xref: /linux/drivers/md/dm-bufio.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17 
18 #define DM_MSG_PREFIX "bufio"
19 
20 /*
21  * Memory management policy:
22  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *	dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS		8
29 
30 #define DM_BUFIO_MEMORY_PERCENT		2
31 #define DM_BUFIO_VMALLOC_PERCENT	25
32 #define DM_BUFIO_WRITEBACK_PERCENT	75
33 
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS	10
38 
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS	60
43 
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS		16
49 
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS	20
54 #define DM_BUFIO_HASH(block) \
55 	((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 	 ((1 << DM_BUFIO_HASH_BITS) - 1))
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	struct hlist_head *cache_hash;
108 	wait_queue_head_t free_buffer_wait;
109 
110 	int async_write_error;
111 
112 	struct list_head client_list;
113 	struct shrinker shrinker;
114 };
115 
116 /*
117  * Buffer state bits.
118  */
119 #define B_READING	0
120 #define B_WRITING	1
121 #define B_DIRTY		2
122 
123 /*
124  * Describes how the block was allocated:
125  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126  * See the comment at alloc_buffer_data.
127  */
128 enum data_mode {
129 	DATA_MODE_SLAB = 0,
130 	DATA_MODE_GET_FREE_PAGES = 1,
131 	DATA_MODE_VMALLOC = 2,
132 	DATA_MODE_LIMIT = 3
133 };
134 
135 struct dm_buffer {
136 	struct hlist_node hash_list;
137 	struct list_head lru_list;
138 	sector_t block;
139 	void *data;
140 	enum data_mode data_mode;
141 	unsigned char list_mode;		/* LIST_* */
142 	unsigned hold_count;
143 	int read_error;
144 	int write_error;
145 	unsigned long state;
146 	unsigned long last_accessed;
147 	struct dm_bufio_client *c;
148 	struct bio bio;
149 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
150 };
151 
152 /*----------------------------------------------------------------*/
153 
154 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
155 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
156 
157 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
158 {
159 	unsigned ret = c->blocks_per_page_bits - 1;
160 
161 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
162 
163 	return ret;
164 }
165 
166 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
167 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
168 
169 #define dm_bufio_in_request()	(!!current->bio_list)
170 
171 static void dm_bufio_lock(struct dm_bufio_client *c)
172 {
173 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
174 }
175 
176 static int dm_bufio_trylock(struct dm_bufio_client *c)
177 {
178 	return mutex_trylock(&c->lock);
179 }
180 
181 static void dm_bufio_unlock(struct dm_bufio_client *c)
182 {
183 	mutex_unlock(&c->lock);
184 }
185 
186 /*
187  * FIXME Move to sched.h?
188  */
189 #ifdef CONFIG_PREEMPT_VOLUNTARY
190 #  define dm_bufio_cond_resched()		\
191 do {						\
192 	if (unlikely(need_resched()))		\
193 		_cond_resched();		\
194 } while (0)
195 #else
196 #  define dm_bufio_cond_resched()                do { } while (0)
197 #endif
198 
199 /*----------------------------------------------------------------*/
200 
201 /*
202  * Default cache size: available memory divided by the ratio.
203  */
204 static unsigned long dm_bufio_default_cache_size;
205 
206 /*
207  * Total cache size set by the user.
208  */
209 static unsigned long dm_bufio_cache_size;
210 
211 /*
212  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
213  * at any time.  If it disagrees, the user has changed cache size.
214  */
215 static unsigned long dm_bufio_cache_size_latch;
216 
217 static DEFINE_SPINLOCK(param_spinlock);
218 
219 /*
220  * Buffers are freed after this timeout
221  */
222 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
223 
224 static unsigned long dm_bufio_peak_allocated;
225 static unsigned long dm_bufio_allocated_kmem_cache;
226 static unsigned long dm_bufio_allocated_get_free_pages;
227 static unsigned long dm_bufio_allocated_vmalloc;
228 static unsigned long dm_bufio_current_allocated;
229 
230 /*----------------------------------------------------------------*/
231 
232 /*
233  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
234  */
235 static unsigned long dm_bufio_cache_size_per_client;
236 
237 /*
238  * The current number of clients.
239  */
240 static int dm_bufio_client_count;
241 
242 /*
243  * The list of all clients.
244  */
245 static LIST_HEAD(dm_bufio_all_clients);
246 
247 /*
248  * This mutex protects dm_bufio_cache_size_latch,
249  * dm_bufio_cache_size_per_client and dm_bufio_client_count
250  */
251 static DEFINE_MUTEX(dm_bufio_clients_lock);
252 
253 /*----------------------------------------------------------------*/
254 
255 static void adjust_total_allocated(enum data_mode data_mode, long diff)
256 {
257 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
258 		&dm_bufio_allocated_kmem_cache,
259 		&dm_bufio_allocated_get_free_pages,
260 		&dm_bufio_allocated_vmalloc,
261 	};
262 
263 	spin_lock(&param_spinlock);
264 
265 	*class_ptr[data_mode] += diff;
266 
267 	dm_bufio_current_allocated += diff;
268 
269 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
270 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
271 
272 	spin_unlock(&param_spinlock);
273 }
274 
275 /*
276  * Change the number of clients and recalculate per-client limit.
277  */
278 static void __cache_size_refresh(void)
279 {
280 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
281 	BUG_ON(dm_bufio_client_count < 0);
282 
283 	dm_bufio_cache_size_latch = dm_bufio_cache_size;
284 
285 	barrier();
286 
287 	/*
288 	 * Use default if set to 0 and report the actual cache size used.
289 	 */
290 	if (!dm_bufio_cache_size_latch) {
291 		(void)cmpxchg(&dm_bufio_cache_size, 0,
292 			      dm_bufio_default_cache_size);
293 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
294 	}
295 
296 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
297 					 (dm_bufio_client_count ? : 1);
298 }
299 
300 /*
301  * Allocating buffer data.
302  *
303  * Small buffers are allocated with kmem_cache, to use space optimally.
304  *
305  * For large buffers, we choose between get_free_pages and vmalloc.
306  * Each has advantages and disadvantages.
307  *
308  * __get_free_pages can randomly fail if the memory is fragmented.
309  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
310  * as low as 128M) so using it for caching is not appropriate.
311  *
312  * If the allocation may fail we use __get_free_pages. Memory fragmentation
313  * won't have a fatal effect here, but it just causes flushes of some other
314  * buffers and more I/O will be performed. Don't use __get_free_pages if it
315  * always fails (i.e. order >= MAX_ORDER).
316  *
317  * If the allocation shouldn't fail we use __vmalloc. This is only for the
318  * initial reserve allocation, so there's no risk of wasting all vmalloc
319  * space.
320  */
321 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
322 			       enum data_mode *data_mode)
323 {
324 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
325 		*data_mode = DATA_MODE_SLAB;
326 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
327 	}
328 
329 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
330 	    gfp_mask & __GFP_NORETRY) {
331 		*data_mode = DATA_MODE_GET_FREE_PAGES;
332 		return (void *)__get_free_pages(gfp_mask,
333 						c->pages_per_block_bits);
334 	}
335 
336 	*data_mode = DATA_MODE_VMALLOC;
337 	return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
338 }
339 
340 /*
341  * Free buffer's data.
342  */
343 static void free_buffer_data(struct dm_bufio_client *c,
344 			     void *data, enum data_mode data_mode)
345 {
346 	switch (data_mode) {
347 	case DATA_MODE_SLAB:
348 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
349 		break;
350 
351 	case DATA_MODE_GET_FREE_PAGES:
352 		free_pages((unsigned long)data, c->pages_per_block_bits);
353 		break;
354 
355 	case DATA_MODE_VMALLOC:
356 		vfree(data);
357 		break;
358 
359 	default:
360 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
361 		       data_mode);
362 		BUG();
363 	}
364 }
365 
366 /*
367  * Allocate buffer and its data.
368  */
369 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
370 {
371 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
372 				      gfp_mask);
373 
374 	if (!b)
375 		return NULL;
376 
377 	b->c = c;
378 
379 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
380 	if (!b->data) {
381 		kfree(b);
382 		return NULL;
383 	}
384 
385 	adjust_total_allocated(b->data_mode, (long)c->block_size);
386 
387 	return b;
388 }
389 
390 /*
391  * Free buffer and its data.
392  */
393 static void free_buffer(struct dm_buffer *b)
394 {
395 	struct dm_bufio_client *c = b->c;
396 
397 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
398 
399 	free_buffer_data(c, b->data, b->data_mode);
400 	kfree(b);
401 }
402 
403 /*
404  * Link buffer to the hash list and clean or dirty queue.
405  */
406 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
407 {
408 	struct dm_bufio_client *c = b->c;
409 
410 	c->n_buffers[dirty]++;
411 	b->block = block;
412 	b->list_mode = dirty;
413 	list_add(&b->lru_list, &c->lru[dirty]);
414 	hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
415 	b->last_accessed = jiffies;
416 }
417 
418 /*
419  * Unlink buffer from the hash list and dirty or clean queue.
420  */
421 static void __unlink_buffer(struct dm_buffer *b)
422 {
423 	struct dm_bufio_client *c = b->c;
424 
425 	BUG_ON(!c->n_buffers[b->list_mode]);
426 
427 	c->n_buffers[b->list_mode]--;
428 	hlist_del(&b->hash_list);
429 	list_del(&b->lru_list);
430 }
431 
432 /*
433  * Place the buffer to the head of dirty or clean LRU queue.
434  */
435 static void __relink_lru(struct dm_buffer *b, int dirty)
436 {
437 	struct dm_bufio_client *c = b->c;
438 
439 	BUG_ON(!c->n_buffers[b->list_mode]);
440 
441 	c->n_buffers[b->list_mode]--;
442 	c->n_buffers[dirty]++;
443 	b->list_mode = dirty;
444 	list_del(&b->lru_list);
445 	list_add(&b->lru_list, &c->lru[dirty]);
446 }
447 
448 /*----------------------------------------------------------------
449  * Submit I/O on the buffer.
450  *
451  * Bio interface is faster but it has some problems:
452  *	the vector list is limited (increasing this limit increases
453  *	memory-consumption per buffer, so it is not viable);
454  *
455  *	the memory must be direct-mapped, not vmalloced;
456  *
457  *	the I/O driver can reject requests spuriously if it thinks that
458  *	the requests are too big for the device or if they cross a
459  *	controller-defined memory boundary.
460  *
461  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
462  * it is not vmalloced, try using the bio interface.
463  *
464  * If the buffer is big, if it is vmalloced or if the underlying device
465  * rejects the bio because it is too large, use dm-io layer to do the I/O.
466  * The dm-io layer splits the I/O into multiple requests, avoiding the above
467  * shortcomings.
468  *--------------------------------------------------------------*/
469 
470 /*
471  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
472  * that the request was handled directly with bio interface.
473  */
474 static void dmio_complete(unsigned long error, void *context)
475 {
476 	struct dm_buffer *b = context;
477 
478 	b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
479 }
480 
481 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
482 		     bio_end_io_t *end_io)
483 {
484 	int r;
485 	struct dm_io_request io_req = {
486 		.bi_rw = rw,
487 		.notify.fn = dmio_complete,
488 		.notify.context = b,
489 		.client = b->c->dm_io,
490 	};
491 	struct dm_io_region region = {
492 		.bdev = b->c->bdev,
493 		.sector = block << b->c->sectors_per_block_bits,
494 		.count = b->c->block_size >> SECTOR_SHIFT,
495 	};
496 
497 	if (b->data_mode != DATA_MODE_VMALLOC) {
498 		io_req.mem.type = DM_IO_KMEM;
499 		io_req.mem.ptr.addr = b->data;
500 	} else {
501 		io_req.mem.type = DM_IO_VMA;
502 		io_req.mem.ptr.vma = b->data;
503 	}
504 
505 	b->bio.bi_end_io = end_io;
506 
507 	r = dm_io(&io_req, 1, &region, NULL);
508 	if (r)
509 		end_io(&b->bio, r);
510 }
511 
512 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
513 			   bio_end_io_t *end_io)
514 {
515 	char *ptr;
516 	int len;
517 
518 	bio_init(&b->bio);
519 	b->bio.bi_io_vec = b->bio_vec;
520 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
521 	b->bio.bi_sector = block << b->c->sectors_per_block_bits;
522 	b->bio.bi_bdev = b->c->bdev;
523 	b->bio.bi_end_io = end_io;
524 
525 	/*
526 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
527 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
528 	 */
529 	ptr = b->data;
530 	len = b->c->block_size;
531 
532 	if (len >= PAGE_SIZE)
533 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
534 	else
535 		BUG_ON((unsigned long)ptr & (len - 1));
536 
537 	do {
538 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
539 				  len < PAGE_SIZE ? len : PAGE_SIZE,
540 				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
541 			BUG_ON(b->c->block_size <= PAGE_SIZE);
542 			use_dmio(b, rw, block, end_io);
543 			return;
544 		}
545 
546 		len -= PAGE_SIZE;
547 		ptr += PAGE_SIZE;
548 	} while (len > 0);
549 
550 	submit_bio(rw, &b->bio);
551 }
552 
553 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
554 		      bio_end_io_t *end_io)
555 {
556 	if (rw == WRITE && b->c->write_callback)
557 		b->c->write_callback(b);
558 
559 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
560 	    b->data_mode != DATA_MODE_VMALLOC)
561 		use_inline_bio(b, rw, block, end_io);
562 	else
563 		use_dmio(b, rw, block, end_io);
564 }
565 
566 /*----------------------------------------------------------------
567  * Writing dirty buffers
568  *--------------------------------------------------------------*/
569 
570 /*
571  * The endio routine for write.
572  *
573  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
574  * it.
575  */
576 static void write_endio(struct bio *bio, int error)
577 {
578 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
579 
580 	b->write_error = error;
581 	if (error) {
582 		struct dm_bufio_client *c = b->c;
583 		(void)cmpxchg(&c->async_write_error, 0, error);
584 	}
585 
586 	BUG_ON(!test_bit(B_WRITING, &b->state));
587 
588 	smp_mb__before_clear_bit();
589 	clear_bit(B_WRITING, &b->state);
590 	smp_mb__after_clear_bit();
591 
592 	wake_up_bit(&b->state, B_WRITING);
593 }
594 
595 /*
596  * This function is called when wait_on_bit is actually waiting.
597  */
598 static int do_io_schedule(void *word)
599 {
600 	io_schedule();
601 
602 	return 0;
603 }
604 
605 /*
606  * Initiate a write on a dirty buffer, but don't wait for it.
607  *
608  * - If the buffer is not dirty, exit.
609  * - If there some previous write going on, wait for it to finish (we can't
610  *   have two writes on the same buffer simultaneously).
611  * - Submit our write and don't wait on it. We set B_WRITING indicating
612  *   that there is a write in progress.
613  */
614 static void __write_dirty_buffer(struct dm_buffer *b)
615 {
616 	if (!test_bit(B_DIRTY, &b->state))
617 		return;
618 
619 	clear_bit(B_DIRTY, &b->state);
620 	wait_on_bit_lock(&b->state, B_WRITING,
621 			 do_io_schedule, TASK_UNINTERRUPTIBLE);
622 
623 	submit_io(b, WRITE, b->block, write_endio);
624 }
625 
626 /*
627  * Wait until any activity on the buffer finishes.  Possibly write the
628  * buffer if it is dirty.  When this function finishes, there is no I/O
629  * running on the buffer and the buffer is not dirty.
630  */
631 static void __make_buffer_clean(struct dm_buffer *b)
632 {
633 	BUG_ON(b->hold_count);
634 
635 	if (!b->state)	/* fast case */
636 		return;
637 
638 	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
639 	__write_dirty_buffer(b);
640 	wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
641 }
642 
643 /*
644  * Find some buffer that is not held by anybody, clean it, unlink it and
645  * return it.
646  */
647 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
648 {
649 	struct dm_buffer *b;
650 
651 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
652 		BUG_ON(test_bit(B_WRITING, &b->state));
653 		BUG_ON(test_bit(B_DIRTY, &b->state));
654 
655 		if (!b->hold_count) {
656 			__make_buffer_clean(b);
657 			__unlink_buffer(b);
658 			return b;
659 		}
660 		dm_bufio_cond_resched();
661 	}
662 
663 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
664 		BUG_ON(test_bit(B_READING, &b->state));
665 
666 		if (!b->hold_count) {
667 			__make_buffer_clean(b);
668 			__unlink_buffer(b);
669 			return b;
670 		}
671 		dm_bufio_cond_resched();
672 	}
673 
674 	return NULL;
675 }
676 
677 /*
678  * Wait until some other threads free some buffer or release hold count on
679  * some buffer.
680  *
681  * This function is entered with c->lock held, drops it and regains it
682  * before exiting.
683  */
684 static void __wait_for_free_buffer(struct dm_bufio_client *c)
685 {
686 	DECLARE_WAITQUEUE(wait, current);
687 
688 	add_wait_queue(&c->free_buffer_wait, &wait);
689 	set_task_state(current, TASK_UNINTERRUPTIBLE);
690 	dm_bufio_unlock(c);
691 
692 	io_schedule();
693 
694 	set_task_state(current, TASK_RUNNING);
695 	remove_wait_queue(&c->free_buffer_wait, &wait);
696 
697 	dm_bufio_lock(c);
698 }
699 
700 /*
701  * Allocate a new buffer. If the allocation is not possible, wait until
702  * some other thread frees a buffer.
703  *
704  * May drop the lock and regain it.
705  */
706 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c)
707 {
708 	struct dm_buffer *b;
709 
710 	/*
711 	 * dm-bufio is resistant to allocation failures (it just keeps
712 	 * one buffer reserved in cases all the allocations fail).
713 	 * So set flags to not try too hard:
714 	 *	GFP_NOIO: don't recurse into the I/O layer
715 	 *	__GFP_NORETRY: don't retry and rather return failure
716 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
717 	 *	__GFP_NOWARN: don't print a warning in case of failure
718 	 *
719 	 * For debugging, if we set the cache size to 1, no new buffers will
720 	 * be allocated.
721 	 */
722 	while (1) {
723 		if (dm_bufio_cache_size_latch != 1) {
724 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
725 			if (b)
726 				return b;
727 		}
728 
729 		if (!list_empty(&c->reserved_buffers)) {
730 			b = list_entry(c->reserved_buffers.next,
731 				       struct dm_buffer, lru_list);
732 			list_del(&b->lru_list);
733 			c->need_reserved_buffers++;
734 
735 			return b;
736 		}
737 
738 		b = __get_unclaimed_buffer(c);
739 		if (b)
740 			return b;
741 
742 		__wait_for_free_buffer(c);
743 	}
744 }
745 
746 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c)
747 {
748 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c);
749 
750 	if (c->alloc_callback)
751 		c->alloc_callback(b);
752 
753 	return b;
754 }
755 
756 /*
757  * Free a buffer and wake other threads waiting for free buffers.
758  */
759 static void __free_buffer_wake(struct dm_buffer *b)
760 {
761 	struct dm_bufio_client *c = b->c;
762 
763 	if (!c->need_reserved_buffers)
764 		free_buffer(b);
765 	else {
766 		list_add(&b->lru_list, &c->reserved_buffers);
767 		c->need_reserved_buffers--;
768 	}
769 
770 	wake_up(&c->free_buffer_wait);
771 }
772 
773 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait)
774 {
775 	struct dm_buffer *b, *tmp;
776 
777 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
778 		BUG_ON(test_bit(B_READING, &b->state));
779 
780 		if (!test_bit(B_DIRTY, &b->state) &&
781 		    !test_bit(B_WRITING, &b->state)) {
782 			__relink_lru(b, LIST_CLEAN);
783 			continue;
784 		}
785 
786 		if (no_wait && test_bit(B_WRITING, &b->state))
787 			return;
788 
789 		__write_dirty_buffer(b);
790 		dm_bufio_cond_resched();
791 	}
792 }
793 
794 /*
795  * Get writeback threshold and buffer limit for a given client.
796  */
797 static void __get_memory_limit(struct dm_bufio_client *c,
798 			       unsigned long *threshold_buffers,
799 			       unsigned long *limit_buffers)
800 {
801 	unsigned long buffers;
802 
803 	if (dm_bufio_cache_size != dm_bufio_cache_size_latch) {
804 		mutex_lock(&dm_bufio_clients_lock);
805 		__cache_size_refresh();
806 		mutex_unlock(&dm_bufio_clients_lock);
807 	}
808 
809 	buffers = dm_bufio_cache_size_per_client >>
810 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
811 
812 	if (buffers < DM_BUFIO_MIN_BUFFERS)
813 		buffers = DM_BUFIO_MIN_BUFFERS;
814 
815 	*limit_buffers = buffers;
816 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
817 }
818 
819 /*
820  * Check if we're over watermark.
821  * If we are over threshold_buffers, start freeing buffers.
822  * If we're over "limit_buffers", block until we get under the limit.
823  */
824 static void __check_watermark(struct dm_bufio_client *c)
825 {
826 	unsigned long threshold_buffers, limit_buffers;
827 
828 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
829 
830 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
831 	       limit_buffers) {
832 
833 		struct dm_buffer *b = __get_unclaimed_buffer(c);
834 
835 		if (!b)
836 			return;
837 
838 		__free_buffer_wake(b);
839 		dm_bufio_cond_resched();
840 	}
841 
842 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
843 		__write_dirty_buffers_async(c, 1);
844 }
845 
846 /*
847  * Find a buffer in the hash.
848  */
849 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
850 {
851 	struct dm_buffer *b;
852 	struct hlist_node *hn;
853 
854 	hlist_for_each_entry(b, hn, &c->cache_hash[DM_BUFIO_HASH(block)],
855 			     hash_list) {
856 		dm_bufio_cond_resched();
857 		if (b->block == block)
858 			return b;
859 	}
860 
861 	return NULL;
862 }
863 
864 /*----------------------------------------------------------------
865  * Getting a buffer
866  *--------------------------------------------------------------*/
867 
868 enum new_flag {
869 	NF_FRESH = 0,
870 	NF_READ = 1,
871 	NF_GET = 2
872 };
873 
874 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
875 				     enum new_flag nf, struct dm_buffer **bp,
876 				     int *need_submit)
877 {
878 	struct dm_buffer *b, *new_b = NULL;
879 
880 	*need_submit = 0;
881 
882 	b = __find(c, block);
883 	if (b) {
884 		b->hold_count++;
885 		__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
886 			     test_bit(B_WRITING, &b->state));
887 		return b;
888 	}
889 
890 	if (nf == NF_GET)
891 		return NULL;
892 
893 	new_b = __alloc_buffer_wait(c);
894 
895 	/*
896 	 * We've had a period where the mutex was unlocked, so need to
897 	 * recheck the hash table.
898 	 */
899 	b = __find(c, block);
900 	if (b) {
901 		__free_buffer_wake(new_b);
902 		b->hold_count++;
903 		__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
904 			     test_bit(B_WRITING, &b->state));
905 		return b;
906 	}
907 
908 	__check_watermark(c);
909 
910 	b = new_b;
911 	b->hold_count = 1;
912 	b->read_error = 0;
913 	b->write_error = 0;
914 	__link_buffer(b, block, LIST_CLEAN);
915 
916 	if (nf == NF_FRESH) {
917 		b->state = 0;
918 		return b;
919 	}
920 
921 	b->state = 1 << B_READING;
922 	*need_submit = 1;
923 
924 	return b;
925 }
926 
927 /*
928  * The endio routine for reading: set the error, clear the bit and wake up
929  * anyone waiting on the buffer.
930  */
931 static void read_endio(struct bio *bio, int error)
932 {
933 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
934 
935 	b->read_error = error;
936 
937 	BUG_ON(!test_bit(B_READING, &b->state));
938 
939 	smp_mb__before_clear_bit();
940 	clear_bit(B_READING, &b->state);
941 	smp_mb__after_clear_bit();
942 
943 	wake_up_bit(&b->state, B_READING);
944 }
945 
946 /*
947  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
948  * functions is similar except that dm_bufio_new doesn't read the
949  * buffer from the disk (assuming that the caller overwrites all the data
950  * and uses dm_bufio_mark_buffer_dirty to write new data back).
951  */
952 static void *new_read(struct dm_bufio_client *c, sector_t block,
953 		      enum new_flag nf, struct dm_buffer **bp)
954 {
955 	int need_submit;
956 	struct dm_buffer *b;
957 
958 	dm_bufio_lock(c);
959 	b = __bufio_new(c, block, nf, bp, &need_submit);
960 	dm_bufio_unlock(c);
961 
962 	if (!b || IS_ERR(b))
963 		return b;
964 
965 	if (need_submit)
966 		submit_io(b, READ, b->block, read_endio);
967 
968 	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
969 
970 	if (b->read_error) {
971 		int error = b->read_error;
972 
973 		dm_bufio_release(b);
974 
975 		return ERR_PTR(error);
976 	}
977 
978 	*bp = b;
979 
980 	return b->data;
981 }
982 
983 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
984 		   struct dm_buffer **bp)
985 {
986 	return new_read(c, block, NF_GET, bp);
987 }
988 EXPORT_SYMBOL_GPL(dm_bufio_get);
989 
990 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
991 		    struct dm_buffer **bp)
992 {
993 	BUG_ON(dm_bufio_in_request());
994 
995 	return new_read(c, block, NF_READ, bp);
996 }
997 EXPORT_SYMBOL_GPL(dm_bufio_read);
998 
999 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1000 		   struct dm_buffer **bp)
1001 {
1002 	BUG_ON(dm_bufio_in_request());
1003 
1004 	return new_read(c, block, NF_FRESH, bp);
1005 }
1006 EXPORT_SYMBOL_GPL(dm_bufio_new);
1007 
1008 void dm_bufio_release(struct dm_buffer *b)
1009 {
1010 	struct dm_bufio_client *c = b->c;
1011 
1012 	dm_bufio_lock(c);
1013 
1014 	BUG_ON(test_bit(B_READING, &b->state));
1015 	BUG_ON(!b->hold_count);
1016 
1017 	b->hold_count--;
1018 	if (!b->hold_count) {
1019 		wake_up(&c->free_buffer_wait);
1020 
1021 		/*
1022 		 * If there were errors on the buffer, and the buffer is not
1023 		 * to be written, free the buffer. There is no point in caching
1024 		 * invalid buffer.
1025 		 */
1026 		if ((b->read_error || b->write_error) &&
1027 		    !test_bit(B_WRITING, &b->state) &&
1028 		    !test_bit(B_DIRTY, &b->state)) {
1029 			__unlink_buffer(b);
1030 			__free_buffer_wake(b);
1031 		}
1032 	}
1033 
1034 	dm_bufio_unlock(c);
1035 }
1036 EXPORT_SYMBOL_GPL(dm_bufio_release);
1037 
1038 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1039 {
1040 	struct dm_bufio_client *c = b->c;
1041 
1042 	dm_bufio_lock(c);
1043 
1044 	if (!test_and_set_bit(B_DIRTY, &b->state))
1045 		__relink_lru(b, LIST_DIRTY);
1046 
1047 	dm_bufio_unlock(c);
1048 }
1049 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1050 
1051 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1052 {
1053 	BUG_ON(dm_bufio_in_request());
1054 
1055 	dm_bufio_lock(c);
1056 	__write_dirty_buffers_async(c, 0);
1057 	dm_bufio_unlock(c);
1058 }
1059 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1060 
1061 /*
1062  * For performance, it is essential that the buffers are written asynchronously
1063  * and simultaneously (so that the block layer can merge the writes) and then
1064  * waited upon.
1065  *
1066  * Finally, we flush hardware disk cache.
1067  */
1068 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1069 {
1070 	int a, f;
1071 	unsigned long buffers_processed = 0;
1072 	struct dm_buffer *b, *tmp;
1073 
1074 	dm_bufio_lock(c);
1075 	__write_dirty_buffers_async(c, 0);
1076 
1077 again:
1078 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1079 		int dropped_lock = 0;
1080 
1081 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1082 			buffers_processed++;
1083 
1084 		BUG_ON(test_bit(B_READING, &b->state));
1085 
1086 		if (test_bit(B_WRITING, &b->state)) {
1087 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1088 				dropped_lock = 1;
1089 				b->hold_count++;
1090 				dm_bufio_unlock(c);
1091 				wait_on_bit(&b->state, B_WRITING,
1092 					    do_io_schedule,
1093 					    TASK_UNINTERRUPTIBLE);
1094 				dm_bufio_lock(c);
1095 				b->hold_count--;
1096 			} else
1097 				wait_on_bit(&b->state, B_WRITING,
1098 					    do_io_schedule,
1099 					    TASK_UNINTERRUPTIBLE);
1100 		}
1101 
1102 		if (!test_bit(B_DIRTY, &b->state) &&
1103 		    !test_bit(B_WRITING, &b->state))
1104 			__relink_lru(b, LIST_CLEAN);
1105 
1106 		dm_bufio_cond_resched();
1107 
1108 		/*
1109 		 * If we dropped the lock, the list is no longer consistent,
1110 		 * so we must restart the search.
1111 		 *
1112 		 * In the most common case, the buffer just processed is
1113 		 * relinked to the clean list, so we won't loop scanning the
1114 		 * same buffer again and again.
1115 		 *
1116 		 * This may livelock if there is another thread simultaneously
1117 		 * dirtying buffers, so we count the number of buffers walked
1118 		 * and if it exceeds the total number of buffers, it means that
1119 		 * someone is doing some writes simultaneously with us.  In
1120 		 * this case, stop, dropping the lock.
1121 		 */
1122 		if (dropped_lock)
1123 			goto again;
1124 	}
1125 	wake_up(&c->free_buffer_wait);
1126 	dm_bufio_unlock(c);
1127 
1128 	a = xchg(&c->async_write_error, 0);
1129 	f = dm_bufio_issue_flush(c);
1130 	if (a)
1131 		return a;
1132 
1133 	return f;
1134 }
1135 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1136 
1137 /*
1138  * Use dm-io to send and empty barrier flush the device.
1139  */
1140 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1141 {
1142 	struct dm_io_request io_req = {
1143 		.bi_rw = REQ_FLUSH,
1144 		.mem.type = DM_IO_KMEM,
1145 		.mem.ptr.addr = NULL,
1146 		.client = c->dm_io,
1147 	};
1148 	struct dm_io_region io_reg = {
1149 		.bdev = c->bdev,
1150 		.sector = 0,
1151 		.count = 0,
1152 	};
1153 
1154 	BUG_ON(dm_bufio_in_request());
1155 
1156 	return dm_io(&io_req, 1, &io_reg, NULL);
1157 }
1158 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1159 
1160 /*
1161  * We first delete any other buffer that may be at that new location.
1162  *
1163  * Then, we write the buffer to the original location if it was dirty.
1164  *
1165  * Then, if we are the only one who is holding the buffer, relink the buffer
1166  * in the hash queue for the new location.
1167  *
1168  * If there was someone else holding the buffer, we write it to the new
1169  * location but not relink it, because that other user needs to have the buffer
1170  * at the same place.
1171  */
1172 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1173 {
1174 	struct dm_bufio_client *c = b->c;
1175 	struct dm_buffer *new;
1176 
1177 	BUG_ON(dm_bufio_in_request());
1178 
1179 	dm_bufio_lock(c);
1180 
1181 retry:
1182 	new = __find(c, new_block);
1183 	if (new) {
1184 		if (new->hold_count) {
1185 			__wait_for_free_buffer(c);
1186 			goto retry;
1187 		}
1188 
1189 		/*
1190 		 * FIXME: Is there any point waiting for a write that's going
1191 		 * to be overwritten in a bit?
1192 		 */
1193 		__make_buffer_clean(new);
1194 		__unlink_buffer(new);
1195 		__free_buffer_wake(new);
1196 	}
1197 
1198 	BUG_ON(!b->hold_count);
1199 	BUG_ON(test_bit(B_READING, &b->state));
1200 
1201 	__write_dirty_buffer(b);
1202 	if (b->hold_count == 1) {
1203 		wait_on_bit(&b->state, B_WRITING,
1204 			    do_io_schedule, TASK_UNINTERRUPTIBLE);
1205 		set_bit(B_DIRTY, &b->state);
1206 		__unlink_buffer(b);
1207 		__link_buffer(b, new_block, LIST_DIRTY);
1208 	} else {
1209 		sector_t old_block;
1210 		wait_on_bit_lock(&b->state, B_WRITING,
1211 				 do_io_schedule, TASK_UNINTERRUPTIBLE);
1212 		/*
1213 		 * Relink buffer to "new_block" so that write_callback
1214 		 * sees "new_block" as a block number.
1215 		 * After the write, link the buffer back to old_block.
1216 		 * All this must be done in bufio lock, so that block number
1217 		 * change isn't visible to other threads.
1218 		 */
1219 		old_block = b->block;
1220 		__unlink_buffer(b);
1221 		__link_buffer(b, new_block, b->list_mode);
1222 		submit_io(b, WRITE, new_block, write_endio);
1223 		wait_on_bit(&b->state, B_WRITING,
1224 			    do_io_schedule, TASK_UNINTERRUPTIBLE);
1225 		__unlink_buffer(b);
1226 		__link_buffer(b, old_block, b->list_mode);
1227 	}
1228 
1229 	dm_bufio_unlock(c);
1230 	dm_bufio_release(b);
1231 }
1232 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1233 
1234 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1235 {
1236 	return c->block_size;
1237 }
1238 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1239 
1240 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1241 {
1242 	return i_size_read(c->bdev->bd_inode) >>
1243 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1244 }
1245 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1246 
1247 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1248 {
1249 	return b->block;
1250 }
1251 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1252 
1253 void *dm_bufio_get_block_data(struct dm_buffer *b)
1254 {
1255 	return b->data;
1256 }
1257 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1258 
1259 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1260 {
1261 	return b + 1;
1262 }
1263 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1264 
1265 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1266 {
1267 	return b->c;
1268 }
1269 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1270 
1271 static void drop_buffers(struct dm_bufio_client *c)
1272 {
1273 	struct dm_buffer *b;
1274 	int i;
1275 
1276 	BUG_ON(dm_bufio_in_request());
1277 
1278 	/*
1279 	 * An optimization so that the buffers are not written one-by-one.
1280 	 */
1281 	dm_bufio_write_dirty_buffers_async(c);
1282 
1283 	dm_bufio_lock(c);
1284 
1285 	while ((b = __get_unclaimed_buffer(c)))
1286 		__free_buffer_wake(b);
1287 
1288 	for (i = 0; i < LIST_SIZE; i++)
1289 		list_for_each_entry(b, &c->lru[i], lru_list)
1290 			DMERR("leaked buffer %llx, hold count %u, list %d",
1291 			      (unsigned long long)b->block, b->hold_count, i);
1292 
1293 	for (i = 0; i < LIST_SIZE; i++)
1294 		BUG_ON(!list_empty(&c->lru[i]));
1295 
1296 	dm_bufio_unlock(c);
1297 }
1298 
1299 /*
1300  * Test if the buffer is unused and too old, and commit it.
1301  * At if noio is set, we must not do any I/O because we hold
1302  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1303  * different bufio client.
1304  */
1305 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1306 				unsigned long max_jiffies)
1307 {
1308 	if (jiffies - b->last_accessed < max_jiffies)
1309 		return 1;
1310 
1311 	if (!(gfp & __GFP_IO)) {
1312 		if (test_bit(B_READING, &b->state) ||
1313 		    test_bit(B_WRITING, &b->state) ||
1314 		    test_bit(B_DIRTY, &b->state))
1315 			return 1;
1316 	}
1317 
1318 	if (b->hold_count)
1319 		return 1;
1320 
1321 	__make_buffer_clean(b);
1322 	__unlink_buffer(b);
1323 	__free_buffer_wake(b);
1324 
1325 	return 0;
1326 }
1327 
1328 static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1329 		   struct shrink_control *sc)
1330 {
1331 	int l;
1332 	struct dm_buffer *b, *tmp;
1333 
1334 	for (l = 0; l < LIST_SIZE; l++) {
1335 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list)
1336 			if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) &&
1337 			    !--nr_to_scan)
1338 				return;
1339 		dm_bufio_cond_resched();
1340 	}
1341 }
1342 
1343 static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
1344 {
1345 	struct dm_bufio_client *c =
1346 	    container_of(shrinker, struct dm_bufio_client, shrinker);
1347 	unsigned long r;
1348 	unsigned long nr_to_scan = sc->nr_to_scan;
1349 
1350 	if (sc->gfp_mask & __GFP_IO)
1351 		dm_bufio_lock(c);
1352 	else if (!dm_bufio_trylock(c))
1353 		return !nr_to_scan ? 0 : -1;
1354 
1355 	if (nr_to_scan)
1356 		__scan(c, nr_to_scan, sc);
1357 
1358 	r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1359 	if (r > INT_MAX)
1360 		r = INT_MAX;
1361 
1362 	dm_bufio_unlock(c);
1363 
1364 	return r;
1365 }
1366 
1367 /*
1368  * Create the buffering interface
1369  */
1370 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1371 					       unsigned reserved_buffers, unsigned aux_size,
1372 					       void (*alloc_callback)(struct dm_buffer *),
1373 					       void (*write_callback)(struct dm_buffer *))
1374 {
1375 	int r;
1376 	struct dm_bufio_client *c;
1377 	unsigned i;
1378 
1379 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1380 	       (block_size & (block_size - 1)));
1381 
1382 	c = kmalloc(sizeof(*c), GFP_KERNEL);
1383 	if (!c) {
1384 		r = -ENOMEM;
1385 		goto bad_client;
1386 	}
1387 	c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1388 	if (!c->cache_hash) {
1389 		r = -ENOMEM;
1390 		goto bad_hash;
1391 	}
1392 
1393 	c->bdev = bdev;
1394 	c->block_size = block_size;
1395 	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1396 	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1397 				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
1398 	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1399 				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1400 
1401 	c->aux_size = aux_size;
1402 	c->alloc_callback = alloc_callback;
1403 	c->write_callback = write_callback;
1404 
1405 	for (i = 0; i < LIST_SIZE; i++) {
1406 		INIT_LIST_HEAD(&c->lru[i]);
1407 		c->n_buffers[i] = 0;
1408 	}
1409 
1410 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1411 		INIT_HLIST_HEAD(&c->cache_hash[i]);
1412 
1413 	mutex_init(&c->lock);
1414 	INIT_LIST_HEAD(&c->reserved_buffers);
1415 	c->need_reserved_buffers = reserved_buffers;
1416 
1417 	init_waitqueue_head(&c->free_buffer_wait);
1418 	c->async_write_error = 0;
1419 
1420 	c->dm_io = dm_io_client_create();
1421 	if (IS_ERR(c->dm_io)) {
1422 		r = PTR_ERR(c->dm_io);
1423 		goto bad_dm_io;
1424 	}
1425 
1426 	mutex_lock(&dm_bufio_clients_lock);
1427 	if (c->blocks_per_page_bits) {
1428 		if (!DM_BUFIO_CACHE_NAME(c)) {
1429 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1430 			if (!DM_BUFIO_CACHE_NAME(c)) {
1431 				r = -ENOMEM;
1432 				mutex_unlock(&dm_bufio_clients_lock);
1433 				goto bad_cache;
1434 			}
1435 		}
1436 
1437 		if (!DM_BUFIO_CACHE(c)) {
1438 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1439 							      c->block_size,
1440 							      c->block_size, 0, NULL);
1441 			if (!DM_BUFIO_CACHE(c)) {
1442 				r = -ENOMEM;
1443 				mutex_unlock(&dm_bufio_clients_lock);
1444 				goto bad_cache;
1445 			}
1446 		}
1447 	}
1448 	mutex_unlock(&dm_bufio_clients_lock);
1449 
1450 	while (c->need_reserved_buffers) {
1451 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1452 
1453 		if (!b) {
1454 			r = -ENOMEM;
1455 			goto bad_buffer;
1456 		}
1457 		__free_buffer_wake(b);
1458 	}
1459 
1460 	mutex_lock(&dm_bufio_clients_lock);
1461 	dm_bufio_client_count++;
1462 	list_add(&c->client_list, &dm_bufio_all_clients);
1463 	__cache_size_refresh();
1464 	mutex_unlock(&dm_bufio_clients_lock);
1465 
1466 	c->shrinker.shrink = shrink;
1467 	c->shrinker.seeks = 1;
1468 	c->shrinker.batch = 0;
1469 	register_shrinker(&c->shrinker);
1470 
1471 	return c;
1472 
1473 bad_buffer:
1474 bad_cache:
1475 	while (!list_empty(&c->reserved_buffers)) {
1476 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1477 						 struct dm_buffer, lru_list);
1478 		list_del(&b->lru_list);
1479 		free_buffer(b);
1480 	}
1481 	dm_io_client_destroy(c->dm_io);
1482 bad_dm_io:
1483 	vfree(c->cache_hash);
1484 bad_hash:
1485 	kfree(c);
1486 bad_client:
1487 	return ERR_PTR(r);
1488 }
1489 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1490 
1491 /*
1492  * Free the buffering interface.
1493  * It is required that there are no references on any buffers.
1494  */
1495 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1496 {
1497 	unsigned i;
1498 
1499 	drop_buffers(c);
1500 
1501 	unregister_shrinker(&c->shrinker);
1502 
1503 	mutex_lock(&dm_bufio_clients_lock);
1504 
1505 	list_del(&c->client_list);
1506 	dm_bufio_client_count--;
1507 	__cache_size_refresh();
1508 
1509 	mutex_unlock(&dm_bufio_clients_lock);
1510 
1511 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1512 		BUG_ON(!hlist_empty(&c->cache_hash[i]));
1513 
1514 	BUG_ON(c->need_reserved_buffers);
1515 
1516 	while (!list_empty(&c->reserved_buffers)) {
1517 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1518 						 struct dm_buffer, lru_list);
1519 		list_del(&b->lru_list);
1520 		free_buffer(b);
1521 	}
1522 
1523 	for (i = 0; i < LIST_SIZE; i++)
1524 		if (c->n_buffers[i])
1525 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1526 
1527 	for (i = 0; i < LIST_SIZE; i++)
1528 		BUG_ON(c->n_buffers[i]);
1529 
1530 	dm_io_client_destroy(c->dm_io);
1531 	vfree(c->cache_hash);
1532 	kfree(c);
1533 }
1534 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1535 
1536 static void cleanup_old_buffers(void)
1537 {
1538 	unsigned long max_age = dm_bufio_max_age;
1539 	struct dm_bufio_client *c;
1540 
1541 	barrier();
1542 
1543 	if (max_age > ULONG_MAX / HZ)
1544 		max_age = ULONG_MAX / HZ;
1545 
1546 	mutex_lock(&dm_bufio_clients_lock);
1547 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1548 		if (!dm_bufio_trylock(c))
1549 			continue;
1550 
1551 		while (!list_empty(&c->lru[LIST_CLEAN])) {
1552 			struct dm_buffer *b;
1553 			b = list_entry(c->lru[LIST_CLEAN].prev,
1554 				       struct dm_buffer, lru_list);
1555 			if (__cleanup_old_buffer(b, 0, max_age * HZ))
1556 				break;
1557 			dm_bufio_cond_resched();
1558 		}
1559 
1560 		dm_bufio_unlock(c);
1561 		dm_bufio_cond_resched();
1562 	}
1563 	mutex_unlock(&dm_bufio_clients_lock);
1564 }
1565 
1566 static struct workqueue_struct *dm_bufio_wq;
1567 static struct delayed_work dm_bufio_work;
1568 
1569 static void work_fn(struct work_struct *w)
1570 {
1571 	cleanup_old_buffers();
1572 
1573 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1574 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1575 }
1576 
1577 /*----------------------------------------------------------------
1578  * Module setup
1579  *--------------------------------------------------------------*/
1580 
1581 /*
1582  * This is called only once for the whole dm_bufio module.
1583  * It initializes memory limit.
1584  */
1585 static int __init dm_bufio_init(void)
1586 {
1587 	__u64 mem;
1588 
1589 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1590 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1591 
1592 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1593 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1594 
1595 	if (mem > ULONG_MAX)
1596 		mem = ULONG_MAX;
1597 
1598 #ifdef CONFIG_MMU
1599 	/*
1600 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1601 	 * in fs/proc/internal.h
1602 	 */
1603 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1604 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1605 #endif
1606 
1607 	dm_bufio_default_cache_size = mem;
1608 
1609 	mutex_lock(&dm_bufio_clients_lock);
1610 	__cache_size_refresh();
1611 	mutex_unlock(&dm_bufio_clients_lock);
1612 
1613 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1614 	if (!dm_bufio_wq)
1615 		return -ENOMEM;
1616 
1617 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1618 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1619 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1620 
1621 	return 0;
1622 }
1623 
1624 /*
1625  * This is called once when unloading the dm_bufio module.
1626  */
1627 static void __exit dm_bufio_exit(void)
1628 {
1629 	int bug = 0;
1630 	int i;
1631 
1632 	cancel_delayed_work_sync(&dm_bufio_work);
1633 	destroy_workqueue(dm_bufio_wq);
1634 
1635 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1636 		struct kmem_cache *kc = dm_bufio_caches[i];
1637 
1638 		if (kc)
1639 			kmem_cache_destroy(kc);
1640 	}
1641 
1642 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1643 		kfree(dm_bufio_cache_names[i]);
1644 
1645 	if (dm_bufio_client_count) {
1646 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1647 			__func__, dm_bufio_client_count);
1648 		bug = 1;
1649 	}
1650 
1651 	if (dm_bufio_current_allocated) {
1652 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1653 			__func__, dm_bufio_current_allocated);
1654 		bug = 1;
1655 	}
1656 
1657 	if (dm_bufio_allocated_get_free_pages) {
1658 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1659 		       __func__, dm_bufio_allocated_get_free_pages);
1660 		bug = 1;
1661 	}
1662 
1663 	if (dm_bufio_allocated_vmalloc) {
1664 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1665 		       __func__, dm_bufio_allocated_vmalloc);
1666 		bug = 1;
1667 	}
1668 
1669 	if (bug)
1670 		BUG();
1671 }
1672 
1673 module_init(dm_bufio_init)
1674 module_exit(dm_bufio_exit)
1675 
1676 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1677 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1678 
1679 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1680 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1681 
1682 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1683 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1684 
1685 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1686 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1687 
1688 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1689 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1690 
1691 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1692 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1693 
1694 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1695 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1696 
1697 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1698 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1699 MODULE_LICENSE("GPL");
1700