1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009-2011 Red Hat, Inc. 4 * 5 * Author: Mikulas Patocka <mpatocka@redhat.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/dm-bufio.h> 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/slab.h> 15 #include <linux/sched/mm.h> 16 #include <linux/jiffies.h> 17 #include <linux/vmalloc.h> 18 #include <linux/shrinker.h> 19 #include <linux/module.h> 20 #include <linux/rbtree.h> 21 #include <linux/stacktrace.h> 22 #include <linux/jump_label.h> 23 24 #include "dm.h" 25 26 #define DM_MSG_PREFIX "bufio" 27 28 /* 29 * Memory management policy: 30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 34 * dirty buffers. 35 */ 36 #define DM_BUFIO_MIN_BUFFERS 8 37 38 #define DM_BUFIO_MEMORY_PERCENT 2 39 #define DM_BUFIO_VMALLOC_PERCENT 25 40 #define DM_BUFIO_WRITEBACK_RATIO 3 41 #define DM_BUFIO_LOW_WATERMARK_RATIO 16 42 43 /* 44 * Check buffer ages in this interval (seconds) 45 */ 46 #define DM_BUFIO_WORK_TIMER_SECS 30 47 48 /* 49 * Free buffers when they are older than this (seconds) 50 */ 51 #define DM_BUFIO_DEFAULT_AGE_SECS 300 52 53 /* 54 * The nr of bytes of cached data to keep around. 55 */ 56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 57 58 /* 59 * Align buffer writes to this boundary. 60 * Tests show that SSDs have the highest IOPS when using 4k writes. 61 */ 62 #define DM_BUFIO_WRITE_ALIGN 4096 63 64 /* 65 * dm_buffer->list_mode 66 */ 67 #define LIST_CLEAN 0 68 #define LIST_DIRTY 1 69 #define LIST_SIZE 2 70 71 /*--------------------------------------------------------------*/ 72 73 /* 74 * Rather than use an LRU list, we use a clock algorithm where entries 75 * are held in a circular list. When an entry is 'hit' a reference bit 76 * is set. The least recently used entry is approximated by running a 77 * cursor around the list selecting unreferenced entries. Referenced 78 * entries have their reference bit cleared as the cursor passes them. 79 */ 80 struct lru_entry { 81 struct list_head list; 82 atomic_t referenced; 83 }; 84 85 struct lru_iter { 86 struct lru *lru; 87 struct list_head list; 88 struct lru_entry *stop; 89 struct lru_entry *e; 90 }; 91 92 struct lru { 93 struct list_head *cursor; 94 unsigned long count; 95 96 struct list_head iterators; 97 }; 98 99 /*--------------*/ 100 101 static void lru_init(struct lru *lru) 102 { 103 lru->cursor = NULL; 104 lru->count = 0; 105 INIT_LIST_HEAD(&lru->iterators); 106 } 107 108 static void lru_destroy(struct lru *lru) 109 { 110 WARN_ON_ONCE(lru->cursor); 111 WARN_ON_ONCE(!list_empty(&lru->iterators)); 112 } 113 114 /* 115 * Insert a new entry into the lru. 116 */ 117 static void lru_insert(struct lru *lru, struct lru_entry *le) 118 { 119 /* 120 * Don't be tempted to set to 1, makes the lru aspect 121 * perform poorly. 122 */ 123 atomic_set(&le->referenced, 0); 124 125 if (lru->cursor) { 126 list_add_tail(&le->list, lru->cursor); 127 } else { 128 INIT_LIST_HEAD(&le->list); 129 lru->cursor = &le->list; 130 } 131 lru->count++; 132 } 133 134 /*--------------*/ 135 136 /* 137 * Convert a list_head pointer to an lru_entry pointer. 138 */ 139 static inline struct lru_entry *to_le(struct list_head *l) 140 { 141 return container_of(l, struct lru_entry, list); 142 } 143 144 /* 145 * Initialize an lru_iter and add it to the list of cursors in the lru. 146 */ 147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it) 148 { 149 it->lru = lru; 150 it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL; 151 it->e = lru->cursor ? to_le(lru->cursor) : NULL; 152 list_add(&it->list, &lru->iterators); 153 } 154 155 /* 156 * Remove an lru_iter from the list of cursors in the lru. 157 */ 158 static inline void lru_iter_end(struct lru_iter *it) 159 { 160 list_del(&it->list); 161 } 162 163 /* Predicate function type to be used with lru_iter_next */ 164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context); 165 166 /* 167 * Advance the cursor to the next entry that passes the 168 * predicate, and return that entry. Returns NULL if the 169 * iteration is complete. 170 */ 171 static struct lru_entry *lru_iter_next(struct lru_iter *it, 172 iter_predicate pred, void *context) 173 { 174 struct lru_entry *e; 175 176 while (it->e) { 177 e = it->e; 178 179 /* advance the cursor */ 180 if (it->e == it->stop) 181 it->e = NULL; 182 else 183 it->e = to_le(it->e->list.next); 184 185 if (pred(e, context)) 186 return e; 187 } 188 189 return NULL; 190 } 191 192 /* 193 * Invalidate a specific lru_entry and update all cursors in 194 * the lru accordingly. 195 */ 196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e) 197 { 198 struct lru_iter *it; 199 200 list_for_each_entry(it, &lru->iterators, list) { 201 /* Move c->e forwards if necc. */ 202 if (it->e == e) { 203 it->e = to_le(it->e->list.next); 204 if (it->e == e) 205 it->e = NULL; 206 } 207 208 /* Move it->stop backwards if necc. */ 209 if (it->stop == e) { 210 it->stop = to_le(it->stop->list.prev); 211 if (it->stop == e) 212 it->stop = NULL; 213 } 214 } 215 } 216 217 /*--------------*/ 218 219 /* 220 * Remove a specific entry from the lru. 221 */ 222 static void lru_remove(struct lru *lru, struct lru_entry *le) 223 { 224 lru_iter_invalidate(lru, le); 225 if (lru->count == 1) { 226 lru->cursor = NULL; 227 } else { 228 if (lru->cursor == &le->list) 229 lru->cursor = lru->cursor->next; 230 list_del(&le->list); 231 } 232 lru->count--; 233 } 234 235 /* 236 * Mark as referenced. 237 */ 238 static inline void lru_reference(struct lru_entry *le) 239 { 240 atomic_set(&le->referenced, 1); 241 } 242 243 /*--------------*/ 244 245 /* 246 * Remove the least recently used entry (approx), that passes the predicate. 247 * Returns NULL on failure. 248 */ 249 enum evict_result { 250 ER_EVICT, 251 ER_DONT_EVICT, 252 ER_STOP, /* stop looking for something to evict */ 253 }; 254 255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context); 256 257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep) 258 { 259 unsigned long tested = 0; 260 struct list_head *h = lru->cursor; 261 struct lru_entry *le; 262 263 if (!h) 264 return NULL; 265 /* 266 * In the worst case we have to loop around twice. Once to clear 267 * the reference flags, and then again to discover the predicate 268 * fails for all entries. 269 */ 270 while (tested < lru->count) { 271 le = container_of(h, struct lru_entry, list); 272 273 if (atomic_read(&le->referenced)) { 274 atomic_set(&le->referenced, 0); 275 } else { 276 tested++; 277 switch (pred(le, context)) { 278 case ER_EVICT: 279 /* 280 * Adjust the cursor, so we start the next 281 * search from here. 282 */ 283 lru->cursor = le->list.next; 284 lru_remove(lru, le); 285 return le; 286 287 case ER_DONT_EVICT: 288 break; 289 290 case ER_STOP: 291 lru->cursor = le->list.next; 292 return NULL; 293 } 294 } 295 296 h = h->next; 297 298 if (!no_sleep) 299 cond_resched(); 300 } 301 302 return NULL; 303 } 304 305 /*--------------------------------------------------------------*/ 306 307 /* 308 * Buffer state bits. 309 */ 310 #define B_READING 0 311 #define B_WRITING 1 312 #define B_DIRTY 2 313 314 /* 315 * Describes how the block was allocated: 316 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 317 * See the comment at alloc_buffer_data. 318 */ 319 enum data_mode { 320 DATA_MODE_SLAB = 0, 321 DATA_MODE_KMALLOC = 1, 322 DATA_MODE_GET_FREE_PAGES = 2, 323 DATA_MODE_VMALLOC = 3, 324 DATA_MODE_LIMIT = 4 325 }; 326 327 struct dm_buffer { 328 /* protected by the locks in dm_buffer_cache */ 329 struct rb_node node; 330 331 /* immutable, so don't need protecting */ 332 sector_t block; 333 void *data; 334 unsigned char data_mode; /* DATA_MODE_* */ 335 336 /* 337 * These two fields are used in isolation, so do not need 338 * a surrounding lock. 339 */ 340 atomic_t hold_count; 341 unsigned long last_accessed; 342 343 /* 344 * Everything else is protected by the mutex in 345 * dm_bufio_client 346 */ 347 unsigned long state; 348 struct lru_entry lru; 349 unsigned char list_mode; /* LIST_* */ 350 blk_status_t read_error; 351 blk_status_t write_error; 352 unsigned int dirty_start; 353 unsigned int dirty_end; 354 unsigned int write_start; 355 unsigned int write_end; 356 struct list_head write_list; 357 struct dm_bufio_client *c; 358 void (*end_io)(struct dm_buffer *b, blk_status_t bs); 359 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 360 #define MAX_STACK 10 361 unsigned int stack_len; 362 unsigned long stack_entries[MAX_STACK]; 363 #endif 364 }; 365 366 /*--------------------------------------------------------------*/ 367 368 /* 369 * The buffer cache manages buffers, particularly: 370 * - inc/dec of holder count 371 * - setting the last_accessed field 372 * - maintains clean/dirty state along with lru 373 * - selecting buffers that match predicates 374 * 375 * It does *not* handle: 376 * - allocation/freeing of buffers. 377 * - IO 378 * - Eviction or cache sizing. 379 * 380 * cache_get() and cache_put() are threadsafe, you do not need to 381 * protect these calls with a surrounding mutex. All the other 382 * methods are not threadsafe; they do use locking primitives, but 383 * only enough to ensure get/put are threadsafe. 384 */ 385 386 struct buffer_tree { 387 union { 388 struct rw_semaphore lock; 389 rwlock_t spinlock; 390 } u; 391 struct rb_root root; 392 } ____cacheline_aligned_in_smp; 393 394 struct dm_buffer_cache { 395 struct lru lru[LIST_SIZE]; 396 /* 397 * We spread entries across multiple trees to reduce contention 398 * on the locks. 399 */ 400 unsigned int num_locks; 401 bool no_sleep; 402 struct buffer_tree trees[]; 403 }; 404 405 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled); 406 407 static inline unsigned int cache_index(sector_t block, unsigned int num_locks) 408 { 409 return dm_hash_locks_index(block, num_locks); 410 } 411 412 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block) 413 { 414 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 415 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 416 else 417 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 418 } 419 420 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block) 421 { 422 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 423 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 424 else 425 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 426 } 427 428 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block) 429 { 430 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 431 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 432 else 433 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 434 } 435 436 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block) 437 { 438 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 439 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 440 else 441 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 442 } 443 444 /* 445 * Sometimes we want to repeatedly get and drop locks as part of an iteration. 446 * This struct helps avoid redundant drop and gets of the same lock. 447 */ 448 struct lock_history { 449 struct dm_buffer_cache *cache; 450 bool write; 451 unsigned int previous; 452 unsigned int no_previous; 453 }; 454 455 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write) 456 { 457 lh->cache = cache; 458 lh->write = write; 459 lh->no_previous = cache->num_locks; 460 lh->previous = lh->no_previous; 461 } 462 463 static void __lh_lock(struct lock_history *lh, unsigned int index) 464 { 465 if (lh->write) { 466 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 467 write_lock_bh(&lh->cache->trees[index].u.spinlock); 468 else 469 down_write(&lh->cache->trees[index].u.lock); 470 } else { 471 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 472 read_lock_bh(&lh->cache->trees[index].u.spinlock); 473 else 474 down_read(&lh->cache->trees[index].u.lock); 475 } 476 } 477 478 static void __lh_unlock(struct lock_history *lh, unsigned int index) 479 { 480 if (lh->write) { 481 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 482 write_unlock_bh(&lh->cache->trees[index].u.spinlock); 483 else 484 up_write(&lh->cache->trees[index].u.lock); 485 } else { 486 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 487 read_unlock_bh(&lh->cache->trees[index].u.spinlock); 488 else 489 up_read(&lh->cache->trees[index].u.lock); 490 } 491 } 492 493 /* 494 * Make sure you call this since it will unlock the final lock. 495 */ 496 static void lh_exit(struct lock_history *lh) 497 { 498 if (lh->previous != lh->no_previous) { 499 __lh_unlock(lh, lh->previous); 500 lh->previous = lh->no_previous; 501 } 502 } 503 504 /* 505 * Named 'next' because there is no corresponding 506 * 'up/unlock' call since it's done automatically. 507 */ 508 static void lh_next(struct lock_history *lh, sector_t b) 509 { 510 unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */ 511 512 if (lh->previous != lh->no_previous) { 513 if (lh->previous != index) { 514 __lh_unlock(lh, lh->previous); 515 __lh_lock(lh, index); 516 lh->previous = index; 517 } 518 } else { 519 __lh_lock(lh, index); 520 lh->previous = index; 521 } 522 } 523 524 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le) 525 { 526 return container_of(le, struct dm_buffer, lru); 527 } 528 529 static struct dm_buffer *list_to_buffer(struct list_head *l) 530 { 531 struct lru_entry *le = list_entry(l, struct lru_entry, list); 532 533 return le_to_buffer(le); 534 } 535 536 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep) 537 { 538 unsigned int i; 539 540 bc->num_locks = num_locks; 541 bc->no_sleep = no_sleep; 542 543 for (i = 0; i < bc->num_locks; i++) { 544 if (no_sleep) 545 rwlock_init(&bc->trees[i].u.spinlock); 546 else 547 init_rwsem(&bc->trees[i].u.lock); 548 bc->trees[i].root = RB_ROOT; 549 } 550 551 lru_init(&bc->lru[LIST_CLEAN]); 552 lru_init(&bc->lru[LIST_DIRTY]); 553 } 554 555 static void cache_destroy(struct dm_buffer_cache *bc) 556 { 557 unsigned int i; 558 559 for (i = 0; i < bc->num_locks; i++) 560 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root)); 561 562 lru_destroy(&bc->lru[LIST_CLEAN]); 563 lru_destroy(&bc->lru[LIST_DIRTY]); 564 } 565 566 /*--------------*/ 567 568 /* 569 * not threadsafe, or racey depending how you look at it 570 */ 571 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode) 572 { 573 return bc->lru[list_mode].count; 574 } 575 576 static inline unsigned long cache_total(struct dm_buffer_cache *bc) 577 { 578 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY); 579 } 580 581 /*--------------*/ 582 583 /* 584 * Gets a specific buffer, indexed by block. 585 * If the buffer is found then its holder count will be incremented and 586 * lru_reference will be called. 587 * 588 * threadsafe 589 */ 590 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block) 591 { 592 struct rb_node *n = root->rb_node; 593 struct dm_buffer *b; 594 595 while (n) { 596 b = container_of(n, struct dm_buffer, node); 597 598 if (b->block == block) 599 return b; 600 601 n = block < b->block ? n->rb_left : n->rb_right; 602 } 603 604 return NULL; 605 } 606 607 static void __cache_inc_buffer(struct dm_buffer *b) 608 { 609 atomic_inc(&b->hold_count); 610 WRITE_ONCE(b->last_accessed, jiffies); 611 } 612 613 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block) 614 { 615 struct dm_buffer *b; 616 617 cache_read_lock(bc, block); 618 b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block); 619 if (b) { 620 lru_reference(&b->lru); 621 __cache_inc_buffer(b); 622 } 623 cache_read_unlock(bc, block); 624 625 return b; 626 } 627 628 /*--------------*/ 629 630 /* 631 * Returns true if the hold count hits zero. 632 * threadsafe 633 */ 634 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b) 635 { 636 bool r; 637 638 cache_read_lock(bc, b->block); 639 BUG_ON(!atomic_read(&b->hold_count)); 640 r = atomic_dec_and_test(&b->hold_count); 641 cache_read_unlock(bc, b->block); 642 643 return r; 644 } 645 646 /*--------------*/ 647 648 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *); 649 650 /* 651 * Evicts a buffer based on a predicate. The oldest buffer that 652 * matches the predicate will be selected. In addition to the 653 * predicate the hold_count of the selected buffer will be zero. 654 */ 655 struct evict_wrapper { 656 struct lock_history *lh; 657 b_predicate pred; 658 void *context; 659 }; 660 661 /* 662 * Wraps the buffer predicate turning it into an lru predicate. Adds 663 * extra test for hold_count. 664 */ 665 static enum evict_result __evict_pred(struct lru_entry *le, void *context) 666 { 667 struct evict_wrapper *w = context; 668 struct dm_buffer *b = le_to_buffer(le); 669 670 lh_next(w->lh, b->block); 671 672 if (atomic_read(&b->hold_count)) 673 return ER_DONT_EVICT; 674 675 return w->pred(b, w->context); 676 } 677 678 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode, 679 b_predicate pred, void *context, 680 struct lock_history *lh) 681 { 682 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 683 struct lru_entry *le; 684 struct dm_buffer *b; 685 686 le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep); 687 if (!le) 688 return NULL; 689 690 b = le_to_buffer(le); 691 /* __evict_pred will have locked the appropriate tree. */ 692 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 693 694 return b; 695 } 696 697 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode, 698 b_predicate pred, void *context) 699 { 700 struct dm_buffer *b; 701 struct lock_history lh; 702 703 lh_init(&lh, bc, true); 704 b = __cache_evict(bc, list_mode, pred, context, &lh); 705 lh_exit(&lh); 706 707 return b; 708 } 709 710 /*--------------*/ 711 712 /* 713 * Mark a buffer as clean or dirty. Not threadsafe. 714 */ 715 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode) 716 { 717 cache_write_lock(bc, b->block); 718 if (list_mode != b->list_mode) { 719 lru_remove(&bc->lru[b->list_mode], &b->lru); 720 b->list_mode = list_mode; 721 lru_insert(&bc->lru[b->list_mode], &b->lru); 722 } 723 cache_write_unlock(bc, b->block); 724 } 725 726 /*--------------*/ 727 728 /* 729 * Runs through the lru associated with 'old_mode', if the predicate matches then 730 * it moves them to 'new_mode'. Not threadsafe. 731 */ 732 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 733 b_predicate pred, void *context, struct lock_history *lh) 734 { 735 struct lru_entry *le; 736 struct dm_buffer *b; 737 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 738 739 while (true) { 740 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep); 741 if (!le) 742 break; 743 744 b = le_to_buffer(le); 745 b->list_mode = new_mode; 746 lru_insert(&bc->lru[b->list_mode], &b->lru); 747 } 748 } 749 750 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 751 b_predicate pred, void *context) 752 { 753 struct lock_history lh; 754 755 lh_init(&lh, bc, true); 756 __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh); 757 lh_exit(&lh); 758 } 759 760 /*--------------*/ 761 762 /* 763 * Iterates through all clean or dirty entries calling a function for each 764 * entry. The callback may terminate the iteration early. Not threadsafe. 765 */ 766 767 /* 768 * Iterator functions should return one of these actions to indicate 769 * how the iteration should proceed. 770 */ 771 enum it_action { 772 IT_NEXT, 773 IT_COMPLETE, 774 }; 775 776 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context); 777 778 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode, 779 iter_fn fn, void *context, struct lock_history *lh) 780 { 781 struct lru *lru = &bc->lru[list_mode]; 782 struct lru_entry *le, *first; 783 784 if (!lru->cursor) 785 return; 786 787 first = le = to_le(lru->cursor); 788 do { 789 struct dm_buffer *b = le_to_buffer(le); 790 791 lh_next(lh, b->block); 792 793 switch (fn(b, context)) { 794 case IT_NEXT: 795 break; 796 797 case IT_COMPLETE: 798 return; 799 } 800 cond_resched(); 801 802 le = to_le(le->list.next); 803 } while (le != first); 804 } 805 806 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode, 807 iter_fn fn, void *context) 808 { 809 struct lock_history lh; 810 811 lh_init(&lh, bc, false); 812 __cache_iterate(bc, list_mode, fn, context, &lh); 813 lh_exit(&lh); 814 } 815 816 /*--------------*/ 817 818 /* 819 * Passes ownership of the buffer to the cache. Returns false if the 820 * buffer was already present (in which case ownership does not pass). 821 * eg, a race with another thread. 822 * 823 * Holder count should be 1 on insertion. 824 * 825 * Not threadsafe. 826 */ 827 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b) 828 { 829 struct rb_node **new = &root->rb_node, *parent = NULL; 830 struct dm_buffer *found; 831 832 while (*new) { 833 found = container_of(*new, struct dm_buffer, node); 834 835 if (found->block == b->block) 836 return false; 837 838 parent = *new; 839 new = b->block < found->block ? 840 &found->node.rb_left : &found->node.rb_right; 841 } 842 843 rb_link_node(&b->node, parent, new); 844 rb_insert_color(&b->node, root); 845 846 return true; 847 } 848 849 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b) 850 { 851 bool r; 852 853 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE)) 854 return false; 855 856 cache_write_lock(bc, b->block); 857 BUG_ON(atomic_read(&b->hold_count) != 1); 858 r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b); 859 if (r) 860 lru_insert(&bc->lru[b->list_mode], &b->lru); 861 cache_write_unlock(bc, b->block); 862 863 return r; 864 } 865 866 /*--------------*/ 867 868 /* 869 * Removes buffer from cache, ownership of the buffer passes back to the caller. 870 * Fails if the hold_count is not one (ie. the caller holds the only reference). 871 * 872 * Not threadsafe. 873 */ 874 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b) 875 { 876 bool r; 877 878 cache_write_lock(bc, b->block); 879 880 if (atomic_read(&b->hold_count) != 1) { 881 r = false; 882 } else { 883 r = true; 884 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 885 lru_remove(&bc->lru[b->list_mode], &b->lru); 886 } 887 888 cache_write_unlock(bc, b->block); 889 890 return r; 891 } 892 893 /*--------------*/ 894 895 typedef void (*b_release)(struct dm_buffer *); 896 897 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block) 898 { 899 struct rb_node *n = root->rb_node; 900 struct dm_buffer *b; 901 struct dm_buffer *best = NULL; 902 903 while (n) { 904 b = container_of(n, struct dm_buffer, node); 905 906 if (b->block == block) 907 return b; 908 909 if (block <= b->block) { 910 n = n->rb_left; 911 best = b; 912 } else { 913 n = n->rb_right; 914 } 915 } 916 917 return best; 918 } 919 920 static void __remove_range(struct dm_buffer_cache *bc, 921 struct rb_root *root, 922 sector_t begin, sector_t end, 923 b_predicate pred, b_release release) 924 { 925 struct dm_buffer *b; 926 927 while (true) { 928 cond_resched(); 929 930 b = __find_next(root, begin); 931 if (!b || (b->block >= end)) 932 break; 933 934 begin = b->block + 1; 935 936 if (atomic_read(&b->hold_count)) 937 continue; 938 939 if (pred(b, NULL) == ER_EVICT) { 940 rb_erase(&b->node, root); 941 lru_remove(&bc->lru[b->list_mode], &b->lru); 942 release(b); 943 } 944 } 945 } 946 947 static void cache_remove_range(struct dm_buffer_cache *bc, 948 sector_t begin, sector_t end, 949 b_predicate pred, b_release release) 950 { 951 unsigned int i; 952 953 BUG_ON(bc->no_sleep); 954 for (i = 0; i < bc->num_locks; i++) { 955 down_write(&bc->trees[i].u.lock); 956 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release); 957 up_write(&bc->trees[i].u.lock); 958 } 959 } 960 961 /*----------------------------------------------------------------*/ 962 963 /* 964 * Linking of buffers: 965 * All buffers are linked to buffer_cache with their node field. 966 * 967 * Clean buffers that are not being written (B_WRITING not set) 968 * are linked to lru[LIST_CLEAN] with their lru_list field. 969 * 970 * Dirty and clean buffers that are being written are linked to 971 * lru[LIST_DIRTY] with their lru_list field. When the write 972 * finishes, the buffer cannot be relinked immediately (because we 973 * are in an interrupt context and relinking requires process 974 * context), so some clean-not-writing buffers can be held on 975 * dirty_lru too. They are later added to lru in the process 976 * context. 977 */ 978 struct dm_bufio_client { 979 struct block_device *bdev; 980 unsigned int block_size; 981 s8 sectors_per_block_bits; 982 983 bool no_sleep; 984 struct mutex lock; 985 spinlock_t spinlock; 986 987 int async_write_error; 988 989 void (*alloc_callback)(struct dm_buffer *buf); 990 void (*write_callback)(struct dm_buffer *buf); 991 struct kmem_cache *slab_buffer; 992 struct kmem_cache *slab_cache; 993 struct dm_io_client *dm_io; 994 995 struct list_head reserved_buffers; 996 unsigned int need_reserved_buffers; 997 998 unsigned int minimum_buffers; 999 1000 sector_t start; 1001 1002 struct shrinker *shrinker; 1003 struct work_struct shrink_work; 1004 atomic_long_t need_shrink; 1005 1006 wait_queue_head_t free_buffer_wait; 1007 1008 struct list_head client_list; 1009 1010 /* 1011 * Used by global_cleanup to sort the clients list. 1012 */ 1013 unsigned long oldest_buffer; 1014 1015 struct dm_buffer_cache cache; /* must be last member */ 1016 }; 1017 1018 /*----------------------------------------------------------------*/ 1019 1020 #define dm_bufio_in_request() (!!current->bio_list) 1021 1022 static void dm_bufio_lock(struct dm_bufio_client *c) 1023 { 1024 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1025 spin_lock_bh(&c->spinlock); 1026 else 1027 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 1028 } 1029 1030 static void dm_bufio_unlock(struct dm_bufio_client *c) 1031 { 1032 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1033 spin_unlock_bh(&c->spinlock); 1034 else 1035 mutex_unlock(&c->lock); 1036 } 1037 1038 /*----------------------------------------------------------------*/ 1039 1040 /* 1041 * Default cache size: available memory divided by the ratio. 1042 */ 1043 static unsigned long dm_bufio_default_cache_size; 1044 1045 /* 1046 * Total cache size set by the user. 1047 */ 1048 static unsigned long dm_bufio_cache_size; 1049 1050 /* 1051 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 1052 * at any time. If it disagrees, the user has changed cache size. 1053 */ 1054 static unsigned long dm_bufio_cache_size_latch; 1055 1056 static DEFINE_SPINLOCK(global_spinlock); 1057 1058 /* 1059 * Buffers are freed after this timeout 1060 */ 1061 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 1062 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 1063 1064 static unsigned long dm_bufio_peak_allocated; 1065 static unsigned long dm_bufio_allocated_kmem_cache; 1066 static unsigned long dm_bufio_allocated_kmalloc; 1067 static unsigned long dm_bufio_allocated_get_free_pages; 1068 static unsigned long dm_bufio_allocated_vmalloc; 1069 static unsigned long dm_bufio_current_allocated; 1070 1071 /*----------------------------------------------------------------*/ 1072 1073 /* 1074 * The current number of clients. 1075 */ 1076 static int dm_bufio_client_count; 1077 1078 /* 1079 * The list of all clients. 1080 */ 1081 static LIST_HEAD(dm_bufio_all_clients); 1082 1083 /* 1084 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count 1085 */ 1086 static DEFINE_MUTEX(dm_bufio_clients_lock); 1087 1088 static struct workqueue_struct *dm_bufio_wq; 1089 static struct delayed_work dm_bufio_cleanup_old_work; 1090 static struct work_struct dm_bufio_replacement_work; 1091 1092 1093 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1094 static void buffer_record_stack(struct dm_buffer *b) 1095 { 1096 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); 1097 } 1098 #endif 1099 1100 /*----------------------------------------------------------------*/ 1101 1102 static void adjust_total_allocated(struct dm_buffer *b, bool unlink) 1103 { 1104 unsigned char data_mode; 1105 long diff; 1106 1107 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 1108 &dm_bufio_allocated_kmem_cache, 1109 &dm_bufio_allocated_kmalloc, 1110 &dm_bufio_allocated_get_free_pages, 1111 &dm_bufio_allocated_vmalloc, 1112 }; 1113 1114 data_mode = b->data_mode; 1115 diff = (long)b->c->block_size; 1116 if (unlink) 1117 diff = -diff; 1118 1119 spin_lock(&global_spinlock); 1120 1121 *class_ptr[data_mode] += diff; 1122 1123 dm_bufio_current_allocated += diff; 1124 1125 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 1126 dm_bufio_peak_allocated = dm_bufio_current_allocated; 1127 1128 if (!unlink) { 1129 if (dm_bufio_current_allocated > dm_bufio_cache_size) 1130 queue_work(dm_bufio_wq, &dm_bufio_replacement_work); 1131 } 1132 1133 spin_unlock(&global_spinlock); 1134 } 1135 1136 /* 1137 * Change the number of clients and recalculate per-client limit. 1138 */ 1139 static void __cache_size_refresh(void) 1140 { 1141 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock))) 1142 return; 1143 if (WARN_ON(dm_bufio_client_count < 0)) 1144 return; 1145 1146 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 1147 1148 /* 1149 * Use default if set to 0 and report the actual cache size used. 1150 */ 1151 if (!dm_bufio_cache_size_latch) { 1152 (void)cmpxchg(&dm_bufio_cache_size, 0, 1153 dm_bufio_default_cache_size); 1154 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 1155 } 1156 } 1157 1158 /* 1159 * Allocating buffer data. 1160 * 1161 * Small buffers are allocated with kmem_cache, to use space optimally. 1162 * 1163 * For large buffers, we choose between get_free_pages and vmalloc. 1164 * Each has advantages and disadvantages. 1165 * 1166 * __get_free_pages can randomly fail if the memory is fragmented. 1167 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 1168 * as low as 128M) so using it for caching is not appropriate. 1169 * 1170 * If the allocation may fail we use __get_free_pages. Memory fragmentation 1171 * won't have a fatal effect here, but it just causes flushes of some other 1172 * buffers and more I/O will be performed. Don't use __get_free_pages if it 1173 * always fails (i.e. order > MAX_PAGE_ORDER). 1174 * 1175 * If the allocation shouldn't fail we use __vmalloc. This is only for the 1176 * initial reserve allocation, so there's no risk of wasting all vmalloc 1177 * space. 1178 */ 1179 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 1180 unsigned char *data_mode) 1181 { 1182 if (unlikely(c->slab_cache != NULL)) { 1183 *data_mode = DATA_MODE_SLAB; 1184 return kmem_cache_alloc(c->slab_cache, gfp_mask); 1185 } 1186 1187 if (unlikely(c->block_size < PAGE_SIZE)) { 1188 *data_mode = DATA_MODE_KMALLOC; 1189 return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE); 1190 } 1191 1192 if (c->block_size <= KMALLOC_MAX_SIZE && 1193 gfp_mask & __GFP_NORETRY) { 1194 *data_mode = DATA_MODE_GET_FREE_PAGES; 1195 return (void *)__get_free_pages(gfp_mask, 1196 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1197 } 1198 1199 *data_mode = DATA_MODE_VMALLOC; 1200 1201 return __vmalloc(c->block_size, gfp_mask); 1202 } 1203 1204 /* 1205 * Free buffer's data. 1206 */ 1207 static void free_buffer_data(struct dm_bufio_client *c, 1208 void *data, unsigned char data_mode) 1209 { 1210 switch (data_mode) { 1211 case DATA_MODE_SLAB: 1212 kmem_cache_free(c->slab_cache, data); 1213 break; 1214 1215 case DATA_MODE_KMALLOC: 1216 kfree(data); 1217 break; 1218 1219 case DATA_MODE_GET_FREE_PAGES: 1220 free_pages((unsigned long)data, 1221 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1222 break; 1223 1224 case DATA_MODE_VMALLOC: 1225 vfree(data); 1226 break; 1227 1228 default: 1229 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 1230 data_mode); 1231 BUG(); 1232 } 1233 } 1234 1235 /* 1236 * Allocate buffer and its data. 1237 */ 1238 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 1239 { 1240 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 1241 1242 if (!b) 1243 return NULL; 1244 1245 b->c = c; 1246 1247 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 1248 if (!b->data) { 1249 kmem_cache_free(c->slab_buffer, b); 1250 return NULL; 1251 } 1252 adjust_total_allocated(b, false); 1253 1254 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1255 b->stack_len = 0; 1256 #endif 1257 return b; 1258 } 1259 1260 /* 1261 * Free buffer and its data. 1262 */ 1263 static void free_buffer(struct dm_buffer *b) 1264 { 1265 struct dm_bufio_client *c = b->c; 1266 1267 adjust_total_allocated(b, true); 1268 free_buffer_data(c, b->data, b->data_mode); 1269 kmem_cache_free(c->slab_buffer, b); 1270 } 1271 1272 /* 1273 *-------------------------------------------------------------------------- 1274 * Submit I/O on the buffer. 1275 * 1276 * Bio interface is faster but it has some problems: 1277 * the vector list is limited (increasing this limit increases 1278 * memory-consumption per buffer, so it is not viable); 1279 * 1280 * the memory must be direct-mapped, not vmalloced; 1281 * 1282 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 1283 * it is not vmalloced, try using the bio interface. 1284 * 1285 * If the buffer is big, if it is vmalloced or if the underlying device 1286 * rejects the bio because it is too large, use dm-io layer to do the I/O. 1287 * The dm-io layer splits the I/O into multiple requests, avoiding the above 1288 * shortcomings. 1289 *-------------------------------------------------------------------------- 1290 */ 1291 1292 /* 1293 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 1294 * that the request was handled directly with bio interface. 1295 */ 1296 static void dmio_complete(unsigned long error, void *context) 1297 { 1298 struct dm_buffer *b = context; 1299 1300 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 1301 } 1302 1303 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector, 1304 unsigned int n_sectors, unsigned int offset, 1305 unsigned short ioprio) 1306 { 1307 int r; 1308 struct dm_io_request io_req = { 1309 .bi_opf = op, 1310 .notify.fn = dmio_complete, 1311 .notify.context = b, 1312 .client = b->c->dm_io, 1313 }; 1314 struct dm_io_region region = { 1315 .bdev = b->c->bdev, 1316 .sector = sector, 1317 .count = n_sectors, 1318 }; 1319 1320 if (b->data_mode != DATA_MODE_VMALLOC) { 1321 io_req.mem.type = DM_IO_KMEM; 1322 io_req.mem.ptr.addr = (char *)b->data + offset; 1323 } else { 1324 io_req.mem.type = DM_IO_VMA; 1325 io_req.mem.ptr.vma = (char *)b->data + offset; 1326 } 1327 1328 r = dm_io(&io_req, 1, ®ion, NULL, ioprio); 1329 if (unlikely(r)) 1330 b->end_io(b, errno_to_blk_status(r)); 1331 } 1332 1333 static void bio_complete(struct bio *bio) 1334 { 1335 struct dm_buffer *b = bio->bi_private; 1336 blk_status_t status = bio->bi_status; 1337 1338 bio_uninit(bio); 1339 kfree(bio); 1340 b->end_io(b, status); 1341 } 1342 1343 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector, 1344 unsigned int n_sectors, unsigned int offset, 1345 unsigned short ioprio) 1346 { 1347 struct bio *bio; 1348 char *ptr; 1349 unsigned int len; 1350 1351 bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN); 1352 if (!bio) { 1353 use_dmio(b, op, sector, n_sectors, offset, ioprio); 1354 return; 1355 } 1356 bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op); 1357 bio->bi_iter.bi_sector = sector; 1358 bio->bi_end_io = bio_complete; 1359 bio->bi_private = b; 1360 bio->bi_ioprio = ioprio; 1361 1362 ptr = (char *)b->data + offset; 1363 len = n_sectors << SECTOR_SHIFT; 1364 1365 __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr)); 1366 1367 submit_bio(bio); 1368 } 1369 1370 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) 1371 { 1372 sector_t sector; 1373 1374 if (likely(c->sectors_per_block_bits >= 0)) 1375 sector = block << c->sectors_per_block_bits; 1376 else 1377 sector = block * (c->block_size >> SECTOR_SHIFT); 1378 sector += c->start; 1379 1380 return sector; 1381 } 1382 1383 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio, 1384 void (*end_io)(struct dm_buffer *, blk_status_t)) 1385 { 1386 unsigned int n_sectors; 1387 sector_t sector; 1388 unsigned int offset, end; 1389 1390 b->end_io = end_io; 1391 1392 sector = block_to_sector(b->c, b->block); 1393 1394 if (op != REQ_OP_WRITE) { 1395 n_sectors = b->c->block_size >> SECTOR_SHIFT; 1396 offset = 0; 1397 } else { 1398 if (b->c->write_callback) 1399 b->c->write_callback(b); 1400 offset = b->write_start; 1401 end = b->write_end; 1402 offset &= -DM_BUFIO_WRITE_ALIGN; 1403 end += DM_BUFIO_WRITE_ALIGN - 1; 1404 end &= -DM_BUFIO_WRITE_ALIGN; 1405 if (unlikely(end > b->c->block_size)) 1406 end = b->c->block_size; 1407 1408 sector += offset >> SECTOR_SHIFT; 1409 n_sectors = (end - offset) >> SECTOR_SHIFT; 1410 } 1411 1412 if (b->data_mode != DATA_MODE_VMALLOC) 1413 use_bio(b, op, sector, n_sectors, offset, ioprio); 1414 else 1415 use_dmio(b, op, sector, n_sectors, offset, ioprio); 1416 } 1417 1418 /* 1419 *-------------------------------------------------------------- 1420 * Writing dirty buffers 1421 *-------------------------------------------------------------- 1422 */ 1423 1424 /* 1425 * The endio routine for write. 1426 * 1427 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 1428 * it. 1429 */ 1430 static void write_endio(struct dm_buffer *b, blk_status_t status) 1431 { 1432 b->write_error = status; 1433 if (unlikely(status)) { 1434 struct dm_bufio_client *c = b->c; 1435 1436 (void)cmpxchg(&c->async_write_error, 0, 1437 blk_status_to_errno(status)); 1438 } 1439 1440 BUG_ON(!test_bit(B_WRITING, &b->state)); 1441 1442 smp_mb__before_atomic(); 1443 clear_bit(B_WRITING, &b->state); 1444 smp_mb__after_atomic(); 1445 1446 wake_up_bit(&b->state, B_WRITING); 1447 } 1448 1449 /* 1450 * Initiate a write on a dirty buffer, but don't wait for it. 1451 * 1452 * - If the buffer is not dirty, exit. 1453 * - If there some previous write going on, wait for it to finish (we can't 1454 * have two writes on the same buffer simultaneously). 1455 * - Submit our write and don't wait on it. We set B_WRITING indicating 1456 * that there is a write in progress. 1457 */ 1458 static void __write_dirty_buffer(struct dm_buffer *b, 1459 struct list_head *write_list) 1460 { 1461 if (!test_bit(B_DIRTY, &b->state)) 1462 return; 1463 1464 clear_bit(B_DIRTY, &b->state); 1465 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1466 1467 b->write_start = b->dirty_start; 1468 b->write_end = b->dirty_end; 1469 1470 if (!write_list) 1471 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio); 1472 else 1473 list_add_tail(&b->write_list, write_list); 1474 } 1475 1476 static void __flush_write_list(struct list_head *write_list) 1477 { 1478 struct blk_plug plug; 1479 1480 blk_start_plug(&plug); 1481 while (!list_empty(write_list)) { 1482 struct dm_buffer *b = 1483 list_entry(write_list->next, struct dm_buffer, write_list); 1484 list_del(&b->write_list); 1485 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio); 1486 cond_resched(); 1487 } 1488 blk_finish_plug(&plug); 1489 } 1490 1491 /* 1492 * Wait until any activity on the buffer finishes. Possibly write the 1493 * buffer if it is dirty. When this function finishes, there is no I/O 1494 * running on the buffer and the buffer is not dirty. 1495 */ 1496 static void __make_buffer_clean(struct dm_buffer *b) 1497 { 1498 BUG_ON(atomic_read(&b->hold_count)); 1499 1500 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */ 1501 if (!smp_load_acquire(&b->state)) /* fast case */ 1502 return; 1503 1504 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1505 __write_dirty_buffer(b, NULL); 1506 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1507 } 1508 1509 static enum evict_result is_clean(struct dm_buffer *b, void *context) 1510 { 1511 struct dm_bufio_client *c = context; 1512 1513 /* These should never happen */ 1514 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state))) 1515 return ER_DONT_EVICT; 1516 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state))) 1517 return ER_DONT_EVICT; 1518 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN)) 1519 return ER_DONT_EVICT; 1520 1521 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep && 1522 unlikely(test_bit(B_READING, &b->state))) 1523 return ER_DONT_EVICT; 1524 1525 return ER_EVICT; 1526 } 1527 1528 static enum evict_result is_dirty(struct dm_buffer *b, void *context) 1529 { 1530 /* These should never happen */ 1531 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1532 return ER_DONT_EVICT; 1533 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY)) 1534 return ER_DONT_EVICT; 1535 1536 return ER_EVICT; 1537 } 1538 1539 /* 1540 * Find some buffer that is not held by anybody, clean it, unlink it and 1541 * return it. 1542 */ 1543 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 1544 { 1545 struct dm_buffer *b; 1546 1547 b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c); 1548 if (b) { 1549 /* this also waits for pending reads */ 1550 __make_buffer_clean(b); 1551 return b; 1552 } 1553 1554 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1555 return NULL; 1556 1557 b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL); 1558 if (b) { 1559 __make_buffer_clean(b); 1560 return b; 1561 } 1562 1563 return NULL; 1564 } 1565 1566 /* 1567 * Wait until some other threads free some buffer or release hold count on 1568 * some buffer. 1569 * 1570 * This function is entered with c->lock held, drops it and regains it 1571 * before exiting. 1572 */ 1573 static void __wait_for_free_buffer(struct dm_bufio_client *c) 1574 { 1575 DECLARE_WAITQUEUE(wait, current); 1576 1577 add_wait_queue(&c->free_buffer_wait, &wait); 1578 set_current_state(TASK_UNINTERRUPTIBLE); 1579 dm_bufio_unlock(c); 1580 1581 /* 1582 * It's possible to miss a wake up event since we don't always 1583 * hold c->lock when wake_up is called. So we have a timeout here, 1584 * just in case. 1585 */ 1586 io_schedule_timeout(5 * HZ); 1587 1588 remove_wait_queue(&c->free_buffer_wait, &wait); 1589 1590 dm_bufio_lock(c); 1591 } 1592 1593 enum new_flag { 1594 NF_FRESH = 0, 1595 NF_READ = 1, 1596 NF_GET = 2, 1597 NF_PREFETCH = 3 1598 }; 1599 1600 /* 1601 * Allocate a new buffer. If the allocation is not possible, wait until 1602 * some other thread frees a buffer. 1603 * 1604 * May drop the lock and regain it. 1605 */ 1606 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 1607 { 1608 struct dm_buffer *b; 1609 bool tried_noio_alloc = false; 1610 1611 /* 1612 * dm-bufio is resistant to allocation failures (it just keeps 1613 * one buffer reserved in cases all the allocations fail). 1614 * So set flags to not try too hard: 1615 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 1616 * mutex and wait ourselves. 1617 * __GFP_NORETRY: don't retry and rather return failure 1618 * __GFP_NOMEMALLOC: don't use emergency reserves 1619 * __GFP_NOWARN: don't print a warning in case of failure 1620 * 1621 * For debugging, if we set the cache size to 1, no new buffers will 1622 * be allocated. 1623 */ 1624 while (1) { 1625 if (dm_bufio_cache_size_latch != 1) { 1626 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1627 if (b) 1628 return b; 1629 } 1630 1631 if (nf == NF_PREFETCH) 1632 return NULL; 1633 1634 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 1635 dm_bufio_unlock(c); 1636 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1637 dm_bufio_lock(c); 1638 if (b) 1639 return b; 1640 tried_noio_alloc = true; 1641 } 1642 1643 if (!list_empty(&c->reserved_buffers)) { 1644 b = list_to_buffer(c->reserved_buffers.next); 1645 list_del(&b->lru.list); 1646 c->need_reserved_buffers++; 1647 1648 return b; 1649 } 1650 1651 b = __get_unclaimed_buffer(c); 1652 if (b) 1653 return b; 1654 1655 __wait_for_free_buffer(c); 1656 } 1657 } 1658 1659 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 1660 { 1661 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 1662 1663 if (!b) 1664 return NULL; 1665 1666 if (c->alloc_callback) 1667 c->alloc_callback(b); 1668 1669 return b; 1670 } 1671 1672 /* 1673 * Free a buffer and wake other threads waiting for free buffers. 1674 */ 1675 static void __free_buffer_wake(struct dm_buffer *b) 1676 { 1677 struct dm_bufio_client *c = b->c; 1678 1679 b->block = -1; 1680 if (!c->need_reserved_buffers) 1681 free_buffer(b); 1682 else { 1683 list_add(&b->lru.list, &c->reserved_buffers); 1684 c->need_reserved_buffers--; 1685 } 1686 1687 /* 1688 * We hold the bufio lock here, so no one can add entries to the 1689 * wait queue anyway. 1690 */ 1691 if (unlikely(waitqueue_active(&c->free_buffer_wait))) 1692 wake_up(&c->free_buffer_wait); 1693 } 1694 1695 static enum evict_result cleaned(struct dm_buffer *b, void *context) 1696 { 1697 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1698 return ER_DONT_EVICT; /* should never happen */ 1699 1700 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state)) 1701 return ER_DONT_EVICT; 1702 else 1703 return ER_EVICT; 1704 } 1705 1706 static void __move_clean_buffers(struct dm_bufio_client *c) 1707 { 1708 cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL); 1709 } 1710 1711 struct write_context { 1712 int no_wait; 1713 struct list_head *write_list; 1714 }; 1715 1716 static enum it_action write_one(struct dm_buffer *b, void *context) 1717 { 1718 struct write_context *wc = context; 1719 1720 if (wc->no_wait && test_bit(B_WRITING, &b->state)) 1721 return IT_COMPLETE; 1722 1723 __write_dirty_buffer(b, wc->write_list); 1724 return IT_NEXT; 1725 } 1726 1727 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 1728 struct list_head *write_list) 1729 { 1730 struct write_context wc = {.no_wait = no_wait, .write_list = write_list}; 1731 1732 __move_clean_buffers(c); 1733 cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc); 1734 } 1735 1736 /* 1737 * Check if we're over watermark. 1738 * If we are over threshold_buffers, start freeing buffers. 1739 * If we're over "limit_buffers", block until we get under the limit. 1740 */ 1741 static void __check_watermark(struct dm_bufio_client *c, 1742 struct list_head *write_list) 1743 { 1744 if (cache_count(&c->cache, LIST_DIRTY) > 1745 cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO) 1746 __write_dirty_buffers_async(c, 1, write_list); 1747 } 1748 1749 /* 1750 *-------------------------------------------------------------- 1751 * Getting a buffer 1752 *-------------------------------------------------------------- 1753 */ 1754 1755 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b) 1756 { 1757 /* 1758 * Relying on waitqueue_active() is racey, but we sleep 1759 * with schedule_timeout anyway. 1760 */ 1761 if (cache_put(&c->cache, b) && 1762 unlikely(waitqueue_active(&c->free_buffer_wait))) 1763 wake_up(&c->free_buffer_wait); 1764 } 1765 1766 /* 1767 * This assumes you have already checked the cache to see if the buffer 1768 * is already present (it will recheck after dropping the lock for allocation). 1769 */ 1770 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 1771 enum new_flag nf, int *need_submit, 1772 struct list_head *write_list) 1773 { 1774 struct dm_buffer *b, *new_b = NULL; 1775 1776 *need_submit = 0; 1777 1778 /* This can't be called with NF_GET */ 1779 if (WARN_ON_ONCE(nf == NF_GET)) 1780 return NULL; 1781 1782 new_b = __alloc_buffer_wait(c, nf); 1783 if (!new_b) 1784 return NULL; 1785 1786 /* 1787 * We've had a period where the mutex was unlocked, so need to 1788 * recheck the buffer tree. 1789 */ 1790 b = cache_get(&c->cache, block); 1791 if (b) { 1792 __free_buffer_wake(new_b); 1793 goto found_buffer; 1794 } 1795 1796 __check_watermark(c, write_list); 1797 1798 b = new_b; 1799 atomic_set(&b->hold_count, 1); 1800 WRITE_ONCE(b->last_accessed, jiffies); 1801 b->block = block; 1802 b->read_error = 0; 1803 b->write_error = 0; 1804 b->list_mode = LIST_CLEAN; 1805 1806 if (nf == NF_FRESH) 1807 b->state = 0; 1808 else { 1809 b->state = 1 << B_READING; 1810 *need_submit = 1; 1811 } 1812 1813 /* 1814 * We mustn't insert into the cache until the B_READING state 1815 * is set. Otherwise another thread could get it and use 1816 * it before it had been read. 1817 */ 1818 cache_insert(&c->cache, b); 1819 1820 return b; 1821 1822 found_buffer: 1823 if (nf == NF_PREFETCH) { 1824 cache_put_and_wake(c, b); 1825 return NULL; 1826 } 1827 1828 /* 1829 * Note: it is essential that we don't wait for the buffer to be 1830 * read if dm_bufio_get function is used. Both dm_bufio_get and 1831 * dm_bufio_prefetch can be used in the driver request routine. 1832 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1833 * the same buffer, it would deadlock if we waited. 1834 */ 1835 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1836 cache_put_and_wake(c, b); 1837 return NULL; 1838 } 1839 1840 return b; 1841 } 1842 1843 /* 1844 * The endio routine for reading: set the error, clear the bit and wake up 1845 * anyone waiting on the buffer. 1846 */ 1847 static void read_endio(struct dm_buffer *b, blk_status_t status) 1848 { 1849 b->read_error = status; 1850 1851 BUG_ON(!test_bit(B_READING, &b->state)); 1852 1853 smp_mb__before_atomic(); 1854 clear_bit(B_READING, &b->state); 1855 smp_mb__after_atomic(); 1856 1857 wake_up_bit(&b->state, B_READING); 1858 } 1859 1860 /* 1861 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1862 * functions is similar except that dm_bufio_new doesn't read the 1863 * buffer from the disk (assuming that the caller overwrites all the data 1864 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1865 */ 1866 static void *new_read(struct dm_bufio_client *c, sector_t block, 1867 enum new_flag nf, struct dm_buffer **bp, 1868 unsigned short ioprio) 1869 { 1870 int need_submit = 0; 1871 struct dm_buffer *b; 1872 1873 LIST_HEAD(write_list); 1874 1875 *bp = NULL; 1876 1877 /* 1878 * Fast path, hopefully the block is already in the cache. No need 1879 * to get the client lock for this. 1880 */ 1881 b = cache_get(&c->cache, block); 1882 if (b) { 1883 if (nf == NF_PREFETCH) { 1884 cache_put_and_wake(c, b); 1885 return NULL; 1886 } 1887 1888 /* 1889 * Note: it is essential that we don't wait for the buffer to be 1890 * read if dm_bufio_get function is used. Both dm_bufio_get and 1891 * dm_bufio_prefetch can be used in the driver request routine. 1892 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1893 * the same buffer, it would deadlock if we waited. 1894 */ 1895 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1896 cache_put_and_wake(c, b); 1897 return NULL; 1898 } 1899 } 1900 1901 if (!b) { 1902 if (nf == NF_GET) 1903 return NULL; 1904 1905 dm_bufio_lock(c); 1906 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1907 dm_bufio_unlock(c); 1908 } 1909 1910 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1911 if (b && (atomic_read(&b->hold_count) == 1)) 1912 buffer_record_stack(b); 1913 #endif 1914 1915 __flush_write_list(&write_list); 1916 1917 if (!b) 1918 return NULL; 1919 1920 if (need_submit) 1921 submit_io(b, REQ_OP_READ, ioprio, read_endio); 1922 1923 if (nf != NF_GET) /* we already tested this condition above */ 1924 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1925 1926 if (b->read_error) { 1927 int error = blk_status_to_errno(b->read_error); 1928 1929 dm_bufio_release(b); 1930 1931 return ERR_PTR(error); 1932 } 1933 1934 *bp = b; 1935 1936 return b->data; 1937 } 1938 1939 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1940 struct dm_buffer **bp) 1941 { 1942 return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT); 1943 } 1944 EXPORT_SYMBOL_GPL(dm_bufio_get); 1945 1946 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1947 struct dm_buffer **bp, unsigned short ioprio) 1948 { 1949 if (WARN_ON_ONCE(dm_bufio_in_request())) 1950 return ERR_PTR(-EINVAL); 1951 1952 return new_read(c, block, NF_READ, bp, ioprio); 1953 } 1954 1955 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1956 struct dm_buffer **bp) 1957 { 1958 return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT); 1959 } 1960 EXPORT_SYMBOL_GPL(dm_bufio_read); 1961 1962 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block, 1963 struct dm_buffer **bp, unsigned short ioprio) 1964 { 1965 return __dm_bufio_read(c, block, bp, ioprio); 1966 } 1967 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio); 1968 1969 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1970 struct dm_buffer **bp) 1971 { 1972 if (WARN_ON_ONCE(dm_bufio_in_request())) 1973 return ERR_PTR(-EINVAL); 1974 1975 return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT); 1976 } 1977 EXPORT_SYMBOL_GPL(dm_bufio_new); 1978 1979 static void __dm_bufio_prefetch(struct dm_bufio_client *c, 1980 sector_t block, unsigned int n_blocks, 1981 unsigned short ioprio) 1982 { 1983 struct blk_plug plug; 1984 1985 LIST_HEAD(write_list); 1986 1987 if (WARN_ON_ONCE(dm_bufio_in_request())) 1988 return; /* should never happen */ 1989 1990 blk_start_plug(&plug); 1991 1992 for (; n_blocks--; block++) { 1993 int need_submit; 1994 struct dm_buffer *b; 1995 1996 b = cache_get(&c->cache, block); 1997 if (b) { 1998 /* already in cache */ 1999 cache_put_and_wake(c, b); 2000 continue; 2001 } 2002 2003 dm_bufio_lock(c); 2004 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 2005 &write_list); 2006 if (unlikely(!list_empty(&write_list))) { 2007 dm_bufio_unlock(c); 2008 blk_finish_plug(&plug); 2009 __flush_write_list(&write_list); 2010 blk_start_plug(&plug); 2011 dm_bufio_lock(c); 2012 } 2013 if (unlikely(b != NULL)) { 2014 dm_bufio_unlock(c); 2015 2016 if (need_submit) 2017 submit_io(b, REQ_OP_READ, ioprio, read_endio); 2018 dm_bufio_release(b); 2019 2020 cond_resched(); 2021 2022 if (!n_blocks) 2023 goto flush_plug; 2024 dm_bufio_lock(c); 2025 } 2026 dm_bufio_unlock(c); 2027 } 2028 2029 flush_plug: 2030 blk_finish_plug(&plug); 2031 } 2032 2033 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks) 2034 { 2035 return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT); 2036 } 2037 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 2038 2039 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block, 2040 unsigned int n_blocks, unsigned short ioprio) 2041 { 2042 return __dm_bufio_prefetch(c, block, n_blocks, ioprio); 2043 } 2044 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio); 2045 2046 void dm_bufio_release(struct dm_buffer *b) 2047 { 2048 struct dm_bufio_client *c = b->c; 2049 2050 /* 2051 * If there were errors on the buffer, and the buffer is not 2052 * to be written, free the buffer. There is no point in caching 2053 * invalid buffer. 2054 */ 2055 if ((b->read_error || b->write_error) && 2056 !test_bit_acquire(B_READING, &b->state) && 2057 !test_bit(B_WRITING, &b->state) && 2058 !test_bit(B_DIRTY, &b->state)) { 2059 dm_bufio_lock(c); 2060 2061 /* cache remove can fail if there are other holders */ 2062 if (cache_remove(&c->cache, b)) { 2063 __free_buffer_wake(b); 2064 dm_bufio_unlock(c); 2065 return; 2066 } 2067 2068 dm_bufio_unlock(c); 2069 } 2070 2071 cache_put_and_wake(c, b); 2072 } 2073 EXPORT_SYMBOL_GPL(dm_bufio_release); 2074 2075 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 2076 unsigned int start, unsigned int end) 2077 { 2078 struct dm_bufio_client *c = b->c; 2079 2080 BUG_ON(start >= end); 2081 BUG_ON(end > b->c->block_size); 2082 2083 dm_bufio_lock(c); 2084 2085 BUG_ON(test_bit(B_READING, &b->state)); 2086 2087 if (!test_and_set_bit(B_DIRTY, &b->state)) { 2088 b->dirty_start = start; 2089 b->dirty_end = end; 2090 cache_mark(&c->cache, b, LIST_DIRTY); 2091 } else { 2092 if (start < b->dirty_start) 2093 b->dirty_start = start; 2094 if (end > b->dirty_end) 2095 b->dirty_end = end; 2096 } 2097 2098 dm_bufio_unlock(c); 2099 } 2100 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 2101 2102 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 2103 { 2104 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 2105 } 2106 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 2107 2108 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 2109 { 2110 LIST_HEAD(write_list); 2111 2112 if (WARN_ON_ONCE(dm_bufio_in_request())) 2113 return; /* should never happen */ 2114 2115 dm_bufio_lock(c); 2116 __write_dirty_buffers_async(c, 0, &write_list); 2117 dm_bufio_unlock(c); 2118 __flush_write_list(&write_list); 2119 } 2120 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 2121 2122 /* 2123 * For performance, it is essential that the buffers are written asynchronously 2124 * and simultaneously (so that the block layer can merge the writes) and then 2125 * waited upon. 2126 * 2127 * Finally, we flush hardware disk cache. 2128 */ 2129 static bool is_writing(struct lru_entry *e, void *context) 2130 { 2131 struct dm_buffer *b = le_to_buffer(e); 2132 2133 return test_bit(B_WRITING, &b->state); 2134 } 2135 2136 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 2137 { 2138 int a, f; 2139 unsigned long nr_buffers; 2140 struct lru_entry *e; 2141 struct lru_iter it; 2142 2143 LIST_HEAD(write_list); 2144 2145 dm_bufio_lock(c); 2146 __write_dirty_buffers_async(c, 0, &write_list); 2147 dm_bufio_unlock(c); 2148 __flush_write_list(&write_list); 2149 dm_bufio_lock(c); 2150 2151 nr_buffers = cache_count(&c->cache, LIST_DIRTY); 2152 lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it); 2153 while ((e = lru_iter_next(&it, is_writing, c))) { 2154 struct dm_buffer *b = le_to_buffer(e); 2155 __cache_inc_buffer(b); 2156 2157 BUG_ON(test_bit(B_READING, &b->state)); 2158 2159 if (nr_buffers) { 2160 nr_buffers--; 2161 dm_bufio_unlock(c); 2162 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2163 dm_bufio_lock(c); 2164 } else { 2165 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2166 } 2167 2168 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state)) 2169 cache_mark(&c->cache, b, LIST_CLEAN); 2170 2171 cache_put_and_wake(c, b); 2172 2173 cond_resched(); 2174 } 2175 lru_iter_end(&it); 2176 2177 wake_up(&c->free_buffer_wait); 2178 dm_bufio_unlock(c); 2179 2180 a = xchg(&c->async_write_error, 0); 2181 f = dm_bufio_issue_flush(c); 2182 if (a) 2183 return a; 2184 2185 return f; 2186 } 2187 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 2188 2189 /* 2190 * Use dm-io to send an empty barrier to flush the device. 2191 */ 2192 int dm_bufio_issue_flush(struct dm_bufio_client *c) 2193 { 2194 struct dm_io_request io_req = { 2195 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 2196 .mem.type = DM_IO_KMEM, 2197 .mem.ptr.addr = NULL, 2198 .client = c->dm_io, 2199 }; 2200 struct dm_io_region io_reg = { 2201 .bdev = c->bdev, 2202 .sector = 0, 2203 .count = 0, 2204 }; 2205 2206 if (WARN_ON_ONCE(dm_bufio_in_request())) 2207 return -EINVAL; 2208 2209 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT); 2210 } 2211 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 2212 2213 /* 2214 * Use dm-io to send a discard request to flush the device. 2215 */ 2216 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) 2217 { 2218 struct dm_io_request io_req = { 2219 .bi_opf = REQ_OP_DISCARD | REQ_SYNC, 2220 .mem.type = DM_IO_KMEM, 2221 .mem.ptr.addr = NULL, 2222 .client = c->dm_io, 2223 }; 2224 struct dm_io_region io_reg = { 2225 .bdev = c->bdev, 2226 .sector = block_to_sector(c, block), 2227 .count = block_to_sector(c, count), 2228 }; 2229 2230 if (WARN_ON_ONCE(dm_bufio_in_request())) 2231 return -EINVAL; /* discards are optional */ 2232 2233 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT); 2234 } 2235 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); 2236 2237 static bool forget_buffer(struct dm_bufio_client *c, sector_t block) 2238 { 2239 struct dm_buffer *b; 2240 2241 b = cache_get(&c->cache, block); 2242 if (b) { 2243 if (likely(!smp_load_acquire(&b->state))) { 2244 if (cache_remove(&c->cache, b)) 2245 __free_buffer_wake(b); 2246 else 2247 cache_put_and_wake(c, b); 2248 } else { 2249 cache_put_and_wake(c, b); 2250 } 2251 } 2252 2253 return b ? true : false; 2254 } 2255 2256 /* 2257 * Free the given buffer. 2258 * 2259 * This is just a hint, if the buffer is in use or dirty, this function 2260 * does nothing. 2261 */ 2262 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 2263 { 2264 dm_bufio_lock(c); 2265 forget_buffer(c, block); 2266 dm_bufio_unlock(c); 2267 } 2268 EXPORT_SYMBOL_GPL(dm_bufio_forget); 2269 2270 static enum evict_result idle(struct dm_buffer *b, void *context) 2271 { 2272 return b->state ? ER_DONT_EVICT : ER_EVICT; 2273 } 2274 2275 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks) 2276 { 2277 dm_bufio_lock(c); 2278 cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake); 2279 dm_bufio_unlock(c); 2280 } 2281 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers); 2282 2283 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n) 2284 { 2285 c->minimum_buffers = n; 2286 } 2287 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 2288 2289 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c) 2290 { 2291 return c->block_size; 2292 } 2293 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 2294 2295 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 2296 { 2297 sector_t s = bdev_nr_sectors(c->bdev); 2298 2299 if (s >= c->start) 2300 s -= c->start; 2301 else 2302 s = 0; 2303 if (likely(c->sectors_per_block_bits >= 0)) 2304 s >>= c->sectors_per_block_bits; 2305 else 2306 sector_div(s, c->block_size >> SECTOR_SHIFT); 2307 return s; 2308 } 2309 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 2310 2311 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c) 2312 { 2313 return c->dm_io; 2314 } 2315 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client); 2316 2317 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 2318 { 2319 return b->block; 2320 } 2321 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 2322 2323 void *dm_bufio_get_block_data(struct dm_buffer *b) 2324 { 2325 return b->data; 2326 } 2327 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 2328 2329 void *dm_bufio_get_aux_data(struct dm_buffer *b) 2330 { 2331 return b + 1; 2332 } 2333 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 2334 2335 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 2336 { 2337 return b->c; 2338 } 2339 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 2340 2341 static enum it_action warn_leak(struct dm_buffer *b, void *context) 2342 { 2343 bool *warned = context; 2344 2345 WARN_ON(!(*warned)); 2346 *warned = true; 2347 DMERR("leaked buffer %llx, hold count %u, list %d", 2348 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode); 2349 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2350 stack_trace_print(b->stack_entries, b->stack_len, 1); 2351 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */ 2352 atomic_set(&b->hold_count, 0); 2353 #endif 2354 return IT_NEXT; 2355 } 2356 2357 static void drop_buffers(struct dm_bufio_client *c) 2358 { 2359 int i; 2360 struct dm_buffer *b; 2361 2362 if (WARN_ON(dm_bufio_in_request())) 2363 return; /* should never happen */ 2364 2365 /* 2366 * An optimization so that the buffers are not written one-by-one. 2367 */ 2368 dm_bufio_write_dirty_buffers_async(c); 2369 2370 dm_bufio_lock(c); 2371 2372 while ((b = __get_unclaimed_buffer(c))) 2373 __free_buffer_wake(b); 2374 2375 for (i = 0; i < LIST_SIZE; i++) { 2376 bool warned = false; 2377 2378 cache_iterate(&c->cache, i, warn_leak, &warned); 2379 } 2380 2381 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2382 while ((b = __get_unclaimed_buffer(c))) 2383 __free_buffer_wake(b); 2384 #endif 2385 2386 for (i = 0; i < LIST_SIZE; i++) 2387 WARN_ON(cache_count(&c->cache, i)); 2388 2389 dm_bufio_unlock(c); 2390 } 2391 2392 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 2393 { 2394 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 2395 2396 if (likely(c->sectors_per_block_bits >= 0)) 2397 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 2398 else 2399 retain_bytes /= c->block_size; 2400 2401 return retain_bytes; 2402 } 2403 2404 static void __scan(struct dm_bufio_client *c) 2405 { 2406 int l; 2407 struct dm_buffer *b; 2408 unsigned long freed = 0; 2409 unsigned long retain_target = get_retain_buffers(c); 2410 unsigned long count = cache_total(&c->cache); 2411 2412 for (l = 0; l < LIST_SIZE; l++) { 2413 while (true) { 2414 if (count - freed <= retain_target) 2415 atomic_long_set(&c->need_shrink, 0); 2416 if (!atomic_long_read(&c->need_shrink)) 2417 break; 2418 2419 b = cache_evict(&c->cache, l, 2420 l == LIST_CLEAN ? is_clean : is_dirty, c); 2421 if (!b) 2422 break; 2423 2424 __make_buffer_clean(b); 2425 __free_buffer_wake(b); 2426 2427 atomic_long_dec(&c->need_shrink); 2428 freed++; 2429 cond_resched(); 2430 } 2431 } 2432 } 2433 2434 static void shrink_work(struct work_struct *w) 2435 { 2436 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work); 2437 2438 dm_bufio_lock(c); 2439 __scan(c); 2440 dm_bufio_unlock(c); 2441 } 2442 2443 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 2444 { 2445 struct dm_bufio_client *c; 2446 2447 c = shrink->private_data; 2448 atomic_long_add(sc->nr_to_scan, &c->need_shrink); 2449 queue_work(dm_bufio_wq, &c->shrink_work); 2450 2451 return sc->nr_to_scan; 2452 } 2453 2454 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 2455 { 2456 struct dm_bufio_client *c = shrink->private_data; 2457 unsigned long count = cache_total(&c->cache); 2458 unsigned long retain_target = get_retain_buffers(c); 2459 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink); 2460 2461 if (unlikely(count < retain_target)) 2462 count = 0; 2463 else 2464 count -= retain_target; 2465 2466 if (unlikely(count < queued_for_cleanup)) 2467 count = 0; 2468 else 2469 count -= queued_for_cleanup; 2470 2471 return count; 2472 } 2473 2474 /* 2475 * Create the buffering interface 2476 */ 2477 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size, 2478 unsigned int reserved_buffers, unsigned int aux_size, 2479 void (*alloc_callback)(struct dm_buffer *), 2480 void (*write_callback)(struct dm_buffer *), 2481 unsigned int flags) 2482 { 2483 int r; 2484 unsigned int num_locks; 2485 struct dm_bufio_client *c; 2486 char slab_name[64]; 2487 static atomic_t seqno = ATOMIC_INIT(0); 2488 2489 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 2490 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 2491 r = -EINVAL; 2492 goto bad_client; 2493 } 2494 2495 num_locks = dm_num_hash_locks(); 2496 c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL); 2497 if (!c) { 2498 r = -ENOMEM; 2499 goto bad_client; 2500 } 2501 cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0); 2502 2503 c->bdev = bdev; 2504 c->block_size = block_size; 2505 if (is_power_of_2(block_size)) 2506 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 2507 else 2508 c->sectors_per_block_bits = -1; 2509 2510 c->alloc_callback = alloc_callback; 2511 c->write_callback = write_callback; 2512 2513 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) { 2514 c->no_sleep = true; 2515 static_branch_inc(&no_sleep_enabled); 2516 } 2517 2518 mutex_init(&c->lock); 2519 spin_lock_init(&c->spinlock); 2520 INIT_LIST_HEAD(&c->reserved_buffers); 2521 c->need_reserved_buffers = reserved_buffers; 2522 2523 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 2524 2525 init_waitqueue_head(&c->free_buffer_wait); 2526 c->async_write_error = 0; 2527 2528 c->dm_io = dm_io_client_create(); 2529 if (IS_ERR(c->dm_io)) { 2530 r = PTR_ERR(c->dm_io); 2531 goto bad_dm_io; 2532 } 2533 2534 if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) { 2535 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE); 2536 2537 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u", 2538 block_size, atomic_inc_return(&seqno)); 2539 c->slab_cache = kmem_cache_create(slab_name, block_size, align, 2540 SLAB_RECLAIM_ACCOUNT, NULL); 2541 if (!c->slab_cache) { 2542 r = -ENOMEM; 2543 goto bad; 2544 } 2545 } 2546 if (aux_size) 2547 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u", 2548 aux_size, atomic_inc_return(&seqno)); 2549 else 2550 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", 2551 atomic_inc_return(&seqno)); 2552 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 2553 0, SLAB_RECLAIM_ACCOUNT, NULL); 2554 if (!c->slab_buffer) { 2555 r = -ENOMEM; 2556 goto bad; 2557 } 2558 2559 while (c->need_reserved_buffers) { 2560 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 2561 2562 if (!b) { 2563 r = -ENOMEM; 2564 goto bad; 2565 } 2566 __free_buffer_wake(b); 2567 } 2568 2569 INIT_WORK(&c->shrink_work, shrink_work); 2570 atomic_long_set(&c->need_shrink, 0); 2571 2572 c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)", 2573 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2574 if (!c->shrinker) { 2575 r = -ENOMEM; 2576 goto bad; 2577 } 2578 2579 c->shrinker->count_objects = dm_bufio_shrink_count; 2580 c->shrinker->scan_objects = dm_bufio_shrink_scan; 2581 c->shrinker->seeks = 1; 2582 c->shrinker->batch = 0; 2583 c->shrinker->private_data = c; 2584 2585 shrinker_register(c->shrinker); 2586 2587 mutex_lock(&dm_bufio_clients_lock); 2588 dm_bufio_client_count++; 2589 list_add(&c->client_list, &dm_bufio_all_clients); 2590 __cache_size_refresh(); 2591 mutex_unlock(&dm_bufio_clients_lock); 2592 2593 return c; 2594 2595 bad: 2596 while (!list_empty(&c->reserved_buffers)) { 2597 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2598 2599 list_del(&b->lru.list); 2600 free_buffer(b); 2601 } 2602 kmem_cache_destroy(c->slab_cache); 2603 kmem_cache_destroy(c->slab_buffer); 2604 dm_io_client_destroy(c->dm_io); 2605 bad_dm_io: 2606 mutex_destroy(&c->lock); 2607 if (c->no_sleep) 2608 static_branch_dec(&no_sleep_enabled); 2609 kfree(c); 2610 bad_client: 2611 return ERR_PTR(r); 2612 } 2613 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 2614 2615 /* 2616 * Free the buffering interface. 2617 * It is required that there are no references on any buffers. 2618 */ 2619 void dm_bufio_client_destroy(struct dm_bufio_client *c) 2620 { 2621 unsigned int i; 2622 2623 drop_buffers(c); 2624 2625 shrinker_free(c->shrinker); 2626 flush_work(&c->shrink_work); 2627 2628 mutex_lock(&dm_bufio_clients_lock); 2629 2630 list_del(&c->client_list); 2631 dm_bufio_client_count--; 2632 __cache_size_refresh(); 2633 2634 mutex_unlock(&dm_bufio_clients_lock); 2635 2636 WARN_ON(c->need_reserved_buffers); 2637 2638 while (!list_empty(&c->reserved_buffers)) { 2639 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2640 2641 list_del(&b->lru.list); 2642 free_buffer(b); 2643 } 2644 2645 for (i = 0; i < LIST_SIZE; i++) 2646 if (cache_count(&c->cache, i)) 2647 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i)); 2648 2649 for (i = 0; i < LIST_SIZE; i++) 2650 WARN_ON(cache_count(&c->cache, i)); 2651 2652 cache_destroy(&c->cache); 2653 kmem_cache_destroy(c->slab_cache); 2654 kmem_cache_destroy(c->slab_buffer); 2655 dm_io_client_destroy(c->dm_io); 2656 mutex_destroy(&c->lock); 2657 if (c->no_sleep) 2658 static_branch_dec(&no_sleep_enabled); 2659 kfree(c); 2660 } 2661 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 2662 2663 void dm_bufio_client_reset(struct dm_bufio_client *c) 2664 { 2665 drop_buffers(c); 2666 flush_work(&c->shrink_work); 2667 } 2668 EXPORT_SYMBOL_GPL(dm_bufio_client_reset); 2669 2670 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 2671 { 2672 c->start = start; 2673 } 2674 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 2675 2676 /*--------------------------------------------------------------*/ 2677 2678 static unsigned int get_max_age_hz(void) 2679 { 2680 unsigned int max_age = READ_ONCE(dm_bufio_max_age); 2681 2682 if (max_age > UINT_MAX / HZ) 2683 max_age = UINT_MAX / HZ; 2684 2685 return max_age * HZ; 2686 } 2687 2688 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 2689 { 2690 return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz); 2691 } 2692 2693 struct evict_params { 2694 gfp_t gfp; 2695 unsigned long age_hz; 2696 2697 /* 2698 * This gets updated with the largest last_accessed (ie. most 2699 * recently used) of the evicted buffers. It will not be reinitialised 2700 * by __evict_many(), so you can use it across multiple invocations. 2701 */ 2702 unsigned long last_accessed; 2703 }; 2704 2705 /* 2706 * We may not be able to evict this buffer if IO pending or the client 2707 * is still using it. 2708 * 2709 * And if GFP_NOFS is used, we must not do any I/O because we hold 2710 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 2711 * rerouted to different bufio client. 2712 */ 2713 static enum evict_result select_for_evict(struct dm_buffer *b, void *context) 2714 { 2715 struct evict_params *params = context; 2716 2717 if (!(params->gfp & __GFP_FS) || 2718 (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) { 2719 if (test_bit_acquire(B_READING, &b->state) || 2720 test_bit(B_WRITING, &b->state) || 2721 test_bit(B_DIRTY, &b->state)) 2722 return ER_DONT_EVICT; 2723 } 2724 2725 return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP; 2726 } 2727 2728 static unsigned long __evict_many(struct dm_bufio_client *c, 2729 struct evict_params *params, 2730 int list_mode, unsigned long max_count) 2731 { 2732 unsigned long count; 2733 unsigned long last_accessed; 2734 struct dm_buffer *b; 2735 2736 for (count = 0; count < max_count; count++) { 2737 b = cache_evict(&c->cache, list_mode, select_for_evict, params); 2738 if (!b) 2739 break; 2740 2741 last_accessed = READ_ONCE(b->last_accessed); 2742 if (time_after_eq(params->last_accessed, last_accessed)) 2743 params->last_accessed = last_accessed; 2744 2745 __make_buffer_clean(b); 2746 __free_buffer_wake(b); 2747 2748 cond_resched(); 2749 } 2750 2751 return count; 2752 } 2753 2754 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 2755 { 2756 struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0}; 2757 unsigned long retain = get_retain_buffers(c); 2758 unsigned long count; 2759 LIST_HEAD(write_list); 2760 2761 dm_bufio_lock(c); 2762 2763 __check_watermark(c, &write_list); 2764 if (unlikely(!list_empty(&write_list))) { 2765 dm_bufio_unlock(c); 2766 __flush_write_list(&write_list); 2767 dm_bufio_lock(c); 2768 } 2769 2770 count = cache_total(&c->cache); 2771 if (count > retain) 2772 __evict_many(c, ¶ms, LIST_CLEAN, count - retain); 2773 2774 dm_bufio_unlock(c); 2775 } 2776 2777 static void cleanup_old_buffers(void) 2778 { 2779 unsigned long max_age_hz = get_max_age_hz(); 2780 struct dm_bufio_client *c; 2781 2782 mutex_lock(&dm_bufio_clients_lock); 2783 2784 __cache_size_refresh(); 2785 2786 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 2787 evict_old_buffers(c, max_age_hz); 2788 2789 mutex_unlock(&dm_bufio_clients_lock); 2790 } 2791 2792 static void work_fn(struct work_struct *w) 2793 { 2794 cleanup_old_buffers(); 2795 2796 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2797 DM_BUFIO_WORK_TIMER_SECS * HZ); 2798 } 2799 2800 /*--------------------------------------------------------------*/ 2801 2802 /* 2803 * Global cleanup tries to evict the oldest buffers from across _all_ 2804 * the clients. It does this by repeatedly evicting a few buffers from 2805 * the client that holds the oldest buffer. It's approximate, but hopefully 2806 * good enough. 2807 */ 2808 static struct dm_bufio_client *__pop_client(void) 2809 { 2810 struct list_head *h; 2811 2812 if (list_empty(&dm_bufio_all_clients)) 2813 return NULL; 2814 2815 h = dm_bufio_all_clients.next; 2816 list_del(h); 2817 return container_of(h, struct dm_bufio_client, client_list); 2818 } 2819 2820 /* 2821 * Inserts the client in the global client list based on its 2822 * 'oldest_buffer' field. 2823 */ 2824 static void __insert_client(struct dm_bufio_client *new_client) 2825 { 2826 struct dm_bufio_client *c; 2827 struct list_head *h = dm_bufio_all_clients.next; 2828 2829 while (h != &dm_bufio_all_clients) { 2830 c = container_of(h, struct dm_bufio_client, client_list); 2831 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer)) 2832 break; 2833 h = h->next; 2834 } 2835 2836 list_add_tail(&new_client->client_list, h); 2837 } 2838 2839 static unsigned long __evict_a_few(unsigned long nr_buffers) 2840 { 2841 unsigned long count; 2842 struct dm_bufio_client *c; 2843 struct evict_params params = { 2844 .gfp = GFP_KERNEL, 2845 .age_hz = 0, 2846 /* set to jiffies in case there are no buffers in this client */ 2847 .last_accessed = jiffies 2848 }; 2849 2850 c = __pop_client(); 2851 if (!c) 2852 return 0; 2853 2854 dm_bufio_lock(c); 2855 count = __evict_many(c, ¶ms, LIST_CLEAN, nr_buffers); 2856 dm_bufio_unlock(c); 2857 2858 if (count) 2859 c->oldest_buffer = params.last_accessed; 2860 __insert_client(c); 2861 2862 return count; 2863 } 2864 2865 static void check_watermarks(void) 2866 { 2867 LIST_HEAD(write_list); 2868 struct dm_bufio_client *c; 2869 2870 mutex_lock(&dm_bufio_clients_lock); 2871 list_for_each_entry(c, &dm_bufio_all_clients, client_list) { 2872 dm_bufio_lock(c); 2873 __check_watermark(c, &write_list); 2874 dm_bufio_unlock(c); 2875 } 2876 mutex_unlock(&dm_bufio_clients_lock); 2877 2878 __flush_write_list(&write_list); 2879 } 2880 2881 static void evict_old(void) 2882 { 2883 unsigned long threshold = dm_bufio_cache_size - 2884 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; 2885 2886 mutex_lock(&dm_bufio_clients_lock); 2887 while (dm_bufio_current_allocated > threshold) { 2888 if (!__evict_a_few(64)) 2889 break; 2890 cond_resched(); 2891 } 2892 mutex_unlock(&dm_bufio_clients_lock); 2893 } 2894 2895 static void do_global_cleanup(struct work_struct *w) 2896 { 2897 check_watermarks(); 2898 evict_old(); 2899 } 2900 2901 /* 2902 *-------------------------------------------------------------- 2903 * Module setup 2904 *-------------------------------------------------------------- 2905 */ 2906 2907 /* 2908 * This is called only once for the whole dm_bufio module. 2909 * It initializes memory limit. 2910 */ 2911 static int __init dm_bufio_init(void) 2912 { 2913 __u64 mem; 2914 2915 dm_bufio_allocated_kmem_cache = 0; 2916 dm_bufio_allocated_kmalloc = 0; 2917 dm_bufio_allocated_get_free_pages = 0; 2918 dm_bufio_allocated_vmalloc = 0; 2919 dm_bufio_current_allocated = 0; 2920 2921 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), 2922 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 2923 2924 if (mem > ULONG_MAX) 2925 mem = ULONG_MAX; 2926 2927 #ifdef CONFIG_MMU 2928 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 2929 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 2930 #endif 2931 2932 dm_bufio_default_cache_size = mem; 2933 2934 mutex_lock(&dm_bufio_clients_lock); 2935 __cache_size_refresh(); 2936 mutex_unlock(&dm_bufio_clients_lock); 2937 2938 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 2939 if (!dm_bufio_wq) 2940 return -ENOMEM; 2941 2942 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn); 2943 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); 2944 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2945 DM_BUFIO_WORK_TIMER_SECS * HZ); 2946 2947 return 0; 2948 } 2949 2950 /* 2951 * This is called once when unloading the dm_bufio module. 2952 */ 2953 static void __exit dm_bufio_exit(void) 2954 { 2955 int bug = 0; 2956 2957 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work); 2958 destroy_workqueue(dm_bufio_wq); 2959 2960 if (dm_bufio_client_count) { 2961 DMCRIT("%s: dm_bufio_client_count leaked: %d", 2962 __func__, dm_bufio_client_count); 2963 bug = 1; 2964 } 2965 2966 if (dm_bufio_current_allocated) { 2967 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 2968 __func__, dm_bufio_current_allocated); 2969 bug = 1; 2970 } 2971 2972 if (dm_bufio_allocated_get_free_pages) { 2973 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 2974 __func__, dm_bufio_allocated_get_free_pages); 2975 bug = 1; 2976 } 2977 2978 if (dm_bufio_allocated_vmalloc) { 2979 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 2980 __func__, dm_bufio_allocated_vmalloc); 2981 bug = 1; 2982 } 2983 2984 WARN_ON(bug); /* leaks are not worth crashing the system */ 2985 } 2986 2987 module_init(dm_bufio_init) 2988 module_exit(dm_bufio_exit) 2989 2990 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644); 2991 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 2992 2993 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644); 2994 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 2995 2996 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644); 2997 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2998 2999 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644); 3000 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 3001 3002 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444); 3003 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 3004 3005 module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444); 3006 MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc"); 3007 3008 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444); 3009 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 3010 3011 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444); 3012 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 3013 3014 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444); 3015 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 3016 3017 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>"); 3018 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 3019 MODULE_LICENSE("GPL"); 3020