xref: /linux/drivers/md/dm-cache-policy-smq.c (revision 5e0266f0e5f57617472d5aac4013f58a3ef264ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-cache-background-tracker.h"
9 #include "dm-cache-policy-internal.h"
10 #include "dm-cache-policy.h"
11 #include "dm.h"
12 
13 #include <linux/hash.h>
14 #include <linux/jiffies.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/vmalloc.h>
18 #include <linux/math64.h>
19 
20 #define DM_MSG_PREFIX "cache-policy-smq"
21 
22 /*----------------------------------------------------------------*/
23 
24 /*
25  * Safe division functions that return zero on divide by zero.
26  */
27 static unsigned int safe_div(unsigned int n, unsigned int d)
28 {
29 	return d ? n / d : 0u;
30 }
31 
32 static unsigned int safe_mod(unsigned int n, unsigned int d)
33 {
34 	return d ? n % d : 0u;
35 }
36 
37 /*----------------------------------------------------------------*/
38 
39 struct entry {
40 	unsigned int hash_next:28;
41 	unsigned int prev:28;
42 	unsigned int next:28;
43 	unsigned int level:6;
44 	bool dirty:1;
45 	bool allocated:1;
46 	bool sentinel:1;
47 	bool pending_work:1;
48 
49 	dm_oblock_t oblock;
50 };
51 
52 /*----------------------------------------------------------------*/
53 
54 #define INDEXER_NULL ((1u << 28u) - 1u)
55 
56 /*
57  * An entry_space manages a set of entries that we use for the queues.
58  * The clean and dirty queues share entries, so this object is separate
59  * from the queue itself.
60  */
61 struct entry_space {
62 	struct entry *begin;
63 	struct entry *end;
64 };
65 
66 static int space_init(struct entry_space *es, unsigned int nr_entries)
67 {
68 	if (!nr_entries) {
69 		es->begin = es->end = NULL;
70 		return 0;
71 	}
72 
73 	es->begin = vzalloc(array_size(nr_entries, sizeof(struct entry)));
74 	if (!es->begin)
75 		return -ENOMEM;
76 
77 	es->end = es->begin + nr_entries;
78 	return 0;
79 }
80 
81 static void space_exit(struct entry_space *es)
82 {
83 	vfree(es->begin);
84 }
85 
86 static struct entry *__get_entry(struct entry_space *es, unsigned int block)
87 {
88 	struct entry *e;
89 
90 	e = es->begin + block;
91 	BUG_ON(e >= es->end);
92 
93 	return e;
94 }
95 
96 static unsigned int to_index(struct entry_space *es, struct entry *e)
97 {
98 	BUG_ON(e < es->begin || e >= es->end);
99 	return e - es->begin;
100 }
101 
102 static struct entry *to_entry(struct entry_space *es, unsigned int block)
103 {
104 	if (block == INDEXER_NULL)
105 		return NULL;
106 
107 	return __get_entry(es, block);
108 }
109 
110 /*----------------------------------------------------------------*/
111 
112 struct ilist {
113 	unsigned int nr_elts;	/* excluding sentinel entries */
114 	unsigned int head, tail;
115 };
116 
117 static void l_init(struct ilist *l)
118 {
119 	l->nr_elts = 0;
120 	l->head = l->tail = INDEXER_NULL;
121 }
122 
123 static struct entry *l_head(struct entry_space *es, struct ilist *l)
124 {
125 	return to_entry(es, l->head);
126 }
127 
128 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
129 {
130 	return to_entry(es, l->tail);
131 }
132 
133 static struct entry *l_next(struct entry_space *es, struct entry *e)
134 {
135 	return to_entry(es, e->next);
136 }
137 
138 static struct entry *l_prev(struct entry_space *es, struct entry *e)
139 {
140 	return to_entry(es, e->prev);
141 }
142 
143 static bool l_empty(struct ilist *l)
144 {
145 	return l->head == INDEXER_NULL;
146 }
147 
148 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
149 {
150 	struct entry *head = l_head(es, l);
151 
152 	e->next = l->head;
153 	e->prev = INDEXER_NULL;
154 
155 	if (head)
156 		head->prev = l->head = to_index(es, e);
157 	else
158 		l->head = l->tail = to_index(es, e);
159 
160 	if (!e->sentinel)
161 		l->nr_elts++;
162 }
163 
164 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
165 {
166 	struct entry *tail = l_tail(es, l);
167 
168 	e->next = INDEXER_NULL;
169 	e->prev = l->tail;
170 
171 	if (tail)
172 		tail->next = l->tail = to_index(es, e);
173 	else
174 		l->head = l->tail = to_index(es, e);
175 
176 	if (!e->sentinel)
177 		l->nr_elts++;
178 }
179 
180 static void l_add_before(struct entry_space *es, struct ilist *l,
181 			 struct entry *old, struct entry *e)
182 {
183 	struct entry *prev = l_prev(es, old);
184 
185 	if (!prev)
186 		l_add_head(es, l, e);
187 
188 	else {
189 		e->prev = old->prev;
190 		e->next = to_index(es, old);
191 		prev->next = old->prev = to_index(es, e);
192 
193 		if (!e->sentinel)
194 			l->nr_elts++;
195 	}
196 }
197 
198 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
199 {
200 	struct entry *prev = l_prev(es, e);
201 	struct entry *next = l_next(es, e);
202 
203 	if (prev)
204 		prev->next = e->next;
205 	else
206 		l->head = e->next;
207 
208 	if (next)
209 		next->prev = e->prev;
210 	else
211 		l->tail = e->prev;
212 
213 	if (!e->sentinel)
214 		l->nr_elts--;
215 }
216 
217 static struct entry *l_pop_head(struct entry_space *es, struct ilist *l)
218 {
219 	struct entry *e;
220 
221 	for (e = l_head(es, l); e; e = l_next(es, e))
222 		if (!e->sentinel) {
223 			l_del(es, l, e);
224 			return e;
225 		}
226 
227 	return NULL;
228 }
229 
230 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
231 {
232 	struct entry *e;
233 
234 	for (e = l_tail(es, l); e; e = l_prev(es, e))
235 		if (!e->sentinel) {
236 			l_del(es, l, e);
237 			return e;
238 		}
239 
240 	return NULL;
241 }
242 
243 /*----------------------------------------------------------------*/
244 
245 /*
246  * The stochastic-multi-queue is a set of lru lists stacked into levels.
247  * Entries are moved up levels when they are used, which loosely orders the
248  * most accessed entries in the top levels and least in the bottom.  This
249  * structure is *much* better than a single lru list.
250  */
251 #define MAX_LEVELS 64u
252 
253 struct queue {
254 	struct entry_space *es;
255 
256 	unsigned int nr_elts;
257 	unsigned int nr_levels;
258 	struct ilist qs[MAX_LEVELS];
259 
260 	/*
261 	 * We maintain a count of the number of entries we would like in each
262 	 * level.
263 	 */
264 	unsigned int last_target_nr_elts;
265 	unsigned int nr_top_levels;
266 	unsigned int nr_in_top_levels;
267 	unsigned int target_count[MAX_LEVELS];
268 };
269 
270 static void q_init(struct queue *q, struct entry_space *es, unsigned int nr_levels)
271 {
272 	unsigned int i;
273 
274 	q->es = es;
275 	q->nr_elts = 0;
276 	q->nr_levels = nr_levels;
277 
278 	for (i = 0; i < q->nr_levels; i++) {
279 		l_init(q->qs + i);
280 		q->target_count[i] = 0u;
281 	}
282 
283 	q->last_target_nr_elts = 0u;
284 	q->nr_top_levels = 0u;
285 	q->nr_in_top_levels = 0u;
286 }
287 
288 static unsigned int q_size(struct queue *q)
289 {
290 	return q->nr_elts;
291 }
292 
293 /*
294  * Insert an entry to the back of the given level.
295  */
296 static void q_push(struct queue *q, struct entry *e)
297 {
298 	BUG_ON(e->pending_work);
299 
300 	if (!e->sentinel)
301 		q->nr_elts++;
302 
303 	l_add_tail(q->es, q->qs + e->level, e);
304 }
305 
306 static void q_push_front(struct queue *q, struct entry *e)
307 {
308 	BUG_ON(e->pending_work);
309 
310 	if (!e->sentinel)
311 		q->nr_elts++;
312 
313 	l_add_head(q->es, q->qs + e->level, e);
314 }
315 
316 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
317 {
318 	BUG_ON(e->pending_work);
319 
320 	if (!e->sentinel)
321 		q->nr_elts++;
322 
323 	l_add_before(q->es, q->qs + e->level, old, e);
324 }
325 
326 static void q_del(struct queue *q, struct entry *e)
327 {
328 	l_del(q->es, q->qs + e->level, e);
329 	if (!e->sentinel)
330 		q->nr_elts--;
331 }
332 
333 /*
334  * Return the oldest entry of the lowest populated level.
335  */
336 static struct entry *q_peek(struct queue *q, unsigned int max_level, bool can_cross_sentinel)
337 {
338 	unsigned int level;
339 	struct entry *e;
340 
341 	max_level = min(max_level, q->nr_levels);
342 
343 	for (level = 0; level < max_level; level++)
344 		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
345 			if (e->sentinel) {
346 				if (can_cross_sentinel)
347 					continue;
348 				else
349 					break;
350 			}
351 
352 			return e;
353 		}
354 
355 	return NULL;
356 }
357 
358 static struct entry *q_pop(struct queue *q)
359 {
360 	struct entry *e = q_peek(q, q->nr_levels, true);
361 
362 	if (e)
363 		q_del(q, e);
364 
365 	return e;
366 }
367 
368 /*
369  * This function assumes there is a non-sentinel entry to pop.  It's only
370  * used by redistribute, so we know this is true.  It also doesn't adjust
371  * the q->nr_elts count.
372  */
373 static struct entry *__redist_pop_from(struct queue *q, unsigned int level)
374 {
375 	struct entry *e;
376 
377 	for (; level < q->nr_levels; level++)
378 		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
379 			if (!e->sentinel) {
380 				l_del(q->es, q->qs + e->level, e);
381 				return e;
382 			}
383 
384 	return NULL;
385 }
386 
387 static void q_set_targets_subrange_(struct queue *q, unsigned int nr_elts,
388 				    unsigned int lbegin, unsigned int lend)
389 {
390 	unsigned int level, nr_levels, entries_per_level, remainder;
391 
392 	BUG_ON(lbegin > lend);
393 	BUG_ON(lend > q->nr_levels);
394 	nr_levels = lend - lbegin;
395 	entries_per_level = safe_div(nr_elts, nr_levels);
396 	remainder = safe_mod(nr_elts, nr_levels);
397 
398 	for (level = lbegin; level < lend; level++)
399 		q->target_count[level] =
400 			(level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
401 }
402 
403 /*
404  * Typically we have fewer elements in the top few levels which allows us
405  * to adjust the promote threshold nicely.
406  */
407 static void q_set_targets(struct queue *q)
408 {
409 	if (q->last_target_nr_elts == q->nr_elts)
410 		return;
411 
412 	q->last_target_nr_elts = q->nr_elts;
413 
414 	if (q->nr_top_levels > q->nr_levels)
415 		q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
416 
417 	else {
418 		q_set_targets_subrange_(q, q->nr_in_top_levels,
419 					q->nr_levels - q->nr_top_levels, q->nr_levels);
420 
421 		if (q->nr_in_top_levels < q->nr_elts)
422 			q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
423 						0, q->nr_levels - q->nr_top_levels);
424 		else
425 			q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
426 	}
427 }
428 
429 static void q_redistribute(struct queue *q)
430 {
431 	unsigned int target, level;
432 	struct ilist *l, *l_above;
433 	struct entry *e;
434 
435 	q_set_targets(q);
436 
437 	for (level = 0u; level < q->nr_levels - 1u; level++) {
438 		l = q->qs + level;
439 		target = q->target_count[level];
440 
441 		/*
442 		 * Pull down some entries from the level above.
443 		 */
444 		while (l->nr_elts < target) {
445 			e = __redist_pop_from(q, level + 1u);
446 			if (!e) {
447 				/* bug in nr_elts */
448 				break;
449 			}
450 
451 			e->level = level;
452 			l_add_tail(q->es, l, e);
453 		}
454 
455 		/*
456 		 * Push some entries up.
457 		 */
458 		l_above = q->qs + level + 1u;
459 		while (l->nr_elts > target) {
460 			e = l_pop_tail(q->es, l);
461 
462 			if (!e)
463 				/* bug in nr_elts */
464 				break;
465 
466 			e->level = level + 1u;
467 			l_add_tail(q->es, l_above, e);
468 		}
469 	}
470 }
471 
472 static void q_requeue(struct queue *q, struct entry *e, unsigned int extra_levels,
473 		      struct entry *s1, struct entry *s2)
474 {
475 	struct entry *de;
476 	unsigned int sentinels_passed = 0;
477 	unsigned int new_level = min(q->nr_levels - 1u, e->level + extra_levels);
478 
479 	/* try and find an entry to swap with */
480 	if (extra_levels && (e->level < q->nr_levels - 1u)) {
481 		for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de))
482 			sentinels_passed++;
483 
484 		if (de) {
485 			q_del(q, de);
486 			de->level = e->level;
487 			if (s1) {
488 				switch (sentinels_passed) {
489 				case 0:
490 					q_push_before(q, s1, de);
491 					break;
492 
493 				case 1:
494 					q_push_before(q, s2, de);
495 					break;
496 
497 				default:
498 					q_push(q, de);
499 				}
500 			} else
501 				q_push(q, de);
502 		}
503 	}
504 
505 	q_del(q, e);
506 	e->level = new_level;
507 	q_push(q, e);
508 }
509 
510 /*----------------------------------------------------------------*/
511 
512 #define FP_SHIFT 8
513 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
514 #define EIGHTH (1u << (FP_SHIFT - 3u))
515 
516 struct stats {
517 	unsigned int hit_threshold;
518 	unsigned int hits;
519 	unsigned int misses;
520 };
521 
522 enum performance {
523 	Q_POOR,
524 	Q_FAIR,
525 	Q_WELL
526 };
527 
528 static void stats_init(struct stats *s, unsigned int nr_levels)
529 {
530 	s->hit_threshold = (nr_levels * 3u) / 4u;
531 	s->hits = 0u;
532 	s->misses = 0u;
533 }
534 
535 static void stats_reset(struct stats *s)
536 {
537 	s->hits = s->misses = 0u;
538 }
539 
540 static void stats_level_accessed(struct stats *s, unsigned int level)
541 {
542 	if (level >= s->hit_threshold)
543 		s->hits++;
544 	else
545 		s->misses++;
546 }
547 
548 static void stats_miss(struct stats *s)
549 {
550 	s->misses++;
551 }
552 
553 /*
554  * There are times when we don't have any confidence in the hotspot queue.
555  * Such as when a fresh cache is created and the blocks have been spread
556  * out across the levels, or if an io load changes.  We detect this by
557  * seeing how often a lookup is in the top levels of the hotspot queue.
558  */
559 static enum performance stats_assess(struct stats *s)
560 {
561 	unsigned int confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
562 
563 	if (confidence < SIXTEENTH)
564 		return Q_POOR;
565 
566 	else if (confidence < EIGHTH)
567 		return Q_FAIR;
568 
569 	else
570 		return Q_WELL;
571 }
572 
573 /*----------------------------------------------------------------*/
574 
575 struct smq_hash_table {
576 	struct entry_space *es;
577 	unsigned long long hash_bits;
578 	unsigned int *buckets;
579 };
580 
581 /*
582  * All cache entries are stored in a chained hash table.  To save space we
583  * use indexing again, and only store indexes to the next entry.
584  */
585 static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned int nr_entries)
586 {
587 	unsigned int i, nr_buckets;
588 
589 	ht->es = es;
590 	nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
591 	ht->hash_bits = __ffs(nr_buckets);
592 
593 	ht->buckets = vmalloc(array_size(nr_buckets, sizeof(*ht->buckets)));
594 	if (!ht->buckets)
595 		return -ENOMEM;
596 
597 	for (i = 0; i < nr_buckets; i++)
598 		ht->buckets[i] = INDEXER_NULL;
599 
600 	return 0;
601 }
602 
603 static void h_exit(struct smq_hash_table *ht)
604 {
605 	vfree(ht->buckets);
606 }
607 
608 static struct entry *h_head(struct smq_hash_table *ht, unsigned int bucket)
609 {
610 	return to_entry(ht->es, ht->buckets[bucket]);
611 }
612 
613 static struct entry *h_next(struct smq_hash_table *ht, struct entry *e)
614 {
615 	return to_entry(ht->es, e->hash_next);
616 }
617 
618 static void __h_insert(struct smq_hash_table *ht, unsigned int bucket, struct entry *e)
619 {
620 	e->hash_next = ht->buckets[bucket];
621 	ht->buckets[bucket] = to_index(ht->es, e);
622 }
623 
624 static void h_insert(struct smq_hash_table *ht, struct entry *e)
625 {
626 	unsigned int h = hash_64(from_oblock(e->oblock), ht->hash_bits);
627 
628 	__h_insert(ht, h, e);
629 }
630 
631 static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned int h, dm_oblock_t oblock,
632 				struct entry **prev)
633 {
634 	struct entry *e;
635 
636 	*prev = NULL;
637 	for (e = h_head(ht, h); e; e = h_next(ht, e)) {
638 		if (e->oblock == oblock)
639 			return e;
640 
641 		*prev = e;
642 	}
643 
644 	return NULL;
645 }
646 
647 static void __h_unlink(struct smq_hash_table *ht, unsigned int h,
648 		       struct entry *e, struct entry *prev)
649 {
650 	if (prev)
651 		prev->hash_next = e->hash_next;
652 	else
653 		ht->buckets[h] = e->hash_next;
654 }
655 
656 /*
657  * Also moves each entry to the front of the bucket.
658  */
659 static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock)
660 {
661 	struct entry *e, *prev;
662 	unsigned int h = hash_64(from_oblock(oblock), ht->hash_bits);
663 
664 	e = __h_lookup(ht, h, oblock, &prev);
665 	if (e && prev) {
666 		/*
667 		 * Move to the front because this entry is likely
668 		 * to be hit again.
669 		 */
670 		__h_unlink(ht, h, e, prev);
671 		__h_insert(ht, h, e);
672 	}
673 
674 	return e;
675 }
676 
677 static void h_remove(struct smq_hash_table *ht, struct entry *e)
678 {
679 	unsigned int h = hash_64(from_oblock(e->oblock), ht->hash_bits);
680 	struct entry *prev;
681 
682 	/*
683 	 * The down side of using a singly linked list is we have to
684 	 * iterate the bucket to remove an item.
685 	 */
686 	e = __h_lookup(ht, h, e->oblock, &prev);
687 	if (e)
688 		__h_unlink(ht, h, e, prev);
689 }
690 
691 /*----------------------------------------------------------------*/
692 
693 struct entry_alloc {
694 	struct entry_space *es;
695 	unsigned int begin;
696 
697 	unsigned int nr_allocated;
698 	struct ilist free;
699 };
700 
701 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
702 			   unsigned int begin, unsigned int end)
703 {
704 	unsigned int i;
705 
706 	ea->es = es;
707 	ea->nr_allocated = 0u;
708 	ea->begin = begin;
709 
710 	l_init(&ea->free);
711 	for (i = begin; i != end; i++)
712 		l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
713 }
714 
715 static void init_entry(struct entry *e)
716 {
717 	/*
718 	 * We can't memset because that would clear the hotspot and
719 	 * sentinel bits which remain constant.
720 	 */
721 	e->hash_next = INDEXER_NULL;
722 	e->next = INDEXER_NULL;
723 	e->prev = INDEXER_NULL;
724 	e->level = 0u;
725 	e->dirty = true;	/* FIXME: audit */
726 	e->allocated = true;
727 	e->sentinel = false;
728 	e->pending_work = false;
729 }
730 
731 static struct entry *alloc_entry(struct entry_alloc *ea)
732 {
733 	struct entry *e;
734 
735 	if (l_empty(&ea->free))
736 		return NULL;
737 
738 	e = l_pop_head(ea->es, &ea->free);
739 	init_entry(e);
740 	ea->nr_allocated++;
741 
742 	return e;
743 }
744 
745 /*
746  * This assumes the cblock hasn't already been allocated.
747  */
748 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned int i)
749 {
750 	struct entry *e = __get_entry(ea->es, ea->begin + i);
751 
752 	BUG_ON(e->allocated);
753 
754 	l_del(ea->es, &ea->free, e);
755 	init_entry(e);
756 	ea->nr_allocated++;
757 
758 	return e;
759 }
760 
761 static void free_entry(struct entry_alloc *ea, struct entry *e)
762 {
763 	BUG_ON(!ea->nr_allocated);
764 	BUG_ON(!e->allocated);
765 
766 	ea->nr_allocated--;
767 	e->allocated = false;
768 	l_add_tail(ea->es, &ea->free, e);
769 }
770 
771 static bool allocator_empty(struct entry_alloc *ea)
772 {
773 	return l_empty(&ea->free);
774 }
775 
776 static unsigned int get_index(struct entry_alloc *ea, struct entry *e)
777 {
778 	return to_index(ea->es, e) - ea->begin;
779 }
780 
781 static struct entry *get_entry(struct entry_alloc *ea, unsigned int index)
782 {
783 	return __get_entry(ea->es, ea->begin + index);
784 }
785 
786 /*----------------------------------------------------------------*/
787 
788 #define NR_HOTSPOT_LEVELS 64u
789 #define NR_CACHE_LEVELS 64u
790 
791 #define WRITEBACK_PERIOD (10ul * HZ)
792 #define DEMOTE_PERIOD (60ul * HZ)
793 
794 #define HOTSPOT_UPDATE_PERIOD (HZ)
795 #define CACHE_UPDATE_PERIOD (60ul * HZ)
796 
797 struct smq_policy {
798 	struct dm_cache_policy policy;
799 
800 	/* protects everything */
801 	spinlock_t lock;
802 	dm_cblock_t cache_size;
803 	sector_t cache_block_size;
804 
805 	sector_t hotspot_block_size;
806 	unsigned int nr_hotspot_blocks;
807 	unsigned int cache_blocks_per_hotspot_block;
808 	unsigned int hotspot_level_jump;
809 
810 	struct entry_space es;
811 	struct entry_alloc writeback_sentinel_alloc;
812 	struct entry_alloc demote_sentinel_alloc;
813 	struct entry_alloc hotspot_alloc;
814 	struct entry_alloc cache_alloc;
815 
816 	unsigned long *hotspot_hit_bits;
817 	unsigned long *cache_hit_bits;
818 
819 	/*
820 	 * We maintain three queues of entries.  The cache proper,
821 	 * consisting of a clean and dirty queue, containing the currently
822 	 * active mappings.  The hotspot queue uses a larger block size to
823 	 * track blocks that are being hit frequently and potential
824 	 * candidates for promotion to the cache.
825 	 */
826 	struct queue hotspot;
827 	struct queue clean;
828 	struct queue dirty;
829 
830 	struct stats hotspot_stats;
831 	struct stats cache_stats;
832 
833 	/*
834 	 * Keeps track of time, incremented by the core.  We use this to
835 	 * avoid attributing multiple hits within the same tick.
836 	 */
837 	unsigned int tick;
838 
839 	/*
840 	 * The hash tables allows us to quickly find an entry by origin
841 	 * block.
842 	 */
843 	struct smq_hash_table table;
844 	struct smq_hash_table hotspot_table;
845 
846 	bool current_writeback_sentinels;
847 	unsigned long next_writeback_period;
848 
849 	bool current_demote_sentinels;
850 	unsigned long next_demote_period;
851 
852 	unsigned int write_promote_level;
853 	unsigned int read_promote_level;
854 
855 	unsigned long next_hotspot_period;
856 	unsigned long next_cache_period;
857 
858 	struct background_tracker *bg_work;
859 
860 	bool migrations_allowed;
861 };
862 
863 /*----------------------------------------------------------------*/
864 
865 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned int level, bool which)
866 {
867 	return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
868 }
869 
870 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned int level)
871 {
872 	return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
873 }
874 
875 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned int level)
876 {
877 	return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
878 }
879 
880 static void __update_writeback_sentinels(struct smq_policy *mq)
881 {
882 	unsigned int level;
883 	struct queue *q = &mq->dirty;
884 	struct entry *sentinel;
885 
886 	for (level = 0; level < q->nr_levels; level++) {
887 		sentinel = writeback_sentinel(mq, level);
888 		q_del(q, sentinel);
889 		q_push(q, sentinel);
890 	}
891 }
892 
893 static void __update_demote_sentinels(struct smq_policy *mq)
894 {
895 	unsigned int level;
896 	struct queue *q = &mq->clean;
897 	struct entry *sentinel;
898 
899 	for (level = 0; level < q->nr_levels; level++) {
900 		sentinel = demote_sentinel(mq, level);
901 		q_del(q, sentinel);
902 		q_push(q, sentinel);
903 	}
904 }
905 
906 static void update_sentinels(struct smq_policy *mq)
907 {
908 	if (time_after(jiffies, mq->next_writeback_period)) {
909 		mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
910 		mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
911 		__update_writeback_sentinels(mq);
912 	}
913 
914 	if (time_after(jiffies, mq->next_demote_period)) {
915 		mq->next_demote_period = jiffies + DEMOTE_PERIOD;
916 		mq->current_demote_sentinels = !mq->current_demote_sentinels;
917 		__update_demote_sentinels(mq);
918 	}
919 }
920 
921 static void __sentinels_init(struct smq_policy *mq)
922 {
923 	unsigned int level;
924 	struct entry *sentinel;
925 
926 	for (level = 0; level < NR_CACHE_LEVELS; level++) {
927 		sentinel = writeback_sentinel(mq, level);
928 		sentinel->level = level;
929 		q_push(&mq->dirty, sentinel);
930 
931 		sentinel = demote_sentinel(mq, level);
932 		sentinel->level = level;
933 		q_push(&mq->clean, sentinel);
934 	}
935 }
936 
937 static void sentinels_init(struct smq_policy *mq)
938 {
939 	mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
940 	mq->next_demote_period = jiffies + DEMOTE_PERIOD;
941 
942 	mq->current_writeback_sentinels = false;
943 	mq->current_demote_sentinels = false;
944 	__sentinels_init(mq);
945 
946 	mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
947 	mq->current_demote_sentinels = !mq->current_demote_sentinels;
948 	__sentinels_init(mq);
949 }
950 
951 /*----------------------------------------------------------------*/
952 
953 static void del_queue(struct smq_policy *mq, struct entry *e)
954 {
955 	q_del(e->dirty ? &mq->dirty : &mq->clean, e);
956 }
957 
958 static void push_queue(struct smq_policy *mq, struct entry *e)
959 {
960 	if (e->dirty)
961 		q_push(&mq->dirty, e);
962 	else
963 		q_push(&mq->clean, e);
964 }
965 
966 // !h, !q, a -> h, q, a
967 static void push(struct smq_policy *mq, struct entry *e)
968 {
969 	h_insert(&mq->table, e);
970 	if (!e->pending_work)
971 		push_queue(mq, e);
972 }
973 
974 static void push_queue_front(struct smq_policy *mq, struct entry *e)
975 {
976 	if (e->dirty)
977 		q_push_front(&mq->dirty, e);
978 	else
979 		q_push_front(&mq->clean, e);
980 }
981 
982 static void push_front(struct smq_policy *mq, struct entry *e)
983 {
984 	h_insert(&mq->table, e);
985 	if (!e->pending_work)
986 		push_queue_front(mq, e);
987 }
988 
989 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
990 {
991 	return to_cblock(get_index(&mq->cache_alloc, e));
992 }
993 
994 static void requeue(struct smq_policy *mq, struct entry *e)
995 {
996 	/*
997 	 * Pending work has temporarily been taken out of the queues.
998 	 */
999 	if (e->pending_work)
1000 		return;
1001 
1002 	if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
1003 		if (!e->dirty) {
1004 			q_requeue(&mq->clean, e, 1u, NULL, NULL);
1005 			return;
1006 		}
1007 
1008 		q_requeue(&mq->dirty, e, 1u,
1009 			  get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels),
1010 			  get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels));
1011 	}
1012 }
1013 
1014 static unsigned int default_promote_level(struct smq_policy *mq)
1015 {
1016 	/*
1017 	 * The promote level depends on the current performance of the
1018 	 * cache.
1019 	 *
1020 	 * If the cache is performing badly, then we can't afford
1021 	 * to promote much without causing performance to drop below that
1022 	 * of the origin device.
1023 	 *
1024 	 * If the cache is performing well, then we don't need to promote
1025 	 * much.  If it isn't broken, don't fix it.
1026 	 *
1027 	 * If the cache is middling then we promote more.
1028 	 *
1029 	 * This scheme reminds me of a graph of entropy vs probability of a
1030 	 * binary variable.
1031 	 */
1032 	static const unsigned int table[] = {
1033 		1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1
1034 	};
1035 
1036 	unsigned int hits = mq->cache_stats.hits;
1037 	unsigned int misses = mq->cache_stats.misses;
1038 	unsigned int index = safe_div(hits << 4u, hits + misses);
1039 	return table[index];
1040 }
1041 
1042 static void update_promote_levels(struct smq_policy *mq)
1043 {
1044 	/*
1045 	 * If there are unused cache entries then we want to be really
1046 	 * eager to promote.
1047 	 */
1048 	unsigned int threshold_level = allocator_empty(&mq->cache_alloc) ?
1049 		default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1050 
1051 	threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS);
1052 
1053 	/*
1054 	 * If the hotspot queue is performing badly then we have little
1055 	 * confidence that we know which blocks to promote.  So we cut down
1056 	 * the amount of promotions.
1057 	 */
1058 	switch (stats_assess(&mq->hotspot_stats)) {
1059 	case Q_POOR:
1060 		threshold_level /= 4u;
1061 		break;
1062 
1063 	case Q_FAIR:
1064 		threshold_level /= 2u;
1065 		break;
1066 
1067 	case Q_WELL:
1068 		break;
1069 	}
1070 
1071 	mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1072 	mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level);
1073 }
1074 
1075 /*
1076  * If the hotspot queue is performing badly, then we try and move entries
1077  * around more quickly.
1078  */
1079 static void update_level_jump(struct smq_policy *mq)
1080 {
1081 	switch (stats_assess(&mq->hotspot_stats)) {
1082 	case Q_POOR:
1083 		mq->hotspot_level_jump = 4u;
1084 		break;
1085 
1086 	case Q_FAIR:
1087 		mq->hotspot_level_jump = 2u;
1088 		break;
1089 
1090 	case Q_WELL:
1091 		mq->hotspot_level_jump = 1u;
1092 		break;
1093 	}
1094 }
1095 
1096 static void end_hotspot_period(struct smq_policy *mq)
1097 {
1098 	clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1099 	update_promote_levels(mq);
1100 
1101 	if (time_after(jiffies, mq->next_hotspot_period)) {
1102 		update_level_jump(mq);
1103 		q_redistribute(&mq->hotspot);
1104 		stats_reset(&mq->hotspot_stats);
1105 		mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1106 	}
1107 }
1108 
1109 static void end_cache_period(struct smq_policy *mq)
1110 {
1111 	if (time_after(jiffies, mq->next_cache_period)) {
1112 		clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1113 
1114 		q_redistribute(&mq->dirty);
1115 		q_redistribute(&mq->clean);
1116 		stats_reset(&mq->cache_stats);
1117 
1118 		mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1119 	}
1120 }
1121 
1122 /*----------------------------------------------------------------*/
1123 
1124 /*
1125  * Targets are given as a percentage.
1126  */
1127 #define CLEAN_TARGET 25u
1128 #define FREE_TARGET 25u
1129 
1130 static unsigned int percent_to_target(struct smq_policy *mq, unsigned int p)
1131 {
1132 	return from_cblock(mq->cache_size) * p / 100u;
1133 }
1134 
1135 static bool clean_target_met(struct smq_policy *mq, bool idle)
1136 {
1137 	/*
1138 	 * Cache entries may not be populated.  So we cannot rely on the
1139 	 * size of the clean queue.
1140 	 */
1141 	if (idle) {
1142 		/*
1143 		 * We'd like to clean everything.
1144 		 */
1145 		return q_size(&mq->dirty) == 0u;
1146 	}
1147 
1148 	/*
1149 	 * If we're busy we don't worry about cleaning at all.
1150 	 */
1151 	return true;
1152 }
1153 
1154 static bool free_target_met(struct smq_policy *mq)
1155 {
1156 	unsigned int nr_free;
1157 
1158 	nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated;
1159 	return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >=
1160 		percent_to_target(mq, FREE_TARGET);
1161 }
1162 
1163 /*----------------------------------------------------------------*/
1164 
1165 static void mark_pending(struct smq_policy *mq, struct entry *e)
1166 {
1167 	BUG_ON(e->sentinel);
1168 	BUG_ON(!e->allocated);
1169 	BUG_ON(e->pending_work);
1170 	e->pending_work = true;
1171 }
1172 
1173 static void clear_pending(struct smq_policy *mq, struct entry *e)
1174 {
1175 	BUG_ON(!e->pending_work);
1176 	e->pending_work = false;
1177 }
1178 
1179 static void queue_writeback(struct smq_policy *mq, bool idle)
1180 {
1181 	int r;
1182 	struct policy_work work;
1183 	struct entry *e;
1184 
1185 	e = q_peek(&mq->dirty, mq->dirty.nr_levels, idle);
1186 	if (e) {
1187 		mark_pending(mq, e);
1188 		q_del(&mq->dirty, e);
1189 
1190 		work.op = POLICY_WRITEBACK;
1191 		work.oblock = e->oblock;
1192 		work.cblock = infer_cblock(mq, e);
1193 
1194 		r = btracker_queue(mq->bg_work, &work, NULL);
1195 		if (r) {
1196 			clear_pending(mq, e);
1197 			q_push_front(&mq->dirty, e);
1198 		}
1199 	}
1200 }
1201 
1202 static void queue_demotion(struct smq_policy *mq)
1203 {
1204 	int r;
1205 	struct policy_work work;
1206 	struct entry *e;
1207 
1208 	if (WARN_ON_ONCE(!mq->migrations_allowed))
1209 		return;
1210 
1211 	e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true);
1212 	if (!e) {
1213 		if (!clean_target_met(mq, true))
1214 			queue_writeback(mq, false);
1215 		return;
1216 	}
1217 
1218 	mark_pending(mq, e);
1219 	q_del(&mq->clean, e);
1220 
1221 	work.op = POLICY_DEMOTE;
1222 	work.oblock = e->oblock;
1223 	work.cblock = infer_cblock(mq, e);
1224 	r = btracker_queue(mq->bg_work, &work, NULL);
1225 	if (r) {
1226 		clear_pending(mq, e);
1227 		q_push_front(&mq->clean, e);
1228 	}
1229 }
1230 
1231 static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock,
1232 			    struct policy_work **workp)
1233 {
1234 	int r;
1235 	struct entry *e;
1236 	struct policy_work work;
1237 
1238 	if (!mq->migrations_allowed)
1239 		return;
1240 
1241 	if (allocator_empty(&mq->cache_alloc)) {
1242 		/*
1243 		 * We always claim to be 'idle' to ensure some demotions happen
1244 		 * with continuous loads.
1245 		 */
1246 		if (!free_target_met(mq))
1247 			queue_demotion(mq);
1248 		return;
1249 	}
1250 
1251 	if (btracker_promotion_already_present(mq->bg_work, oblock))
1252 		return;
1253 
1254 	/*
1255 	 * We allocate the entry now to reserve the cblock.  If the
1256 	 * background work is aborted we must remember to free it.
1257 	 */
1258 	e = alloc_entry(&mq->cache_alloc);
1259 	BUG_ON(!e);
1260 	e->pending_work = true;
1261 	work.op = POLICY_PROMOTE;
1262 	work.oblock = oblock;
1263 	work.cblock = infer_cblock(mq, e);
1264 	r = btracker_queue(mq->bg_work, &work, workp);
1265 	if (r)
1266 		free_entry(&mq->cache_alloc, e);
1267 }
1268 
1269 /*----------------------------------------------------------------*/
1270 
1271 enum promote_result {
1272 	PROMOTE_NOT,
1273 	PROMOTE_TEMPORARY,
1274 	PROMOTE_PERMANENT
1275 };
1276 
1277 /*
1278  * Converts a boolean into a promote result.
1279  */
1280 static enum promote_result maybe_promote(bool promote)
1281 {
1282 	return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1283 }
1284 
1285 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e,
1286 					  int data_dir, bool fast_promote)
1287 {
1288 	if (data_dir == WRITE) {
1289 		if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1290 			return PROMOTE_TEMPORARY;
1291 
1292 		return maybe_promote(hs_e->level >= mq->write_promote_level);
1293 	} else
1294 		return maybe_promote(hs_e->level >= mq->read_promote_level);
1295 }
1296 
1297 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1298 {
1299 	sector_t r = from_oblock(b);
1300 	(void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1301 	return to_oblock(r);
1302 }
1303 
1304 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b)
1305 {
1306 	unsigned int hi;
1307 	dm_oblock_t hb = to_hblock(mq, b);
1308 	struct entry *e = h_lookup(&mq->hotspot_table, hb);
1309 
1310 	if (e) {
1311 		stats_level_accessed(&mq->hotspot_stats, e->level);
1312 
1313 		hi = get_index(&mq->hotspot_alloc, e);
1314 		q_requeue(&mq->hotspot, e,
1315 			  test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1316 			  0u : mq->hotspot_level_jump,
1317 			  NULL, NULL);
1318 
1319 	} else {
1320 		stats_miss(&mq->hotspot_stats);
1321 
1322 		e = alloc_entry(&mq->hotspot_alloc);
1323 		if (!e) {
1324 			e = q_pop(&mq->hotspot);
1325 			if (e) {
1326 				h_remove(&mq->hotspot_table, e);
1327 				hi = get_index(&mq->hotspot_alloc, e);
1328 				clear_bit(hi, mq->hotspot_hit_bits);
1329 			}
1330 
1331 		}
1332 
1333 		if (e) {
1334 			e->oblock = hb;
1335 			q_push(&mq->hotspot, e);
1336 			h_insert(&mq->hotspot_table, e);
1337 		}
1338 	}
1339 
1340 	return e;
1341 }
1342 
1343 /*----------------------------------------------------------------*/
1344 
1345 /*
1346  * Public interface, via the policy struct.  See dm-cache-policy.h for a
1347  * description of these.
1348  */
1349 
1350 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1351 {
1352 	return container_of(p, struct smq_policy, policy);
1353 }
1354 
1355 static void smq_destroy(struct dm_cache_policy *p)
1356 {
1357 	struct smq_policy *mq = to_smq_policy(p);
1358 
1359 	btracker_destroy(mq->bg_work);
1360 	h_exit(&mq->hotspot_table);
1361 	h_exit(&mq->table);
1362 	free_bitset(mq->hotspot_hit_bits);
1363 	free_bitset(mq->cache_hit_bits);
1364 	space_exit(&mq->es);
1365 	kfree(mq);
1366 }
1367 
1368 /*----------------------------------------------------------------*/
1369 
1370 static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock,
1371 		    int data_dir, bool fast_copy,
1372 		    struct policy_work **work, bool *background_work)
1373 {
1374 	struct entry *e, *hs_e;
1375 	enum promote_result pr;
1376 
1377 	*background_work = false;
1378 
1379 	e = h_lookup(&mq->table, oblock);
1380 	if (e) {
1381 		stats_level_accessed(&mq->cache_stats, e->level);
1382 
1383 		requeue(mq, e);
1384 		*cblock = infer_cblock(mq, e);
1385 		return 0;
1386 
1387 	} else {
1388 		stats_miss(&mq->cache_stats);
1389 
1390 		/*
1391 		 * The hotspot queue only gets updated with misses.
1392 		 */
1393 		hs_e = update_hotspot_queue(mq, oblock);
1394 
1395 		pr = should_promote(mq, hs_e, data_dir, fast_copy);
1396 		if (pr != PROMOTE_NOT) {
1397 			queue_promotion(mq, oblock, work);
1398 			*background_work = true;
1399 		}
1400 
1401 		return -ENOENT;
1402 	}
1403 }
1404 
1405 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
1406 		      int data_dir, bool fast_copy,
1407 		      bool *background_work)
1408 {
1409 	int r;
1410 	unsigned long flags;
1411 	struct smq_policy *mq = to_smq_policy(p);
1412 
1413 	spin_lock_irqsave(&mq->lock, flags);
1414 	r = __lookup(mq, oblock, cblock,
1415 		     data_dir, fast_copy,
1416 		     NULL, background_work);
1417 	spin_unlock_irqrestore(&mq->lock, flags);
1418 
1419 	return r;
1420 }
1421 
1422 static int smq_lookup_with_work(struct dm_cache_policy *p,
1423 				dm_oblock_t oblock, dm_cblock_t *cblock,
1424 				int data_dir, bool fast_copy,
1425 				struct policy_work **work)
1426 {
1427 	int r;
1428 	bool background_queued;
1429 	unsigned long flags;
1430 	struct smq_policy *mq = to_smq_policy(p);
1431 
1432 	spin_lock_irqsave(&mq->lock, flags);
1433 	r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued);
1434 	spin_unlock_irqrestore(&mq->lock, flags);
1435 
1436 	return r;
1437 }
1438 
1439 static int smq_get_background_work(struct dm_cache_policy *p, bool idle,
1440 				   struct policy_work **result)
1441 {
1442 	int r;
1443 	unsigned long flags;
1444 	struct smq_policy *mq = to_smq_policy(p);
1445 
1446 	spin_lock_irqsave(&mq->lock, flags);
1447 	r = btracker_issue(mq->bg_work, result);
1448 	if (r == -ENODATA) {
1449 		if (!clean_target_met(mq, idle)) {
1450 			queue_writeback(mq, idle);
1451 			r = btracker_issue(mq->bg_work, result);
1452 		}
1453 	}
1454 	spin_unlock_irqrestore(&mq->lock, flags);
1455 
1456 	return r;
1457 }
1458 
1459 /*
1460  * We need to clear any pending work flags that have been set, and in the
1461  * case of promotion free the entry for the destination cblock.
1462  */
1463 static void __complete_background_work(struct smq_policy *mq,
1464 				       struct policy_work *work,
1465 				       bool success)
1466 {
1467 	struct entry *e = get_entry(&mq->cache_alloc,
1468 				    from_cblock(work->cblock));
1469 
1470 	switch (work->op) {
1471 	case POLICY_PROMOTE:
1472 		// !h, !q, a
1473 		clear_pending(mq, e);
1474 		if (success) {
1475 			e->oblock = work->oblock;
1476 			e->level = NR_CACHE_LEVELS - 1;
1477 			push(mq, e);
1478 			// h, q, a
1479 		} else {
1480 			free_entry(&mq->cache_alloc, e);
1481 			// !h, !q, !a
1482 		}
1483 		break;
1484 
1485 	case POLICY_DEMOTE:
1486 		// h, !q, a
1487 		if (success) {
1488 			h_remove(&mq->table, e);
1489 			free_entry(&mq->cache_alloc, e);
1490 			// !h, !q, !a
1491 		} else {
1492 			clear_pending(mq, e);
1493 			push_queue(mq, e);
1494 			// h, q, a
1495 		}
1496 		break;
1497 
1498 	case POLICY_WRITEBACK:
1499 		// h, !q, a
1500 		clear_pending(mq, e);
1501 		push_queue(mq, e);
1502 		// h, q, a
1503 		break;
1504 	}
1505 
1506 	btracker_complete(mq->bg_work, work);
1507 }
1508 
1509 static void smq_complete_background_work(struct dm_cache_policy *p,
1510 					 struct policy_work *work,
1511 					 bool success)
1512 {
1513 	unsigned long flags;
1514 	struct smq_policy *mq = to_smq_policy(p);
1515 
1516 	spin_lock_irqsave(&mq->lock, flags);
1517 	__complete_background_work(mq, work, success);
1518 	spin_unlock_irqrestore(&mq->lock, flags);
1519 }
1520 
1521 // in_hash(oblock) -> in_hash(oblock)
1522 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set)
1523 {
1524 	struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1525 
1526 	if (e->pending_work)
1527 		e->dirty = set;
1528 	else {
1529 		del_queue(mq, e);
1530 		e->dirty = set;
1531 		push_queue(mq, e);
1532 	}
1533 }
1534 
1535 static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1536 {
1537 	unsigned long flags;
1538 	struct smq_policy *mq = to_smq_policy(p);
1539 
1540 	spin_lock_irqsave(&mq->lock, flags);
1541 	__smq_set_clear_dirty(mq, cblock, true);
1542 	spin_unlock_irqrestore(&mq->lock, flags);
1543 }
1544 
1545 static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1546 {
1547 	struct smq_policy *mq = to_smq_policy(p);
1548 	unsigned long flags;
1549 
1550 	spin_lock_irqsave(&mq->lock, flags);
1551 	__smq_set_clear_dirty(mq, cblock, false);
1552 	spin_unlock_irqrestore(&mq->lock, flags);
1553 }
1554 
1555 static unsigned int random_level(dm_cblock_t cblock)
1556 {
1557 	return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
1558 }
1559 
1560 static int smq_load_mapping(struct dm_cache_policy *p,
1561 			    dm_oblock_t oblock, dm_cblock_t cblock,
1562 			    bool dirty, uint32_t hint, bool hint_valid)
1563 {
1564 	struct smq_policy *mq = to_smq_policy(p);
1565 	struct entry *e;
1566 
1567 	e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1568 	e->oblock = oblock;
1569 	e->dirty = dirty;
1570 	e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
1571 	e->pending_work = false;
1572 
1573 	/*
1574 	 * When we load mappings we push ahead of both sentinels in order to
1575 	 * allow demotions and cleaning to occur immediately.
1576 	 */
1577 	push_front(mq, e);
1578 
1579 	return 0;
1580 }
1581 
1582 static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock)
1583 {
1584 	struct smq_policy *mq = to_smq_policy(p);
1585 	struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1586 
1587 	if (!e->allocated)
1588 		return -ENODATA;
1589 
1590 	// FIXME: what if this block has pending background work?
1591 	del_queue(mq, e);
1592 	h_remove(&mq->table, e);
1593 	free_entry(&mq->cache_alloc, e);
1594 	return 0;
1595 }
1596 
1597 static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
1598 {
1599 	struct smq_policy *mq = to_smq_policy(p);
1600 	struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1601 
1602 	if (!e->allocated)
1603 		return 0;
1604 
1605 	return e->level;
1606 }
1607 
1608 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1609 {
1610 	dm_cblock_t r;
1611 	unsigned long flags;
1612 	struct smq_policy *mq = to_smq_policy(p);
1613 
1614 	spin_lock_irqsave(&mq->lock, flags);
1615 	r = to_cblock(mq->cache_alloc.nr_allocated);
1616 	spin_unlock_irqrestore(&mq->lock, flags);
1617 
1618 	return r;
1619 }
1620 
1621 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1622 {
1623 	struct smq_policy *mq = to_smq_policy(p);
1624 	unsigned long flags;
1625 
1626 	spin_lock_irqsave(&mq->lock, flags);
1627 	mq->tick++;
1628 	update_sentinels(mq);
1629 	end_hotspot_period(mq);
1630 	end_cache_period(mq);
1631 	spin_unlock_irqrestore(&mq->lock, flags);
1632 }
1633 
1634 static void smq_allow_migrations(struct dm_cache_policy *p, bool allow)
1635 {
1636 	struct smq_policy *mq = to_smq_policy(p);
1637 
1638 	mq->migrations_allowed = allow;
1639 }
1640 
1641 /*
1642  * smq has no config values, but the old mq policy did.  To avoid breaking
1643  * software we continue to accept these configurables for the mq policy,
1644  * but they have no effect.
1645  */
1646 static int mq_set_config_value(struct dm_cache_policy *p,
1647 			       const char *key, const char *value)
1648 {
1649 	unsigned long tmp;
1650 
1651 	if (kstrtoul(value, 10, &tmp))
1652 		return -EINVAL;
1653 
1654 	if (!strcasecmp(key, "random_threshold") ||
1655 	    !strcasecmp(key, "sequential_threshold") ||
1656 	    !strcasecmp(key, "discard_promote_adjustment") ||
1657 	    !strcasecmp(key, "read_promote_adjustment") ||
1658 	    !strcasecmp(key, "write_promote_adjustment")) {
1659 		DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1660 		return 0;
1661 	}
1662 
1663 	return -EINVAL;
1664 }
1665 
1666 static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1667 				 unsigned int maxlen, ssize_t *sz_ptr)
1668 {
1669 	ssize_t sz = *sz_ptr;
1670 
1671 	DMEMIT("10 random_threshold 0 "
1672 	       "sequential_threshold 0 "
1673 	       "discard_promote_adjustment 0 "
1674 	       "read_promote_adjustment 0 "
1675 	       "write_promote_adjustment 0 ");
1676 
1677 	*sz_ptr = sz;
1678 	return 0;
1679 }
1680 
1681 /* Init the policy plugin interface function pointers. */
1682 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
1683 {
1684 	mq->policy.destroy = smq_destroy;
1685 	mq->policy.lookup = smq_lookup;
1686 	mq->policy.lookup_with_work = smq_lookup_with_work;
1687 	mq->policy.get_background_work = smq_get_background_work;
1688 	mq->policy.complete_background_work = smq_complete_background_work;
1689 	mq->policy.set_dirty = smq_set_dirty;
1690 	mq->policy.clear_dirty = smq_clear_dirty;
1691 	mq->policy.load_mapping = smq_load_mapping;
1692 	mq->policy.invalidate_mapping = smq_invalidate_mapping;
1693 	mq->policy.get_hint = smq_get_hint;
1694 	mq->policy.residency = smq_residency;
1695 	mq->policy.tick = smq_tick;
1696 	mq->policy.allow_migrations = smq_allow_migrations;
1697 
1698 	if (mimic_mq) {
1699 		mq->policy.set_config_value = mq_set_config_value;
1700 		mq->policy.emit_config_values = mq_emit_config_values;
1701 	}
1702 }
1703 
1704 static bool too_many_hotspot_blocks(sector_t origin_size,
1705 				    sector_t hotspot_block_size,
1706 				    unsigned int nr_hotspot_blocks)
1707 {
1708 	return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1709 }
1710 
1711 static void calc_hotspot_params(sector_t origin_size,
1712 				sector_t cache_block_size,
1713 				unsigned int nr_cache_blocks,
1714 				sector_t *hotspot_block_size,
1715 				unsigned int *nr_hotspot_blocks)
1716 {
1717 	*hotspot_block_size = cache_block_size * 16u;
1718 	*nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1719 
1720 	while ((*hotspot_block_size > cache_block_size) &&
1721 	       too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1722 		*hotspot_block_size /= 2u;
1723 }
1724 
1725 static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size,
1726 					    sector_t origin_size,
1727 					    sector_t cache_block_size,
1728 					    bool mimic_mq,
1729 					    bool migrations_allowed)
1730 {
1731 	unsigned int i;
1732 	unsigned int nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1733 	unsigned int total_sentinels = 2u * nr_sentinels_per_queue;
1734 	struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1735 
1736 	if (!mq)
1737 		return NULL;
1738 
1739 	init_policy_functions(mq, mimic_mq);
1740 	mq->cache_size = cache_size;
1741 	mq->cache_block_size = cache_block_size;
1742 
1743 	calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1744 			    &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1745 
1746 	mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1747 	mq->hotspot_level_jump = 1u;
1748 	if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1749 		DMERR("couldn't initialize entry space");
1750 		goto bad_pool_init;
1751 	}
1752 
1753 	init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1754 	for (i = 0; i < nr_sentinels_per_queue; i++)
1755 		get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1756 
1757 	init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1758 	for (i = 0; i < nr_sentinels_per_queue; i++)
1759 		get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1760 
1761 	init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1762 		       total_sentinels + mq->nr_hotspot_blocks);
1763 
1764 	init_allocator(&mq->cache_alloc, &mq->es,
1765 		       total_sentinels + mq->nr_hotspot_blocks,
1766 		       total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1767 
1768 	mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1769 	if (!mq->hotspot_hit_bits) {
1770 		DMERR("couldn't allocate hotspot hit bitset");
1771 		goto bad_hotspot_hit_bits;
1772 	}
1773 	clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1774 
1775 	if (from_cblock(cache_size)) {
1776 		mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1777 		if (!mq->cache_hit_bits) {
1778 			DMERR("couldn't allocate cache hit bitset");
1779 			goto bad_cache_hit_bits;
1780 		}
1781 		clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1782 	} else
1783 		mq->cache_hit_bits = NULL;
1784 
1785 	mq->tick = 0;
1786 	spin_lock_init(&mq->lock);
1787 
1788 	q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1789 	mq->hotspot.nr_top_levels = 8;
1790 	mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1791 					   from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1792 
1793 	q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1794 	q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1795 
1796 	stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1797 	stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1798 
1799 	if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1800 		goto bad_alloc_table;
1801 
1802 	if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1803 		goto bad_alloc_hotspot_table;
1804 
1805 	sentinels_init(mq);
1806 	mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1807 
1808 	mq->next_hotspot_period = jiffies;
1809 	mq->next_cache_period = jiffies;
1810 
1811 	mq->bg_work = btracker_create(4096); /* FIXME: hard coded value */
1812 	if (!mq->bg_work)
1813 		goto bad_btracker;
1814 
1815 	mq->migrations_allowed = migrations_allowed;
1816 
1817 	return &mq->policy;
1818 
1819 bad_btracker:
1820 	h_exit(&mq->hotspot_table);
1821 bad_alloc_hotspot_table:
1822 	h_exit(&mq->table);
1823 bad_alloc_table:
1824 	free_bitset(mq->cache_hit_bits);
1825 bad_cache_hit_bits:
1826 	free_bitset(mq->hotspot_hit_bits);
1827 bad_hotspot_hit_bits:
1828 	space_exit(&mq->es);
1829 bad_pool_init:
1830 	kfree(mq);
1831 
1832 	return NULL;
1833 }
1834 
1835 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1836 					  sector_t origin_size,
1837 					  sector_t cache_block_size)
1838 {
1839 	return __smq_create(cache_size, origin_size, cache_block_size, false, true);
1840 }
1841 
1842 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1843 					 sector_t origin_size,
1844 					 sector_t cache_block_size)
1845 {
1846 	return __smq_create(cache_size, origin_size, cache_block_size, true, true);
1847 }
1848 
1849 static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size,
1850 					      sector_t origin_size,
1851 					      sector_t cache_block_size)
1852 {
1853 	return __smq_create(cache_size, origin_size, cache_block_size, false, false);
1854 }
1855 
1856 /*----------------------------------------------------------------*/
1857 
1858 static struct dm_cache_policy_type smq_policy_type = {
1859 	.name = "smq",
1860 	.version = {2, 0, 0},
1861 	.hint_size = 4,
1862 	.owner = THIS_MODULE,
1863 	.create = smq_create
1864 };
1865 
1866 static struct dm_cache_policy_type mq_policy_type = {
1867 	.name = "mq",
1868 	.version = {2, 0, 0},
1869 	.hint_size = 4,
1870 	.owner = THIS_MODULE,
1871 	.create = mq_create,
1872 };
1873 
1874 static struct dm_cache_policy_type cleaner_policy_type = {
1875 	.name = "cleaner",
1876 	.version = {2, 0, 0},
1877 	.hint_size = 4,
1878 	.owner = THIS_MODULE,
1879 	.create = cleaner_create,
1880 };
1881 
1882 static struct dm_cache_policy_type default_policy_type = {
1883 	.name = "default",
1884 	.version = {2, 0, 0},
1885 	.hint_size = 4,
1886 	.owner = THIS_MODULE,
1887 	.create = smq_create,
1888 	.real = &smq_policy_type
1889 };
1890 
1891 static int __init smq_init(void)
1892 {
1893 	int r;
1894 
1895 	r = dm_cache_policy_register(&smq_policy_type);
1896 	if (r) {
1897 		DMERR("register failed %d", r);
1898 		return -ENOMEM;
1899 	}
1900 
1901 	r = dm_cache_policy_register(&mq_policy_type);
1902 	if (r) {
1903 		DMERR("register failed (as mq) %d", r);
1904 		goto out_mq;
1905 	}
1906 
1907 	r = dm_cache_policy_register(&cleaner_policy_type);
1908 	if (r) {
1909 		DMERR("register failed (as cleaner) %d", r);
1910 		goto out_cleaner;
1911 	}
1912 
1913 	r = dm_cache_policy_register(&default_policy_type);
1914 	if (r) {
1915 		DMERR("register failed (as default) %d", r);
1916 		goto out_default;
1917 	}
1918 
1919 	return 0;
1920 
1921 out_default:
1922 	dm_cache_policy_unregister(&cleaner_policy_type);
1923 out_cleaner:
1924 	dm_cache_policy_unregister(&mq_policy_type);
1925 out_mq:
1926 	dm_cache_policy_unregister(&smq_policy_type);
1927 
1928 	return -ENOMEM;
1929 }
1930 
1931 static void __exit smq_exit(void)
1932 {
1933 	dm_cache_policy_unregister(&cleaner_policy_type);
1934 	dm_cache_policy_unregister(&smq_policy_type);
1935 	dm_cache_policy_unregister(&mq_policy_type);
1936 	dm_cache_policy_unregister(&default_policy_type);
1937 }
1938 
1939 module_init(smq_init);
1940 module_exit(smq_exit);
1941 
1942 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1943 MODULE_LICENSE("GPL");
1944 MODULE_DESCRIPTION("smq cache policy");
1945 
1946 MODULE_ALIAS("dm-cache-default");
1947 MODULE_ALIAS("dm-cache-mq");
1948 MODULE_ALIAS("dm-cache-cleaner");
1949