1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009-2011 Red Hat, Inc. 4 * 5 * Author: Mikulas Patocka <mpatocka@redhat.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/dm-bufio.h> 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/slab.h> 15 #include <linux/sched/mm.h> 16 #include <linux/jiffies.h> 17 #include <linux/vmalloc.h> 18 #include <linux/shrinker.h> 19 #include <linux/module.h> 20 #include <linux/rbtree.h> 21 #include <linux/stacktrace.h> 22 #include <linux/jump_label.h> 23 24 #include "dm.h" 25 26 #define DM_MSG_PREFIX "bufio" 27 28 /* 29 * Memory management policy: 30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 34 * dirty buffers. 35 */ 36 #define DM_BUFIO_MIN_BUFFERS 8 37 38 #define DM_BUFIO_MEMORY_PERCENT 2 39 #define DM_BUFIO_VMALLOC_PERCENT 25 40 #define DM_BUFIO_WRITEBACK_RATIO 3 41 #define DM_BUFIO_LOW_WATERMARK_RATIO 16 42 43 /* 44 * Check buffer ages in this interval (seconds) 45 */ 46 #define DM_BUFIO_WORK_TIMER_SECS 30 47 48 /* 49 * Free buffers when they are older than this (seconds) 50 */ 51 #define DM_BUFIO_DEFAULT_AGE_SECS 300 52 53 /* 54 * The nr of bytes of cached data to keep around. 55 */ 56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 57 58 /* 59 * Align buffer writes to this boundary. 60 * Tests show that SSDs have the highest IOPS when using 4k writes. 61 */ 62 #define DM_BUFIO_WRITE_ALIGN 4096 63 64 /* 65 * dm_buffer->list_mode 66 */ 67 #define LIST_CLEAN 0 68 #define LIST_DIRTY 1 69 #define LIST_SIZE 2 70 71 #define SCAN_RESCHED_CYCLE 16 72 73 /*--------------------------------------------------------------*/ 74 75 /* 76 * Rather than use an LRU list, we use a clock algorithm where entries 77 * are held in a circular list. When an entry is 'hit' a reference bit 78 * is set. The least recently used entry is approximated by running a 79 * cursor around the list selecting unreferenced entries. Referenced 80 * entries have their reference bit cleared as the cursor passes them. 81 */ 82 struct lru_entry { 83 struct list_head list; 84 atomic_t referenced; 85 }; 86 87 struct lru_iter { 88 struct lru *lru; 89 struct list_head list; 90 struct lru_entry *stop; 91 struct lru_entry *e; 92 }; 93 94 struct lru { 95 struct list_head *cursor; 96 unsigned long count; 97 98 struct list_head iterators; 99 }; 100 101 /*--------------*/ 102 103 static void lru_init(struct lru *lru) 104 { 105 lru->cursor = NULL; 106 lru->count = 0; 107 INIT_LIST_HEAD(&lru->iterators); 108 } 109 110 static void lru_destroy(struct lru *lru) 111 { 112 WARN_ON_ONCE(lru->cursor); 113 WARN_ON_ONCE(!list_empty(&lru->iterators)); 114 } 115 116 /* 117 * Insert a new entry into the lru. 118 */ 119 static void lru_insert(struct lru *lru, struct lru_entry *le) 120 { 121 /* 122 * Don't be tempted to set to 1, makes the lru aspect 123 * perform poorly. 124 */ 125 atomic_set(&le->referenced, 0); 126 127 if (lru->cursor) { 128 list_add_tail(&le->list, lru->cursor); 129 } else { 130 INIT_LIST_HEAD(&le->list); 131 lru->cursor = &le->list; 132 } 133 lru->count++; 134 } 135 136 /*--------------*/ 137 138 /* 139 * Convert a list_head pointer to an lru_entry pointer. 140 */ 141 static inline struct lru_entry *to_le(struct list_head *l) 142 { 143 return container_of(l, struct lru_entry, list); 144 } 145 146 /* 147 * Initialize an lru_iter and add it to the list of cursors in the lru. 148 */ 149 static void lru_iter_begin(struct lru *lru, struct lru_iter *it) 150 { 151 it->lru = lru; 152 it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL; 153 it->e = lru->cursor ? to_le(lru->cursor) : NULL; 154 list_add(&it->list, &lru->iterators); 155 } 156 157 /* 158 * Remove an lru_iter from the list of cursors in the lru. 159 */ 160 static inline void lru_iter_end(struct lru_iter *it) 161 { 162 list_del(&it->list); 163 } 164 165 /* Predicate function type to be used with lru_iter_next */ 166 typedef bool (*iter_predicate)(struct lru_entry *le, void *context); 167 168 /* 169 * Advance the cursor to the next entry that passes the 170 * predicate, and return that entry. Returns NULL if the 171 * iteration is complete. 172 */ 173 static struct lru_entry *lru_iter_next(struct lru_iter *it, 174 iter_predicate pred, void *context) 175 { 176 struct lru_entry *e; 177 178 while (it->e) { 179 e = it->e; 180 181 /* advance the cursor */ 182 if (it->e == it->stop) 183 it->e = NULL; 184 else 185 it->e = to_le(it->e->list.next); 186 187 if (pred(e, context)) 188 return e; 189 } 190 191 return NULL; 192 } 193 194 /* 195 * Invalidate a specific lru_entry and update all cursors in 196 * the lru accordingly. 197 */ 198 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e) 199 { 200 struct lru_iter *it; 201 202 list_for_each_entry(it, &lru->iterators, list) { 203 /* Move c->e forwards if necc. */ 204 if (it->e == e) { 205 it->e = to_le(it->e->list.next); 206 if (it->e == e) 207 it->e = NULL; 208 } 209 210 /* Move it->stop backwards if necc. */ 211 if (it->stop == e) { 212 it->stop = to_le(it->stop->list.prev); 213 if (it->stop == e) 214 it->stop = NULL; 215 } 216 } 217 } 218 219 /*--------------*/ 220 221 /* 222 * Remove a specific entry from the lru. 223 */ 224 static void lru_remove(struct lru *lru, struct lru_entry *le) 225 { 226 lru_iter_invalidate(lru, le); 227 if (lru->count == 1) { 228 lru->cursor = NULL; 229 } else { 230 if (lru->cursor == &le->list) 231 lru->cursor = lru->cursor->next; 232 list_del(&le->list); 233 } 234 lru->count--; 235 } 236 237 /* 238 * Mark as referenced. 239 */ 240 static inline void lru_reference(struct lru_entry *le) 241 { 242 atomic_set(&le->referenced, 1); 243 } 244 245 /*--------------*/ 246 247 /* 248 * Remove the least recently used entry (approx), that passes the predicate. 249 * Returns NULL on failure. 250 */ 251 enum evict_result { 252 ER_EVICT, 253 ER_DONT_EVICT, 254 ER_STOP, /* stop looking for something to evict */ 255 }; 256 257 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context); 258 259 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep) 260 { 261 unsigned long tested = 0; 262 struct list_head *h = lru->cursor; 263 struct lru_entry *le; 264 265 if (!h) 266 return NULL; 267 /* 268 * In the worst case we have to loop around twice. Once to clear 269 * the reference flags, and then again to discover the predicate 270 * fails for all entries. 271 */ 272 while (tested < lru->count) { 273 le = container_of(h, struct lru_entry, list); 274 275 if (atomic_read(&le->referenced)) { 276 atomic_set(&le->referenced, 0); 277 } else { 278 tested++; 279 switch (pred(le, context)) { 280 case ER_EVICT: 281 /* 282 * Adjust the cursor, so we start the next 283 * search from here. 284 */ 285 lru->cursor = le->list.next; 286 lru_remove(lru, le); 287 return le; 288 289 case ER_DONT_EVICT: 290 break; 291 292 case ER_STOP: 293 lru->cursor = le->list.next; 294 return NULL; 295 } 296 } 297 298 h = h->next; 299 300 if (!no_sleep) 301 cond_resched(); 302 } 303 304 return NULL; 305 } 306 307 /*--------------------------------------------------------------*/ 308 309 /* 310 * Buffer state bits. 311 */ 312 #define B_READING 0 313 #define B_WRITING 1 314 #define B_DIRTY 2 315 316 /* 317 * Describes how the block was allocated: 318 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 319 * See the comment at alloc_buffer_data. 320 */ 321 enum data_mode { 322 DATA_MODE_SLAB = 0, 323 DATA_MODE_KMALLOC = 1, 324 DATA_MODE_GET_FREE_PAGES = 2, 325 DATA_MODE_VMALLOC = 3, 326 DATA_MODE_LIMIT = 4 327 }; 328 329 struct dm_buffer { 330 /* protected by the locks in dm_buffer_cache */ 331 struct rb_node node; 332 333 /* immutable, so don't need protecting */ 334 sector_t block; 335 void *data; 336 unsigned char data_mode; /* DATA_MODE_* */ 337 338 /* 339 * These two fields are used in isolation, so do not need 340 * a surrounding lock. 341 */ 342 atomic_t hold_count; 343 unsigned long last_accessed; 344 345 /* 346 * Everything else is protected by the mutex in 347 * dm_bufio_client 348 */ 349 unsigned long state; 350 struct lru_entry lru; 351 unsigned char list_mode; /* LIST_* */ 352 blk_status_t read_error; 353 blk_status_t write_error; 354 unsigned int dirty_start; 355 unsigned int dirty_end; 356 unsigned int write_start; 357 unsigned int write_end; 358 struct list_head write_list; 359 struct dm_bufio_client *c; 360 void (*end_io)(struct dm_buffer *b, blk_status_t bs); 361 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 362 #define MAX_STACK 10 363 unsigned int stack_len; 364 unsigned long stack_entries[MAX_STACK]; 365 #endif 366 }; 367 368 /*--------------------------------------------------------------*/ 369 370 /* 371 * The buffer cache manages buffers, particularly: 372 * - inc/dec of holder count 373 * - setting the last_accessed field 374 * - maintains clean/dirty state along with lru 375 * - selecting buffers that match predicates 376 * 377 * It does *not* handle: 378 * - allocation/freeing of buffers. 379 * - IO 380 * - Eviction or cache sizing. 381 * 382 * cache_get() and cache_put() are threadsafe, you do not need to 383 * protect these calls with a surrounding mutex. All the other 384 * methods are not threadsafe; they do use locking primitives, but 385 * only enough to ensure get/put are threadsafe. 386 */ 387 388 struct buffer_tree { 389 union { 390 struct rw_semaphore lock; 391 rwlock_t spinlock; 392 } u; 393 struct rb_root root; 394 } ____cacheline_aligned_in_smp; 395 396 struct dm_buffer_cache { 397 struct lru lru[LIST_SIZE]; 398 /* 399 * We spread entries across multiple trees to reduce contention 400 * on the locks. 401 */ 402 unsigned int num_locks; 403 bool no_sleep; 404 struct buffer_tree trees[]; 405 }; 406 407 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled); 408 409 static inline unsigned int cache_index(sector_t block, unsigned int num_locks) 410 { 411 return dm_hash_locks_index(block, num_locks); 412 } 413 414 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block) 415 { 416 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 417 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 418 else 419 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 420 } 421 422 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block) 423 { 424 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 425 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 426 else 427 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 428 } 429 430 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block) 431 { 432 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 433 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 434 else 435 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 436 } 437 438 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block) 439 { 440 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 441 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 442 else 443 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 444 } 445 446 /* 447 * Sometimes we want to repeatedly get and drop locks as part of an iteration. 448 * This struct helps avoid redundant drop and gets of the same lock. 449 */ 450 struct lock_history { 451 struct dm_buffer_cache *cache; 452 bool write; 453 unsigned int previous; 454 unsigned int no_previous; 455 }; 456 457 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write) 458 { 459 lh->cache = cache; 460 lh->write = write; 461 lh->no_previous = cache->num_locks; 462 lh->previous = lh->no_previous; 463 } 464 465 static void __lh_lock(struct lock_history *lh, unsigned int index) 466 { 467 if (lh->write) { 468 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 469 write_lock_bh(&lh->cache->trees[index].u.spinlock); 470 else 471 down_write(&lh->cache->trees[index].u.lock); 472 } else { 473 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 474 read_lock_bh(&lh->cache->trees[index].u.spinlock); 475 else 476 down_read(&lh->cache->trees[index].u.lock); 477 } 478 } 479 480 static void __lh_unlock(struct lock_history *lh, unsigned int index) 481 { 482 if (lh->write) { 483 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 484 write_unlock_bh(&lh->cache->trees[index].u.spinlock); 485 else 486 up_write(&lh->cache->trees[index].u.lock); 487 } else { 488 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 489 read_unlock_bh(&lh->cache->trees[index].u.spinlock); 490 else 491 up_read(&lh->cache->trees[index].u.lock); 492 } 493 } 494 495 /* 496 * Make sure you call this since it will unlock the final lock. 497 */ 498 static void lh_exit(struct lock_history *lh) 499 { 500 if (lh->previous != lh->no_previous) { 501 __lh_unlock(lh, lh->previous); 502 lh->previous = lh->no_previous; 503 } 504 } 505 506 /* 507 * Named 'next' because there is no corresponding 508 * 'up/unlock' call since it's done automatically. 509 */ 510 static void lh_next(struct lock_history *lh, sector_t b) 511 { 512 unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */ 513 514 if (lh->previous != lh->no_previous) { 515 if (lh->previous != index) { 516 __lh_unlock(lh, lh->previous); 517 __lh_lock(lh, index); 518 lh->previous = index; 519 } 520 } else { 521 __lh_lock(lh, index); 522 lh->previous = index; 523 } 524 } 525 526 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le) 527 { 528 return container_of(le, struct dm_buffer, lru); 529 } 530 531 static struct dm_buffer *list_to_buffer(struct list_head *l) 532 { 533 struct lru_entry *le = list_entry(l, struct lru_entry, list); 534 535 return le_to_buffer(le); 536 } 537 538 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep) 539 { 540 unsigned int i; 541 542 bc->num_locks = num_locks; 543 bc->no_sleep = no_sleep; 544 545 for (i = 0; i < bc->num_locks; i++) { 546 if (no_sleep) 547 rwlock_init(&bc->trees[i].u.spinlock); 548 else 549 init_rwsem(&bc->trees[i].u.lock); 550 bc->trees[i].root = RB_ROOT; 551 } 552 553 lru_init(&bc->lru[LIST_CLEAN]); 554 lru_init(&bc->lru[LIST_DIRTY]); 555 } 556 557 static void cache_destroy(struct dm_buffer_cache *bc) 558 { 559 unsigned int i; 560 561 for (i = 0; i < bc->num_locks; i++) 562 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root)); 563 564 lru_destroy(&bc->lru[LIST_CLEAN]); 565 lru_destroy(&bc->lru[LIST_DIRTY]); 566 } 567 568 /*--------------*/ 569 570 /* 571 * not threadsafe, or racey depending how you look at it 572 */ 573 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode) 574 { 575 return bc->lru[list_mode].count; 576 } 577 578 static inline unsigned long cache_total(struct dm_buffer_cache *bc) 579 { 580 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY); 581 } 582 583 /*--------------*/ 584 585 /* 586 * Gets a specific buffer, indexed by block. 587 * If the buffer is found then its holder count will be incremented and 588 * lru_reference will be called. 589 * 590 * threadsafe 591 */ 592 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block) 593 { 594 struct rb_node *n = root->rb_node; 595 struct dm_buffer *b; 596 597 while (n) { 598 b = container_of(n, struct dm_buffer, node); 599 600 if (b->block == block) 601 return b; 602 603 n = block < b->block ? n->rb_left : n->rb_right; 604 } 605 606 return NULL; 607 } 608 609 static void __cache_inc_buffer(struct dm_buffer *b) 610 { 611 atomic_inc(&b->hold_count); 612 WRITE_ONCE(b->last_accessed, jiffies); 613 } 614 615 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block) 616 { 617 struct dm_buffer *b; 618 619 cache_read_lock(bc, block); 620 b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block); 621 if (b) { 622 lru_reference(&b->lru); 623 __cache_inc_buffer(b); 624 } 625 cache_read_unlock(bc, block); 626 627 return b; 628 } 629 630 /*--------------*/ 631 632 /* 633 * Returns true if the hold count hits zero. 634 * threadsafe 635 */ 636 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b) 637 { 638 bool r; 639 640 cache_read_lock(bc, b->block); 641 BUG_ON(!atomic_read(&b->hold_count)); 642 r = atomic_dec_and_test(&b->hold_count); 643 cache_read_unlock(bc, b->block); 644 645 return r; 646 } 647 648 /*--------------*/ 649 650 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *); 651 652 /* 653 * Evicts a buffer based on a predicate. The oldest buffer that 654 * matches the predicate will be selected. In addition to the 655 * predicate the hold_count of the selected buffer will be zero. 656 */ 657 struct evict_wrapper { 658 struct lock_history *lh; 659 b_predicate pred; 660 void *context; 661 }; 662 663 /* 664 * Wraps the buffer predicate turning it into an lru predicate. Adds 665 * extra test for hold_count. 666 */ 667 static enum evict_result __evict_pred(struct lru_entry *le, void *context) 668 { 669 struct evict_wrapper *w = context; 670 struct dm_buffer *b = le_to_buffer(le); 671 672 lh_next(w->lh, b->block); 673 674 if (atomic_read(&b->hold_count)) 675 return ER_DONT_EVICT; 676 677 return w->pred(b, w->context); 678 } 679 680 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode, 681 b_predicate pred, void *context, 682 struct lock_history *lh) 683 { 684 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 685 struct lru_entry *le; 686 struct dm_buffer *b; 687 688 le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep); 689 if (!le) 690 return NULL; 691 692 b = le_to_buffer(le); 693 /* __evict_pred will have locked the appropriate tree. */ 694 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 695 696 return b; 697 } 698 699 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode, 700 b_predicate pred, void *context) 701 { 702 struct dm_buffer *b; 703 struct lock_history lh; 704 705 lh_init(&lh, bc, true); 706 b = __cache_evict(bc, list_mode, pred, context, &lh); 707 lh_exit(&lh); 708 709 return b; 710 } 711 712 /*--------------*/ 713 714 /* 715 * Mark a buffer as clean or dirty. Not threadsafe. 716 */ 717 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode) 718 { 719 cache_write_lock(bc, b->block); 720 if (list_mode != b->list_mode) { 721 lru_remove(&bc->lru[b->list_mode], &b->lru); 722 b->list_mode = list_mode; 723 lru_insert(&bc->lru[b->list_mode], &b->lru); 724 } 725 cache_write_unlock(bc, b->block); 726 } 727 728 /*--------------*/ 729 730 /* 731 * Runs through the lru associated with 'old_mode', if the predicate matches then 732 * it moves them to 'new_mode'. Not threadsafe. 733 */ 734 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 735 b_predicate pred, void *context, struct lock_history *lh) 736 { 737 struct lru_entry *le; 738 struct dm_buffer *b; 739 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 740 741 while (true) { 742 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep); 743 if (!le) 744 break; 745 746 b = le_to_buffer(le); 747 b->list_mode = new_mode; 748 lru_insert(&bc->lru[b->list_mode], &b->lru); 749 } 750 } 751 752 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 753 b_predicate pred, void *context) 754 { 755 struct lock_history lh; 756 757 lh_init(&lh, bc, true); 758 __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh); 759 lh_exit(&lh); 760 } 761 762 /*--------------*/ 763 764 /* 765 * Iterates through all clean or dirty entries calling a function for each 766 * entry. The callback may terminate the iteration early. Not threadsafe. 767 */ 768 769 /* 770 * Iterator functions should return one of these actions to indicate 771 * how the iteration should proceed. 772 */ 773 enum it_action { 774 IT_NEXT, 775 IT_COMPLETE, 776 }; 777 778 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context); 779 780 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode, 781 iter_fn fn, void *context, struct lock_history *lh) 782 { 783 struct lru *lru = &bc->lru[list_mode]; 784 struct lru_entry *le, *first; 785 786 if (!lru->cursor) 787 return; 788 789 first = le = to_le(lru->cursor); 790 do { 791 struct dm_buffer *b = le_to_buffer(le); 792 793 lh_next(lh, b->block); 794 795 switch (fn(b, context)) { 796 case IT_NEXT: 797 break; 798 799 case IT_COMPLETE: 800 return; 801 } 802 cond_resched(); 803 804 le = to_le(le->list.next); 805 } while (le != first); 806 } 807 808 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode, 809 iter_fn fn, void *context) 810 { 811 struct lock_history lh; 812 813 lh_init(&lh, bc, false); 814 __cache_iterate(bc, list_mode, fn, context, &lh); 815 lh_exit(&lh); 816 } 817 818 /*--------------*/ 819 820 /* 821 * Passes ownership of the buffer to the cache. Returns false if the 822 * buffer was already present (in which case ownership does not pass). 823 * eg, a race with another thread. 824 * 825 * Holder count should be 1 on insertion. 826 * 827 * Not threadsafe. 828 */ 829 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b) 830 { 831 struct rb_node **new = &root->rb_node, *parent = NULL; 832 struct dm_buffer *found; 833 834 while (*new) { 835 found = container_of(*new, struct dm_buffer, node); 836 837 if (found->block == b->block) 838 return false; 839 840 parent = *new; 841 new = b->block < found->block ? 842 &found->node.rb_left : &found->node.rb_right; 843 } 844 845 rb_link_node(&b->node, parent, new); 846 rb_insert_color(&b->node, root); 847 848 return true; 849 } 850 851 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b) 852 { 853 bool r; 854 855 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE)) 856 return false; 857 858 cache_write_lock(bc, b->block); 859 BUG_ON(atomic_read(&b->hold_count) != 1); 860 r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b); 861 if (r) 862 lru_insert(&bc->lru[b->list_mode], &b->lru); 863 cache_write_unlock(bc, b->block); 864 865 return r; 866 } 867 868 /*--------------*/ 869 870 /* 871 * Removes buffer from cache, ownership of the buffer passes back to the caller. 872 * Fails if the hold_count is not one (ie. the caller holds the only reference). 873 * 874 * Not threadsafe. 875 */ 876 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b) 877 { 878 bool r; 879 880 cache_write_lock(bc, b->block); 881 882 if (atomic_read(&b->hold_count) != 1) { 883 r = false; 884 } else { 885 r = true; 886 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 887 lru_remove(&bc->lru[b->list_mode], &b->lru); 888 } 889 890 cache_write_unlock(bc, b->block); 891 892 return r; 893 } 894 895 /*--------------*/ 896 897 typedef void (*b_release)(struct dm_buffer *); 898 899 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block) 900 { 901 struct rb_node *n = root->rb_node; 902 struct dm_buffer *b; 903 struct dm_buffer *best = NULL; 904 905 while (n) { 906 b = container_of(n, struct dm_buffer, node); 907 908 if (b->block == block) 909 return b; 910 911 if (block <= b->block) { 912 n = n->rb_left; 913 best = b; 914 } else { 915 n = n->rb_right; 916 } 917 } 918 919 return best; 920 } 921 922 static void __remove_range(struct dm_buffer_cache *bc, 923 struct rb_root *root, 924 sector_t begin, sector_t end, 925 b_predicate pred, b_release release) 926 { 927 struct dm_buffer *b; 928 929 while (true) { 930 cond_resched(); 931 932 b = __find_next(root, begin); 933 if (!b || (b->block >= end)) 934 break; 935 936 begin = b->block + 1; 937 938 if (atomic_read(&b->hold_count)) 939 continue; 940 941 if (pred(b, NULL) == ER_EVICT) { 942 rb_erase(&b->node, root); 943 lru_remove(&bc->lru[b->list_mode], &b->lru); 944 release(b); 945 } 946 } 947 } 948 949 static void cache_remove_range(struct dm_buffer_cache *bc, 950 sector_t begin, sector_t end, 951 b_predicate pred, b_release release) 952 { 953 unsigned int i; 954 955 BUG_ON(bc->no_sleep); 956 for (i = 0; i < bc->num_locks; i++) { 957 down_write(&bc->trees[i].u.lock); 958 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release); 959 up_write(&bc->trees[i].u.lock); 960 } 961 } 962 963 /*----------------------------------------------------------------*/ 964 965 /* 966 * Linking of buffers: 967 * All buffers are linked to buffer_cache with their node field. 968 * 969 * Clean buffers that are not being written (B_WRITING not set) 970 * are linked to lru[LIST_CLEAN] with their lru_list field. 971 * 972 * Dirty and clean buffers that are being written are linked to 973 * lru[LIST_DIRTY] with their lru_list field. When the write 974 * finishes, the buffer cannot be relinked immediately (because we 975 * are in an interrupt context and relinking requires process 976 * context), so some clean-not-writing buffers can be held on 977 * dirty_lru too. They are later added to lru in the process 978 * context. 979 */ 980 struct dm_bufio_client { 981 struct block_device *bdev; 982 unsigned int block_size; 983 s8 sectors_per_block_bits; 984 985 bool no_sleep; 986 struct mutex lock; 987 spinlock_t spinlock; 988 989 int async_write_error; 990 991 void (*alloc_callback)(struct dm_buffer *buf); 992 void (*write_callback)(struct dm_buffer *buf); 993 struct kmem_cache *slab_buffer; 994 struct kmem_cache *slab_cache; 995 struct dm_io_client *dm_io; 996 997 struct list_head reserved_buffers; 998 unsigned int need_reserved_buffers; 999 1000 unsigned int minimum_buffers; 1001 1002 sector_t start; 1003 1004 struct shrinker *shrinker; 1005 struct work_struct shrink_work; 1006 atomic_long_t need_shrink; 1007 1008 wait_queue_head_t free_buffer_wait; 1009 1010 struct list_head client_list; 1011 1012 /* 1013 * Used by global_cleanup to sort the clients list. 1014 */ 1015 unsigned long oldest_buffer; 1016 1017 struct dm_buffer_cache cache; /* must be last member */ 1018 }; 1019 1020 /*----------------------------------------------------------------*/ 1021 1022 #define dm_bufio_in_request() (!!current->bio_list) 1023 1024 static void dm_bufio_lock(struct dm_bufio_client *c) 1025 { 1026 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1027 spin_lock_bh(&c->spinlock); 1028 else 1029 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 1030 } 1031 1032 static void dm_bufio_unlock(struct dm_bufio_client *c) 1033 { 1034 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1035 spin_unlock_bh(&c->spinlock); 1036 else 1037 mutex_unlock(&c->lock); 1038 } 1039 1040 /*----------------------------------------------------------------*/ 1041 1042 /* 1043 * Default cache size: available memory divided by the ratio. 1044 */ 1045 static unsigned long dm_bufio_default_cache_size; 1046 1047 /* 1048 * Total cache size set by the user. 1049 */ 1050 static unsigned long dm_bufio_cache_size; 1051 1052 /* 1053 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 1054 * at any time. If it disagrees, the user has changed cache size. 1055 */ 1056 static unsigned long dm_bufio_cache_size_latch; 1057 1058 static DEFINE_SPINLOCK(global_spinlock); 1059 1060 /* 1061 * Buffers are freed after this timeout 1062 */ 1063 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 1064 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 1065 1066 static unsigned long dm_bufio_peak_allocated; 1067 static unsigned long dm_bufio_allocated_kmem_cache; 1068 static unsigned long dm_bufio_allocated_kmalloc; 1069 static unsigned long dm_bufio_allocated_get_free_pages; 1070 static unsigned long dm_bufio_allocated_vmalloc; 1071 static unsigned long dm_bufio_current_allocated; 1072 1073 /*----------------------------------------------------------------*/ 1074 1075 /* 1076 * The current number of clients. 1077 */ 1078 static int dm_bufio_client_count; 1079 1080 /* 1081 * The list of all clients. 1082 */ 1083 static LIST_HEAD(dm_bufio_all_clients); 1084 1085 /* 1086 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count 1087 */ 1088 static DEFINE_MUTEX(dm_bufio_clients_lock); 1089 1090 static struct workqueue_struct *dm_bufio_wq; 1091 static struct delayed_work dm_bufio_cleanup_old_work; 1092 static struct work_struct dm_bufio_replacement_work; 1093 1094 1095 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1096 static void buffer_record_stack(struct dm_buffer *b) 1097 { 1098 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); 1099 } 1100 #endif 1101 1102 /*----------------------------------------------------------------*/ 1103 1104 static void adjust_total_allocated(struct dm_buffer *b, bool unlink) 1105 { 1106 unsigned char data_mode; 1107 long diff; 1108 1109 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 1110 &dm_bufio_allocated_kmem_cache, 1111 &dm_bufio_allocated_kmalloc, 1112 &dm_bufio_allocated_get_free_pages, 1113 &dm_bufio_allocated_vmalloc, 1114 }; 1115 1116 data_mode = b->data_mode; 1117 diff = (long)b->c->block_size; 1118 if (unlink) 1119 diff = -diff; 1120 1121 spin_lock(&global_spinlock); 1122 1123 *class_ptr[data_mode] += diff; 1124 1125 dm_bufio_current_allocated += diff; 1126 1127 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 1128 dm_bufio_peak_allocated = dm_bufio_current_allocated; 1129 1130 if (!unlink) { 1131 if (dm_bufio_current_allocated > dm_bufio_cache_size) 1132 queue_work(dm_bufio_wq, &dm_bufio_replacement_work); 1133 } 1134 1135 spin_unlock(&global_spinlock); 1136 } 1137 1138 /* 1139 * Change the number of clients and recalculate per-client limit. 1140 */ 1141 static void __cache_size_refresh(void) 1142 { 1143 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock))) 1144 return; 1145 if (WARN_ON(dm_bufio_client_count < 0)) 1146 return; 1147 1148 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 1149 1150 /* 1151 * Use default if set to 0 and report the actual cache size used. 1152 */ 1153 if (!dm_bufio_cache_size_latch) { 1154 (void)cmpxchg(&dm_bufio_cache_size, 0, 1155 dm_bufio_default_cache_size); 1156 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 1157 } 1158 } 1159 1160 /* 1161 * Allocating buffer data. 1162 * 1163 * Small buffers are allocated with kmem_cache, to use space optimally. 1164 * 1165 * For large buffers, we choose between get_free_pages and vmalloc. 1166 * Each has advantages and disadvantages. 1167 * 1168 * __get_free_pages can randomly fail if the memory is fragmented. 1169 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 1170 * as low as 128M) so using it for caching is not appropriate. 1171 * 1172 * If the allocation may fail we use __get_free_pages. Memory fragmentation 1173 * won't have a fatal effect here, but it just causes flushes of some other 1174 * buffers and more I/O will be performed. Don't use __get_free_pages if it 1175 * always fails (i.e. order > MAX_PAGE_ORDER). 1176 * 1177 * If the allocation shouldn't fail we use __vmalloc. This is only for the 1178 * initial reserve allocation, so there's no risk of wasting all vmalloc 1179 * space. 1180 */ 1181 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 1182 unsigned char *data_mode) 1183 { 1184 if (unlikely(c->slab_cache != NULL)) { 1185 *data_mode = DATA_MODE_SLAB; 1186 return kmem_cache_alloc(c->slab_cache, gfp_mask); 1187 } 1188 1189 if (unlikely(c->block_size < PAGE_SIZE)) { 1190 *data_mode = DATA_MODE_KMALLOC; 1191 return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE); 1192 } 1193 1194 if (c->block_size <= KMALLOC_MAX_SIZE && 1195 gfp_mask & __GFP_NORETRY) { 1196 *data_mode = DATA_MODE_GET_FREE_PAGES; 1197 return (void *)__get_free_pages(gfp_mask, 1198 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1199 } 1200 1201 *data_mode = DATA_MODE_VMALLOC; 1202 1203 return __vmalloc(c->block_size, gfp_mask); 1204 } 1205 1206 /* 1207 * Free buffer's data. 1208 */ 1209 static void free_buffer_data(struct dm_bufio_client *c, 1210 void *data, unsigned char data_mode) 1211 { 1212 switch (data_mode) { 1213 case DATA_MODE_SLAB: 1214 kmem_cache_free(c->slab_cache, data); 1215 break; 1216 1217 case DATA_MODE_KMALLOC: 1218 kfree(data); 1219 break; 1220 1221 case DATA_MODE_GET_FREE_PAGES: 1222 free_pages((unsigned long)data, 1223 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1224 break; 1225 1226 case DATA_MODE_VMALLOC: 1227 vfree(data); 1228 break; 1229 1230 default: 1231 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 1232 data_mode); 1233 BUG(); 1234 } 1235 } 1236 1237 /* 1238 * Allocate buffer and its data. 1239 */ 1240 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 1241 { 1242 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 1243 1244 if (!b) 1245 return NULL; 1246 1247 b->c = c; 1248 1249 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 1250 if (!b->data) { 1251 kmem_cache_free(c->slab_buffer, b); 1252 return NULL; 1253 } 1254 adjust_total_allocated(b, false); 1255 1256 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1257 b->stack_len = 0; 1258 #endif 1259 return b; 1260 } 1261 1262 /* 1263 * Free buffer and its data. 1264 */ 1265 static void free_buffer(struct dm_buffer *b) 1266 { 1267 struct dm_bufio_client *c = b->c; 1268 1269 adjust_total_allocated(b, true); 1270 free_buffer_data(c, b->data, b->data_mode); 1271 kmem_cache_free(c->slab_buffer, b); 1272 } 1273 1274 /* 1275 *-------------------------------------------------------------------------- 1276 * Submit I/O on the buffer. 1277 * 1278 * Bio interface is faster but it has some problems: 1279 * the vector list is limited (increasing this limit increases 1280 * memory-consumption per buffer, so it is not viable); 1281 * 1282 * the memory must be direct-mapped, not vmalloced; 1283 * 1284 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 1285 * it is not vmalloced, try using the bio interface. 1286 * 1287 * If the buffer is big, if it is vmalloced or if the underlying device 1288 * rejects the bio because it is too large, use dm-io layer to do the I/O. 1289 * The dm-io layer splits the I/O into multiple requests, avoiding the above 1290 * shortcomings. 1291 *-------------------------------------------------------------------------- 1292 */ 1293 1294 /* 1295 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 1296 * that the request was handled directly with bio interface. 1297 */ 1298 static void dmio_complete(unsigned long error, void *context) 1299 { 1300 struct dm_buffer *b = context; 1301 1302 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 1303 } 1304 1305 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector, 1306 unsigned int n_sectors, unsigned int offset, 1307 unsigned short ioprio) 1308 { 1309 int r; 1310 struct dm_io_request io_req = { 1311 .bi_opf = op, 1312 .notify.fn = dmio_complete, 1313 .notify.context = b, 1314 .client = b->c->dm_io, 1315 }; 1316 struct dm_io_region region = { 1317 .bdev = b->c->bdev, 1318 .sector = sector, 1319 .count = n_sectors, 1320 }; 1321 1322 if (b->data_mode != DATA_MODE_VMALLOC) { 1323 io_req.mem.type = DM_IO_KMEM; 1324 io_req.mem.ptr.addr = (char *)b->data + offset; 1325 } else { 1326 io_req.mem.type = DM_IO_VMA; 1327 io_req.mem.ptr.vma = (char *)b->data + offset; 1328 } 1329 1330 r = dm_io(&io_req, 1, ®ion, NULL, ioprio); 1331 if (unlikely(r)) 1332 b->end_io(b, errno_to_blk_status(r)); 1333 } 1334 1335 static void bio_complete(struct bio *bio) 1336 { 1337 struct dm_buffer *b = bio->bi_private; 1338 blk_status_t status = bio->bi_status; 1339 1340 bio_uninit(bio); 1341 kfree(bio); 1342 b->end_io(b, status); 1343 } 1344 1345 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector, 1346 unsigned int n_sectors, unsigned int offset, 1347 unsigned short ioprio) 1348 { 1349 struct bio *bio; 1350 char *ptr; 1351 unsigned int len; 1352 1353 bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN); 1354 if (!bio) { 1355 use_dmio(b, op, sector, n_sectors, offset, ioprio); 1356 return; 1357 } 1358 bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op); 1359 bio->bi_iter.bi_sector = sector; 1360 bio->bi_end_io = bio_complete; 1361 bio->bi_private = b; 1362 bio->bi_ioprio = ioprio; 1363 1364 ptr = (char *)b->data + offset; 1365 len = n_sectors << SECTOR_SHIFT; 1366 1367 __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr)); 1368 1369 submit_bio(bio); 1370 } 1371 1372 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) 1373 { 1374 sector_t sector; 1375 1376 if (likely(c->sectors_per_block_bits >= 0)) 1377 sector = block << c->sectors_per_block_bits; 1378 else 1379 sector = block * (c->block_size >> SECTOR_SHIFT); 1380 sector += c->start; 1381 1382 return sector; 1383 } 1384 1385 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio, 1386 void (*end_io)(struct dm_buffer *, blk_status_t)) 1387 { 1388 unsigned int n_sectors; 1389 sector_t sector; 1390 unsigned int offset, end; 1391 1392 b->end_io = end_io; 1393 1394 sector = block_to_sector(b->c, b->block); 1395 1396 if (op != REQ_OP_WRITE) { 1397 n_sectors = b->c->block_size >> SECTOR_SHIFT; 1398 offset = 0; 1399 } else { 1400 if (b->c->write_callback) 1401 b->c->write_callback(b); 1402 offset = b->write_start; 1403 end = b->write_end; 1404 offset &= -DM_BUFIO_WRITE_ALIGN; 1405 end += DM_BUFIO_WRITE_ALIGN - 1; 1406 end &= -DM_BUFIO_WRITE_ALIGN; 1407 if (unlikely(end > b->c->block_size)) 1408 end = b->c->block_size; 1409 1410 sector += offset >> SECTOR_SHIFT; 1411 n_sectors = (end - offset) >> SECTOR_SHIFT; 1412 } 1413 1414 if (b->data_mode != DATA_MODE_VMALLOC) 1415 use_bio(b, op, sector, n_sectors, offset, ioprio); 1416 else 1417 use_dmio(b, op, sector, n_sectors, offset, ioprio); 1418 } 1419 1420 /* 1421 *-------------------------------------------------------------- 1422 * Writing dirty buffers 1423 *-------------------------------------------------------------- 1424 */ 1425 1426 /* 1427 * The endio routine for write. 1428 * 1429 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 1430 * it. 1431 */ 1432 static void write_endio(struct dm_buffer *b, blk_status_t status) 1433 { 1434 b->write_error = status; 1435 if (unlikely(status)) { 1436 struct dm_bufio_client *c = b->c; 1437 1438 (void)cmpxchg(&c->async_write_error, 0, 1439 blk_status_to_errno(status)); 1440 } 1441 1442 BUG_ON(!test_bit(B_WRITING, &b->state)); 1443 1444 smp_mb__before_atomic(); 1445 clear_bit(B_WRITING, &b->state); 1446 smp_mb__after_atomic(); 1447 1448 wake_up_bit(&b->state, B_WRITING); 1449 } 1450 1451 /* 1452 * Initiate a write on a dirty buffer, but don't wait for it. 1453 * 1454 * - If the buffer is not dirty, exit. 1455 * - If there some previous write going on, wait for it to finish (we can't 1456 * have two writes on the same buffer simultaneously). 1457 * - Submit our write and don't wait on it. We set B_WRITING indicating 1458 * that there is a write in progress. 1459 */ 1460 static void __write_dirty_buffer(struct dm_buffer *b, 1461 struct list_head *write_list) 1462 { 1463 if (!test_bit(B_DIRTY, &b->state)) 1464 return; 1465 1466 clear_bit(B_DIRTY, &b->state); 1467 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1468 1469 b->write_start = b->dirty_start; 1470 b->write_end = b->dirty_end; 1471 1472 if (!write_list) 1473 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio); 1474 else 1475 list_add_tail(&b->write_list, write_list); 1476 } 1477 1478 static void __flush_write_list(struct list_head *write_list) 1479 { 1480 struct blk_plug plug; 1481 1482 blk_start_plug(&plug); 1483 while (!list_empty(write_list)) { 1484 struct dm_buffer *b = 1485 list_entry(write_list->next, struct dm_buffer, write_list); 1486 list_del(&b->write_list); 1487 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio); 1488 cond_resched(); 1489 } 1490 blk_finish_plug(&plug); 1491 } 1492 1493 /* 1494 * Wait until any activity on the buffer finishes. Possibly write the 1495 * buffer if it is dirty. When this function finishes, there is no I/O 1496 * running on the buffer and the buffer is not dirty. 1497 */ 1498 static void __make_buffer_clean(struct dm_buffer *b) 1499 { 1500 BUG_ON(atomic_read(&b->hold_count)); 1501 1502 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */ 1503 if (!smp_load_acquire(&b->state)) /* fast case */ 1504 return; 1505 1506 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1507 __write_dirty_buffer(b, NULL); 1508 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1509 } 1510 1511 static enum evict_result is_clean(struct dm_buffer *b, void *context) 1512 { 1513 struct dm_bufio_client *c = context; 1514 1515 /* These should never happen */ 1516 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state))) 1517 return ER_DONT_EVICT; 1518 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state))) 1519 return ER_DONT_EVICT; 1520 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN)) 1521 return ER_DONT_EVICT; 1522 1523 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep && 1524 unlikely(test_bit(B_READING, &b->state))) 1525 return ER_DONT_EVICT; 1526 1527 return ER_EVICT; 1528 } 1529 1530 static enum evict_result is_dirty(struct dm_buffer *b, void *context) 1531 { 1532 /* These should never happen */ 1533 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1534 return ER_DONT_EVICT; 1535 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY)) 1536 return ER_DONT_EVICT; 1537 1538 return ER_EVICT; 1539 } 1540 1541 /* 1542 * Find some buffer that is not held by anybody, clean it, unlink it and 1543 * return it. 1544 */ 1545 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 1546 { 1547 struct dm_buffer *b; 1548 1549 b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c); 1550 if (b) { 1551 /* this also waits for pending reads */ 1552 __make_buffer_clean(b); 1553 return b; 1554 } 1555 1556 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1557 return NULL; 1558 1559 b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL); 1560 if (b) { 1561 __make_buffer_clean(b); 1562 return b; 1563 } 1564 1565 return NULL; 1566 } 1567 1568 /* 1569 * Wait until some other threads free some buffer or release hold count on 1570 * some buffer. 1571 * 1572 * This function is entered with c->lock held, drops it and regains it 1573 * before exiting. 1574 */ 1575 static void __wait_for_free_buffer(struct dm_bufio_client *c) 1576 { 1577 DECLARE_WAITQUEUE(wait, current); 1578 1579 add_wait_queue(&c->free_buffer_wait, &wait); 1580 set_current_state(TASK_UNINTERRUPTIBLE); 1581 dm_bufio_unlock(c); 1582 1583 /* 1584 * It's possible to miss a wake up event since we don't always 1585 * hold c->lock when wake_up is called. So we have a timeout here, 1586 * just in case. 1587 */ 1588 io_schedule_timeout(5 * HZ); 1589 1590 remove_wait_queue(&c->free_buffer_wait, &wait); 1591 1592 dm_bufio_lock(c); 1593 } 1594 1595 enum new_flag { 1596 NF_FRESH = 0, 1597 NF_READ = 1, 1598 NF_GET = 2, 1599 NF_PREFETCH = 3 1600 }; 1601 1602 /* 1603 * Allocate a new buffer. If the allocation is not possible, wait until 1604 * some other thread frees a buffer. 1605 * 1606 * May drop the lock and regain it. 1607 */ 1608 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 1609 { 1610 struct dm_buffer *b; 1611 bool tried_noio_alloc = false; 1612 1613 /* 1614 * dm-bufio is resistant to allocation failures (it just keeps 1615 * one buffer reserved in cases all the allocations fail). 1616 * So set flags to not try too hard: 1617 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 1618 * mutex and wait ourselves. 1619 * __GFP_NORETRY: don't retry and rather return failure 1620 * __GFP_NOMEMALLOC: don't use emergency reserves 1621 * __GFP_NOWARN: don't print a warning in case of failure 1622 * 1623 * For debugging, if we set the cache size to 1, no new buffers will 1624 * be allocated. 1625 */ 1626 while (1) { 1627 if (dm_bufio_cache_size_latch != 1) { 1628 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1629 if (b) 1630 return b; 1631 } 1632 1633 if (nf == NF_PREFETCH) 1634 return NULL; 1635 1636 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 1637 dm_bufio_unlock(c); 1638 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1639 dm_bufio_lock(c); 1640 if (b) 1641 return b; 1642 tried_noio_alloc = true; 1643 } 1644 1645 if (!list_empty(&c->reserved_buffers)) { 1646 b = list_to_buffer(c->reserved_buffers.next); 1647 list_del(&b->lru.list); 1648 c->need_reserved_buffers++; 1649 1650 return b; 1651 } 1652 1653 b = __get_unclaimed_buffer(c); 1654 if (b) 1655 return b; 1656 1657 __wait_for_free_buffer(c); 1658 } 1659 } 1660 1661 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 1662 { 1663 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 1664 1665 if (!b) 1666 return NULL; 1667 1668 if (c->alloc_callback) 1669 c->alloc_callback(b); 1670 1671 return b; 1672 } 1673 1674 /* 1675 * Free a buffer and wake other threads waiting for free buffers. 1676 */ 1677 static void __free_buffer_wake(struct dm_buffer *b) 1678 { 1679 struct dm_bufio_client *c = b->c; 1680 1681 b->block = -1; 1682 if (!c->need_reserved_buffers) 1683 free_buffer(b); 1684 else { 1685 list_add(&b->lru.list, &c->reserved_buffers); 1686 c->need_reserved_buffers--; 1687 } 1688 1689 /* 1690 * We hold the bufio lock here, so no one can add entries to the 1691 * wait queue anyway. 1692 */ 1693 if (unlikely(waitqueue_active(&c->free_buffer_wait))) 1694 wake_up(&c->free_buffer_wait); 1695 } 1696 1697 static enum evict_result cleaned(struct dm_buffer *b, void *context) 1698 { 1699 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1700 return ER_DONT_EVICT; /* should never happen */ 1701 1702 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state)) 1703 return ER_DONT_EVICT; 1704 else 1705 return ER_EVICT; 1706 } 1707 1708 static void __move_clean_buffers(struct dm_bufio_client *c) 1709 { 1710 cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL); 1711 } 1712 1713 struct write_context { 1714 int no_wait; 1715 struct list_head *write_list; 1716 }; 1717 1718 static enum it_action write_one(struct dm_buffer *b, void *context) 1719 { 1720 struct write_context *wc = context; 1721 1722 if (wc->no_wait && test_bit(B_WRITING, &b->state)) 1723 return IT_COMPLETE; 1724 1725 __write_dirty_buffer(b, wc->write_list); 1726 return IT_NEXT; 1727 } 1728 1729 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 1730 struct list_head *write_list) 1731 { 1732 struct write_context wc = {.no_wait = no_wait, .write_list = write_list}; 1733 1734 __move_clean_buffers(c); 1735 cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc); 1736 } 1737 1738 /* 1739 * Check if we're over watermark. 1740 * If we are over threshold_buffers, start freeing buffers. 1741 * If we're over "limit_buffers", block until we get under the limit. 1742 */ 1743 static void __check_watermark(struct dm_bufio_client *c, 1744 struct list_head *write_list) 1745 { 1746 if (cache_count(&c->cache, LIST_DIRTY) > 1747 cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO) 1748 __write_dirty_buffers_async(c, 1, write_list); 1749 } 1750 1751 /* 1752 *-------------------------------------------------------------- 1753 * Getting a buffer 1754 *-------------------------------------------------------------- 1755 */ 1756 1757 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b) 1758 { 1759 /* 1760 * Relying on waitqueue_active() is racey, but we sleep 1761 * with schedule_timeout anyway. 1762 */ 1763 if (cache_put(&c->cache, b) && 1764 unlikely(waitqueue_active(&c->free_buffer_wait))) 1765 wake_up(&c->free_buffer_wait); 1766 } 1767 1768 /* 1769 * This assumes you have already checked the cache to see if the buffer 1770 * is already present (it will recheck after dropping the lock for allocation). 1771 */ 1772 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 1773 enum new_flag nf, int *need_submit, 1774 struct list_head *write_list) 1775 { 1776 struct dm_buffer *b, *new_b = NULL; 1777 1778 *need_submit = 0; 1779 1780 /* This can't be called with NF_GET */ 1781 if (WARN_ON_ONCE(nf == NF_GET)) 1782 return NULL; 1783 1784 new_b = __alloc_buffer_wait(c, nf); 1785 if (!new_b) 1786 return NULL; 1787 1788 /* 1789 * We've had a period where the mutex was unlocked, so need to 1790 * recheck the buffer tree. 1791 */ 1792 b = cache_get(&c->cache, block); 1793 if (b) { 1794 __free_buffer_wake(new_b); 1795 goto found_buffer; 1796 } 1797 1798 __check_watermark(c, write_list); 1799 1800 b = new_b; 1801 atomic_set(&b->hold_count, 1); 1802 WRITE_ONCE(b->last_accessed, jiffies); 1803 b->block = block; 1804 b->read_error = 0; 1805 b->write_error = 0; 1806 b->list_mode = LIST_CLEAN; 1807 1808 if (nf == NF_FRESH) 1809 b->state = 0; 1810 else { 1811 b->state = 1 << B_READING; 1812 *need_submit = 1; 1813 } 1814 1815 /* 1816 * We mustn't insert into the cache until the B_READING state 1817 * is set. Otherwise another thread could get it and use 1818 * it before it had been read. 1819 */ 1820 cache_insert(&c->cache, b); 1821 1822 return b; 1823 1824 found_buffer: 1825 if (nf == NF_PREFETCH) { 1826 cache_put_and_wake(c, b); 1827 return NULL; 1828 } 1829 1830 /* 1831 * Note: it is essential that we don't wait for the buffer to be 1832 * read if dm_bufio_get function is used. Both dm_bufio_get and 1833 * dm_bufio_prefetch can be used in the driver request routine. 1834 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1835 * the same buffer, it would deadlock if we waited. 1836 */ 1837 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1838 cache_put_and_wake(c, b); 1839 return NULL; 1840 } 1841 1842 return b; 1843 } 1844 1845 /* 1846 * The endio routine for reading: set the error, clear the bit and wake up 1847 * anyone waiting on the buffer. 1848 */ 1849 static void read_endio(struct dm_buffer *b, blk_status_t status) 1850 { 1851 b->read_error = status; 1852 1853 BUG_ON(!test_bit(B_READING, &b->state)); 1854 1855 smp_mb__before_atomic(); 1856 clear_bit(B_READING, &b->state); 1857 smp_mb__after_atomic(); 1858 1859 wake_up_bit(&b->state, B_READING); 1860 } 1861 1862 /* 1863 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1864 * functions is similar except that dm_bufio_new doesn't read the 1865 * buffer from the disk (assuming that the caller overwrites all the data 1866 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1867 */ 1868 static void *new_read(struct dm_bufio_client *c, sector_t block, 1869 enum new_flag nf, struct dm_buffer **bp, 1870 unsigned short ioprio) 1871 { 1872 int need_submit = 0; 1873 struct dm_buffer *b; 1874 1875 LIST_HEAD(write_list); 1876 1877 *bp = NULL; 1878 1879 /* 1880 * Fast path, hopefully the block is already in the cache. No need 1881 * to get the client lock for this. 1882 */ 1883 b = cache_get(&c->cache, block); 1884 if (b) { 1885 if (nf == NF_PREFETCH) { 1886 cache_put_and_wake(c, b); 1887 return NULL; 1888 } 1889 1890 /* 1891 * Note: it is essential that we don't wait for the buffer to be 1892 * read if dm_bufio_get function is used. Both dm_bufio_get and 1893 * dm_bufio_prefetch can be used in the driver request routine. 1894 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1895 * the same buffer, it would deadlock if we waited. 1896 */ 1897 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1898 cache_put_and_wake(c, b); 1899 return NULL; 1900 } 1901 } 1902 1903 if (!b) { 1904 if (nf == NF_GET) 1905 return NULL; 1906 1907 dm_bufio_lock(c); 1908 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1909 dm_bufio_unlock(c); 1910 } 1911 1912 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1913 if (b && (atomic_read(&b->hold_count) == 1)) 1914 buffer_record_stack(b); 1915 #endif 1916 1917 __flush_write_list(&write_list); 1918 1919 if (!b) 1920 return NULL; 1921 1922 if (need_submit) 1923 submit_io(b, REQ_OP_READ, ioprio, read_endio); 1924 1925 if (nf != NF_GET) /* we already tested this condition above */ 1926 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1927 1928 if (b->read_error) { 1929 int error = blk_status_to_errno(b->read_error); 1930 1931 dm_bufio_release(b); 1932 1933 return ERR_PTR(error); 1934 } 1935 1936 *bp = b; 1937 1938 return b->data; 1939 } 1940 1941 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1942 struct dm_buffer **bp) 1943 { 1944 return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT); 1945 } 1946 EXPORT_SYMBOL_GPL(dm_bufio_get); 1947 1948 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1949 struct dm_buffer **bp, unsigned short ioprio) 1950 { 1951 if (WARN_ON_ONCE(dm_bufio_in_request())) 1952 return ERR_PTR(-EINVAL); 1953 1954 return new_read(c, block, NF_READ, bp, ioprio); 1955 } 1956 1957 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1958 struct dm_buffer **bp) 1959 { 1960 return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT); 1961 } 1962 EXPORT_SYMBOL_GPL(dm_bufio_read); 1963 1964 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block, 1965 struct dm_buffer **bp, unsigned short ioprio) 1966 { 1967 return __dm_bufio_read(c, block, bp, ioprio); 1968 } 1969 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio); 1970 1971 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1972 struct dm_buffer **bp) 1973 { 1974 if (WARN_ON_ONCE(dm_bufio_in_request())) 1975 return ERR_PTR(-EINVAL); 1976 1977 return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT); 1978 } 1979 EXPORT_SYMBOL_GPL(dm_bufio_new); 1980 1981 static void __dm_bufio_prefetch(struct dm_bufio_client *c, 1982 sector_t block, unsigned int n_blocks, 1983 unsigned short ioprio) 1984 { 1985 struct blk_plug plug; 1986 1987 LIST_HEAD(write_list); 1988 1989 if (WARN_ON_ONCE(dm_bufio_in_request())) 1990 return; /* should never happen */ 1991 1992 blk_start_plug(&plug); 1993 1994 for (; n_blocks--; block++) { 1995 int need_submit; 1996 struct dm_buffer *b; 1997 1998 b = cache_get(&c->cache, block); 1999 if (b) { 2000 /* already in cache */ 2001 cache_put_and_wake(c, b); 2002 continue; 2003 } 2004 2005 dm_bufio_lock(c); 2006 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 2007 &write_list); 2008 if (unlikely(!list_empty(&write_list))) { 2009 dm_bufio_unlock(c); 2010 blk_finish_plug(&plug); 2011 __flush_write_list(&write_list); 2012 blk_start_plug(&plug); 2013 dm_bufio_lock(c); 2014 } 2015 if (unlikely(b != NULL)) { 2016 dm_bufio_unlock(c); 2017 2018 if (need_submit) 2019 submit_io(b, REQ_OP_READ, ioprio, read_endio); 2020 dm_bufio_release(b); 2021 2022 cond_resched(); 2023 2024 if (!n_blocks) 2025 goto flush_plug; 2026 dm_bufio_lock(c); 2027 } 2028 dm_bufio_unlock(c); 2029 } 2030 2031 flush_plug: 2032 blk_finish_plug(&plug); 2033 } 2034 2035 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks) 2036 { 2037 return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT); 2038 } 2039 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 2040 2041 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block, 2042 unsigned int n_blocks, unsigned short ioprio) 2043 { 2044 return __dm_bufio_prefetch(c, block, n_blocks, ioprio); 2045 } 2046 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio); 2047 2048 void dm_bufio_release(struct dm_buffer *b) 2049 { 2050 struct dm_bufio_client *c = b->c; 2051 2052 /* 2053 * If there were errors on the buffer, and the buffer is not 2054 * to be written, free the buffer. There is no point in caching 2055 * invalid buffer. 2056 */ 2057 if ((b->read_error || b->write_error) && 2058 !test_bit_acquire(B_READING, &b->state) && 2059 !test_bit(B_WRITING, &b->state) && 2060 !test_bit(B_DIRTY, &b->state)) { 2061 dm_bufio_lock(c); 2062 2063 /* cache remove can fail if there are other holders */ 2064 if (cache_remove(&c->cache, b)) { 2065 __free_buffer_wake(b); 2066 dm_bufio_unlock(c); 2067 return; 2068 } 2069 2070 dm_bufio_unlock(c); 2071 } 2072 2073 cache_put_and_wake(c, b); 2074 } 2075 EXPORT_SYMBOL_GPL(dm_bufio_release); 2076 2077 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 2078 unsigned int start, unsigned int end) 2079 { 2080 struct dm_bufio_client *c = b->c; 2081 2082 BUG_ON(start >= end); 2083 BUG_ON(end > b->c->block_size); 2084 2085 dm_bufio_lock(c); 2086 2087 BUG_ON(test_bit(B_READING, &b->state)); 2088 2089 if (!test_and_set_bit(B_DIRTY, &b->state)) { 2090 b->dirty_start = start; 2091 b->dirty_end = end; 2092 cache_mark(&c->cache, b, LIST_DIRTY); 2093 } else { 2094 if (start < b->dirty_start) 2095 b->dirty_start = start; 2096 if (end > b->dirty_end) 2097 b->dirty_end = end; 2098 } 2099 2100 dm_bufio_unlock(c); 2101 } 2102 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 2103 2104 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 2105 { 2106 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 2107 } 2108 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 2109 2110 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 2111 { 2112 LIST_HEAD(write_list); 2113 2114 if (WARN_ON_ONCE(dm_bufio_in_request())) 2115 return; /* should never happen */ 2116 2117 dm_bufio_lock(c); 2118 __write_dirty_buffers_async(c, 0, &write_list); 2119 dm_bufio_unlock(c); 2120 __flush_write_list(&write_list); 2121 } 2122 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 2123 2124 /* 2125 * For performance, it is essential that the buffers are written asynchronously 2126 * and simultaneously (so that the block layer can merge the writes) and then 2127 * waited upon. 2128 * 2129 * Finally, we flush hardware disk cache. 2130 */ 2131 static bool is_writing(struct lru_entry *e, void *context) 2132 { 2133 struct dm_buffer *b = le_to_buffer(e); 2134 2135 return test_bit(B_WRITING, &b->state); 2136 } 2137 2138 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 2139 { 2140 int a, f; 2141 unsigned long nr_buffers; 2142 struct lru_entry *e; 2143 struct lru_iter it; 2144 2145 LIST_HEAD(write_list); 2146 2147 dm_bufio_lock(c); 2148 __write_dirty_buffers_async(c, 0, &write_list); 2149 dm_bufio_unlock(c); 2150 __flush_write_list(&write_list); 2151 dm_bufio_lock(c); 2152 2153 nr_buffers = cache_count(&c->cache, LIST_DIRTY); 2154 lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it); 2155 while ((e = lru_iter_next(&it, is_writing, c))) { 2156 struct dm_buffer *b = le_to_buffer(e); 2157 __cache_inc_buffer(b); 2158 2159 BUG_ON(test_bit(B_READING, &b->state)); 2160 2161 if (nr_buffers) { 2162 nr_buffers--; 2163 dm_bufio_unlock(c); 2164 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2165 dm_bufio_lock(c); 2166 } else { 2167 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2168 } 2169 2170 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state)) 2171 cache_mark(&c->cache, b, LIST_CLEAN); 2172 2173 cache_put_and_wake(c, b); 2174 2175 cond_resched(); 2176 } 2177 lru_iter_end(&it); 2178 2179 wake_up(&c->free_buffer_wait); 2180 dm_bufio_unlock(c); 2181 2182 a = xchg(&c->async_write_error, 0); 2183 f = dm_bufio_issue_flush(c); 2184 if (a) 2185 return a; 2186 2187 return f; 2188 } 2189 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 2190 2191 /* 2192 * Use dm-io to send an empty barrier to flush the device. 2193 */ 2194 int dm_bufio_issue_flush(struct dm_bufio_client *c) 2195 { 2196 struct dm_io_request io_req = { 2197 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 2198 .mem.type = DM_IO_KMEM, 2199 .mem.ptr.addr = NULL, 2200 .client = c->dm_io, 2201 }; 2202 struct dm_io_region io_reg = { 2203 .bdev = c->bdev, 2204 .sector = 0, 2205 .count = 0, 2206 }; 2207 2208 if (WARN_ON_ONCE(dm_bufio_in_request())) 2209 return -EINVAL; 2210 2211 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT); 2212 } 2213 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 2214 2215 /* 2216 * Use dm-io to send a discard request to flush the device. 2217 */ 2218 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) 2219 { 2220 struct dm_io_request io_req = { 2221 .bi_opf = REQ_OP_DISCARD | REQ_SYNC, 2222 .mem.type = DM_IO_KMEM, 2223 .mem.ptr.addr = NULL, 2224 .client = c->dm_io, 2225 }; 2226 struct dm_io_region io_reg = { 2227 .bdev = c->bdev, 2228 .sector = block_to_sector(c, block), 2229 .count = block_to_sector(c, count), 2230 }; 2231 2232 if (WARN_ON_ONCE(dm_bufio_in_request())) 2233 return -EINVAL; /* discards are optional */ 2234 2235 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT); 2236 } 2237 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); 2238 2239 static void forget_buffer(struct dm_bufio_client *c, sector_t block) 2240 { 2241 struct dm_buffer *b; 2242 2243 b = cache_get(&c->cache, block); 2244 if (b) { 2245 if (likely(!smp_load_acquire(&b->state))) { 2246 if (cache_remove(&c->cache, b)) 2247 __free_buffer_wake(b); 2248 else 2249 cache_put_and_wake(c, b); 2250 } else { 2251 cache_put_and_wake(c, b); 2252 } 2253 } 2254 } 2255 2256 /* 2257 * Free the given buffer. 2258 * 2259 * This is just a hint, if the buffer is in use or dirty, this function 2260 * does nothing. 2261 */ 2262 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 2263 { 2264 dm_bufio_lock(c); 2265 forget_buffer(c, block); 2266 dm_bufio_unlock(c); 2267 } 2268 EXPORT_SYMBOL_GPL(dm_bufio_forget); 2269 2270 static enum evict_result idle(struct dm_buffer *b, void *context) 2271 { 2272 return b->state ? ER_DONT_EVICT : ER_EVICT; 2273 } 2274 2275 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks) 2276 { 2277 dm_bufio_lock(c); 2278 cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake); 2279 dm_bufio_unlock(c); 2280 } 2281 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers); 2282 2283 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n) 2284 { 2285 c->minimum_buffers = n; 2286 } 2287 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 2288 2289 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c) 2290 { 2291 return c->block_size; 2292 } 2293 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 2294 2295 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 2296 { 2297 sector_t s = bdev_nr_sectors(c->bdev); 2298 2299 if (s >= c->start) 2300 s -= c->start; 2301 else 2302 s = 0; 2303 if (likely(c->sectors_per_block_bits >= 0)) 2304 s >>= c->sectors_per_block_bits; 2305 else 2306 sector_div(s, c->block_size >> SECTOR_SHIFT); 2307 return s; 2308 } 2309 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 2310 2311 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c) 2312 { 2313 return c->dm_io; 2314 } 2315 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client); 2316 2317 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 2318 { 2319 return b->block; 2320 } 2321 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 2322 2323 void *dm_bufio_get_block_data(struct dm_buffer *b) 2324 { 2325 return b->data; 2326 } 2327 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 2328 2329 void *dm_bufio_get_aux_data(struct dm_buffer *b) 2330 { 2331 return b + 1; 2332 } 2333 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 2334 2335 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 2336 { 2337 return b->c; 2338 } 2339 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 2340 2341 static enum it_action warn_leak(struct dm_buffer *b, void *context) 2342 { 2343 bool *warned = context; 2344 2345 WARN_ON(!(*warned)); 2346 *warned = true; 2347 DMERR("leaked buffer %llx, hold count %u, list %d", 2348 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode); 2349 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2350 stack_trace_print(b->stack_entries, b->stack_len, 1); 2351 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */ 2352 atomic_set(&b->hold_count, 0); 2353 #endif 2354 return IT_NEXT; 2355 } 2356 2357 static void drop_buffers(struct dm_bufio_client *c) 2358 { 2359 int i; 2360 struct dm_buffer *b; 2361 2362 if (WARN_ON(dm_bufio_in_request())) 2363 return; /* should never happen */ 2364 2365 /* 2366 * An optimization so that the buffers are not written one-by-one. 2367 */ 2368 dm_bufio_write_dirty_buffers_async(c); 2369 2370 dm_bufio_lock(c); 2371 2372 while ((b = __get_unclaimed_buffer(c))) 2373 __free_buffer_wake(b); 2374 2375 for (i = 0; i < LIST_SIZE; i++) { 2376 bool warned = false; 2377 2378 cache_iterate(&c->cache, i, warn_leak, &warned); 2379 } 2380 2381 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2382 while ((b = __get_unclaimed_buffer(c))) 2383 __free_buffer_wake(b); 2384 #endif 2385 2386 for (i = 0; i < LIST_SIZE; i++) 2387 WARN_ON(cache_count(&c->cache, i)); 2388 2389 dm_bufio_unlock(c); 2390 } 2391 2392 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 2393 { 2394 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 2395 2396 if (likely(c->sectors_per_block_bits >= 0)) 2397 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 2398 else 2399 retain_bytes /= c->block_size; 2400 2401 return retain_bytes; 2402 } 2403 2404 static void __scan(struct dm_bufio_client *c) 2405 { 2406 int l; 2407 struct dm_buffer *b; 2408 unsigned long freed = 0; 2409 unsigned long retain_target = get_retain_buffers(c); 2410 unsigned long count = cache_total(&c->cache); 2411 2412 for (l = 0; l < LIST_SIZE; l++) { 2413 while (true) { 2414 if (count - freed <= retain_target) 2415 atomic_long_set(&c->need_shrink, 0); 2416 if (!atomic_long_read(&c->need_shrink)) 2417 break; 2418 2419 b = cache_evict(&c->cache, l, 2420 l == LIST_CLEAN ? is_clean : is_dirty, c); 2421 if (!b) 2422 break; 2423 2424 __make_buffer_clean(b); 2425 __free_buffer_wake(b); 2426 2427 atomic_long_dec(&c->need_shrink); 2428 freed++; 2429 2430 if (unlikely(freed % SCAN_RESCHED_CYCLE == 0)) { 2431 dm_bufio_unlock(c); 2432 cond_resched(); 2433 dm_bufio_lock(c); 2434 } 2435 } 2436 } 2437 } 2438 2439 static void shrink_work(struct work_struct *w) 2440 { 2441 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work); 2442 2443 dm_bufio_lock(c); 2444 __scan(c); 2445 dm_bufio_unlock(c); 2446 } 2447 2448 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 2449 { 2450 struct dm_bufio_client *c; 2451 2452 c = shrink->private_data; 2453 atomic_long_add(sc->nr_to_scan, &c->need_shrink); 2454 queue_work(dm_bufio_wq, &c->shrink_work); 2455 2456 return sc->nr_to_scan; 2457 } 2458 2459 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 2460 { 2461 struct dm_bufio_client *c = shrink->private_data; 2462 unsigned long count = cache_total(&c->cache); 2463 unsigned long retain_target = get_retain_buffers(c); 2464 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink); 2465 2466 if (unlikely(count < retain_target)) 2467 count = 0; 2468 else 2469 count -= retain_target; 2470 2471 if (unlikely(count < queued_for_cleanup)) 2472 count = 0; 2473 else 2474 count -= queued_for_cleanup; 2475 2476 return count; 2477 } 2478 2479 /* 2480 * Create the buffering interface 2481 */ 2482 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size, 2483 unsigned int reserved_buffers, unsigned int aux_size, 2484 void (*alloc_callback)(struct dm_buffer *), 2485 void (*write_callback)(struct dm_buffer *), 2486 unsigned int flags) 2487 { 2488 int r; 2489 unsigned int num_locks; 2490 struct dm_bufio_client *c; 2491 char slab_name[64]; 2492 static atomic_t seqno = ATOMIC_INIT(0); 2493 2494 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 2495 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 2496 r = -EINVAL; 2497 goto bad_client; 2498 } 2499 2500 num_locks = dm_num_hash_locks(); 2501 c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL); 2502 if (!c) { 2503 r = -ENOMEM; 2504 goto bad_client; 2505 } 2506 cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0); 2507 2508 c->bdev = bdev; 2509 c->block_size = block_size; 2510 if (is_power_of_2(block_size)) 2511 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 2512 else 2513 c->sectors_per_block_bits = -1; 2514 2515 c->alloc_callback = alloc_callback; 2516 c->write_callback = write_callback; 2517 2518 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) { 2519 c->no_sleep = true; 2520 static_branch_inc(&no_sleep_enabled); 2521 } 2522 2523 mutex_init(&c->lock); 2524 spin_lock_init(&c->spinlock); 2525 INIT_LIST_HEAD(&c->reserved_buffers); 2526 c->need_reserved_buffers = reserved_buffers; 2527 2528 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 2529 2530 init_waitqueue_head(&c->free_buffer_wait); 2531 c->async_write_error = 0; 2532 2533 c->dm_io = dm_io_client_create(); 2534 if (IS_ERR(c->dm_io)) { 2535 r = PTR_ERR(c->dm_io); 2536 goto bad_dm_io; 2537 } 2538 2539 if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) { 2540 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE); 2541 2542 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u", 2543 block_size, atomic_inc_return(&seqno)); 2544 c->slab_cache = kmem_cache_create(slab_name, block_size, align, 2545 SLAB_RECLAIM_ACCOUNT, NULL); 2546 if (!c->slab_cache) { 2547 r = -ENOMEM; 2548 goto bad; 2549 } 2550 } 2551 if (aux_size) 2552 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u", 2553 aux_size, atomic_inc_return(&seqno)); 2554 else 2555 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", 2556 atomic_inc_return(&seqno)); 2557 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 2558 0, SLAB_RECLAIM_ACCOUNT, NULL); 2559 if (!c->slab_buffer) { 2560 r = -ENOMEM; 2561 goto bad; 2562 } 2563 2564 while (c->need_reserved_buffers) { 2565 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 2566 2567 if (!b) { 2568 r = -ENOMEM; 2569 goto bad; 2570 } 2571 __free_buffer_wake(b); 2572 } 2573 2574 INIT_WORK(&c->shrink_work, shrink_work); 2575 atomic_long_set(&c->need_shrink, 0); 2576 2577 c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)", 2578 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2579 if (!c->shrinker) { 2580 r = -ENOMEM; 2581 goto bad; 2582 } 2583 2584 c->shrinker->count_objects = dm_bufio_shrink_count; 2585 c->shrinker->scan_objects = dm_bufio_shrink_scan; 2586 c->shrinker->seeks = 1; 2587 c->shrinker->batch = 0; 2588 c->shrinker->private_data = c; 2589 2590 shrinker_register(c->shrinker); 2591 2592 mutex_lock(&dm_bufio_clients_lock); 2593 dm_bufio_client_count++; 2594 list_add(&c->client_list, &dm_bufio_all_clients); 2595 __cache_size_refresh(); 2596 mutex_unlock(&dm_bufio_clients_lock); 2597 2598 return c; 2599 2600 bad: 2601 while (!list_empty(&c->reserved_buffers)) { 2602 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2603 2604 list_del(&b->lru.list); 2605 free_buffer(b); 2606 } 2607 kmem_cache_destroy(c->slab_cache); 2608 kmem_cache_destroy(c->slab_buffer); 2609 dm_io_client_destroy(c->dm_io); 2610 bad_dm_io: 2611 mutex_destroy(&c->lock); 2612 if (c->no_sleep) 2613 static_branch_dec(&no_sleep_enabled); 2614 kfree(c); 2615 bad_client: 2616 return ERR_PTR(r); 2617 } 2618 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 2619 2620 /* 2621 * Free the buffering interface. 2622 * It is required that there are no references on any buffers. 2623 */ 2624 void dm_bufio_client_destroy(struct dm_bufio_client *c) 2625 { 2626 unsigned int i; 2627 2628 drop_buffers(c); 2629 2630 shrinker_free(c->shrinker); 2631 flush_work(&c->shrink_work); 2632 2633 mutex_lock(&dm_bufio_clients_lock); 2634 2635 list_del(&c->client_list); 2636 dm_bufio_client_count--; 2637 __cache_size_refresh(); 2638 2639 mutex_unlock(&dm_bufio_clients_lock); 2640 2641 WARN_ON(c->need_reserved_buffers); 2642 2643 while (!list_empty(&c->reserved_buffers)) { 2644 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2645 2646 list_del(&b->lru.list); 2647 free_buffer(b); 2648 } 2649 2650 for (i = 0; i < LIST_SIZE; i++) 2651 if (cache_count(&c->cache, i)) 2652 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i)); 2653 2654 for (i = 0; i < LIST_SIZE; i++) 2655 WARN_ON(cache_count(&c->cache, i)); 2656 2657 cache_destroy(&c->cache); 2658 kmem_cache_destroy(c->slab_cache); 2659 kmem_cache_destroy(c->slab_buffer); 2660 dm_io_client_destroy(c->dm_io); 2661 mutex_destroy(&c->lock); 2662 if (c->no_sleep) 2663 static_branch_dec(&no_sleep_enabled); 2664 kfree(c); 2665 } 2666 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 2667 2668 void dm_bufio_client_reset(struct dm_bufio_client *c) 2669 { 2670 drop_buffers(c); 2671 flush_work(&c->shrink_work); 2672 } 2673 EXPORT_SYMBOL_GPL(dm_bufio_client_reset); 2674 2675 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 2676 { 2677 c->start = start; 2678 } 2679 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 2680 2681 /*--------------------------------------------------------------*/ 2682 2683 static unsigned int get_max_age_hz(void) 2684 { 2685 unsigned int max_age = READ_ONCE(dm_bufio_max_age); 2686 2687 if (max_age > UINT_MAX / HZ) 2688 max_age = UINT_MAX / HZ; 2689 2690 return max_age * HZ; 2691 } 2692 2693 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 2694 { 2695 return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz); 2696 } 2697 2698 struct evict_params { 2699 gfp_t gfp; 2700 unsigned long age_hz; 2701 2702 /* 2703 * This gets updated with the largest last_accessed (ie. most 2704 * recently used) of the evicted buffers. It will not be reinitialised 2705 * by __evict_many(), so you can use it across multiple invocations. 2706 */ 2707 unsigned long last_accessed; 2708 }; 2709 2710 /* 2711 * We may not be able to evict this buffer if IO pending or the client 2712 * is still using it. 2713 * 2714 * And if GFP_NOFS is used, we must not do any I/O because we hold 2715 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 2716 * rerouted to different bufio client. 2717 */ 2718 static enum evict_result select_for_evict(struct dm_buffer *b, void *context) 2719 { 2720 struct evict_params *params = context; 2721 2722 if (!(params->gfp & __GFP_FS) || 2723 (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) { 2724 if (test_bit_acquire(B_READING, &b->state) || 2725 test_bit(B_WRITING, &b->state) || 2726 test_bit(B_DIRTY, &b->state)) 2727 return ER_DONT_EVICT; 2728 } 2729 2730 return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP; 2731 } 2732 2733 static unsigned long __evict_many(struct dm_bufio_client *c, 2734 struct evict_params *params, 2735 int list_mode, unsigned long max_count) 2736 { 2737 unsigned long count; 2738 unsigned long last_accessed; 2739 struct dm_buffer *b; 2740 2741 for (count = 0; count < max_count; count++) { 2742 b = cache_evict(&c->cache, list_mode, select_for_evict, params); 2743 if (!b) 2744 break; 2745 2746 last_accessed = READ_ONCE(b->last_accessed); 2747 if (time_after_eq(params->last_accessed, last_accessed)) 2748 params->last_accessed = last_accessed; 2749 2750 __make_buffer_clean(b); 2751 __free_buffer_wake(b); 2752 2753 cond_resched(); 2754 } 2755 2756 return count; 2757 } 2758 2759 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 2760 { 2761 struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0}; 2762 unsigned long retain = get_retain_buffers(c); 2763 unsigned long count; 2764 LIST_HEAD(write_list); 2765 2766 dm_bufio_lock(c); 2767 2768 __check_watermark(c, &write_list); 2769 if (unlikely(!list_empty(&write_list))) { 2770 dm_bufio_unlock(c); 2771 __flush_write_list(&write_list); 2772 dm_bufio_lock(c); 2773 } 2774 2775 count = cache_total(&c->cache); 2776 if (count > retain) 2777 __evict_many(c, ¶ms, LIST_CLEAN, count - retain); 2778 2779 dm_bufio_unlock(c); 2780 } 2781 2782 static void cleanup_old_buffers(void) 2783 { 2784 unsigned long max_age_hz = get_max_age_hz(); 2785 struct dm_bufio_client *c; 2786 2787 mutex_lock(&dm_bufio_clients_lock); 2788 2789 __cache_size_refresh(); 2790 2791 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 2792 evict_old_buffers(c, max_age_hz); 2793 2794 mutex_unlock(&dm_bufio_clients_lock); 2795 } 2796 2797 static void work_fn(struct work_struct *w) 2798 { 2799 cleanup_old_buffers(); 2800 2801 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2802 DM_BUFIO_WORK_TIMER_SECS * HZ); 2803 } 2804 2805 /*--------------------------------------------------------------*/ 2806 2807 /* 2808 * Global cleanup tries to evict the oldest buffers from across _all_ 2809 * the clients. It does this by repeatedly evicting a few buffers from 2810 * the client that holds the oldest buffer. It's approximate, but hopefully 2811 * good enough. 2812 */ 2813 static struct dm_bufio_client *__pop_client(void) 2814 { 2815 struct list_head *h; 2816 2817 if (list_empty(&dm_bufio_all_clients)) 2818 return NULL; 2819 2820 h = dm_bufio_all_clients.next; 2821 list_del(h); 2822 return container_of(h, struct dm_bufio_client, client_list); 2823 } 2824 2825 /* 2826 * Inserts the client in the global client list based on its 2827 * 'oldest_buffer' field. 2828 */ 2829 static void __insert_client(struct dm_bufio_client *new_client) 2830 { 2831 struct dm_bufio_client *c; 2832 struct list_head *h = dm_bufio_all_clients.next; 2833 2834 while (h != &dm_bufio_all_clients) { 2835 c = container_of(h, struct dm_bufio_client, client_list); 2836 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer)) 2837 break; 2838 h = h->next; 2839 } 2840 2841 list_add_tail(&new_client->client_list, h); 2842 } 2843 2844 static unsigned long __evict_a_few(unsigned long nr_buffers) 2845 { 2846 unsigned long count; 2847 struct dm_bufio_client *c; 2848 struct evict_params params = { 2849 .gfp = GFP_KERNEL, 2850 .age_hz = 0, 2851 /* set to jiffies in case there are no buffers in this client */ 2852 .last_accessed = jiffies 2853 }; 2854 2855 c = __pop_client(); 2856 if (!c) 2857 return 0; 2858 2859 dm_bufio_lock(c); 2860 count = __evict_many(c, ¶ms, LIST_CLEAN, nr_buffers); 2861 dm_bufio_unlock(c); 2862 2863 if (count) 2864 c->oldest_buffer = params.last_accessed; 2865 __insert_client(c); 2866 2867 return count; 2868 } 2869 2870 static void check_watermarks(void) 2871 { 2872 LIST_HEAD(write_list); 2873 struct dm_bufio_client *c; 2874 2875 mutex_lock(&dm_bufio_clients_lock); 2876 list_for_each_entry(c, &dm_bufio_all_clients, client_list) { 2877 dm_bufio_lock(c); 2878 __check_watermark(c, &write_list); 2879 dm_bufio_unlock(c); 2880 } 2881 mutex_unlock(&dm_bufio_clients_lock); 2882 2883 __flush_write_list(&write_list); 2884 } 2885 2886 static void evict_old(void) 2887 { 2888 unsigned long threshold = dm_bufio_cache_size - 2889 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; 2890 2891 mutex_lock(&dm_bufio_clients_lock); 2892 while (dm_bufio_current_allocated > threshold) { 2893 if (!__evict_a_few(64)) 2894 break; 2895 cond_resched(); 2896 } 2897 mutex_unlock(&dm_bufio_clients_lock); 2898 } 2899 2900 static void do_global_cleanup(struct work_struct *w) 2901 { 2902 check_watermarks(); 2903 evict_old(); 2904 } 2905 2906 /* 2907 *-------------------------------------------------------------- 2908 * Module setup 2909 *-------------------------------------------------------------- 2910 */ 2911 2912 /* 2913 * This is called only once for the whole dm_bufio module. 2914 * It initializes memory limit. 2915 */ 2916 static int __init dm_bufio_init(void) 2917 { 2918 __u64 mem; 2919 2920 dm_bufio_allocated_kmem_cache = 0; 2921 dm_bufio_allocated_kmalloc = 0; 2922 dm_bufio_allocated_get_free_pages = 0; 2923 dm_bufio_allocated_vmalloc = 0; 2924 dm_bufio_current_allocated = 0; 2925 2926 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), 2927 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 2928 2929 if (mem > ULONG_MAX) 2930 mem = ULONG_MAX; 2931 2932 #ifdef CONFIG_MMU 2933 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 2934 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 2935 #endif 2936 2937 dm_bufio_default_cache_size = mem; 2938 2939 mutex_lock(&dm_bufio_clients_lock); 2940 __cache_size_refresh(); 2941 mutex_unlock(&dm_bufio_clients_lock); 2942 2943 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 2944 if (!dm_bufio_wq) 2945 return -ENOMEM; 2946 2947 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn); 2948 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); 2949 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2950 DM_BUFIO_WORK_TIMER_SECS * HZ); 2951 2952 return 0; 2953 } 2954 2955 /* 2956 * This is called once when unloading the dm_bufio module. 2957 */ 2958 static void __exit dm_bufio_exit(void) 2959 { 2960 int bug = 0; 2961 2962 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work); 2963 destroy_workqueue(dm_bufio_wq); 2964 2965 if (dm_bufio_client_count) { 2966 DMCRIT("%s: dm_bufio_client_count leaked: %d", 2967 __func__, dm_bufio_client_count); 2968 bug = 1; 2969 } 2970 2971 if (dm_bufio_current_allocated) { 2972 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 2973 __func__, dm_bufio_current_allocated); 2974 bug = 1; 2975 } 2976 2977 if (dm_bufio_allocated_get_free_pages) { 2978 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 2979 __func__, dm_bufio_allocated_get_free_pages); 2980 bug = 1; 2981 } 2982 2983 if (dm_bufio_allocated_vmalloc) { 2984 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 2985 __func__, dm_bufio_allocated_vmalloc); 2986 bug = 1; 2987 } 2988 2989 WARN_ON(bug); /* leaks are not worth crashing the system */ 2990 } 2991 2992 module_init(dm_bufio_init) 2993 module_exit(dm_bufio_exit) 2994 2995 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644); 2996 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 2997 2998 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644); 2999 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 3000 3001 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644); 3002 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 3003 3004 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644); 3005 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 3006 3007 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444); 3008 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 3009 3010 module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444); 3011 MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc"); 3012 3013 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444); 3014 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 3015 3016 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444); 3017 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 3018 3019 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444); 3020 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 3021 3022 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>"); 3023 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 3024 MODULE_LICENSE("GPL"); 3025