1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bufio.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/shrinker.h> 16 #include <linux/module.h> 17 18 #define DM_MSG_PREFIX "bufio" 19 20 /* 21 * Memory management policy: 22 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 23 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 24 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 25 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 26 * dirty buffers. 27 */ 28 #define DM_BUFIO_MIN_BUFFERS 8 29 30 #define DM_BUFIO_MEMORY_PERCENT 2 31 #define DM_BUFIO_VMALLOC_PERCENT 25 32 #define DM_BUFIO_WRITEBACK_PERCENT 75 33 34 /* 35 * Check buffer ages in this interval (seconds) 36 */ 37 #define DM_BUFIO_WORK_TIMER_SECS 10 38 39 /* 40 * Free buffers when they are older than this (seconds) 41 */ 42 #define DM_BUFIO_DEFAULT_AGE_SECS 60 43 44 /* 45 * The number of bvec entries that are embedded directly in the buffer. 46 * If the chunk size is larger, dm-io is used to do the io. 47 */ 48 #define DM_BUFIO_INLINE_VECS 16 49 50 /* 51 * Buffer hash 52 */ 53 #define DM_BUFIO_HASH_BITS 20 54 #define DM_BUFIO_HASH(block) \ 55 ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \ 56 ((1 << DM_BUFIO_HASH_BITS) - 1)) 57 58 /* 59 * Don't try to use kmem_cache_alloc for blocks larger than this. 60 * For explanation, see alloc_buffer_data below. 61 */ 62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1) 63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1)) 64 65 /* 66 * dm_buffer->list_mode 67 */ 68 #define LIST_CLEAN 0 69 #define LIST_DIRTY 1 70 #define LIST_SIZE 2 71 72 /* 73 * Linking of buffers: 74 * All buffers are linked to cache_hash with their hash_list field. 75 * 76 * Clean buffers that are not being written (B_WRITING not set) 77 * are linked to lru[LIST_CLEAN] with their lru_list field. 78 * 79 * Dirty and clean buffers that are being written are linked to 80 * lru[LIST_DIRTY] with their lru_list field. When the write 81 * finishes, the buffer cannot be relinked immediately (because we 82 * are in an interrupt context and relinking requires process 83 * context), so some clean-not-writing buffers can be held on 84 * dirty_lru too. They are later added to lru in the process 85 * context. 86 */ 87 struct dm_bufio_client { 88 struct mutex lock; 89 90 struct list_head lru[LIST_SIZE]; 91 unsigned long n_buffers[LIST_SIZE]; 92 93 struct block_device *bdev; 94 unsigned block_size; 95 unsigned char sectors_per_block_bits; 96 unsigned char pages_per_block_bits; 97 unsigned char blocks_per_page_bits; 98 unsigned aux_size; 99 void (*alloc_callback)(struct dm_buffer *); 100 void (*write_callback)(struct dm_buffer *); 101 102 struct dm_io_client *dm_io; 103 104 struct list_head reserved_buffers; 105 unsigned need_reserved_buffers; 106 107 struct hlist_head *cache_hash; 108 wait_queue_head_t free_buffer_wait; 109 110 int async_write_error; 111 112 struct list_head client_list; 113 struct shrinker shrinker; 114 }; 115 116 /* 117 * Buffer state bits. 118 */ 119 #define B_READING 0 120 #define B_WRITING 1 121 #define B_DIRTY 2 122 123 /* 124 * Describes how the block was allocated: 125 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 126 * See the comment at alloc_buffer_data. 127 */ 128 enum data_mode { 129 DATA_MODE_SLAB = 0, 130 DATA_MODE_GET_FREE_PAGES = 1, 131 DATA_MODE_VMALLOC = 2, 132 DATA_MODE_LIMIT = 3 133 }; 134 135 struct dm_buffer { 136 struct hlist_node hash_list; 137 struct list_head lru_list; 138 sector_t block; 139 void *data; 140 enum data_mode data_mode; 141 unsigned char list_mode; /* LIST_* */ 142 unsigned hold_count; 143 int read_error; 144 int write_error; 145 unsigned long state; 146 unsigned long last_accessed; 147 struct dm_bufio_client *c; 148 struct bio bio; 149 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; 150 }; 151 152 /*----------------------------------------------------------------*/ 153 154 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT]; 155 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT]; 156 157 static inline int dm_bufio_cache_index(struct dm_bufio_client *c) 158 { 159 unsigned ret = c->blocks_per_page_bits - 1; 160 161 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches)); 162 163 return ret; 164 } 165 166 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)]) 167 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)]) 168 169 #define dm_bufio_in_request() (!!current->bio_list) 170 171 static void dm_bufio_lock(struct dm_bufio_client *c) 172 { 173 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 174 } 175 176 static int dm_bufio_trylock(struct dm_bufio_client *c) 177 { 178 return mutex_trylock(&c->lock); 179 } 180 181 static void dm_bufio_unlock(struct dm_bufio_client *c) 182 { 183 mutex_unlock(&c->lock); 184 } 185 186 /* 187 * FIXME Move to sched.h? 188 */ 189 #ifdef CONFIG_PREEMPT_VOLUNTARY 190 # define dm_bufio_cond_resched() \ 191 do { \ 192 if (unlikely(need_resched())) \ 193 _cond_resched(); \ 194 } while (0) 195 #else 196 # define dm_bufio_cond_resched() do { } while (0) 197 #endif 198 199 /*----------------------------------------------------------------*/ 200 201 /* 202 * Default cache size: available memory divided by the ratio. 203 */ 204 static unsigned long dm_bufio_default_cache_size; 205 206 /* 207 * Total cache size set by the user. 208 */ 209 static unsigned long dm_bufio_cache_size; 210 211 /* 212 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 213 * at any time. If it disagrees, the user has changed cache size. 214 */ 215 static unsigned long dm_bufio_cache_size_latch; 216 217 static DEFINE_SPINLOCK(param_spinlock); 218 219 /* 220 * Buffers are freed after this timeout 221 */ 222 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 223 224 static unsigned long dm_bufio_peak_allocated; 225 static unsigned long dm_bufio_allocated_kmem_cache; 226 static unsigned long dm_bufio_allocated_get_free_pages; 227 static unsigned long dm_bufio_allocated_vmalloc; 228 static unsigned long dm_bufio_current_allocated; 229 230 /*----------------------------------------------------------------*/ 231 232 /* 233 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 234 */ 235 static unsigned long dm_bufio_cache_size_per_client; 236 237 /* 238 * The current number of clients. 239 */ 240 static int dm_bufio_client_count; 241 242 /* 243 * The list of all clients. 244 */ 245 static LIST_HEAD(dm_bufio_all_clients); 246 247 /* 248 * This mutex protects dm_bufio_cache_size_latch, 249 * dm_bufio_cache_size_per_client and dm_bufio_client_count 250 */ 251 static DEFINE_MUTEX(dm_bufio_clients_lock); 252 253 /*----------------------------------------------------------------*/ 254 255 static void adjust_total_allocated(enum data_mode data_mode, long diff) 256 { 257 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 258 &dm_bufio_allocated_kmem_cache, 259 &dm_bufio_allocated_get_free_pages, 260 &dm_bufio_allocated_vmalloc, 261 }; 262 263 spin_lock(¶m_spinlock); 264 265 *class_ptr[data_mode] += diff; 266 267 dm_bufio_current_allocated += diff; 268 269 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 270 dm_bufio_peak_allocated = dm_bufio_current_allocated; 271 272 spin_unlock(¶m_spinlock); 273 } 274 275 /* 276 * Change the number of clients and recalculate per-client limit. 277 */ 278 static void __cache_size_refresh(void) 279 { 280 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 281 BUG_ON(dm_bufio_client_count < 0); 282 283 dm_bufio_cache_size_latch = dm_bufio_cache_size; 284 285 barrier(); 286 287 /* 288 * Use default if set to 0 and report the actual cache size used. 289 */ 290 if (!dm_bufio_cache_size_latch) { 291 (void)cmpxchg(&dm_bufio_cache_size, 0, 292 dm_bufio_default_cache_size); 293 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 294 } 295 296 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 297 (dm_bufio_client_count ? : 1); 298 } 299 300 /* 301 * Allocating buffer data. 302 * 303 * Small buffers are allocated with kmem_cache, to use space optimally. 304 * 305 * For large buffers, we choose between get_free_pages and vmalloc. 306 * Each has advantages and disadvantages. 307 * 308 * __get_free_pages can randomly fail if the memory is fragmented. 309 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 310 * as low as 128M) so using it for caching is not appropriate. 311 * 312 * If the allocation may fail we use __get_free_pages. Memory fragmentation 313 * won't have a fatal effect here, but it just causes flushes of some other 314 * buffers and more I/O will be performed. Don't use __get_free_pages if it 315 * always fails (i.e. order >= MAX_ORDER). 316 * 317 * If the allocation shouldn't fail we use __vmalloc. This is only for the 318 * initial reserve allocation, so there's no risk of wasting all vmalloc 319 * space. 320 */ 321 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 322 enum data_mode *data_mode) 323 { 324 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { 325 *data_mode = DATA_MODE_SLAB; 326 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); 327 } 328 329 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT && 330 gfp_mask & __GFP_NORETRY) { 331 *data_mode = DATA_MODE_GET_FREE_PAGES; 332 return (void *)__get_free_pages(gfp_mask, 333 c->pages_per_block_bits); 334 } 335 336 *data_mode = DATA_MODE_VMALLOC; 337 return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 338 } 339 340 /* 341 * Free buffer's data. 342 */ 343 static void free_buffer_data(struct dm_bufio_client *c, 344 void *data, enum data_mode data_mode) 345 { 346 switch (data_mode) { 347 case DATA_MODE_SLAB: 348 kmem_cache_free(DM_BUFIO_CACHE(c), data); 349 break; 350 351 case DATA_MODE_GET_FREE_PAGES: 352 free_pages((unsigned long)data, c->pages_per_block_bits); 353 break; 354 355 case DATA_MODE_VMALLOC: 356 vfree(data); 357 break; 358 359 default: 360 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 361 data_mode); 362 BUG(); 363 } 364 } 365 366 /* 367 * Allocate buffer and its data. 368 */ 369 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 370 { 371 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size, 372 gfp_mask); 373 374 if (!b) 375 return NULL; 376 377 b->c = c; 378 379 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 380 if (!b->data) { 381 kfree(b); 382 return NULL; 383 } 384 385 adjust_total_allocated(b->data_mode, (long)c->block_size); 386 387 return b; 388 } 389 390 /* 391 * Free buffer and its data. 392 */ 393 static void free_buffer(struct dm_buffer *b) 394 { 395 struct dm_bufio_client *c = b->c; 396 397 adjust_total_allocated(b->data_mode, -(long)c->block_size); 398 399 free_buffer_data(c, b->data, b->data_mode); 400 kfree(b); 401 } 402 403 /* 404 * Link buffer to the hash list and clean or dirty queue. 405 */ 406 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 407 { 408 struct dm_bufio_client *c = b->c; 409 410 c->n_buffers[dirty]++; 411 b->block = block; 412 b->list_mode = dirty; 413 list_add(&b->lru_list, &c->lru[dirty]); 414 hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]); 415 b->last_accessed = jiffies; 416 } 417 418 /* 419 * Unlink buffer from the hash list and dirty or clean queue. 420 */ 421 static void __unlink_buffer(struct dm_buffer *b) 422 { 423 struct dm_bufio_client *c = b->c; 424 425 BUG_ON(!c->n_buffers[b->list_mode]); 426 427 c->n_buffers[b->list_mode]--; 428 hlist_del(&b->hash_list); 429 list_del(&b->lru_list); 430 } 431 432 /* 433 * Place the buffer to the head of dirty or clean LRU queue. 434 */ 435 static void __relink_lru(struct dm_buffer *b, int dirty) 436 { 437 struct dm_bufio_client *c = b->c; 438 439 BUG_ON(!c->n_buffers[b->list_mode]); 440 441 c->n_buffers[b->list_mode]--; 442 c->n_buffers[dirty]++; 443 b->list_mode = dirty; 444 list_del(&b->lru_list); 445 list_add(&b->lru_list, &c->lru[dirty]); 446 } 447 448 /*---------------------------------------------------------------- 449 * Submit I/O on the buffer. 450 * 451 * Bio interface is faster but it has some problems: 452 * the vector list is limited (increasing this limit increases 453 * memory-consumption per buffer, so it is not viable); 454 * 455 * the memory must be direct-mapped, not vmalloced; 456 * 457 * the I/O driver can reject requests spuriously if it thinks that 458 * the requests are too big for the device or if they cross a 459 * controller-defined memory boundary. 460 * 461 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 462 * it is not vmalloced, try using the bio interface. 463 * 464 * If the buffer is big, if it is vmalloced or if the underlying device 465 * rejects the bio because it is too large, use dm-io layer to do the I/O. 466 * The dm-io layer splits the I/O into multiple requests, avoiding the above 467 * shortcomings. 468 *--------------------------------------------------------------*/ 469 470 /* 471 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 472 * that the request was handled directly with bio interface. 473 */ 474 static void dmio_complete(unsigned long error, void *context) 475 { 476 struct dm_buffer *b = context; 477 478 b->bio.bi_end_io(&b->bio, error ? -EIO : 0); 479 } 480 481 static void use_dmio(struct dm_buffer *b, int rw, sector_t block, 482 bio_end_io_t *end_io) 483 { 484 int r; 485 struct dm_io_request io_req = { 486 .bi_rw = rw, 487 .notify.fn = dmio_complete, 488 .notify.context = b, 489 .client = b->c->dm_io, 490 }; 491 struct dm_io_region region = { 492 .bdev = b->c->bdev, 493 .sector = block << b->c->sectors_per_block_bits, 494 .count = b->c->block_size >> SECTOR_SHIFT, 495 }; 496 497 if (b->data_mode != DATA_MODE_VMALLOC) { 498 io_req.mem.type = DM_IO_KMEM; 499 io_req.mem.ptr.addr = b->data; 500 } else { 501 io_req.mem.type = DM_IO_VMA; 502 io_req.mem.ptr.vma = b->data; 503 } 504 505 b->bio.bi_end_io = end_io; 506 507 r = dm_io(&io_req, 1, ®ion, NULL); 508 if (r) 509 end_io(&b->bio, r); 510 } 511 512 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block, 513 bio_end_io_t *end_io) 514 { 515 char *ptr; 516 int len; 517 518 bio_init(&b->bio); 519 b->bio.bi_io_vec = b->bio_vec; 520 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS; 521 b->bio.bi_sector = block << b->c->sectors_per_block_bits; 522 b->bio.bi_bdev = b->c->bdev; 523 b->bio.bi_end_io = end_io; 524 525 /* 526 * We assume that if len >= PAGE_SIZE ptr is page-aligned. 527 * If len < PAGE_SIZE the buffer doesn't cross page boundary. 528 */ 529 ptr = b->data; 530 len = b->c->block_size; 531 532 if (len >= PAGE_SIZE) 533 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1)); 534 else 535 BUG_ON((unsigned long)ptr & (len - 1)); 536 537 do { 538 if (!bio_add_page(&b->bio, virt_to_page(ptr), 539 len < PAGE_SIZE ? len : PAGE_SIZE, 540 virt_to_phys(ptr) & (PAGE_SIZE - 1))) { 541 BUG_ON(b->c->block_size <= PAGE_SIZE); 542 use_dmio(b, rw, block, end_io); 543 return; 544 } 545 546 len -= PAGE_SIZE; 547 ptr += PAGE_SIZE; 548 } while (len > 0); 549 550 submit_bio(rw, &b->bio); 551 } 552 553 static void submit_io(struct dm_buffer *b, int rw, sector_t block, 554 bio_end_io_t *end_io) 555 { 556 if (rw == WRITE && b->c->write_callback) 557 b->c->write_callback(b); 558 559 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE && 560 b->data_mode != DATA_MODE_VMALLOC) 561 use_inline_bio(b, rw, block, end_io); 562 else 563 use_dmio(b, rw, block, end_io); 564 } 565 566 /*---------------------------------------------------------------- 567 * Writing dirty buffers 568 *--------------------------------------------------------------*/ 569 570 /* 571 * The endio routine for write. 572 * 573 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 574 * it. 575 */ 576 static void write_endio(struct bio *bio, int error) 577 { 578 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 579 580 b->write_error = error; 581 if (error) { 582 struct dm_bufio_client *c = b->c; 583 (void)cmpxchg(&c->async_write_error, 0, error); 584 } 585 586 BUG_ON(!test_bit(B_WRITING, &b->state)); 587 588 smp_mb__before_clear_bit(); 589 clear_bit(B_WRITING, &b->state); 590 smp_mb__after_clear_bit(); 591 592 wake_up_bit(&b->state, B_WRITING); 593 } 594 595 /* 596 * This function is called when wait_on_bit is actually waiting. 597 */ 598 static int do_io_schedule(void *word) 599 { 600 io_schedule(); 601 602 return 0; 603 } 604 605 /* 606 * Initiate a write on a dirty buffer, but don't wait for it. 607 * 608 * - If the buffer is not dirty, exit. 609 * - If there some previous write going on, wait for it to finish (we can't 610 * have two writes on the same buffer simultaneously). 611 * - Submit our write and don't wait on it. We set B_WRITING indicating 612 * that there is a write in progress. 613 */ 614 static void __write_dirty_buffer(struct dm_buffer *b) 615 { 616 if (!test_bit(B_DIRTY, &b->state)) 617 return; 618 619 clear_bit(B_DIRTY, &b->state); 620 wait_on_bit_lock(&b->state, B_WRITING, 621 do_io_schedule, TASK_UNINTERRUPTIBLE); 622 623 submit_io(b, WRITE, b->block, write_endio); 624 } 625 626 /* 627 * Wait until any activity on the buffer finishes. Possibly write the 628 * buffer if it is dirty. When this function finishes, there is no I/O 629 * running on the buffer and the buffer is not dirty. 630 */ 631 static void __make_buffer_clean(struct dm_buffer *b) 632 { 633 BUG_ON(b->hold_count); 634 635 if (!b->state) /* fast case */ 636 return; 637 638 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE); 639 __write_dirty_buffer(b); 640 wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE); 641 } 642 643 /* 644 * Find some buffer that is not held by anybody, clean it, unlink it and 645 * return it. 646 */ 647 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 648 { 649 struct dm_buffer *b; 650 651 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 652 BUG_ON(test_bit(B_WRITING, &b->state)); 653 BUG_ON(test_bit(B_DIRTY, &b->state)); 654 655 if (!b->hold_count) { 656 __make_buffer_clean(b); 657 __unlink_buffer(b); 658 return b; 659 } 660 dm_bufio_cond_resched(); 661 } 662 663 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 664 BUG_ON(test_bit(B_READING, &b->state)); 665 666 if (!b->hold_count) { 667 __make_buffer_clean(b); 668 __unlink_buffer(b); 669 return b; 670 } 671 dm_bufio_cond_resched(); 672 } 673 674 return NULL; 675 } 676 677 /* 678 * Wait until some other threads free some buffer or release hold count on 679 * some buffer. 680 * 681 * This function is entered with c->lock held, drops it and regains it 682 * before exiting. 683 */ 684 static void __wait_for_free_buffer(struct dm_bufio_client *c) 685 { 686 DECLARE_WAITQUEUE(wait, current); 687 688 add_wait_queue(&c->free_buffer_wait, &wait); 689 set_task_state(current, TASK_UNINTERRUPTIBLE); 690 dm_bufio_unlock(c); 691 692 io_schedule(); 693 694 set_task_state(current, TASK_RUNNING); 695 remove_wait_queue(&c->free_buffer_wait, &wait); 696 697 dm_bufio_lock(c); 698 } 699 700 /* 701 * Allocate a new buffer. If the allocation is not possible, wait until 702 * some other thread frees a buffer. 703 * 704 * May drop the lock and regain it. 705 */ 706 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c) 707 { 708 struct dm_buffer *b; 709 710 /* 711 * dm-bufio is resistant to allocation failures (it just keeps 712 * one buffer reserved in cases all the allocations fail). 713 * So set flags to not try too hard: 714 * GFP_NOIO: don't recurse into the I/O layer 715 * __GFP_NORETRY: don't retry and rather return failure 716 * __GFP_NOMEMALLOC: don't use emergency reserves 717 * __GFP_NOWARN: don't print a warning in case of failure 718 * 719 * For debugging, if we set the cache size to 1, no new buffers will 720 * be allocated. 721 */ 722 while (1) { 723 if (dm_bufio_cache_size_latch != 1) { 724 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 725 if (b) 726 return b; 727 } 728 729 if (!list_empty(&c->reserved_buffers)) { 730 b = list_entry(c->reserved_buffers.next, 731 struct dm_buffer, lru_list); 732 list_del(&b->lru_list); 733 c->need_reserved_buffers++; 734 735 return b; 736 } 737 738 b = __get_unclaimed_buffer(c); 739 if (b) 740 return b; 741 742 __wait_for_free_buffer(c); 743 } 744 } 745 746 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c) 747 { 748 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c); 749 750 if (c->alloc_callback) 751 c->alloc_callback(b); 752 753 return b; 754 } 755 756 /* 757 * Free a buffer and wake other threads waiting for free buffers. 758 */ 759 static void __free_buffer_wake(struct dm_buffer *b) 760 { 761 struct dm_bufio_client *c = b->c; 762 763 if (!c->need_reserved_buffers) 764 free_buffer(b); 765 else { 766 list_add(&b->lru_list, &c->reserved_buffers); 767 c->need_reserved_buffers--; 768 } 769 770 wake_up(&c->free_buffer_wait); 771 } 772 773 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait) 774 { 775 struct dm_buffer *b, *tmp; 776 777 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 778 BUG_ON(test_bit(B_READING, &b->state)); 779 780 if (!test_bit(B_DIRTY, &b->state) && 781 !test_bit(B_WRITING, &b->state)) { 782 __relink_lru(b, LIST_CLEAN); 783 continue; 784 } 785 786 if (no_wait && test_bit(B_WRITING, &b->state)) 787 return; 788 789 __write_dirty_buffer(b); 790 dm_bufio_cond_resched(); 791 } 792 } 793 794 /* 795 * Get writeback threshold and buffer limit for a given client. 796 */ 797 static void __get_memory_limit(struct dm_bufio_client *c, 798 unsigned long *threshold_buffers, 799 unsigned long *limit_buffers) 800 { 801 unsigned long buffers; 802 803 if (dm_bufio_cache_size != dm_bufio_cache_size_latch) { 804 mutex_lock(&dm_bufio_clients_lock); 805 __cache_size_refresh(); 806 mutex_unlock(&dm_bufio_clients_lock); 807 } 808 809 buffers = dm_bufio_cache_size_per_client >> 810 (c->sectors_per_block_bits + SECTOR_SHIFT); 811 812 if (buffers < DM_BUFIO_MIN_BUFFERS) 813 buffers = DM_BUFIO_MIN_BUFFERS; 814 815 *limit_buffers = buffers; 816 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100; 817 } 818 819 /* 820 * Check if we're over watermark. 821 * If we are over threshold_buffers, start freeing buffers. 822 * If we're over "limit_buffers", block until we get under the limit. 823 */ 824 static void __check_watermark(struct dm_bufio_client *c) 825 { 826 unsigned long threshold_buffers, limit_buffers; 827 828 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 829 830 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 831 limit_buffers) { 832 833 struct dm_buffer *b = __get_unclaimed_buffer(c); 834 835 if (!b) 836 return; 837 838 __free_buffer_wake(b); 839 dm_bufio_cond_resched(); 840 } 841 842 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 843 __write_dirty_buffers_async(c, 1); 844 } 845 846 /* 847 * Find a buffer in the hash. 848 */ 849 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 850 { 851 struct dm_buffer *b; 852 struct hlist_node *hn; 853 854 hlist_for_each_entry(b, hn, &c->cache_hash[DM_BUFIO_HASH(block)], 855 hash_list) { 856 dm_bufio_cond_resched(); 857 if (b->block == block) 858 return b; 859 } 860 861 return NULL; 862 } 863 864 /*---------------------------------------------------------------- 865 * Getting a buffer 866 *--------------------------------------------------------------*/ 867 868 enum new_flag { 869 NF_FRESH = 0, 870 NF_READ = 1, 871 NF_GET = 2 872 }; 873 874 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 875 enum new_flag nf, struct dm_buffer **bp, 876 int *need_submit) 877 { 878 struct dm_buffer *b, *new_b = NULL; 879 880 *need_submit = 0; 881 882 b = __find(c, block); 883 if (b) { 884 b->hold_count++; 885 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 886 test_bit(B_WRITING, &b->state)); 887 return b; 888 } 889 890 if (nf == NF_GET) 891 return NULL; 892 893 new_b = __alloc_buffer_wait(c); 894 895 /* 896 * We've had a period where the mutex was unlocked, so need to 897 * recheck the hash table. 898 */ 899 b = __find(c, block); 900 if (b) { 901 __free_buffer_wake(new_b); 902 b->hold_count++; 903 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 904 test_bit(B_WRITING, &b->state)); 905 return b; 906 } 907 908 __check_watermark(c); 909 910 b = new_b; 911 b->hold_count = 1; 912 b->read_error = 0; 913 b->write_error = 0; 914 __link_buffer(b, block, LIST_CLEAN); 915 916 if (nf == NF_FRESH) { 917 b->state = 0; 918 return b; 919 } 920 921 b->state = 1 << B_READING; 922 *need_submit = 1; 923 924 return b; 925 } 926 927 /* 928 * The endio routine for reading: set the error, clear the bit and wake up 929 * anyone waiting on the buffer. 930 */ 931 static void read_endio(struct bio *bio, int error) 932 { 933 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 934 935 b->read_error = error; 936 937 BUG_ON(!test_bit(B_READING, &b->state)); 938 939 smp_mb__before_clear_bit(); 940 clear_bit(B_READING, &b->state); 941 smp_mb__after_clear_bit(); 942 943 wake_up_bit(&b->state, B_READING); 944 } 945 946 /* 947 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 948 * functions is similar except that dm_bufio_new doesn't read the 949 * buffer from the disk (assuming that the caller overwrites all the data 950 * and uses dm_bufio_mark_buffer_dirty to write new data back). 951 */ 952 static void *new_read(struct dm_bufio_client *c, sector_t block, 953 enum new_flag nf, struct dm_buffer **bp) 954 { 955 int need_submit; 956 struct dm_buffer *b; 957 958 dm_bufio_lock(c); 959 b = __bufio_new(c, block, nf, bp, &need_submit); 960 dm_bufio_unlock(c); 961 962 if (!b || IS_ERR(b)) 963 return b; 964 965 if (need_submit) 966 submit_io(b, READ, b->block, read_endio); 967 968 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE); 969 970 if (b->read_error) { 971 int error = b->read_error; 972 973 dm_bufio_release(b); 974 975 return ERR_PTR(error); 976 } 977 978 *bp = b; 979 980 return b->data; 981 } 982 983 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 984 struct dm_buffer **bp) 985 { 986 return new_read(c, block, NF_GET, bp); 987 } 988 EXPORT_SYMBOL_GPL(dm_bufio_get); 989 990 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 991 struct dm_buffer **bp) 992 { 993 BUG_ON(dm_bufio_in_request()); 994 995 return new_read(c, block, NF_READ, bp); 996 } 997 EXPORT_SYMBOL_GPL(dm_bufio_read); 998 999 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1000 struct dm_buffer **bp) 1001 { 1002 BUG_ON(dm_bufio_in_request()); 1003 1004 return new_read(c, block, NF_FRESH, bp); 1005 } 1006 EXPORT_SYMBOL_GPL(dm_bufio_new); 1007 1008 void dm_bufio_release(struct dm_buffer *b) 1009 { 1010 struct dm_bufio_client *c = b->c; 1011 1012 dm_bufio_lock(c); 1013 1014 BUG_ON(test_bit(B_READING, &b->state)); 1015 BUG_ON(!b->hold_count); 1016 1017 b->hold_count--; 1018 if (!b->hold_count) { 1019 wake_up(&c->free_buffer_wait); 1020 1021 /* 1022 * If there were errors on the buffer, and the buffer is not 1023 * to be written, free the buffer. There is no point in caching 1024 * invalid buffer. 1025 */ 1026 if ((b->read_error || b->write_error) && 1027 !test_bit(B_WRITING, &b->state) && 1028 !test_bit(B_DIRTY, &b->state)) { 1029 __unlink_buffer(b); 1030 __free_buffer_wake(b); 1031 } 1032 } 1033 1034 dm_bufio_unlock(c); 1035 } 1036 EXPORT_SYMBOL_GPL(dm_bufio_release); 1037 1038 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1039 { 1040 struct dm_bufio_client *c = b->c; 1041 1042 dm_bufio_lock(c); 1043 1044 if (!test_and_set_bit(B_DIRTY, &b->state)) 1045 __relink_lru(b, LIST_DIRTY); 1046 1047 dm_bufio_unlock(c); 1048 } 1049 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1050 1051 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1052 { 1053 BUG_ON(dm_bufio_in_request()); 1054 1055 dm_bufio_lock(c); 1056 __write_dirty_buffers_async(c, 0); 1057 dm_bufio_unlock(c); 1058 } 1059 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1060 1061 /* 1062 * For performance, it is essential that the buffers are written asynchronously 1063 * and simultaneously (so that the block layer can merge the writes) and then 1064 * waited upon. 1065 * 1066 * Finally, we flush hardware disk cache. 1067 */ 1068 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1069 { 1070 int a, f; 1071 unsigned long buffers_processed = 0; 1072 struct dm_buffer *b, *tmp; 1073 1074 dm_bufio_lock(c); 1075 __write_dirty_buffers_async(c, 0); 1076 1077 again: 1078 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1079 int dropped_lock = 0; 1080 1081 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1082 buffers_processed++; 1083 1084 BUG_ON(test_bit(B_READING, &b->state)); 1085 1086 if (test_bit(B_WRITING, &b->state)) { 1087 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1088 dropped_lock = 1; 1089 b->hold_count++; 1090 dm_bufio_unlock(c); 1091 wait_on_bit(&b->state, B_WRITING, 1092 do_io_schedule, 1093 TASK_UNINTERRUPTIBLE); 1094 dm_bufio_lock(c); 1095 b->hold_count--; 1096 } else 1097 wait_on_bit(&b->state, B_WRITING, 1098 do_io_schedule, 1099 TASK_UNINTERRUPTIBLE); 1100 } 1101 1102 if (!test_bit(B_DIRTY, &b->state) && 1103 !test_bit(B_WRITING, &b->state)) 1104 __relink_lru(b, LIST_CLEAN); 1105 1106 dm_bufio_cond_resched(); 1107 1108 /* 1109 * If we dropped the lock, the list is no longer consistent, 1110 * so we must restart the search. 1111 * 1112 * In the most common case, the buffer just processed is 1113 * relinked to the clean list, so we won't loop scanning the 1114 * same buffer again and again. 1115 * 1116 * This may livelock if there is another thread simultaneously 1117 * dirtying buffers, so we count the number of buffers walked 1118 * and if it exceeds the total number of buffers, it means that 1119 * someone is doing some writes simultaneously with us. In 1120 * this case, stop, dropping the lock. 1121 */ 1122 if (dropped_lock) 1123 goto again; 1124 } 1125 wake_up(&c->free_buffer_wait); 1126 dm_bufio_unlock(c); 1127 1128 a = xchg(&c->async_write_error, 0); 1129 f = dm_bufio_issue_flush(c); 1130 if (a) 1131 return a; 1132 1133 return f; 1134 } 1135 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1136 1137 /* 1138 * Use dm-io to send and empty barrier flush the device. 1139 */ 1140 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1141 { 1142 struct dm_io_request io_req = { 1143 .bi_rw = REQ_FLUSH, 1144 .mem.type = DM_IO_KMEM, 1145 .mem.ptr.addr = NULL, 1146 .client = c->dm_io, 1147 }; 1148 struct dm_io_region io_reg = { 1149 .bdev = c->bdev, 1150 .sector = 0, 1151 .count = 0, 1152 }; 1153 1154 BUG_ON(dm_bufio_in_request()); 1155 1156 return dm_io(&io_req, 1, &io_reg, NULL); 1157 } 1158 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1159 1160 /* 1161 * We first delete any other buffer that may be at that new location. 1162 * 1163 * Then, we write the buffer to the original location if it was dirty. 1164 * 1165 * Then, if we are the only one who is holding the buffer, relink the buffer 1166 * in the hash queue for the new location. 1167 * 1168 * If there was someone else holding the buffer, we write it to the new 1169 * location but not relink it, because that other user needs to have the buffer 1170 * at the same place. 1171 */ 1172 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1173 { 1174 struct dm_bufio_client *c = b->c; 1175 struct dm_buffer *new; 1176 1177 BUG_ON(dm_bufio_in_request()); 1178 1179 dm_bufio_lock(c); 1180 1181 retry: 1182 new = __find(c, new_block); 1183 if (new) { 1184 if (new->hold_count) { 1185 __wait_for_free_buffer(c); 1186 goto retry; 1187 } 1188 1189 /* 1190 * FIXME: Is there any point waiting for a write that's going 1191 * to be overwritten in a bit? 1192 */ 1193 __make_buffer_clean(new); 1194 __unlink_buffer(new); 1195 __free_buffer_wake(new); 1196 } 1197 1198 BUG_ON(!b->hold_count); 1199 BUG_ON(test_bit(B_READING, &b->state)); 1200 1201 __write_dirty_buffer(b); 1202 if (b->hold_count == 1) { 1203 wait_on_bit(&b->state, B_WRITING, 1204 do_io_schedule, TASK_UNINTERRUPTIBLE); 1205 set_bit(B_DIRTY, &b->state); 1206 __unlink_buffer(b); 1207 __link_buffer(b, new_block, LIST_DIRTY); 1208 } else { 1209 sector_t old_block; 1210 wait_on_bit_lock(&b->state, B_WRITING, 1211 do_io_schedule, TASK_UNINTERRUPTIBLE); 1212 /* 1213 * Relink buffer to "new_block" so that write_callback 1214 * sees "new_block" as a block number. 1215 * After the write, link the buffer back to old_block. 1216 * All this must be done in bufio lock, so that block number 1217 * change isn't visible to other threads. 1218 */ 1219 old_block = b->block; 1220 __unlink_buffer(b); 1221 __link_buffer(b, new_block, b->list_mode); 1222 submit_io(b, WRITE, new_block, write_endio); 1223 wait_on_bit(&b->state, B_WRITING, 1224 do_io_schedule, TASK_UNINTERRUPTIBLE); 1225 __unlink_buffer(b); 1226 __link_buffer(b, old_block, b->list_mode); 1227 } 1228 1229 dm_bufio_unlock(c); 1230 dm_bufio_release(b); 1231 } 1232 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1233 1234 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1235 { 1236 return c->block_size; 1237 } 1238 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1239 1240 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1241 { 1242 return i_size_read(c->bdev->bd_inode) >> 1243 (SECTOR_SHIFT + c->sectors_per_block_bits); 1244 } 1245 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1246 1247 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1248 { 1249 return b->block; 1250 } 1251 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1252 1253 void *dm_bufio_get_block_data(struct dm_buffer *b) 1254 { 1255 return b->data; 1256 } 1257 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1258 1259 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1260 { 1261 return b + 1; 1262 } 1263 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1264 1265 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1266 { 1267 return b->c; 1268 } 1269 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1270 1271 static void drop_buffers(struct dm_bufio_client *c) 1272 { 1273 struct dm_buffer *b; 1274 int i; 1275 1276 BUG_ON(dm_bufio_in_request()); 1277 1278 /* 1279 * An optimization so that the buffers are not written one-by-one. 1280 */ 1281 dm_bufio_write_dirty_buffers_async(c); 1282 1283 dm_bufio_lock(c); 1284 1285 while ((b = __get_unclaimed_buffer(c))) 1286 __free_buffer_wake(b); 1287 1288 for (i = 0; i < LIST_SIZE; i++) 1289 list_for_each_entry(b, &c->lru[i], lru_list) 1290 DMERR("leaked buffer %llx, hold count %u, list %d", 1291 (unsigned long long)b->block, b->hold_count, i); 1292 1293 for (i = 0; i < LIST_SIZE; i++) 1294 BUG_ON(!list_empty(&c->lru[i])); 1295 1296 dm_bufio_unlock(c); 1297 } 1298 1299 /* 1300 * Test if the buffer is unused and too old, and commit it. 1301 * At if noio is set, we must not do any I/O because we hold 1302 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to 1303 * different bufio client. 1304 */ 1305 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp, 1306 unsigned long max_jiffies) 1307 { 1308 if (jiffies - b->last_accessed < max_jiffies) 1309 return 1; 1310 1311 if (!(gfp & __GFP_IO)) { 1312 if (test_bit(B_READING, &b->state) || 1313 test_bit(B_WRITING, &b->state) || 1314 test_bit(B_DIRTY, &b->state)) 1315 return 1; 1316 } 1317 1318 if (b->hold_count) 1319 return 1; 1320 1321 __make_buffer_clean(b); 1322 __unlink_buffer(b); 1323 __free_buffer_wake(b); 1324 1325 return 0; 1326 } 1327 1328 static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1329 struct shrink_control *sc) 1330 { 1331 int l; 1332 struct dm_buffer *b, *tmp; 1333 1334 for (l = 0; l < LIST_SIZE; l++) { 1335 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) 1336 if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) && 1337 !--nr_to_scan) 1338 return; 1339 dm_bufio_cond_resched(); 1340 } 1341 } 1342 1343 static int shrink(struct shrinker *shrinker, struct shrink_control *sc) 1344 { 1345 struct dm_bufio_client *c = 1346 container_of(shrinker, struct dm_bufio_client, shrinker); 1347 unsigned long r; 1348 unsigned long nr_to_scan = sc->nr_to_scan; 1349 1350 if (sc->gfp_mask & __GFP_IO) 1351 dm_bufio_lock(c); 1352 else if (!dm_bufio_trylock(c)) 1353 return !nr_to_scan ? 0 : -1; 1354 1355 if (nr_to_scan) 1356 __scan(c, nr_to_scan, sc); 1357 1358 r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1359 if (r > INT_MAX) 1360 r = INT_MAX; 1361 1362 dm_bufio_unlock(c); 1363 1364 return r; 1365 } 1366 1367 /* 1368 * Create the buffering interface 1369 */ 1370 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1371 unsigned reserved_buffers, unsigned aux_size, 1372 void (*alloc_callback)(struct dm_buffer *), 1373 void (*write_callback)(struct dm_buffer *)) 1374 { 1375 int r; 1376 struct dm_bufio_client *c; 1377 unsigned i; 1378 1379 BUG_ON(block_size < 1 << SECTOR_SHIFT || 1380 (block_size & (block_size - 1))); 1381 1382 c = kmalloc(sizeof(*c), GFP_KERNEL); 1383 if (!c) { 1384 r = -ENOMEM; 1385 goto bad_client; 1386 } 1387 c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS); 1388 if (!c->cache_hash) { 1389 r = -ENOMEM; 1390 goto bad_hash; 1391 } 1392 1393 c->bdev = bdev; 1394 c->block_size = block_size; 1395 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT; 1396 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ? 1397 ffs(block_size) - 1 - PAGE_SHIFT : 0; 1398 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ? 1399 PAGE_SHIFT - (ffs(block_size) - 1) : 0); 1400 1401 c->aux_size = aux_size; 1402 c->alloc_callback = alloc_callback; 1403 c->write_callback = write_callback; 1404 1405 for (i = 0; i < LIST_SIZE; i++) { 1406 INIT_LIST_HEAD(&c->lru[i]); 1407 c->n_buffers[i] = 0; 1408 } 1409 1410 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++) 1411 INIT_HLIST_HEAD(&c->cache_hash[i]); 1412 1413 mutex_init(&c->lock); 1414 INIT_LIST_HEAD(&c->reserved_buffers); 1415 c->need_reserved_buffers = reserved_buffers; 1416 1417 init_waitqueue_head(&c->free_buffer_wait); 1418 c->async_write_error = 0; 1419 1420 c->dm_io = dm_io_client_create(); 1421 if (IS_ERR(c->dm_io)) { 1422 r = PTR_ERR(c->dm_io); 1423 goto bad_dm_io; 1424 } 1425 1426 mutex_lock(&dm_bufio_clients_lock); 1427 if (c->blocks_per_page_bits) { 1428 if (!DM_BUFIO_CACHE_NAME(c)) { 1429 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size); 1430 if (!DM_BUFIO_CACHE_NAME(c)) { 1431 r = -ENOMEM; 1432 mutex_unlock(&dm_bufio_clients_lock); 1433 goto bad_cache; 1434 } 1435 } 1436 1437 if (!DM_BUFIO_CACHE(c)) { 1438 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c), 1439 c->block_size, 1440 c->block_size, 0, NULL); 1441 if (!DM_BUFIO_CACHE(c)) { 1442 r = -ENOMEM; 1443 mutex_unlock(&dm_bufio_clients_lock); 1444 goto bad_cache; 1445 } 1446 } 1447 } 1448 mutex_unlock(&dm_bufio_clients_lock); 1449 1450 while (c->need_reserved_buffers) { 1451 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1452 1453 if (!b) { 1454 r = -ENOMEM; 1455 goto bad_buffer; 1456 } 1457 __free_buffer_wake(b); 1458 } 1459 1460 mutex_lock(&dm_bufio_clients_lock); 1461 dm_bufio_client_count++; 1462 list_add(&c->client_list, &dm_bufio_all_clients); 1463 __cache_size_refresh(); 1464 mutex_unlock(&dm_bufio_clients_lock); 1465 1466 c->shrinker.shrink = shrink; 1467 c->shrinker.seeks = 1; 1468 c->shrinker.batch = 0; 1469 register_shrinker(&c->shrinker); 1470 1471 return c; 1472 1473 bad_buffer: 1474 bad_cache: 1475 while (!list_empty(&c->reserved_buffers)) { 1476 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1477 struct dm_buffer, lru_list); 1478 list_del(&b->lru_list); 1479 free_buffer(b); 1480 } 1481 dm_io_client_destroy(c->dm_io); 1482 bad_dm_io: 1483 vfree(c->cache_hash); 1484 bad_hash: 1485 kfree(c); 1486 bad_client: 1487 return ERR_PTR(r); 1488 } 1489 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1490 1491 /* 1492 * Free the buffering interface. 1493 * It is required that there are no references on any buffers. 1494 */ 1495 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1496 { 1497 unsigned i; 1498 1499 drop_buffers(c); 1500 1501 unregister_shrinker(&c->shrinker); 1502 1503 mutex_lock(&dm_bufio_clients_lock); 1504 1505 list_del(&c->client_list); 1506 dm_bufio_client_count--; 1507 __cache_size_refresh(); 1508 1509 mutex_unlock(&dm_bufio_clients_lock); 1510 1511 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++) 1512 BUG_ON(!hlist_empty(&c->cache_hash[i])); 1513 1514 BUG_ON(c->need_reserved_buffers); 1515 1516 while (!list_empty(&c->reserved_buffers)) { 1517 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1518 struct dm_buffer, lru_list); 1519 list_del(&b->lru_list); 1520 free_buffer(b); 1521 } 1522 1523 for (i = 0; i < LIST_SIZE; i++) 1524 if (c->n_buffers[i]) 1525 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1526 1527 for (i = 0; i < LIST_SIZE; i++) 1528 BUG_ON(c->n_buffers[i]); 1529 1530 dm_io_client_destroy(c->dm_io); 1531 vfree(c->cache_hash); 1532 kfree(c); 1533 } 1534 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1535 1536 static void cleanup_old_buffers(void) 1537 { 1538 unsigned long max_age = dm_bufio_max_age; 1539 struct dm_bufio_client *c; 1540 1541 barrier(); 1542 1543 if (max_age > ULONG_MAX / HZ) 1544 max_age = ULONG_MAX / HZ; 1545 1546 mutex_lock(&dm_bufio_clients_lock); 1547 list_for_each_entry(c, &dm_bufio_all_clients, client_list) { 1548 if (!dm_bufio_trylock(c)) 1549 continue; 1550 1551 while (!list_empty(&c->lru[LIST_CLEAN])) { 1552 struct dm_buffer *b; 1553 b = list_entry(c->lru[LIST_CLEAN].prev, 1554 struct dm_buffer, lru_list); 1555 if (__cleanup_old_buffer(b, 0, max_age * HZ)) 1556 break; 1557 dm_bufio_cond_resched(); 1558 } 1559 1560 dm_bufio_unlock(c); 1561 dm_bufio_cond_resched(); 1562 } 1563 mutex_unlock(&dm_bufio_clients_lock); 1564 } 1565 1566 static struct workqueue_struct *dm_bufio_wq; 1567 static struct delayed_work dm_bufio_work; 1568 1569 static void work_fn(struct work_struct *w) 1570 { 1571 cleanup_old_buffers(); 1572 1573 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1574 DM_BUFIO_WORK_TIMER_SECS * HZ); 1575 } 1576 1577 /*---------------------------------------------------------------- 1578 * Module setup 1579 *--------------------------------------------------------------*/ 1580 1581 /* 1582 * This is called only once for the whole dm_bufio module. 1583 * It initializes memory limit. 1584 */ 1585 static int __init dm_bufio_init(void) 1586 { 1587 __u64 mem; 1588 1589 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); 1590 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); 1591 1592 mem = (__u64)((totalram_pages - totalhigh_pages) * 1593 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT; 1594 1595 if (mem > ULONG_MAX) 1596 mem = ULONG_MAX; 1597 1598 #ifdef CONFIG_MMU 1599 /* 1600 * Get the size of vmalloc space the same way as VMALLOC_TOTAL 1601 * in fs/proc/internal.h 1602 */ 1603 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100) 1604 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100; 1605 #endif 1606 1607 dm_bufio_default_cache_size = mem; 1608 1609 mutex_lock(&dm_bufio_clients_lock); 1610 __cache_size_refresh(); 1611 mutex_unlock(&dm_bufio_clients_lock); 1612 1613 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache"); 1614 if (!dm_bufio_wq) 1615 return -ENOMEM; 1616 1617 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1618 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1619 DM_BUFIO_WORK_TIMER_SECS * HZ); 1620 1621 return 0; 1622 } 1623 1624 /* 1625 * This is called once when unloading the dm_bufio module. 1626 */ 1627 static void __exit dm_bufio_exit(void) 1628 { 1629 int bug = 0; 1630 int i; 1631 1632 cancel_delayed_work_sync(&dm_bufio_work); 1633 destroy_workqueue(dm_bufio_wq); 1634 1635 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) { 1636 struct kmem_cache *kc = dm_bufio_caches[i]; 1637 1638 if (kc) 1639 kmem_cache_destroy(kc); 1640 } 1641 1642 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++) 1643 kfree(dm_bufio_cache_names[i]); 1644 1645 if (dm_bufio_client_count) { 1646 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1647 __func__, dm_bufio_client_count); 1648 bug = 1; 1649 } 1650 1651 if (dm_bufio_current_allocated) { 1652 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1653 __func__, dm_bufio_current_allocated); 1654 bug = 1; 1655 } 1656 1657 if (dm_bufio_allocated_get_free_pages) { 1658 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1659 __func__, dm_bufio_allocated_get_free_pages); 1660 bug = 1; 1661 } 1662 1663 if (dm_bufio_allocated_vmalloc) { 1664 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1665 __func__, dm_bufio_allocated_vmalloc); 1666 bug = 1; 1667 } 1668 1669 if (bug) 1670 BUG(); 1671 } 1672 1673 module_init(dm_bufio_init) 1674 module_exit(dm_bufio_exit) 1675 1676 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1677 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1678 1679 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 1680 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 1681 1682 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 1683 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 1684 1685 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 1686 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 1687 1688 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 1689 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 1690 1691 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 1692 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 1693 1694 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 1695 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 1696 1697 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 1698 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 1699 MODULE_LICENSE("GPL"); 1700