xref: /linux/drivers/md/dm-cache-policy-smq.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (C) 2015 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-cache-policy.h"
8 #include "dm-cache-policy-internal.h"
9 #include "dm.h"
10 
11 #include <linux/hash.h>
12 #include <linux/jiffies.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/vmalloc.h>
16 #include <linux/math64.h>
17 
18 #define DM_MSG_PREFIX "cache-policy-smq"
19 
20 /*----------------------------------------------------------------*/
21 
22 /*
23  * Safe division functions that return zero on divide by zero.
24  */
25 static unsigned safe_div(unsigned n, unsigned d)
26 {
27 	return d ? n / d : 0u;
28 }
29 
30 static unsigned safe_mod(unsigned n, unsigned d)
31 {
32 	return d ? n % d : 0u;
33 }
34 
35 /*----------------------------------------------------------------*/
36 
37 struct entry {
38 	unsigned hash_next:28;
39 	unsigned prev:28;
40 	unsigned next:28;
41 	unsigned level:7;
42 	bool dirty:1;
43 	bool allocated:1;
44 	bool sentinel:1;
45 
46 	dm_oblock_t oblock;
47 };
48 
49 /*----------------------------------------------------------------*/
50 
51 #define INDEXER_NULL ((1u << 28u) - 1u)
52 
53 /*
54  * An entry_space manages a set of entries that we use for the queues.
55  * The clean and dirty queues share entries, so this object is separate
56  * from the queue itself.
57  */
58 struct entry_space {
59 	struct entry *begin;
60 	struct entry *end;
61 };
62 
63 static int space_init(struct entry_space *es, unsigned nr_entries)
64 {
65 	if (!nr_entries) {
66 		es->begin = es->end = NULL;
67 		return 0;
68 	}
69 
70 	es->begin = vzalloc(sizeof(struct entry) * nr_entries);
71 	if (!es->begin)
72 		return -ENOMEM;
73 
74 	es->end = es->begin + nr_entries;
75 	return 0;
76 }
77 
78 static void space_exit(struct entry_space *es)
79 {
80 	vfree(es->begin);
81 }
82 
83 static struct entry *__get_entry(struct entry_space *es, unsigned block)
84 {
85 	struct entry *e;
86 
87 	e = es->begin + block;
88 	BUG_ON(e >= es->end);
89 
90 	return e;
91 }
92 
93 static unsigned to_index(struct entry_space *es, struct entry *e)
94 {
95 	BUG_ON(e < es->begin || e >= es->end);
96 	return e - es->begin;
97 }
98 
99 static struct entry *to_entry(struct entry_space *es, unsigned block)
100 {
101 	if (block == INDEXER_NULL)
102 		return NULL;
103 
104 	return __get_entry(es, block);
105 }
106 
107 /*----------------------------------------------------------------*/
108 
109 struct ilist {
110 	unsigned nr_elts;	/* excluding sentinel entries */
111 	unsigned head, tail;
112 };
113 
114 static void l_init(struct ilist *l)
115 {
116 	l->nr_elts = 0;
117 	l->head = l->tail = INDEXER_NULL;
118 }
119 
120 static struct entry *l_head(struct entry_space *es, struct ilist *l)
121 {
122 	return to_entry(es, l->head);
123 }
124 
125 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
126 {
127 	return to_entry(es, l->tail);
128 }
129 
130 static struct entry *l_next(struct entry_space *es, struct entry *e)
131 {
132 	return to_entry(es, e->next);
133 }
134 
135 static struct entry *l_prev(struct entry_space *es, struct entry *e)
136 {
137 	return to_entry(es, e->prev);
138 }
139 
140 static bool l_empty(struct ilist *l)
141 {
142 	return l->head == INDEXER_NULL;
143 }
144 
145 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
146 {
147 	struct entry *head = l_head(es, l);
148 
149 	e->next = l->head;
150 	e->prev = INDEXER_NULL;
151 
152 	if (head)
153 		head->prev = l->head = to_index(es, e);
154 	else
155 		l->head = l->tail = to_index(es, e);
156 
157 	if (!e->sentinel)
158 		l->nr_elts++;
159 }
160 
161 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
162 {
163 	struct entry *tail = l_tail(es, l);
164 
165 	e->next = INDEXER_NULL;
166 	e->prev = l->tail;
167 
168 	if (tail)
169 		tail->next = l->tail = to_index(es, e);
170 	else
171 		l->head = l->tail = to_index(es, e);
172 
173 	if (!e->sentinel)
174 		l->nr_elts++;
175 }
176 
177 static void l_add_before(struct entry_space *es, struct ilist *l,
178 			 struct entry *old, struct entry *e)
179 {
180 	struct entry *prev = l_prev(es, old);
181 
182 	if (!prev)
183 		l_add_head(es, l, e);
184 
185 	else {
186 		e->prev = old->prev;
187 		e->next = to_index(es, old);
188 		prev->next = old->prev = to_index(es, e);
189 
190 		if (!e->sentinel)
191 			l->nr_elts++;
192 	}
193 }
194 
195 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
196 {
197 	struct entry *prev = l_prev(es, e);
198 	struct entry *next = l_next(es, e);
199 
200 	if (prev)
201 		prev->next = e->next;
202 	else
203 		l->head = e->next;
204 
205 	if (next)
206 		next->prev = e->prev;
207 	else
208 		l->tail = e->prev;
209 
210 	if (!e->sentinel)
211 		l->nr_elts--;
212 }
213 
214 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
215 {
216 	struct entry *e;
217 
218 	for (e = l_tail(es, l); e; e = l_prev(es, e))
219 		if (!e->sentinel) {
220 			l_del(es, l, e);
221 			return e;
222 		}
223 
224 	return NULL;
225 }
226 
227 /*----------------------------------------------------------------*/
228 
229 /*
230  * The stochastic-multi-queue is a set of lru lists stacked into levels.
231  * Entries are moved up levels when they are used, which loosely orders the
232  * most accessed entries in the top levels and least in the bottom.  This
233  * structure is *much* better than a single lru list.
234  */
235 #define MAX_LEVELS 64u
236 
237 struct queue {
238 	struct entry_space *es;
239 
240 	unsigned nr_elts;
241 	unsigned nr_levels;
242 	struct ilist qs[MAX_LEVELS];
243 
244 	/*
245 	 * We maintain a count of the number of entries we would like in each
246 	 * level.
247 	 */
248 	unsigned last_target_nr_elts;
249 	unsigned nr_top_levels;
250 	unsigned nr_in_top_levels;
251 	unsigned target_count[MAX_LEVELS];
252 };
253 
254 static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
255 {
256 	unsigned i;
257 
258 	q->es = es;
259 	q->nr_elts = 0;
260 	q->nr_levels = nr_levels;
261 
262 	for (i = 0; i < q->nr_levels; i++) {
263 		l_init(q->qs + i);
264 		q->target_count[i] = 0u;
265 	}
266 
267 	q->last_target_nr_elts = 0u;
268 	q->nr_top_levels = 0u;
269 	q->nr_in_top_levels = 0u;
270 }
271 
272 static unsigned q_size(struct queue *q)
273 {
274 	return q->nr_elts;
275 }
276 
277 /*
278  * Insert an entry to the back of the given level.
279  */
280 static void q_push(struct queue *q, struct entry *e)
281 {
282 	if (!e->sentinel)
283 		q->nr_elts++;
284 
285 	l_add_tail(q->es, q->qs + e->level, e);
286 }
287 
288 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
289 {
290 	if (!e->sentinel)
291 		q->nr_elts++;
292 
293 	l_add_before(q->es, q->qs + e->level, old, e);
294 }
295 
296 static void q_del(struct queue *q, struct entry *e)
297 {
298 	l_del(q->es, q->qs + e->level, e);
299 	if (!e->sentinel)
300 		q->nr_elts--;
301 }
302 
303 /*
304  * Return the oldest entry of the lowest populated level.
305  */
306 static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
307 {
308 	unsigned level;
309 	struct entry *e;
310 
311 	max_level = min(max_level, q->nr_levels);
312 
313 	for (level = 0; level < max_level; level++)
314 		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
315 			if (e->sentinel) {
316 				if (can_cross_sentinel)
317 					continue;
318 				else
319 					break;
320 			}
321 
322 			return e;
323 		}
324 
325 	return NULL;
326 }
327 
328 static struct entry *q_pop(struct queue *q)
329 {
330 	struct entry *e = q_peek(q, q->nr_levels, true);
331 
332 	if (e)
333 		q_del(q, e);
334 
335 	return e;
336 }
337 
338 /*
339  * Pops an entry from a level that is not past a sentinel.
340  */
341 static struct entry *q_pop_old(struct queue *q, unsigned max_level)
342 {
343 	struct entry *e = q_peek(q, max_level, false);
344 
345 	if (e)
346 		q_del(q, e);
347 
348 	return e;
349 }
350 
351 /*
352  * This function assumes there is a non-sentinel entry to pop.  It's only
353  * used by redistribute, so we know this is true.  It also doesn't adjust
354  * the q->nr_elts count.
355  */
356 static struct entry *__redist_pop_from(struct queue *q, unsigned level)
357 {
358 	struct entry *e;
359 
360 	for (; level < q->nr_levels; level++)
361 		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
362 			if (!e->sentinel) {
363 				l_del(q->es, q->qs + e->level, e);
364 				return e;
365 			}
366 
367 	return NULL;
368 }
369 
370 static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
371 {
372 	unsigned level, nr_levels, entries_per_level, remainder;
373 
374 	BUG_ON(lbegin > lend);
375 	BUG_ON(lend > q->nr_levels);
376 	nr_levels = lend - lbegin;
377 	entries_per_level = safe_div(nr_elts, nr_levels);
378 	remainder = safe_mod(nr_elts, nr_levels);
379 
380 	for (level = lbegin; level < lend; level++)
381 		q->target_count[level] =
382 			(level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
383 }
384 
385 /*
386  * Typically we have fewer elements in the top few levels which allows us
387  * to adjust the promote threshold nicely.
388  */
389 static void q_set_targets(struct queue *q)
390 {
391 	if (q->last_target_nr_elts == q->nr_elts)
392 		return;
393 
394 	q->last_target_nr_elts = q->nr_elts;
395 
396 	if (q->nr_top_levels > q->nr_levels)
397 		q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
398 
399 	else {
400 		q_set_targets_subrange_(q, q->nr_in_top_levels,
401 					q->nr_levels - q->nr_top_levels, q->nr_levels);
402 
403 		if (q->nr_in_top_levels < q->nr_elts)
404 			q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
405 						0, q->nr_levels - q->nr_top_levels);
406 		else
407 			q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
408 	}
409 }
410 
411 static void q_redistribute(struct queue *q)
412 {
413 	unsigned target, level;
414 	struct ilist *l, *l_above;
415 	struct entry *e;
416 
417 	q_set_targets(q);
418 
419 	for (level = 0u; level < q->nr_levels - 1u; level++) {
420 		l = q->qs + level;
421 		target = q->target_count[level];
422 
423 		/*
424 		 * Pull down some entries from the level above.
425 		 */
426 		while (l->nr_elts < target) {
427 			e = __redist_pop_from(q, level + 1u);
428 			if (!e) {
429 				/* bug in nr_elts */
430 				break;
431 			}
432 
433 			e->level = level;
434 			l_add_tail(q->es, l, e);
435 		}
436 
437 		/*
438 		 * Push some entries up.
439 		 */
440 		l_above = q->qs + level + 1u;
441 		while (l->nr_elts > target) {
442 			e = l_pop_tail(q->es, l);
443 
444 			if (!e)
445 				/* bug in nr_elts */
446 				break;
447 
448 			e->level = level + 1u;
449 			l_add_head(q->es, l_above, e);
450 		}
451 	}
452 }
453 
454 static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels)
455 {
456 	struct entry *de;
457 	unsigned new_level;
458 
459 	q_del(q, e);
460 
461 	if (extra_levels && (e->level < q->nr_levels - 1u)) {
462 		new_level = min(q->nr_levels - 1u, e->level + extra_levels);
463 		for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) {
464 			if (de->sentinel)
465 				continue;
466 
467 			q_del(q, de);
468 			de->level = e->level;
469 
470 			if (dest)
471 				q_push_before(q, dest, de);
472 			else
473 				q_push(q, de);
474 			break;
475 		}
476 
477 		e->level = new_level;
478 	}
479 
480 	q_push(q, e);
481 }
482 
483 static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels)
484 {
485 	q_requeue_before(q, NULL, e, extra_levels);
486 }
487 
488 /*----------------------------------------------------------------*/
489 
490 #define FP_SHIFT 8
491 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
492 #define EIGHTH (1u << (FP_SHIFT - 3u))
493 
494 struct stats {
495 	unsigned hit_threshold;
496 	unsigned hits;
497 	unsigned misses;
498 };
499 
500 enum performance {
501 	Q_POOR,
502 	Q_FAIR,
503 	Q_WELL
504 };
505 
506 static void stats_init(struct stats *s, unsigned nr_levels)
507 {
508 	s->hit_threshold = (nr_levels * 3u) / 4u;
509 	s->hits = 0u;
510 	s->misses = 0u;
511 }
512 
513 static void stats_reset(struct stats *s)
514 {
515 	s->hits = s->misses = 0u;
516 }
517 
518 static void stats_level_accessed(struct stats *s, unsigned level)
519 {
520 	if (level >= s->hit_threshold)
521 		s->hits++;
522 	else
523 		s->misses++;
524 }
525 
526 static void stats_miss(struct stats *s)
527 {
528 	s->misses++;
529 }
530 
531 /*
532  * There are times when we don't have any confidence in the hotspot queue.
533  * Such as when a fresh cache is created and the blocks have been spread
534  * out across the levels, or if an io load changes.  We detect this by
535  * seeing how often a lookup is in the top levels of the hotspot queue.
536  */
537 static enum performance stats_assess(struct stats *s)
538 {
539 	unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
540 
541 	if (confidence < SIXTEENTH)
542 		return Q_POOR;
543 
544 	else if (confidence < EIGHTH)
545 		return Q_FAIR;
546 
547 	else
548 		return Q_WELL;
549 }
550 
551 /*----------------------------------------------------------------*/
552 
553 struct hash_table {
554 	struct entry_space *es;
555 	unsigned long long hash_bits;
556 	unsigned *buckets;
557 };
558 
559 /*
560  * All cache entries are stored in a chained hash table.  To save space we
561  * use indexing again, and only store indexes to the next entry.
562  */
563 static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries)
564 {
565 	unsigned i, nr_buckets;
566 
567 	ht->es = es;
568 	nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
569 	ht->hash_bits = ffs(nr_buckets) - 1;
570 
571 	ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets);
572 	if (!ht->buckets)
573 		return -ENOMEM;
574 
575 	for (i = 0; i < nr_buckets; i++)
576 		ht->buckets[i] = INDEXER_NULL;
577 
578 	return 0;
579 }
580 
581 static void h_exit(struct hash_table *ht)
582 {
583 	vfree(ht->buckets);
584 }
585 
586 static struct entry *h_head(struct hash_table *ht, unsigned bucket)
587 {
588 	return to_entry(ht->es, ht->buckets[bucket]);
589 }
590 
591 static struct entry *h_next(struct hash_table *ht, struct entry *e)
592 {
593 	return to_entry(ht->es, e->hash_next);
594 }
595 
596 static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e)
597 {
598 	e->hash_next = ht->buckets[bucket];
599 	ht->buckets[bucket] = to_index(ht->es, e);
600 }
601 
602 static void h_insert(struct hash_table *ht, struct entry *e)
603 {
604 	unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
605 	__h_insert(ht, h, e);
606 }
607 
608 static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock,
609 				struct entry **prev)
610 {
611 	struct entry *e;
612 
613 	*prev = NULL;
614 	for (e = h_head(ht, h); e; e = h_next(ht, e)) {
615 		if (e->oblock == oblock)
616 			return e;
617 
618 		*prev = e;
619 	}
620 
621 	return NULL;
622 }
623 
624 static void __h_unlink(struct hash_table *ht, unsigned h,
625 		       struct entry *e, struct entry *prev)
626 {
627 	if (prev)
628 		prev->hash_next = e->hash_next;
629 	else
630 		ht->buckets[h] = e->hash_next;
631 }
632 
633 /*
634  * Also moves each entry to the front of the bucket.
635  */
636 static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock)
637 {
638 	struct entry *e, *prev;
639 	unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
640 
641 	e = __h_lookup(ht, h, oblock, &prev);
642 	if (e && prev) {
643 		/*
644 		 * Move to the front because this entry is likely
645 		 * to be hit again.
646 		 */
647 		__h_unlink(ht, h, e, prev);
648 		__h_insert(ht, h, e);
649 	}
650 
651 	return e;
652 }
653 
654 static void h_remove(struct hash_table *ht, struct entry *e)
655 {
656 	unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
657 	struct entry *prev;
658 
659 	/*
660 	 * The down side of using a singly linked list is we have to
661 	 * iterate the bucket to remove an item.
662 	 */
663 	e = __h_lookup(ht, h, e->oblock, &prev);
664 	if (e)
665 		__h_unlink(ht, h, e, prev);
666 }
667 
668 /*----------------------------------------------------------------*/
669 
670 struct entry_alloc {
671 	struct entry_space *es;
672 	unsigned begin;
673 
674 	unsigned nr_allocated;
675 	struct ilist free;
676 };
677 
678 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
679 			   unsigned begin, unsigned end)
680 {
681 	unsigned i;
682 
683 	ea->es = es;
684 	ea->nr_allocated = 0u;
685 	ea->begin = begin;
686 
687 	l_init(&ea->free);
688 	for (i = begin; i != end; i++)
689 		l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
690 }
691 
692 static void init_entry(struct entry *e)
693 {
694 	/*
695 	 * We can't memset because that would clear the hotspot and
696 	 * sentinel bits which remain constant.
697 	 */
698 	e->hash_next = INDEXER_NULL;
699 	e->next = INDEXER_NULL;
700 	e->prev = INDEXER_NULL;
701 	e->level = 0u;
702 	e->allocated = true;
703 }
704 
705 static struct entry *alloc_entry(struct entry_alloc *ea)
706 {
707 	struct entry *e;
708 
709 	if (l_empty(&ea->free))
710 		return NULL;
711 
712 	e = l_pop_tail(ea->es, &ea->free);
713 	init_entry(e);
714 	ea->nr_allocated++;
715 
716 	return e;
717 }
718 
719 /*
720  * This assumes the cblock hasn't already been allocated.
721  */
722 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
723 {
724 	struct entry *e = __get_entry(ea->es, ea->begin + i);
725 
726 	BUG_ON(e->allocated);
727 
728 	l_del(ea->es, &ea->free, e);
729 	init_entry(e);
730 	ea->nr_allocated++;
731 
732 	return e;
733 }
734 
735 static void free_entry(struct entry_alloc *ea, struct entry *e)
736 {
737 	BUG_ON(!ea->nr_allocated);
738 	BUG_ON(!e->allocated);
739 
740 	ea->nr_allocated--;
741 	e->allocated = false;
742 	l_add_tail(ea->es, &ea->free, e);
743 }
744 
745 static bool allocator_empty(struct entry_alloc *ea)
746 {
747 	return l_empty(&ea->free);
748 }
749 
750 static unsigned get_index(struct entry_alloc *ea, struct entry *e)
751 {
752 	return to_index(ea->es, e) - ea->begin;
753 }
754 
755 static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
756 {
757 	return __get_entry(ea->es, ea->begin + index);
758 }
759 
760 /*----------------------------------------------------------------*/
761 
762 #define NR_HOTSPOT_LEVELS 64u
763 #define NR_CACHE_LEVELS 64u
764 
765 #define WRITEBACK_PERIOD (10 * HZ)
766 #define DEMOTE_PERIOD (60 * HZ)
767 
768 #define HOTSPOT_UPDATE_PERIOD (HZ)
769 #define CACHE_UPDATE_PERIOD (10u * HZ)
770 
771 struct smq_policy {
772 	struct dm_cache_policy policy;
773 
774 	/* protects everything */
775 	struct mutex lock;
776 	dm_cblock_t cache_size;
777 	sector_t cache_block_size;
778 
779 	sector_t hotspot_block_size;
780 	unsigned nr_hotspot_blocks;
781 	unsigned cache_blocks_per_hotspot_block;
782 	unsigned hotspot_level_jump;
783 
784 	struct entry_space es;
785 	struct entry_alloc writeback_sentinel_alloc;
786 	struct entry_alloc demote_sentinel_alloc;
787 	struct entry_alloc hotspot_alloc;
788 	struct entry_alloc cache_alloc;
789 
790 	unsigned long *hotspot_hit_bits;
791 	unsigned long *cache_hit_bits;
792 
793 	/*
794 	 * We maintain three queues of entries.  The cache proper,
795 	 * consisting of a clean and dirty queue, containing the currently
796 	 * active mappings.  The hotspot queue uses a larger block size to
797 	 * track blocks that are being hit frequently and potential
798 	 * candidates for promotion to the cache.
799 	 */
800 	struct queue hotspot;
801 	struct queue clean;
802 	struct queue dirty;
803 
804 	struct stats hotspot_stats;
805 	struct stats cache_stats;
806 
807 	/*
808 	 * Keeps track of time, incremented by the core.  We use this to
809 	 * avoid attributing multiple hits within the same tick.
810 	 *
811 	 * Access to tick_protected should be done with the spin lock held.
812 	 * It's copied to tick at the start of the map function (within the
813 	 * mutex).
814 	 */
815 	spinlock_t tick_lock;
816 	unsigned tick_protected;
817 	unsigned tick;
818 
819 	/*
820 	 * The hash tables allows us to quickly find an entry by origin
821 	 * block.
822 	 */
823 	struct hash_table table;
824 	struct hash_table hotspot_table;
825 
826 	bool current_writeback_sentinels;
827 	unsigned long next_writeback_period;
828 
829 	bool current_demote_sentinels;
830 	unsigned long next_demote_period;
831 
832 	unsigned write_promote_level;
833 	unsigned read_promote_level;
834 
835 	unsigned long next_hotspot_period;
836 	unsigned long next_cache_period;
837 };
838 
839 /*----------------------------------------------------------------*/
840 
841 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
842 {
843 	return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
844 }
845 
846 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
847 {
848 	return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
849 }
850 
851 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
852 {
853 	return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
854 }
855 
856 static void __update_writeback_sentinels(struct smq_policy *mq)
857 {
858 	unsigned level;
859 	struct queue *q = &mq->dirty;
860 	struct entry *sentinel;
861 
862 	for (level = 0; level < q->nr_levels; level++) {
863 		sentinel = writeback_sentinel(mq, level);
864 		q_del(q, sentinel);
865 		q_push(q, sentinel);
866 	}
867 }
868 
869 static void __update_demote_sentinels(struct smq_policy *mq)
870 {
871 	unsigned level;
872 	struct queue *q = &mq->clean;
873 	struct entry *sentinel;
874 
875 	for (level = 0; level < q->nr_levels; level++) {
876 		sentinel = demote_sentinel(mq, level);
877 		q_del(q, sentinel);
878 		q_push(q, sentinel);
879 	}
880 }
881 
882 static void update_sentinels(struct smq_policy *mq)
883 {
884 	if (time_after(jiffies, mq->next_writeback_period)) {
885 		__update_writeback_sentinels(mq);
886 		mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
887 		mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
888 	}
889 
890 	if (time_after(jiffies, mq->next_demote_period)) {
891 		__update_demote_sentinels(mq);
892 		mq->next_demote_period = jiffies + DEMOTE_PERIOD;
893 		mq->current_demote_sentinels = !mq->current_demote_sentinels;
894 	}
895 }
896 
897 static void __sentinels_init(struct smq_policy *mq)
898 {
899 	unsigned level;
900 	struct entry *sentinel;
901 
902 	for (level = 0; level < NR_CACHE_LEVELS; level++) {
903 		sentinel = writeback_sentinel(mq, level);
904 		sentinel->level = level;
905 		q_push(&mq->dirty, sentinel);
906 
907 		sentinel = demote_sentinel(mq, level);
908 		sentinel->level = level;
909 		q_push(&mq->clean, sentinel);
910 	}
911 }
912 
913 static void sentinels_init(struct smq_policy *mq)
914 {
915 	mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
916 	mq->next_demote_period = jiffies + DEMOTE_PERIOD;
917 
918 	mq->current_writeback_sentinels = false;
919 	mq->current_demote_sentinels = false;
920 	__sentinels_init(mq);
921 
922 	mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
923 	mq->current_demote_sentinels = !mq->current_demote_sentinels;
924 	__sentinels_init(mq);
925 }
926 
927 /*----------------------------------------------------------------*/
928 
929 /*
930  * These methods tie together the dirty queue, clean queue and hash table.
931  */
932 static void push_new(struct smq_policy *mq, struct entry *e)
933 {
934 	struct queue *q = e->dirty ? &mq->dirty : &mq->clean;
935 	h_insert(&mq->table, e);
936 	q_push(q, e);
937 }
938 
939 static void push(struct smq_policy *mq, struct entry *e)
940 {
941 	struct entry *sentinel;
942 
943 	h_insert(&mq->table, e);
944 
945 	/*
946 	 * Punch this into the queue just in front of the sentinel, to
947 	 * ensure it's cleaned straight away.
948 	 */
949 	if (e->dirty) {
950 		sentinel = writeback_sentinel(mq, e->level);
951 		q_push_before(&mq->dirty, sentinel, e);
952 	} else {
953 		sentinel = demote_sentinel(mq, e->level);
954 		q_push_before(&mq->clean, sentinel, e);
955 	}
956 }
957 
958 /*
959  * Removes an entry from cache.  Removes from the hash table.
960  */
961 static void __del(struct smq_policy *mq, struct queue *q, struct entry *e)
962 {
963 	q_del(q, e);
964 	h_remove(&mq->table, e);
965 }
966 
967 static void del(struct smq_policy *mq, struct entry *e)
968 {
969 	__del(mq, e->dirty ? &mq->dirty : &mq->clean, e);
970 }
971 
972 static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level)
973 {
974 	struct entry *e = q_pop_old(q, max_level);
975 	if (e)
976 		h_remove(&mq->table, e);
977 	return e;
978 }
979 
980 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
981 {
982 	return to_cblock(get_index(&mq->cache_alloc, e));
983 }
984 
985 static void requeue(struct smq_policy *mq, struct entry *e)
986 {
987 	struct entry *sentinel;
988 
989 	if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
990 		if (e->dirty) {
991 			sentinel = writeback_sentinel(mq, e->level);
992 			q_requeue_before(&mq->dirty, sentinel, e, 1u);
993 		} else {
994 			sentinel = demote_sentinel(mq, e->level);
995 			q_requeue_before(&mq->clean, sentinel, e, 1u);
996 		}
997 	}
998 }
999 
1000 static unsigned default_promote_level(struct smq_policy *mq)
1001 {
1002 	/*
1003 	 * The promote level depends on the current performance of the
1004 	 * cache.
1005 	 *
1006 	 * If the cache is performing badly, then we can't afford
1007 	 * to promote much without causing performance to drop below that
1008 	 * of the origin device.
1009 	 *
1010 	 * If the cache is performing well, then we don't need to promote
1011 	 * much.  If it isn't broken, don't fix it.
1012 	 *
1013 	 * If the cache is middling then we promote more.
1014 	 *
1015 	 * This scheme reminds me of a graph of entropy vs probability of a
1016 	 * binary variable.
1017 	 */
1018 	static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
1019 
1020 	unsigned hits = mq->cache_stats.hits;
1021 	unsigned misses = mq->cache_stats.misses;
1022 	unsigned index = safe_div(hits << 4u, hits + misses);
1023 	return table[index];
1024 }
1025 
1026 static void update_promote_levels(struct smq_policy *mq)
1027 {
1028 	/*
1029 	 * If there are unused cache entries then we want to be really
1030 	 * eager to promote.
1031 	 */
1032 	unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1033 		default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1034 
1035 	/*
1036 	 * If the hotspot queue is performing badly then we have little
1037 	 * confidence that we know which blocks to promote.  So we cut down
1038 	 * the amount of promotions.
1039 	 */
1040 	switch (stats_assess(&mq->hotspot_stats)) {
1041 	case Q_POOR:
1042 		threshold_level /= 4u;
1043 		break;
1044 
1045 	case Q_FAIR:
1046 		threshold_level /= 2u;
1047 		break;
1048 
1049 	case Q_WELL:
1050 		break;
1051 	}
1052 
1053 	mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1054 	mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u;
1055 }
1056 
1057 /*
1058  * If the hotspot queue is performing badly, then we try and move entries
1059  * around more quickly.
1060  */
1061 static void update_level_jump(struct smq_policy *mq)
1062 {
1063 	switch (stats_assess(&mq->hotspot_stats)) {
1064 	case Q_POOR:
1065 		mq->hotspot_level_jump = 4u;
1066 		break;
1067 
1068 	case Q_FAIR:
1069 		mq->hotspot_level_jump = 2u;
1070 		break;
1071 
1072 	case Q_WELL:
1073 		mq->hotspot_level_jump = 1u;
1074 		break;
1075 	}
1076 }
1077 
1078 static void end_hotspot_period(struct smq_policy *mq)
1079 {
1080 	clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1081 	update_promote_levels(mq);
1082 
1083 	if (time_after(jiffies, mq->next_hotspot_period)) {
1084 		update_level_jump(mq);
1085 		q_redistribute(&mq->hotspot);
1086 		stats_reset(&mq->hotspot_stats);
1087 		mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1088 	}
1089 }
1090 
1091 static void end_cache_period(struct smq_policy *mq)
1092 {
1093 	if (time_after(jiffies, mq->next_cache_period)) {
1094 		clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1095 
1096 		q_redistribute(&mq->dirty);
1097 		q_redistribute(&mq->clean);
1098 		stats_reset(&mq->cache_stats);
1099 
1100 		mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1101 	}
1102 }
1103 
1104 static int demote_cblock(struct smq_policy *mq,
1105 			 struct policy_locker *locker,
1106 			 dm_oblock_t *oblock)
1107 {
1108 	struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false);
1109 	if (!demoted)
1110 		/*
1111 		 * We could get a block from mq->dirty, but that
1112 		 * would add extra latency to the triggering bio as it
1113 		 * waits for the writeback.  Better to not promote this
1114 		 * time and hope there's a clean block next time this block
1115 		 * is hit.
1116 		 */
1117 		return -ENOSPC;
1118 
1119 	if (locker->fn(locker, demoted->oblock))
1120 		/*
1121 		 * We couldn't lock this block.
1122 		 */
1123 		return -EBUSY;
1124 
1125 	del(mq, demoted);
1126 	*oblock = demoted->oblock;
1127 	free_entry(&mq->cache_alloc, demoted);
1128 
1129 	return 0;
1130 }
1131 
1132 enum promote_result {
1133 	PROMOTE_NOT,
1134 	PROMOTE_TEMPORARY,
1135 	PROMOTE_PERMANENT
1136 };
1137 
1138 /*
1139  * Converts a boolean into a promote result.
1140  */
1141 static enum promote_result maybe_promote(bool promote)
1142 {
1143 	return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1144 }
1145 
1146 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio,
1147 					  bool fast_promote)
1148 {
1149 	if (bio_data_dir(bio) == WRITE) {
1150 		if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1151 			return PROMOTE_TEMPORARY;
1152 
1153 		else
1154 			return maybe_promote(hs_e->level >= mq->write_promote_level);
1155 	} else
1156 		return maybe_promote(hs_e->level >= mq->read_promote_level);
1157 }
1158 
1159 static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock,
1160 			    struct policy_locker *locker,
1161 			    struct policy_result *result, enum promote_result pr)
1162 {
1163 	int r;
1164 	struct entry *e;
1165 
1166 	if (allocator_empty(&mq->cache_alloc)) {
1167 		result->op = POLICY_REPLACE;
1168 		r = demote_cblock(mq, locker, &result->old_oblock);
1169 		if (r) {
1170 			result->op = POLICY_MISS;
1171 			return;
1172 		}
1173 
1174 	} else
1175 		result->op = POLICY_NEW;
1176 
1177 	e = alloc_entry(&mq->cache_alloc);
1178 	BUG_ON(!e);
1179 	e->oblock = oblock;
1180 
1181 	if (pr == PROMOTE_TEMPORARY)
1182 		push(mq, e);
1183 	else
1184 		push_new(mq, e);
1185 
1186 	result->cblock = infer_cblock(mq, e);
1187 }
1188 
1189 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1190 {
1191 	sector_t r = from_oblock(b);
1192 	(void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1193 	return to_oblock(r);
1194 }
1195 
1196 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio)
1197 {
1198 	unsigned hi;
1199 	dm_oblock_t hb = to_hblock(mq, b);
1200 	struct entry *e = h_lookup(&mq->hotspot_table, hb);
1201 
1202 	if (e) {
1203 		stats_level_accessed(&mq->hotspot_stats, e->level);
1204 
1205 		hi = get_index(&mq->hotspot_alloc, e);
1206 		q_requeue(&mq->hotspot, e,
1207 			  test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1208 			  0u : mq->hotspot_level_jump);
1209 
1210 	} else {
1211 		stats_miss(&mq->hotspot_stats);
1212 
1213 		e = alloc_entry(&mq->hotspot_alloc);
1214 		if (!e) {
1215 			e = q_pop(&mq->hotspot);
1216 			if (e) {
1217 				h_remove(&mq->hotspot_table, e);
1218 				hi = get_index(&mq->hotspot_alloc, e);
1219 				clear_bit(hi, mq->hotspot_hit_bits);
1220 			}
1221 
1222 		}
1223 
1224 		if (e) {
1225 			e->oblock = hb;
1226 			q_push(&mq->hotspot, e);
1227 			h_insert(&mq->hotspot_table, e);
1228 		}
1229 	}
1230 
1231 	return e;
1232 }
1233 
1234 /*
1235  * Looks the oblock up in the hash table, then decides whether to put in
1236  * pre_cache, or cache etc.
1237  */
1238 static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock,
1239 	       bool can_migrate, bool fast_promote,
1240 	       struct policy_locker *locker, struct policy_result *result)
1241 {
1242 	struct entry *e, *hs_e;
1243 	enum promote_result pr;
1244 
1245 	hs_e = update_hotspot_queue(mq, oblock, bio);
1246 
1247 	e = h_lookup(&mq->table, oblock);
1248 	if (e) {
1249 		stats_level_accessed(&mq->cache_stats, e->level);
1250 
1251 		requeue(mq, e);
1252 		result->op = POLICY_HIT;
1253 		result->cblock = infer_cblock(mq, e);
1254 
1255 	} else {
1256 		stats_miss(&mq->cache_stats);
1257 
1258 		pr = should_promote(mq, hs_e, bio, fast_promote);
1259 		if (pr == PROMOTE_NOT)
1260 			result->op = POLICY_MISS;
1261 
1262 		else {
1263 			if (!can_migrate) {
1264 				result->op = POLICY_MISS;
1265 				return -EWOULDBLOCK;
1266 			}
1267 
1268 			insert_in_cache(mq, oblock, locker, result, pr);
1269 		}
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 /*----------------------------------------------------------------*/
1276 
1277 /*
1278  * Public interface, via the policy struct.  See dm-cache-policy.h for a
1279  * description of these.
1280  */
1281 
1282 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1283 {
1284 	return container_of(p, struct smq_policy, policy);
1285 }
1286 
1287 static void smq_destroy(struct dm_cache_policy *p)
1288 {
1289 	struct smq_policy *mq = to_smq_policy(p);
1290 
1291 	h_exit(&mq->hotspot_table);
1292 	h_exit(&mq->table);
1293 	free_bitset(mq->hotspot_hit_bits);
1294 	free_bitset(mq->cache_hit_bits);
1295 	space_exit(&mq->es);
1296 	kfree(mq);
1297 }
1298 
1299 static void copy_tick(struct smq_policy *mq)
1300 {
1301 	unsigned long flags, tick;
1302 
1303 	spin_lock_irqsave(&mq->tick_lock, flags);
1304 	tick = mq->tick_protected;
1305 	if (tick != mq->tick) {
1306 		update_sentinels(mq);
1307 		end_hotspot_period(mq);
1308 		end_cache_period(mq);
1309 		mq->tick = tick;
1310 	}
1311 	spin_unlock_irqrestore(&mq->tick_lock, flags);
1312 }
1313 
1314 static bool maybe_lock(struct smq_policy *mq, bool can_block)
1315 {
1316 	if (can_block) {
1317 		mutex_lock(&mq->lock);
1318 		return true;
1319 	} else
1320 		return mutex_trylock(&mq->lock);
1321 }
1322 
1323 static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
1324 		   bool can_block, bool can_migrate, bool fast_promote,
1325 		   struct bio *bio, struct policy_locker *locker,
1326 		   struct policy_result *result)
1327 {
1328 	int r;
1329 	struct smq_policy *mq = to_smq_policy(p);
1330 
1331 	result->op = POLICY_MISS;
1332 
1333 	if (!maybe_lock(mq, can_block))
1334 		return -EWOULDBLOCK;
1335 
1336 	copy_tick(mq);
1337 	r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result);
1338 	mutex_unlock(&mq->lock);
1339 
1340 	return r;
1341 }
1342 
1343 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
1344 {
1345 	int r;
1346 	struct smq_policy *mq = to_smq_policy(p);
1347 	struct entry *e;
1348 
1349 	if (!mutex_trylock(&mq->lock))
1350 		return -EWOULDBLOCK;
1351 
1352 	e = h_lookup(&mq->table, oblock);
1353 	if (e) {
1354 		*cblock = infer_cblock(mq, e);
1355 		r = 0;
1356 	} else
1357 		r = -ENOENT;
1358 
1359 	mutex_unlock(&mq->lock);
1360 
1361 	return r;
1362 }
1363 
1364 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set)
1365 {
1366 	struct entry *e;
1367 
1368 	e = h_lookup(&mq->table, oblock);
1369 	BUG_ON(!e);
1370 
1371 	del(mq, e);
1372 	e->dirty = set;
1373 	push(mq, e);
1374 }
1375 
1376 static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1377 {
1378 	struct smq_policy *mq = to_smq_policy(p);
1379 
1380 	mutex_lock(&mq->lock);
1381 	__smq_set_clear_dirty(mq, oblock, true);
1382 	mutex_unlock(&mq->lock);
1383 }
1384 
1385 static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1386 {
1387 	struct smq_policy *mq = to_smq_policy(p);
1388 
1389 	mutex_lock(&mq->lock);
1390 	__smq_set_clear_dirty(mq, oblock, false);
1391 	mutex_unlock(&mq->lock);
1392 }
1393 
1394 static int smq_load_mapping(struct dm_cache_policy *p,
1395 			    dm_oblock_t oblock, dm_cblock_t cblock,
1396 			    uint32_t hint, bool hint_valid)
1397 {
1398 	struct smq_policy *mq = to_smq_policy(p);
1399 	struct entry *e;
1400 
1401 	e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1402 	e->oblock = oblock;
1403 	e->dirty = false;	/* this gets corrected in a minute */
1404 	e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : 1;
1405 	push(mq, e);
1406 
1407 	return 0;
1408 }
1409 
1410 static int smq_save_hints(struct smq_policy *mq, struct queue *q,
1411 			  policy_walk_fn fn, void *context)
1412 {
1413 	int r;
1414 	unsigned level;
1415 	struct entry *e;
1416 
1417 	for (level = 0; level < q->nr_levels; level++)
1418 		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
1419 			if (!e->sentinel) {
1420 				r = fn(context, infer_cblock(mq, e),
1421 				       e->oblock, e->level);
1422 				if (r)
1423 					return r;
1424 			}
1425 		}
1426 
1427 	return 0;
1428 }
1429 
1430 static int smq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
1431 			     void *context)
1432 {
1433 	struct smq_policy *mq = to_smq_policy(p);
1434 	int r = 0;
1435 
1436 	mutex_lock(&mq->lock);
1437 
1438 	r = smq_save_hints(mq, &mq->clean, fn, context);
1439 	if (!r)
1440 		r = smq_save_hints(mq, &mq->dirty, fn, context);
1441 
1442 	mutex_unlock(&mq->lock);
1443 
1444 	return r;
1445 }
1446 
1447 static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock)
1448 {
1449 	struct entry *e;
1450 
1451 	e = h_lookup(&mq->table, oblock);
1452 	BUG_ON(!e);
1453 
1454 	del(mq, e);
1455 	free_entry(&mq->cache_alloc, e);
1456 }
1457 
1458 static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1459 {
1460 	struct smq_policy *mq = to_smq_policy(p);
1461 
1462 	mutex_lock(&mq->lock);
1463 	__remove_mapping(mq, oblock);
1464 	mutex_unlock(&mq->lock);
1465 }
1466 
1467 static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock)
1468 {
1469 	struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1470 
1471 	if (!e || !e->allocated)
1472 		return -ENODATA;
1473 
1474 	del(mq, e);
1475 	free_entry(&mq->cache_alloc, e);
1476 
1477 	return 0;
1478 }
1479 
1480 static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1481 {
1482 	int r;
1483 	struct smq_policy *mq = to_smq_policy(p);
1484 
1485 	mutex_lock(&mq->lock);
1486 	r = __remove_cblock(mq, cblock);
1487 	mutex_unlock(&mq->lock);
1488 
1489 	return r;
1490 }
1491 
1492 
1493 #define CLEAN_TARGET_CRITICAL 5u /* percent */
1494 
1495 static bool clean_target_met(struct smq_policy *mq, bool critical)
1496 {
1497 	if (critical) {
1498 		/*
1499 		 * Cache entries may not be populated.  So we're cannot rely on the
1500 		 * size of the clean queue.
1501 		 */
1502 		unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty);
1503 		unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u;
1504 
1505 		return nr_clean >= target;
1506 	} else
1507 		return !q_size(&mq->dirty);
1508 }
1509 
1510 static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock,
1511 				dm_cblock_t *cblock, bool critical_only)
1512 {
1513 	struct entry *e = NULL;
1514 	bool target_met = clean_target_met(mq, critical_only);
1515 
1516 	if (critical_only)
1517 		/*
1518 		 * Always try and keep the bottom level clean.
1519 		 */
1520 		e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels);
1521 
1522 	else
1523 		e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels);
1524 
1525 	if (!e)
1526 		return -ENODATA;
1527 
1528 	*oblock = e->oblock;
1529 	*cblock = infer_cblock(mq, e);
1530 	e->dirty = false;
1531 	push_new(mq, e);
1532 
1533 	return 0;
1534 }
1535 
1536 static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1537 			      dm_cblock_t *cblock, bool critical_only)
1538 {
1539 	int r;
1540 	struct smq_policy *mq = to_smq_policy(p);
1541 
1542 	mutex_lock(&mq->lock);
1543 	r = __smq_writeback_work(mq, oblock, cblock, critical_only);
1544 	mutex_unlock(&mq->lock);
1545 
1546 	return r;
1547 }
1548 
1549 static void __force_mapping(struct smq_policy *mq,
1550 			    dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1551 {
1552 	struct entry *e = h_lookup(&mq->table, current_oblock);
1553 
1554 	if (e) {
1555 		del(mq, e);
1556 		e->oblock = new_oblock;
1557 		e->dirty = true;
1558 		push(mq, e);
1559 	}
1560 }
1561 
1562 static void smq_force_mapping(struct dm_cache_policy *p,
1563 			      dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1564 {
1565 	struct smq_policy *mq = to_smq_policy(p);
1566 
1567 	mutex_lock(&mq->lock);
1568 	__force_mapping(mq, current_oblock, new_oblock);
1569 	mutex_unlock(&mq->lock);
1570 }
1571 
1572 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1573 {
1574 	dm_cblock_t r;
1575 	struct smq_policy *mq = to_smq_policy(p);
1576 
1577 	mutex_lock(&mq->lock);
1578 	r = to_cblock(mq->cache_alloc.nr_allocated);
1579 	mutex_unlock(&mq->lock);
1580 
1581 	return r;
1582 }
1583 
1584 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1585 {
1586 	struct smq_policy *mq = to_smq_policy(p);
1587 	unsigned long flags;
1588 
1589 	spin_lock_irqsave(&mq->tick_lock, flags);
1590 	mq->tick_protected++;
1591 	spin_unlock_irqrestore(&mq->tick_lock, flags);
1592 
1593 	if (can_block) {
1594 		mutex_lock(&mq->lock);
1595 		copy_tick(mq);
1596 		mutex_unlock(&mq->lock);
1597 	}
1598 }
1599 
1600 /* Init the policy plugin interface function pointers. */
1601 static void init_policy_functions(struct smq_policy *mq)
1602 {
1603 	mq->policy.destroy = smq_destroy;
1604 	mq->policy.map = smq_map;
1605 	mq->policy.lookup = smq_lookup;
1606 	mq->policy.set_dirty = smq_set_dirty;
1607 	mq->policy.clear_dirty = smq_clear_dirty;
1608 	mq->policy.load_mapping = smq_load_mapping;
1609 	mq->policy.walk_mappings = smq_walk_mappings;
1610 	mq->policy.remove_mapping = smq_remove_mapping;
1611 	mq->policy.remove_cblock = smq_remove_cblock;
1612 	mq->policy.writeback_work = smq_writeback_work;
1613 	mq->policy.force_mapping = smq_force_mapping;
1614 	mq->policy.residency = smq_residency;
1615 	mq->policy.tick = smq_tick;
1616 }
1617 
1618 static bool too_many_hotspot_blocks(sector_t origin_size,
1619 				    sector_t hotspot_block_size,
1620 				    unsigned nr_hotspot_blocks)
1621 {
1622 	return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1623 }
1624 
1625 static void calc_hotspot_params(sector_t origin_size,
1626 				sector_t cache_block_size,
1627 				unsigned nr_cache_blocks,
1628 				sector_t *hotspot_block_size,
1629 				unsigned *nr_hotspot_blocks)
1630 {
1631 	*hotspot_block_size = cache_block_size * 16u;
1632 	*nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1633 
1634 	while ((*hotspot_block_size > cache_block_size) &&
1635 	       too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1636 		*hotspot_block_size /= 2u;
1637 }
1638 
1639 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1640 					  sector_t origin_size,
1641 					  sector_t cache_block_size)
1642 {
1643 	unsigned i;
1644 	unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1645 	unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1646 	struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1647 
1648 	if (!mq)
1649 		return NULL;
1650 
1651 	init_policy_functions(mq);
1652 	mq->cache_size = cache_size;
1653 	mq->cache_block_size = cache_block_size;
1654 
1655 	calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1656 			    &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1657 
1658 	mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1659 	mq->hotspot_level_jump = 1u;
1660 	if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1661 		DMERR("couldn't initialize entry space");
1662 		goto bad_pool_init;
1663 	}
1664 
1665 	init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1666         for (i = 0; i < nr_sentinels_per_queue; i++)
1667 		get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1668 
1669 	init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1670         for (i = 0; i < nr_sentinels_per_queue; i++)
1671 		get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1672 
1673 	init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1674 		       total_sentinels + mq->nr_hotspot_blocks);
1675 
1676 	init_allocator(&mq->cache_alloc, &mq->es,
1677 		       total_sentinels + mq->nr_hotspot_blocks,
1678 		       total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1679 
1680 	mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1681 	if (!mq->hotspot_hit_bits) {
1682 		DMERR("couldn't allocate hotspot hit bitset");
1683 		goto bad_hotspot_hit_bits;
1684 	}
1685 	clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1686 
1687 	if (from_cblock(cache_size)) {
1688 		mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1689 		if (!mq->cache_hit_bits && mq->cache_hit_bits) {
1690 			DMERR("couldn't allocate cache hit bitset");
1691 			goto bad_cache_hit_bits;
1692 		}
1693 		clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1694 	} else
1695 		mq->cache_hit_bits = NULL;
1696 
1697 	mq->tick_protected = 0;
1698 	mq->tick = 0;
1699 	mutex_init(&mq->lock);
1700 	spin_lock_init(&mq->tick_lock);
1701 
1702 	q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1703 	mq->hotspot.nr_top_levels = 8;
1704 	mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1705 					   from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1706 
1707 	q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1708 	q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1709 
1710 	stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1711 	stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1712 
1713 	if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1714 		goto bad_alloc_table;
1715 
1716 	if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1717 		goto bad_alloc_hotspot_table;
1718 
1719 	sentinels_init(mq);
1720 	mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1721 
1722 	mq->next_hotspot_period = jiffies;
1723 	mq->next_cache_period = jiffies;
1724 
1725 	return &mq->policy;
1726 
1727 bad_alloc_hotspot_table:
1728 	h_exit(&mq->table);
1729 bad_alloc_table:
1730 	free_bitset(mq->cache_hit_bits);
1731 bad_cache_hit_bits:
1732 	free_bitset(mq->hotspot_hit_bits);
1733 bad_hotspot_hit_bits:
1734 	space_exit(&mq->es);
1735 bad_pool_init:
1736 	kfree(mq);
1737 
1738 	return NULL;
1739 }
1740 
1741 /*----------------------------------------------------------------*/
1742 
1743 static struct dm_cache_policy_type smq_policy_type = {
1744 	.name = "smq",
1745 	.version = {1, 0, 0},
1746 	.hint_size = 4,
1747 	.owner = THIS_MODULE,
1748 	.create = smq_create
1749 };
1750 
1751 static struct dm_cache_policy_type default_policy_type = {
1752 	.name = "default",
1753 	.version = {1, 4, 0},
1754 	.hint_size = 4,
1755 	.owner = THIS_MODULE,
1756 	.create = smq_create,
1757 	.real = &smq_policy_type
1758 };
1759 
1760 static int __init smq_init(void)
1761 {
1762 	int r;
1763 
1764 	r = dm_cache_policy_register(&smq_policy_type);
1765 	if (r) {
1766 		DMERR("register failed %d", r);
1767 		return -ENOMEM;
1768 	}
1769 
1770 	r = dm_cache_policy_register(&default_policy_type);
1771 	if (r) {
1772 		DMERR("register failed (as default) %d", r);
1773 		dm_cache_policy_unregister(&smq_policy_type);
1774 		return -ENOMEM;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static void __exit smq_exit(void)
1781 {
1782 	dm_cache_policy_unregister(&smq_policy_type);
1783 	dm_cache_policy_unregister(&default_policy_type);
1784 }
1785 
1786 module_init(smq_init);
1787 module_exit(smq_exit);
1788 
1789 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1790 MODULE_LICENSE("GPL");
1791 MODULE_DESCRIPTION("smq cache policy");
1792