_cblock_t begin;
3185 	dm_cblock_t end;
3186 };
3187 
3188 /*
3189  * A cache block range can take two forms:
3190  *
3191  * i) A single cblock, eg. '3456'
3192  * ii) A begin and end cblock with a dash between, eg. 123-234
3193  */
3194 static int parse_cblock_range(struct cache *cache, const char *str,
3195 			      struct cblock_range *result)
3196 {
3197 	char dummy;
3198 	uint64_t b, e;
3199 	int r;
3200 
3201 	/*
3202 	 * Try and parse form (ii) first.
3203 	 */
3204 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3205 
3206 	if (r == 2) {
3207 		result->begin = to_cblock(b);
3208 		result->end = to_cblock(e);
3209 		return 0;
3210 	}
3211 
3212 	/*
3213 	 * That didn't work, try form (i).
3214 	 */
3215 	r = sscanf(str, "%llu%c", &b, &dummy);
3216 
3217 	if (r == 1) {
3218 		result->begin = to_cblock(b);
3219 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3220 		return 0;
3221 	}
3222 
3223 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3224 	return -EINVAL;
3225 }
3226 
3227 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3228 {
3229 	uint64_t b = from_cblock(range->begin);
3230 	uint64_t e = from_cblock(range->end);
3231 	uint64_t n = from_cblock(cache->cache_size);
3232 
3233 	if (b >= n) {
3234 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3235 		      cache_device_name(cache), b, n);
3236 		return -EINVAL;
3237 	}
3238 
3239 	if (e > n) {
3240 		DMERR("%s: end cblock out of range: %llu > %llu",
3241 		      cache_device_name(cache), e, n);
3242 		return -EINVAL;
3243 	}
3244 
3245 	if (b >= e) {
3246 		DMERR("%s: invalid cblock range: %llu >= %llu",
3247 		      cache_device_name(cache), b, e);
3248 		return -EINVAL;
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3255 {
3256 	return to_cblock(from_cblock(b) + 1);
3257 }
3258 
3259 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3260 {
3261 	int r = 0;
3262 
3263 	/*
3264 	 * We don't need to do any locking here because we know we're in
3265 	 * passthrough mode.  There's is potential for a race between an
3266 	 * invalidation triggered by an io and an invalidation message.  This
3267 	 * is harmless, we must not worry if the policy call fails.
3268 	 */
3269 	while (range->begin != range->end) {
3270 		r = invalidate_cblock(cache, range->begin);
3271 		if (r)
3272 			return r;
3273 
3274 		range->begin = cblock_succ(range->begin);
3275 	}
3276 
3277 	cache->commit_requested = true;
3278 	return r;
3279 }
3280 
3281 static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3282 					      const char **cblock_ranges)
3283 {
3284 	int r = 0;
3285 	unsigned int i;
3286 	struct cblock_range range;
3287 
3288 	if (!passthrough_mode(cache)) {
3289 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3290 		      cache_device_name(cache));
3291 		return -EPERM;
3292 	}
3293 
3294 	for (i = 0; i < count; i++) {
3295 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3296 		if (r)
3297 			break;
3298 
3299 		r = validate_cblock_range(cache, &range);
3300 		if (r)
3301 			break;
3302 
3303 		/*
3304 		 * Pass begin and end origin blocks to the worker and wake it.
3305 		 */
3306 		r = request_invalidation(cache, &range);
3307 		if (r)
3308 			break;
3309 	}
3310 
3311 	return r;
3312 }
3313 
3314 /*
3315  * Supports
3316  *	"<key> <value>"
3317  * and
3318  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3319  *
3320  * The key migration_threshold is supported by the cache target core.
3321  */
3322 static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3323 			 char *result, unsigned int maxlen)
3324 {
3325 	struct cache *cache = ti->private;
3326 
3327 	if (!argc)
3328 		return -EINVAL;
3329 
3330 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3331 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3332 		      cache_device_name(cache));
3333 		return -EOPNOTSUPP;
3334 	}
3335 
3336 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3337 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3338 
3339 	if (argc != 2)
3340 		return -EINVAL;
3341 
3342 	return set_config_value(cache, argv[0], argv[1]);
3343 }
3344 
3345 static int cache_iterate_devices(struct dm_target *ti,
3346 				 iterate_devices_callout_fn fn, void *data)
3347 {
3348 	int r = 0;
3349 	struct cache *cache = ti->private;
3350 
3351 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3352 	if (!r)
3353 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3354 
3355 	return r;
3356 }
3357 
3358 /*
3359  * If discard_passdown was enabled verify that the origin device
3360  * supports discards.  Disable discard_passdown if not.
3361  */
3362 static void disable_passdown_if_not_supported(struct cache *cache)
3363 {
3364 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3365 	struct queue_limits *origin_limits = bdev_limits(origin_bdev);
3366 	const char *reason = NULL;
3367 
3368 	if (!cache->features.discard_passdown)
3369 		return;
3370 
3371 	if (!bdev_max_discard_sectors(origin_bdev))
3372 		reason = "discard unsupported";
3373 
3374 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3375 		reason = "max discard sectors smaller than a block";
3376 
3377 	if (reason) {
3378 		DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3379 		       origin_bdev, reason);
3380 		cache->features.discard_passdown = false;
3381 	}
3382 }
3383 
3384 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3385 {
3386 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3387 	struct queue_limits *origin_limits = bdev_limits(origin_bdev);
3388 
3389 	if (!cache->features.discard_passdown) {
3390 		/* No passdown is done so setting own virtual limits */
3391 		limits->max_hw_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3392 						       cache->origin_sectors);
3393 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3394 		return;
3395 	}
3396 
3397 	/*
3398 	 * cache_iterate_devices() is stacking both origin and fast device limits
3399 	 * but discards aren't passed to fast device, so inherit origin's limits.
3400 	 */
3401 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3402 	limits->discard_granularity = origin_limits->discard_granularity;
3403 	limits->discard_alignment = origin_limits->discard_alignment;
3404 }
3405 
3406 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3407 {
3408 	struct cache *cache = ti->private;
3409 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3410 
3411 	/*
3412 	 * If the system-determined stacked limits are compatible with the
3413 	 * cache's blocksize (io_opt is a factor) do not override them.
3414 	 */
3415 	if (io_opt_sectors < cache->sectors_per_block ||
3416 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3417 		limits->io_min = cache->sectors_per_block << SECTOR_SHIFT;
3418 		limits->io_opt = cache->sectors_per_block << SECTOR_SHIFT;
3419 	}
3420 
3421 	disable_passdown_if_not_supported(cache);
3422 	set_discard_limits(cache, limits);
3423 }
3424 
3425 /*----------------------------------------------------------------*/
3426 
3427 static struct target_type cache_target = {
3428 	.name = "cache",
3429 	.version = {2, 2, 0},
3430 	.module = THIS_MODULE,
3431 	.ctr = cache_ctr,
3432 	.dtr = cache_dtr,
3433 	.map = cache_map,
3434 	.end_io = cache_end_io,
3435 	.postsuspend = cache_postsuspend,
3436 	.preresume = cache_preresume,
3437 	.resume = cache_resume,
3438 	.status = cache_status,
3439 	.message = cache_message,
3440 	.iterate_devices = cache_iterate_devices,
3441 	.io_hints = cache_io_hints,
3442 };
3443 
3444 static int __init dm_cache_init(void)
3445 {
3446 	int r;
3447 
3448 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3449 	if (!migration_cache) {
3450 		r = -ENOMEM;
3451 		goto err;
3452 	}
3453 
3454 	btracker_work_cache = kmem_cache_create("dm_cache_bt_work",
3455 		sizeof(struct bt_work), __alignof__(struct bt_work), 0, NULL);
3456 	if (!btracker_work_cache) {
3457 		r = -ENOMEM;
3458 		goto err;
3459 	}
3460 
3461 	r = dm_register_target(&cache_target);
3462 	if (r) {
3463 		goto err;
3464 	}
3465 
3466 	return 0;
3467 
3468 err:
3469 	kmem_cache_destroy(migration_cache);
3470 	kmem_cache_destroy(btracker_work_cache);
3471 	return r;
3472 }
3473 
3474 static void __exit dm_cache_exit(void)
3475 {
3476 	dm_unregister_target(&cache_target);
3477 	kmem_cache_destroy(migration_cache);
3478 	kmem_cache_destroy(btracker_work_cache);
3479 }
3480 
3481 module_init(dm_cache_init);
3482 module_exit(dm_cache_exit);
3483 
3484 MODULE_DESCRIPTION(DM_NAME " cache target");
3485 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3486 MODULE_LICENSE("GPL");
3487