xref: /linux/drivers/md/dm-bufio.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009-2011 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/dm-bufio.h>
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
23 
24 #include "dm.h"
25 
26 #define DM_MSG_PREFIX "bufio"
27 
28 /*
29  * Memory management policy:
30  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34  *	dirty buffers.
35  */
36 #define DM_BUFIO_MIN_BUFFERS		8
37 
38 #define DM_BUFIO_MEMORY_PERCENT		2
39 #define DM_BUFIO_VMALLOC_PERCENT	25
40 #define DM_BUFIO_WRITEBACK_RATIO	3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO	16
42 
43 /*
44  * The nr of bytes of cached data to keep around.
45  */
46 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
47 
48 /*
49  * Align buffer writes to this boundary.
50  * Tests show that SSDs have the highest IOPS when using 4k writes.
51  */
52 #define DM_BUFIO_WRITE_ALIGN		4096
53 
54 /*
55  * dm_buffer->list_mode
56  */
57 #define LIST_CLEAN	0
58 #define LIST_DIRTY	1
59 #define LIST_SIZE	2
60 
61 #define SCAN_RESCHED_CYCLE	16
62 
63 /*--------------------------------------------------------------*/
64 
65 /*
66  * Rather than use an LRU list, we use a clock algorithm where entries
67  * are held in a circular list.  When an entry is 'hit' a reference bit
68  * is set.  The least recently used entry is approximated by running a
69  * cursor around the list selecting unreferenced entries. Referenced
70  * entries have their reference bit cleared as the cursor passes them.
71  */
72 struct lru_entry {
73 	struct list_head list;
74 	atomic_t referenced;
75 };
76 
77 struct lru_iter {
78 	struct lru *lru;
79 	struct list_head list;
80 	struct lru_entry *stop;
81 	struct lru_entry *e;
82 };
83 
84 struct lru {
85 	struct list_head *cursor;
86 	unsigned long count;
87 
88 	struct list_head iterators;
89 };
90 
91 /*--------------*/
92 
93 static void lru_init(struct lru *lru)
94 {
95 	lru->cursor = NULL;
96 	lru->count = 0;
97 	INIT_LIST_HEAD(&lru->iterators);
98 }
99 
100 static void lru_destroy(struct lru *lru)
101 {
102 	WARN_ON_ONCE(lru->cursor);
103 	WARN_ON_ONCE(!list_empty(&lru->iterators));
104 }
105 
106 /*
107  * Insert a new entry into the lru.
108  */
109 static void lru_insert(struct lru *lru, struct lru_entry *le)
110 {
111 	/*
112 	 * Don't be tempted to set to 1, makes the lru aspect
113 	 * perform poorly.
114 	 */
115 	atomic_set(&le->referenced, 0);
116 
117 	if (lru->cursor) {
118 		list_add_tail(&le->list, lru->cursor);
119 	} else {
120 		INIT_LIST_HEAD(&le->list);
121 		lru->cursor = &le->list;
122 	}
123 	lru->count++;
124 }
125 
126 /*--------------*/
127 
128 /*
129  * Convert a list_head pointer to an lru_entry pointer.
130  */
131 static inline struct lru_entry *to_le(struct list_head *l)
132 {
133 	return container_of(l, struct lru_entry, list);
134 }
135 
136 /*
137  * Initialize an lru_iter and add it to the list of cursors in the lru.
138  */
139 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
140 {
141 	it->lru = lru;
142 	it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
143 	it->e = lru->cursor ? to_le(lru->cursor) : NULL;
144 	list_add(&it->list, &lru->iterators);
145 }
146 
147 /*
148  * Remove an lru_iter from the list of cursors in the lru.
149  */
150 static inline void lru_iter_end(struct lru_iter *it)
151 {
152 	list_del(&it->list);
153 }
154 
155 /* Predicate function type to be used with lru_iter_next */
156 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
157 
158 /*
159  * Advance the cursor to the next entry that passes the
160  * predicate, and return that entry.  Returns NULL if the
161  * iteration is complete.
162  */
163 static struct lru_entry *lru_iter_next(struct lru_iter *it,
164 				       iter_predicate pred, void *context)
165 {
166 	struct lru_entry *e;
167 
168 	while (it->e) {
169 		e = it->e;
170 
171 		/* advance the cursor */
172 		if (it->e == it->stop)
173 			it->e = NULL;
174 		else
175 			it->e = to_le(it->e->list.next);
176 
177 		if (pred(e, context))
178 			return e;
179 	}
180 
181 	return NULL;
182 }
183 
184 /*
185  * Invalidate a specific lru_entry and update all cursors in
186  * the lru accordingly.
187  */
188 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
189 {
190 	struct lru_iter *it;
191 
192 	list_for_each_entry(it, &lru->iterators, list) {
193 		/* Move c->e forwards if necc. */
194 		if (it->e == e) {
195 			it->e = to_le(it->e->list.next);
196 			if (it->e == e)
197 				it->e = NULL;
198 		}
199 
200 		/* Move it->stop backwards if necc. */
201 		if (it->stop == e) {
202 			it->stop = to_le(it->stop->list.prev);
203 			if (it->stop == e)
204 				it->stop = NULL;
205 		}
206 	}
207 }
208 
209 /*--------------*/
210 
211 /*
212  * Remove a specific entry from the lru.
213  */
214 static void lru_remove(struct lru *lru, struct lru_entry *le)
215 {
216 	lru_iter_invalidate(lru, le);
217 	if (lru->count == 1) {
218 		lru->cursor = NULL;
219 	} else {
220 		if (lru->cursor == &le->list)
221 			lru->cursor = lru->cursor->next;
222 		list_del(&le->list);
223 	}
224 	lru->count--;
225 }
226 
227 /*
228  * Mark as referenced.
229  */
230 static inline void lru_reference(struct lru_entry *le)
231 {
232 	atomic_set(&le->referenced, 1);
233 }
234 
235 /*--------------*/
236 
237 /*
238  * Remove the least recently used entry (approx), that passes the predicate.
239  * Returns NULL on failure.
240  */
241 enum evict_result {
242 	ER_EVICT,
243 	ER_DONT_EVICT,
244 	ER_STOP, /* stop looking for something to evict */
245 };
246 
247 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
248 
249 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
250 {
251 	unsigned long tested = 0;
252 	struct list_head *h = lru->cursor;
253 	struct lru_entry *le;
254 
255 	if (!h)
256 		return NULL;
257 	/*
258 	 * In the worst case we have to loop around twice. Once to clear
259 	 * the reference flags, and then again to discover the predicate
260 	 * fails for all entries.
261 	 */
262 	while (tested < lru->count) {
263 		le = container_of(h, struct lru_entry, list);
264 
265 		if (atomic_read(&le->referenced)) {
266 			atomic_set(&le->referenced, 0);
267 		} else {
268 			tested++;
269 			switch (pred(le, context)) {
270 			case ER_EVICT:
271 				/*
272 				 * Adjust the cursor, so we start the next
273 				 * search from here.
274 				 */
275 				lru->cursor = le->list.next;
276 				lru_remove(lru, le);
277 				return le;
278 
279 			case ER_DONT_EVICT:
280 				break;
281 
282 			case ER_STOP:
283 				lru->cursor = le->list.next;
284 				return NULL;
285 			}
286 		}
287 
288 		h = h->next;
289 
290 		if (!no_sleep)
291 			cond_resched();
292 	}
293 
294 	return NULL;
295 }
296 
297 /*--------------------------------------------------------------*/
298 
299 /*
300  * Buffer state bits.
301  */
302 #define B_READING	0
303 #define B_WRITING	1
304 #define B_DIRTY		2
305 
306 /*
307  * Describes how the block was allocated:
308  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
309  * See the comment at alloc_buffer_data.
310  */
311 enum data_mode {
312 	DATA_MODE_SLAB = 0,
313 	DATA_MODE_KMALLOC = 1,
314 	DATA_MODE_GET_FREE_PAGES = 2,
315 	DATA_MODE_VMALLOC = 3,
316 	DATA_MODE_LIMIT = 4
317 };
318 
319 struct dm_buffer {
320 	/* protected by the locks in dm_buffer_cache */
321 	struct rb_node node;
322 
323 	/* immutable, so don't need protecting */
324 	sector_t block;
325 	void *data;
326 	unsigned char data_mode;		/* DATA_MODE_* */
327 
328 	/*
329 	 * These two fields are used in isolation, so do not need
330 	 * a surrounding lock.
331 	 */
332 	atomic_t hold_count;
333 	unsigned long last_accessed;
334 
335 	/*
336 	 * Everything else is protected by the mutex in
337 	 * dm_bufio_client
338 	 */
339 	unsigned long state;
340 	struct lru_entry lru;
341 	unsigned char list_mode;		/* LIST_* */
342 	blk_status_t read_error;
343 	blk_status_t write_error;
344 	unsigned int dirty_start;
345 	unsigned int dirty_end;
346 	unsigned int write_start;
347 	unsigned int write_end;
348 	struct list_head write_list;
349 	struct dm_bufio_client *c;
350 	void (*end_io)(struct dm_buffer *b, blk_status_t bs);
351 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
352 #define MAX_STACK 10
353 	unsigned int stack_len;
354 	unsigned long stack_entries[MAX_STACK];
355 #endif
356 };
357 
358 /*--------------------------------------------------------------*/
359 
360 /*
361  * The buffer cache manages buffers, particularly:
362  *  - inc/dec of holder count
363  *  - setting the last_accessed field
364  *  - maintains clean/dirty state along with lru
365  *  - selecting buffers that match predicates
366  *
367  * It does *not* handle:
368  *  - allocation/freeing of buffers.
369  *  - IO
370  *  - Eviction or cache sizing.
371  *
372  * cache_get() and cache_put_and_wake() are threadsafe, you do not need
373  * to protect these calls with a surrounding mutex.  All the other
374  * methods are not threadsafe; they do use locking primitives, but
375  * only enough to ensure get/put are threadsafe.
376  */
377 
378 struct buffer_tree {
379 	union {
380 		struct rw_semaphore lock;
381 		rwlock_t spinlock;
382 	} u;
383 	struct rb_root root;
384 } ____cacheline_aligned_in_smp;
385 
386 struct dm_buffer_cache {
387 	struct lru lru[LIST_SIZE];
388 	/*
389 	 * We spread entries across multiple trees to reduce contention
390 	 * on the locks.
391 	 */
392 	unsigned int num_locks;
393 	bool no_sleep;
394 	struct buffer_tree trees[];
395 };
396 
397 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
398 
399 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
400 {
401 	return dm_hash_locks_index(block, num_locks);
402 }
403 
404 /* Get the buffer tree in the cache for the given block.  Doesn't lock it. */
405 static inline struct buffer_tree *cache_get_tree(struct dm_buffer_cache *bc,
406 						 sector_t block)
407 {
408 	return &bc->trees[cache_index(block, bc->num_locks)];
409 }
410 
411 /* Lock the given buffer tree in the cache for reading. */
412 static inline void cache_read_lock(struct dm_buffer_cache *bc,
413 				   struct buffer_tree *tree)
414 {
415 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
416 		read_lock_bh(&tree->u.spinlock);
417 	else
418 		down_read(&tree->u.lock);
419 }
420 
421 /* Unlock the given buffer tree in the cache for reading. */
422 static inline void cache_read_unlock(struct dm_buffer_cache *bc,
423 				     struct buffer_tree *tree)
424 {
425 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
426 		read_unlock_bh(&tree->u.spinlock);
427 	else
428 		up_read(&tree->u.lock);
429 }
430 
431 /* Lock the given buffer tree in the cache for writing. */
432 static inline void cache_write_lock(struct dm_buffer_cache *bc,
433 				    struct buffer_tree *tree)
434 {
435 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
436 		write_lock_bh(&tree->u.spinlock);
437 	else
438 		down_write(&tree->u.lock);
439 }
440 
441 /* Unlock the given buffer tree in the cache for writing. */
442 static inline void cache_write_unlock(struct dm_buffer_cache *bc,
443 				      struct buffer_tree *tree)
444 {
445 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
446 		write_unlock_bh(&tree->u.spinlock);
447 	else
448 		up_write(&tree->u.lock);
449 }
450 
451 /*
452  * Sometimes we want to repeatedly get and drop locks as part of an iteration.
453  * This struct helps avoid redundant drop and gets of the same lock.
454  */
455 struct lock_history {
456 	struct dm_buffer_cache *cache;
457 	bool write;
458 	unsigned int previous;
459 	unsigned int no_previous;
460 };
461 
462 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
463 {
464 	lh->cache = cache;
465 	lh->write = write;
466 	lh->no_previous = cache->num_locks;
467 	lh->previous = lh->no_previous;
468 }
469 
470 static void __lh_lock(struct lock_history *lh, unsigned int index)
471 {
472 	if (lh->write) {
473 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
474 			write_lock_bh(&lh->cache->trees[index].u.spinlock);
475 		else
476 			down_write(&lh->cache->trees[index].u.lock);
477 	} else {
478 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
479 			read_lock_bh(&lh->cache->trees[index].u.spinlock);
480 		else
481 			down_read(&lh->cache->trees[index].u.lock);
482 	}
483 }
484 
485 static void __lh_unlock(struct lock_history *lh, unsigned int index)
486 {
487 	if (lh->write) {
488 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
489 			write_unlock_bh(&lh->cache->trees[index].u.spinlock);
490 		else
491 			up_write(&lh->cache->trees[index].u.lock);
492 	} else {
493 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
494 			read_unlock_bh(&lh->cache->trees[index].u.spinlock);
495 		else
496 			up_read(&lh->cache->trees[index].u.lock);
497 	}
498 }
499 
500 /*
501  * Make sure you call this since it will unlock the final lock.
502  */
503 static void lh_exit(struct lock_history *lh)
504 {
505 	if (lh->previous != lh->no_previous) {
506 		__lh_unlock(lh, lh->previous);
507 		lh->previous = lh->no_previous;
508 	}
509 }
510 
511 /*
512  * Named 'next' because there is no corresponding
513  * 'up/unlock' call since it's done automatically.
514  */
515 static void lh_next(struct lock_history *lh, sector_t b)
516 {
517 	unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
518 
519 	if (lh->previous != lh->no_previous) {
520 		if (lh->previous != index) {
521 			__lh_unlock(lh, lh->previous);
522 			__lh_lock(lh, index);
523 			lh->previous = index;
524 		}
525 	} else {
526 		__lh_lock(lh, index);
527 		lh->previous = index;
528 	}
529 }
530 
531 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
532 {
533 	return container_of(le, struct dm_buffer, lru);
534 }
535 
536 static struct dm_buffer *list_to_buffer(struct list_head *l)
537 {
538 	struct lru_entry *le = list_entry(l, struct lru_entry, list);
539 
540 	return le_to_buffer(le);
541 }
542 
543 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
544 {
545 	unsigned int i;
546 
547 	bc->num_locks = num_locks;
548 	bc->no_sleep = no_sleep;
549 
550 	for (i = 0; i < bc->num_locks; i++) {
551 		if (no_sleep)
552 			rwlock_init(&bc->trees[i].u.spinlock);
553 		else
554 			init_rwsem(&bc->trees[i].u.lock);
555 		bc->trees[i].root = RB_ROOT;
556 	}
557 
558 	lru_init(&bc->lru[LIST_CLEAN]);
559 	lru_init(&bc->lru[LIST_DIRTY]);
560 }
561 
562 static void cache_destroy(struct dm_buffer_cache *bc)
563 {
564 	unsigned int i;
565 
566 	for (i = 0; i < bc->num_locks; i++)
567 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
568 
569 	lru_destroy(&bc->lru[LIST_CLEAN]);
570 	lru_destroy(&bc->lru[LIST_DIRTY]);
571 }
572 
573 /*--------------*/
574 
575 /*
576  * not threadsafe, or racey depending how you look at it
577  */
578 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
579 {
580 	return bc->lru[list_mode].count;
581 }
582 
583 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
584 {
585 	return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
586 }
587 
588 /*--------------*/
589 
590 /*
591  * Gets a specific buffer, indexed by block.
592  * If the buffer is found then its holder count will be incremented and
593  * lru_reference will be called.
594  *
595  * threadsafe
596  */
597 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
598 {
599 	struct rb_node *n = root->rb_node;
600 	struct dm_buffer *b;
601 
602 	while (n) {
603 		b = container_of(n, struct dm_buffer, node);
604 
605 		if (b->block == block)
606 			return b;
607 
608 		n = block < b->block ? n->rb_left : n->rb_right;
609 	}
610 
611 	return NULL;
612 }
613 
614 static void __cache_inc_buffer(struct dm_buffer *b)
615 {
616 	atomic_inc(&b->hold_count);
617 	WRITE_ONCE(b->last_accessed, jiffies);
618 }
619 
620 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc,
621 				   struct buffer_tree *tree, sector_t block)
622 {
623 	struct dm_buffer *b;
624 
625 	/* Assuming tree == cache_get_tree(bc, block) */
626 	cache_read_lock(bc, tree);
627 	b = __cache_get(&tree->root, block);
628 	if (b) {
629 		lru_reference(&b->lru);
630 		__cache_inc_buffer(b);
631 	}
632 	cache_read_unlock(bc, tree);
633 
634 	return b;
635 }
636 
637 /*--------------*/
638 
639 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
640 
641 /*
642  * Evicts a buffer based on a predicate.  The oldest buffer that
643  * matches the predicate will be selected.  In addition to the
644  * predicate the hold_count of the selected buffer will be zero.
645  */
646 struct evict_wrapper {
647 	struct lock_history *lh;
648 	b_predicate pred;
649 	void *context;
650 };
651 
652 /*
653  * Wraps the buffer predicate turning it into an lru predicate.  Adds
654  * extra test for hold_count.
655  */
656 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
657 {
658 	struct evict_wrapper *w = context;
659 	struct dm_buffer *b = le_to_buffer(le);
660 
661 	lh_next(w->lh, b->block);
662 
663 	if (atomic_read(&b->hold_count))
664 		return ER_DONT_EVICT;
665 
666 	return w->pred(b, w->context);
667 }
668 
669 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
670 				       b_predicate pred, void *context,
671 				       struct lock_history *lh)
672 {
673 	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
674 	struct lru_entry *le;
675 	struct dm_buffer *b;
676 
677 	le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
678 	if (!le)
679 		return NULL;
680 
681 	b = le_to_buffer(le);
682 	/* __evict_pred will have locked the appropriate tree. */
683 	rb_erase(&b->node, &cache_get_tree(bc, b->block)->root);
684 
685 	return b;
686 }
687 
688 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
689 				     b_predicate pred, void *context)
690 {
691 	struct dm_buffer *b;
692 	struct lock_history lh;
693 
694 	lh_init(&lh, bc, true);
695 	b = __cache_evict(bc, list_mode, pred, context, &lh);
696 	lh_exit(&lh);
697 
698 	return b;
699 }
700 
701 /*--------------*/
702 
703 /*
704  * Mark a buffer as clean or dirty. Not threadsafe.
705  */
706 static void cache_mark(struct dm_buffer_cache *bc, struct buffer_tree *tree,
707 		       struct dm_buffer *b, int list_mode)
708 {
709 	/* Assuming tree == cache_get_tree(bc, b->block) */
710 	cache_write_lock(bc, tree);
711 	if (list_mode != b->list_mode) {
712 		lru_remove(&bc->lru[b->list_mode], &b->lru);
713 		b->list_mode = list_mode;
714 		lru_insert(&bc->lru[b->list_mode], &b->lru);
715 	}
716 	cache_write_unlock(bc, tree);
717 }
718 
719 /*--------------*/
720 
721 /*
722  * Runs through the lru associated with 'old_mode', if the predicate matches then
723  * it moves them to 'new_mode'.  Not threadsafe.
724  */
725 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
726 			      b_predicate pred, void *context, struct lock_history *lh)
727 {
728 	struct lru_entry *le;
729 	struct dm_buffer *b;
730 	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
731 
732 	while (true) {
733 		le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
734 		if (!le)
735 			break;
736 
737 		b = le_to_buffer(le);
738 		b->list_mode = new_mode;
739 		lru_insert(&bc->lru[b->list_mode], &b->lru);
740 	}
741 }
742 
743 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
744 			    b_predicate pred, void *context)
745 {
746 	struct lock_history lh;
747 
748 	lh_init(&lh, bc, true);
749 	__cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
750 	lh_exit(&lh);
751 }
752 
753 /*--------------*/
754 
755 /*
756  * Iterates through all clean or dirty entries calling a function for each
757  * entry.  The callback may terminate the iteration early.  Not threadsafe.
758  */
759 
760 /*
761  * Iterator functions should return one of these actions to indicate
762  * how the iteration should proceed.
763  */
764 enum it_action {
765 	IT_NEXT,
766 	IT_COMPLETE,
767 };
768 
769 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
770 
771 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
772 			    iter_fn fn, void *context, struct lock_history *lh)
773 {
774 	struct lru *lru = &bc->lru[list_mode];
775 	struct lru_entry *le, *first;
776 
777 	if (!lru->cursor)
778 		return;
779 
780 	first = le = to_le(lru->cursor);
781 	do {
782 		struct dm_buffer *b = le_to_buffer(le);
783 
784 		lh_next(lh, b->block);
785 
786 		switch (fn(b, context)) {
787 		case IT_NEXT:
788 			break;
789 
790 		case IT_COMPLETE:
791 			return;
792 		}
793 		cond_resched();
794 
795 		le = to_le(le->list.next);
796 	} while (le != first);
797 }
798 
799 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
800 			  iter_fn fn, void *context)
801 {
802 	struct lock_history lh;
803 
804 	lh_init(&lh, bc, false);
805 	__cache_iterate(bc, list_mode, fn, context, &lh);
806 	lh_exit(&lh);
807 }
808 
809 /*--------------*/
810 
811 /*
812  * Passes ownership of the buffer to the cache. Returns false if the
813  * buffer was already present (in which case ownership does not pass).
814  * eg, a race with another thread.
815  *
816  * Holder count should be 1 on insertion.
817  *
818  * Not threadsafe.
819  */
820 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
821 {
822 	struct rb_node **new = &root->rb_node, *parent = NULL;
823 	struct dm_buffer *found;
824 
825 	while (*new) {
826 		found = container_of(*new, struct dm_buffer, node);
827 
828 		if (found->block == b->block)
829 			return false;
830 
831 		parent = *new;
832 		new = b->block < found->block ?
833 			&found->node.rb_left : &found->node.rb_right;
834 	}
835 
836 	rb_link_node(&b->node, parent, new);
837 	rb_insert_color(&b->node, root);
838 
839 	return true;
840 }
841 
842 static bool cache_insert(struct dm_buffer_cache *bc, struct buffer_tree *tree,
843 			 struct dm_buffer *b)
844 {
845 	bool r;
846 
847 	if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
848 		return false;
849 
850 	/* Assuming tree == cache_get_tree(bc, b->block) */
851 	cache_write_lock(bc, tree);
852 	BUG_ON(atomic_read(&b->hold_count) != 1);
853 	r = __cache_insert(&tree->root, b);
854 	if (r)
855 		lru_insert(&bc->lru[b->list_mode], &b->lru);
856 	cache_write_unlock(bc, tree);
857 
858 	return r;
859 }
860 
861 /*--------------*/
862 
863 /*
864  * Removes buffer from cache, ownership of the buffer passes back to the caller.
865  * Fails if the hold_count is not one (ie. the caller holds the only reference).
866  *
867  * Not threadsafe.
868  */
869 static bool cache_remove(struct dm_buffer_cache *bc, struct buffer_tree *tree,
870 			 struct dm_buffer *b)
871 {
872 	bool r;
873 
874 	/* Assuming tree == cache_get_tree(bc, b->block) */
875 	cache_write_lock(bc, tree);
876 
877 	if (atomic_read(&b->hold_count) != 1) {
878 		r = false;
879 	} else {
880 		r = true;
881 		rb_erase(&b->node, &tree->root);
882 		lru_remove(&bc->lru[b->list_mode], &b->lru);
883 	}
884 
885 	cache_write_unlock(bc, tree);
886 
887 	return r;
888 }
889 
890 /*--------------*/
891 
892 typedef void (*b_release)(struct dm_buffer *);
893 
894 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
895 {
896 	struct rb_node *n = root->rb_node;
897 	struct dm_buffer *b;
898 	struct dm_buffer *best = NULL;
899 
900 	while (n) {
901 		b = container_of(n, struct dm_buffer, node);
902 
903 		if (b->block == block)
904 			return b;
905 
906 		if (block <= b->block) {
907 			n = n->rb_left;
908 			best = b;
909 		} else {
910 			n = n->rb_right;
911 		}
912 	}
913 
914 	return best;
915 }
916 
917 static void __remove_range(struct dm_buffer_cache *bc,
918 			   struct rb_root *root,
919 			   sector_t begin, sector_t end,
920 			   b_predicate pred, b_release release)
921 {
922 	struct dm_buffer *b;
923 
924 	while (true) {
925 		cond_resched();
926 
927 		b = __find_next(root, begin);
928 		if (!b || (b->block >= end))
929 			break;
930 
931 		begin = b->block + 1;
932 
933 		if (atomic_read(&b->hold_count))
934 			continue;
935 
936 		if (pred(b, NULL) == ER_EVICT) {
937 			rb_erase(&b->node, root);
938 			lru_remove(&bc->lru[b->list_mode], &b->lru);
939 			release(b);
940 		}
941 	}
942 }
943 
944 static void cache_remove_range(struct dm_buffer_cache *bc,
945 			       sector_t begin, sector_t end,
946 			       b_predicate pred, b_release release)
947 {
948 	unsigned int i;
949 
950 	BUG_ON(bc->no_sleep);
951 	for (i = 0; i < bc->num_locks; i++) {
952 		down_write(&bc->trees[i].u.lock);
953 		__remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
954 		up_write(&bc->trees[i].u.lock);
955 	}
956 }
957 
958 /*----------------------------------------------------------------*/
959 
960 /*
961  * Linking of buffers:
962  *	All buffers are linked to buffer_cache with their node field.
963  *
964  *	Clean buffers that are not being written (B_WRITING not set)
965  *	are linked to lru[LIST_CLEAN] with their lru_list field.
966  *
967  *	Dirty and clean buffers that are being written are linked to
968  *	lru[LIST_DIRTY] with their lru_list field. When the write
969  *	finishes, the buffer cannot be relinked immediately (because we
970  *	are in an interrupt context and relinking requires process
971  *	context), so some clean-not-writing buffers can be held on
972  *	dirty_lru too.  They are later added to lru in the process
973  *	context.
974  */
975 struct dm_bufio_client {
976 	struct block_device *bdev;
977 	unsigned int block_size;
978 	s8 sectors_per_block_bits;
979 
980 	bool no_sleep;
981 	struct mutex lock;
982 	spinlock_t spinlock;
983 
984 	int async_write_error;
985 
986 	void (*alloc_callback)(struct dm_buffer *buf);
987 	void (*write_callback)(struct dm_buffer *buf);
988 	struct kmem_cache *slab_buffer;
989 	struct kmem_cache *slab_cache;
990 	struct dm_io_client *dm_io;
991 
992 	struct list_head reserved_buffers;
993 	unsigned int need_reserved_buffers;
994 
995 	unsigned int minimum_buffers;
996 
997 	sector_t start;
998 
999 	struct shrinker *shrinker;
1000 	struct work_struct shrink_work;
1001 	atomic_long_t need_shrink;
1002 
1003 	wait_queue_head_t free_buffer_wait;
1004 
1005 	struct list_head client_list;
1006 
1007 	/*
1008 	 * Used by global_cleanup to sort the clients list.
1009 	 */
1010 	unsigned long oldest_buffer;
1011 
1012 	struct dm_buffer_cache cache; /* must be last member */
1013 };
1014 
1015 /*----------------------------------------------------------------*/
1016 
1017 #define dm_bufio_in_request()	(!!current->bio_list)
1018 
1019 static void dm_bufio_lock(struct dm_bufio_client *c)
1020 {
1021 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1022 		spin_lock_bh(&c->spinlock);
1023 	else
1024 		mutex_lock_nested(&c->lock, dm_bufio_in_request());
1025 }
1026 
1027 static void dm_bufio_unlock(struct dm_bufio_client *c)
1028 {
1029 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1030 		spin_unlock_bh(&c->spinlock);
1031 	else
1032 		mutex_unlock(&c->lock);
1033 }
1034 
1035 /*----------------------------------------------------------------*/
1036 
1037 /*
1038  * Default cache size: available memory divided by the ratio.
1039  */
1040 static unsigned long dm_bufio_default_cache_size;
1041 
1042 /*
1043  * Total cache size set by the user.
1044  */
1045 static unsigned long dm_bufio_cache_size;
1046 
1047 /*
1048  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1049  * at any time.  If it disagrees, the user has changed cache size.
1050  */
1051 static unsigned long dm_bufio_cache_size_latch;
1052 
1053 static DEFINE_SPINLOCK(global_spinlock);
1054 
1055 static unsigned int dm_bufio_max_age; /* No longer does anything */
1056 
1057 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1058 
1059 static unsigned long dm_bufio_peak_allocated;
1060 static unsigned long dm_bufio_allocated_kmem_cache;
1061 static unsigned long dm_bufio_allocated_kmalloc;
1062 static unsigned long dm_bufio_allocated_get_free_pages;
1063 static unsigned long dm_bufio_allocated_vmalloc;
1064 static unsigned long dm_bufio_current_allocated;
1065 
1066 /*----------------------------------------------------------------*/
1067 
1068 /*
1069  * The current number of clients.
1070  */
1071 static int dm_bufio_client_count;
1072 
1073 /*
1074  * The list of all clients.
1075  */
1076 static LIST_HEAD(dm_bufio_all_clients);
1077 
1078 /*
1079  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1080  */
1081 static DEFINE_MUTEX(dm_bufio_clients_lock);
1082 
1083 static struct workqueue_struct *dm_bufio_wq;
1084 static struct work_struct dm_bufio_replacement_work;
1085 
1086 
1087 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1088 static void buffer_record_stack(struct dm_buffer *b)
1089 {
1090 	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1091 }
1092 #endif
1093 
1094 /*----------------------------------------------------------------*/
1095 
1096 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1097 {
1098 	unsigned char data_mode;
1099 	long diff;
1100 
1101 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1102 		&dm_bufio_allocated_kmem_cache,
1103 		&dm_bufio_allocated_kmalloc,
1104 		&dm_bufio_allocated_get_free_pages,
1105 		&dm_bufio_allocated_vmalloc,
1106 	};
1107 
1108 	data_mode = b->data_mode;
1109 	diff = (long)b->c->block_size;
1110 	if (unlink)
1111 		diff = -diff;
1112 
1113 	spin_lock(&global_spinlock);
1114 
1115 	*class_ptr[data_mode] += diff;
1116 
1117 	dm_bufio_current_allocated += diff;
1118 
1119 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1120 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
1121 
1122 	if (!unlink) {
1123 		if (dm_bufio_current_allocated > dm_bufio_cache_size)
1124 			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1125 	}
1126 
1127 	spin_unlock(&global_spinlock);
1128 }
1129 
1130 /*
1131  * Change the number of clients and recalculate per-client limit.
1132  */
1133 static void __cache_size_refresh(void)
1134 {
1135 	if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1136 		return;
1137 	if (WARN_ON(dm_bufio_client_count < 0))
1138 		return;
1139 
1140 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1141 
1142 	/*
1143 	 * Use default if set to 0 and report the actual cache size used.
1144 	 */
1145 	if (!dm_bufio_cache_size_latch) {
1146 		(void)cmpxchg(&dm_bufio_cache_size, 0,
1147 			      dm_bufio_default_cache_size);
1148 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1149 	}
1150 }
1151 
1152 /*
1153  * Allocating buffer data.
1154  *
1155  * Small buffers are allocated with kmem_cache, to use space optimally.
1156  *
1157  * For large buffers, we choose between get_free_pages and vmalloc.
1158  * Each has advantages and disadvantages.
1159  *
1160  * __get_free_pages can randomly fail if the memory is fragmented.
1161  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1162  * as low as 128M) so using it for caching is not appropriate.
1163  *
1164  * If the allocation may fail we use __get_free_pages. Memory fragmentation
1165  * won't have a fatal effect here, but it just causes flushes of some other
1166  * buffers and more I/O will be performed. Don't use __get_free_pages if it
1167  * always fails (i.e. order > MAX_PAGE_ORDER).
1168  *
1169  * If the allocation shouldn't fail we use __vmalloc. This is only for the
1170  * initial reserve allocation, so there's no risk of wasting all vmalloc
1171  * space.
1172  */
1173 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1174 			       unsigned char *data_mode)
1175 {
1176 	if (unlikely(c->slab_cache != NULL)) {
1177 		*data_mode = DATA_MODE_SLAB;
1178 		return kmem_cache_alloc(c->slab_cache, gfp_mask);
1179 	}
1180 
1181 	if (unlikely(c->block_size < PAGE_SIZE)) {
1182 		*data_mode = DATA_MODE_KMALLOC;
1183 		return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE);
1184 	}
1185 
1186 	if (c->block_size <= KMALLOC_MAX_SIZE &&
1187 	    gfp_mask & __GFP_NORETRY) {
1188 		*data_mode = DATA_MODE_GET_FREE_PAGES;
1189 		return (void *)__get_free_pages(gfp_mask,
1190 						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1191 	}
1192 
1193 	*data_mode = DATA_MODE_VMALLOC;
1194 
1195 	return __vmalloc(c->block_size, gfp_mask);
1196 }
1197 
1198 /*
1199  * Free buffer's data.
1200  */
1201 static void free_buffer_data(struct dm_bufio_client *c,
1202 			     void *data, unsigned char data_mode)
1203 {
1204 	switch (data_mode) {
1205 	case DATA_MODE_SLAB:
1206 		kmem_cache_free(c->slab_cache, data);
1207 		break;
1208 
1209 	case DATA_MODE_KMALLOC:
1210 		kfree(data);
1211 		break;
1212 
1213 	case DATA_MODE_GET_FREE_PAGES:
1214 		free_pages((unsigned long)data,
1215 			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1216 		break;
1217 
1218 	case DATA_MODE_VMALLOC:
1219 		vfree(data);
1220 		break;
1221 
1222 	default:
1223 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1224 		       data_mode);
1225 		BUG();
1226 	}
1227 }
1228 
1229 /*
1230  * Allocate buffer and its data.
1231  */
1232 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1233 {
1234 	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1235 
1236 	if (!b)
1237 		return NULL;
1238 
1239 	b->c = c;
1240 
1241 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1242 	if (!b->data) {
1243 		kmem_cache_free(c->slab_buffer, b);
1244 		return NULL;
1245 	}
1246 	adjust_total_allocated(b, false);
1247 
1248 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1249 	b->stack_len = 0;
1250 #endif
1251 	return b;
1252 }
1253 
1254 /*
1255  * Free buffer and its data.
1256  */
1257 static void free_buffer(struct dm_buffer *b)
1258 {
1259 	struct dm_bufio_client *c = b->c;
1260 
1261 	adjust_total_allocated(b, true);
1262 	free_buffer_data(c, b->data, b->data_mode);
1263 	kmem_cache_free(c->slab_buffer, b);
1264 }
1265 
1266 /*
1267  *--------------------------------------------------------------------------
1268  * Submit I/O on the buffer.
1269  *
1270  * Bio interface is faster but it has some problems:
1271  *	the vector list is limited (increasing this limit increases
1272  *	memory-consumption per buffer, so it is not viable);
1273  *
1274  *	the memory must be direct-mapped, not vmalloced;
1275  *
1276  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1277  * it is not vmalloced, try using the bio interface.
1278  *
1279  * If the buffer is big, if it is vmalloced or if the underlying device
1280  * rejects the bio because it is too large, use dm-io layer to do the I/O.
1281  * The dm-io layer splits the I/O into multiple requests, avoiding the above
1282  * shortcomings.
1283  *--------------------------------------------------------------------------
1284  */
1285 
1286 /*
1287  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1288  * that the request was handled directly with bio interface.
1289  */
1290 static void dmio_complete(unsigned long error, void *context)
1291 {
1292 	struct dm_buffer *b = context;
1293 
1294 	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1295 }
1296 
1297 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1298 		     unsigned int n_sectors, unsigned int offset,
1299 		     unsigned short ioprio)
1300 {
1301 	int r;
1302 	struct dm_io_request io_req = {
1303 		.bi_opf = op,
1304 		.notify.fn = dmio_complete,
1305 		.notify.context = b,
1306 		.client = b->c->dm_io,
1307 	};
1308 	struct dm_io_region region = {
1309 		.bdev = b->c->bdev,
1310 		.sector = sector,
1311 		.count = n_sectors,
1312 	};
1313 
1314 	if (b->data_mode != DATA_MODE_VMALLOC) {
1315 		io_req.mem.type = DM_IO_KMEM;
1316 		io_req.mem.ptr.addr = (char *)b->data + offset;
1317 	} else {
1318 		io_req.mem.type = DM_IO_VMA;
1319 		io_req.mem.ptr.vma = (char *)b->data + offset;
1320 	}
1321 
1322 	r = dm_io(&io_req, 1, &region, NULL, ioprio);
1323 	if (unlikely(r))
1324 		b->end_io(b, errno_to_blk_status(r));
1325 }
1326 
1327 static void bio_complete(struct bio *bio)
1328 {
1329 	struct dm_buffer *b = bio->bi_private;
1330 	blk_status_t status = bio->bi_status;
1331 
1332 	bio_uninit(bio);
1333 	kfree(bio);
1334 	b->end_io(b, status);
1335 }
1336 
1337 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1338 		    unsigned int n_sectors, unsigned int offset,
1339 		    unsigned short ioprio)
1340 {
1341 	struct bio *bio;
1342 	char *ptr;
1343 	unsigned int len;
1344 
1345 	bio = bio_kmalloc(1, GFP_NOWAIT);
1346 	if (!bio) {
1347 		use_dmio(b, op, sector, n_sectors, offset, ioprio);
1348 		return;
1349 	}
1350 	bio_init_inline(bio, b->c->bdev, 1, op);
1351 	bio->bi_iter.bi_sector = sector;
1352 	bio->bi_end_io = bio_complete;
1353 	bio->bi_private = b;
1354 	bio->bi_ioprio = ioprio;
1355 
1356 	ptr = (char *)b->data + offset;
1357 	len = n_sectors << SECTOR_SHIFT;
1358 
1359 	bio_add_virt_nofail(bio, ptr, len);
1360 
1361 	submit_bio(bio);
1362 }
1363 
1364 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1365 {
1366 	sector_t sector;
1367 
1368 	if (likely(c->sectors_per_block_bits >= 0))
1369 		sector = block << c->sectors_per_block_bits;
1370 	else
1371 		sector = block * (c->block_size >> SECTOR_SHIFT);
1372 	sector += c->start;
1373 
1374 	return sector;
1375 }
1376 
1377 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio,
1378 		      void (*end_io)(struct dm_buffer *, blk_status_t))
1379 {
1380 	unsigned int n_sectors;
1381 	sector_t sector;
1382 	unsigned int offset, end, align;
1383 
1384 	b->end_io = end_io;
1385 
1386 	sector = block_to_sector(b->c, b->block);
1387 
1388 	if (op != REQ_OP_WRITE) {
1389 		n_sectors = b->c->block_size >> SECTOR_SHIFT;
1390 		offset = 0;
1391 	} else {
1392 		if (b->c->write_callback)
1393 			b->c->write_callback(b);
1394 		offset = b->write_start;
1395 		end = b->write_end;
1396 		align = max(DM_BUFIO_WRITE_ALIGN,
1397 			bdev_physical_block_size(b->c->bdev));
1398 		offset &= -align;
1399 		end += align - 1;
1400 		end &= -align;
1401 		if (unlikely(end > b->c->block_size))
1402 			end = b->c->block_size;
1403 
1404 		sector += offset >> SECTOR_SHIFT;
1405 		n_sectors = (end - offset) >> SECTOR_SHIFT;
1406 	}
1407 
1408 	if (b->data_mode != DATA_MODE_VMALLOC)
1409 		use_bio(b, op, sector, n_sectors, offset, ioprio);
1410 	else
1411 		use_dmio(b, op, sector, n_sectors, offset, ioprio);
1412 }
1413 
1414 /*
1415  *--------------------------------------------------------------
1416  * Writing dirty buffers
1417  *--------------------------------------------------------------
1418  */
1419 
1420 /*
1421  * The endio routine for write.
1422  *
1423  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1424  * it.
1425  */
1426 static void write_endio(struct dm_buffer *b, blk_status_t status)
1427 {
1428 	b->write_error = status;
1429 	if (unlikely(status)) {
1430 		struct dm_bufio_client *c = b->c;
1431 
1432 		(void)cmpxchg(&c->async_write_error, 0,
1433 				blk_status_to_errno(status));
1434 	}
1435 
1436 	BUG_ON(!test_bit(B_WRITING, &b->state));
1437 
1438 	smp_mb__before_atomic();
1439 	clear_bit(B_WRITING, &b->state);
1440 	smp_mb__after_atomic();
1441 
1442 	wake_up_bit(&b->state, B_WRITING);
1443 }
1444 
1445 /*
1446  * Initiate a write on a dirty buffer, but don't wait for it.
1447  *
1448  * - If the buffer is not dirty, exit.
1449  * - If there some previous write going on, wait for it to finish (we can't
1450  *   have two writes on the same buffer simultaneously).
1451  * - Submit our write and don't wait on it. We set B_WRITING indicating
1452  *   that there is a write in progress.
1453  */
1454 static void __write_dirty_buffer(struct dm_buffer *b,
1455 				 struct list_head *write_list)
1456 {
1457 	if (!test_bit(B_DIRTY, &b->state))
1458 		return;
1459 
1460 	clear_bit(B_DIRTY, &b->state);
1461 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1462 
1463 	b->write_start = b->dirty_start;
1464 	b->write_end = b->dirty_end;
1465 
1466 	if (!write_list)
1467 		submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1468 	else
1469 		list_add_tail(&b->write_list, write_list);
1470 }
1471 
1472 static void __flush_write_list(struct list_head *write_list)
1473 {
1474 	struct blk_plug plug;
1475 
1476 	blk_start_plug(&plug);
1477 	while (!list_empty(write_list)) {
1478 		struct dm_buffer *b =
1479 			list_entry(write_list->next, struct dm_buffer, write_list);
1480 		list_del(&b->write_list);
1481 		submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1482 		cond_resched();
1483 	}
1484 	blk_finish_plug(&plug);
1485 }
1486 
1487 /*
1488  * Wait until any activity on the buffer finishes.  Possibly write the
1489  * buffer if it is dirty.  When this function finishes, there is no I/O
1490  * running on the buffer and the buffer is not dirty.
1491  */
1492 static void __make_buffer_clean(struct dm_buffer *b)
1493 {
1494 	BUG_ON(atomic_read(&b->hold_count));
1495 
1496 	/* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1497 	if (!smp_load_acquire(&b->state))	/* fast case */
1498 		return;
1499 
1500 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1501 	__write_dirty_buffer(b, NULL);
1502 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1503 }
1504 
1505 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1506 {
1507 	struct dm_bufio_client *c = context;
1508 
1509 	/* These should never happen */
1510 	if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1511 		return ER_DONT_EVICT;
1512 	if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1513 		return ER_DONT_EVICT;
1514 	if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1515 		return ER_DONT_EVICT;
1516 
1517 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1518 	    unlikely(test_bit(B_READING, &b->state)))
1519 		return ER_DONT_EVICT;
1520 
1521 	return ER_EVICT;
1522 }
1523 
1524 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1525 {
1526 	/* These should never happen */
1527 	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1528 		return ER_DONT_EVICT;
1529 	if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1530 		return ER_DONT_EVICT;
1531 
1532 	return ER_EVICT;
1533 }
1534 
1535 /*
1536  * Find some buffer that is not held by anybody, clean it, unlink it and
1537  * return it.
1538  */
1539 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1540 {
1541 	struct dm_buffer *b;
1542 
1543 	b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1544 	if (b) {
1545 		/* this also waits for pending reads */
1546 		__make_buffer_clean(b);
1547 		return b;
1548 	}
1549 
1550 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1551 		return NULL;
1552 
1553 	b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1554 	if (b) {
1555 		__make_buffer_clean(b);
1556 		return b;
1557 	}
1558 
1559 	return NULL;
1560 }
1561 
1562 /*
1563  * Wait until some other threads free some buffer or release hold count on
1564  * some buffer.
1565  *
1566  * This function is entered with c->lock held, drops it and regains it
1567  * before exiting.
1568  */
1569 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1570 {
1571 	DECLARE_WAITQUEUE(wait, current);
1572 
1573 	add_wait_queue(&c->free_buffer_wait, &wait);
1574 	set_current_state(TASK_UNINTERRUPTIBLE);
1575 	dm_bufio_unlock(c);
1576 
1577 	/*
1578 	 * It's possible to miss a wake up event since we don't always
1579 	 * hold c->lock when wake_up is called.  So we have a timeout here,
1580 	 * just in case.
1581 	 */
1582 	io_schedule_timeout(5 * HZ);
1583 
1584 	remove_wait_queue(&c->free_buffer_wait, &wait);
1585 
1586 	dm_bufio_lock(c);
1587 }
1588 
1589 enum new_flag {
1590 	NF_FRESH = 0,
1591 	NF_READ = 1,
1592 	NF_GET = 2,
1593 	NF_PREFETCH = 3
1594 };
1595 
1596 /*
1597  * Allocate a new buffer. If the allocation is not possible, wait until
1598  * some other thread frees a buffer.
1599  *
1600  * May drop the lock and regain it.
1601  */
1602 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1603 {
1604 	struct dm_buffer *b;
1605 	bool tried_noio_alloc = false;
1606 
1607 	/*
1608 	 * dm-bufio is resistant to allocation failures (it just keeps
1609 	 * one buffer reserved in cases all the allocations fail).
1610 	 * So set flags to not try too hard:
1611 	 *	GFP_NOWAIT: don't wait and don't print a warning in case of
1612 	 *		    failure; if we need to sleep we'll release our mutex
1613 	 *		    and wait ourselves.
1614 	 *	__GFP_NORETRY: don't retry and rather return failure
1615 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
1616 	 *
1617 	 * For debugging, if we set the cache size to 1, no new buffers will
1618 	 * be allocated.
1619 	 */
1620 	while (1) {
1621 		if (dm_bufio_cache_size_latch != 1) {
1622 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC);
1623 			if (b)
1624 				return b;
1625 		}
1626 
1627 		if (nf == NF_PREFETCH)
1628 			return NULL;
1629 
1630 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1631 			dm_bufio_unlock(c);
1632 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1633 			dm_bufio_lock(c);
1634 			if (b)
1635 				return b;
1636 			tried_noio_alloc = true;
1637 		}
1638 
1639 		if (!list_empty(&c->reserved_buffers)) {
1640 			b = list_to_buffer(c->reserved_buffers.next);
1641 			list_del(&b->lru.list);
1642 			c->need_reserved_buffers++;
1643 
1644 			return b;
1645 		}
1646 
1647 		b = __get_unclaimed_buffer(c);
1648 		if (b)
1649 			return b;
1650 
1651 		__wait_for_free_buffer(c);
1652 	}
1653 }
1654 
1655 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1656 {
1657 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1658 
1659 	if (!b)
1660 		return NULL;
1661 
1662 	if (c->alloc_callback)
1663 		c->alloc_callback(b);
1664 
1665 	return b;
1666 }
1667 
1668 /*
1669  * Free a buffer and wake other threads waiting for free buffers.
1670  */
1671 static void __free_buffer_wake(struct dm_buffer *b)
1672 {
1673 	struct dm_bufio_client *c = b->c;
1674 
1675 	b->block = -1;
1676 	if (!c->need_reserved_buffers)
1677 		free_buffer(b);
1678 	else {
1679 		list_add(&b->lru.list, &c->reserved_buffers);
1680 		c->need_reserved_buffers--;
1681 	}
1682 
1683 	/*
1684 	 * We hold the bufio lock here, so no one can add entries to the
1685 	 * wait queue anyway.
1686 	 */
1687 	if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1688 		wake_up(&c->free_buffer_wait);
1689 }
1690 
1691 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1692 {
1693 	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1694 		return ER_DONT_EVICT; /* should never happen */
1695 
1696 	if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1697 		return ER_DONT_EVICT;
1698 	else
1699 		return ER_EVICT;
1700 }
1701 
1702 static void __move_clean_buffers(struct dm_bufio_client *c)
1703 {
1704 	cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1705 }
1706 
1707 struct write_context {
1708 	int no_wait;
1709 	struct list_head *write_list;
1710 };
1711 
1712 static enum it_action write_one(struct dm_buffer *b, void *context)
1713 {
1714 	struct write_context *wc = context;
1715 
1716 	if (wc->no_wait && test_bit(B_WRITING, &b->state))
1717 		return IT_COMPLETE;
1718 
1719 	__write_dirty_buffer(b, wc->write_list);
1720 	return IT_NEXT;
1721 }
1722 
1723 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1724 					struct list_head *write_list)
1725 {
1726 	struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1727 
1728 	__move_clean_buffers(c);
1729 	cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1730 }
1731 
1732 /*
1733  * Check if we're over watermark.
1734  * If we are over threshold_buffers, start freeing buffers.
1735  * If we're over "limit_buffers", block until we get under the limit.
1736  */
1737 static void __check_watermark(struct dm_bufio_client *c,
1738 			      struct list_head *write_list)
1739 {
1740 	if (cache_count(&c->cache, LIST_DIRTY) >
1741 	    cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1742 		__write_dirty_buffers_async(c, 1, write_list);
1743 }
1744 
1745 /*
1746  *--------------------------------------------------------------
1747  * Getting a buffer
1748  *--------------------------------------------------------------
1749  */
1750 
1751 static void cache_put_and_wake(struct dm_bufio_client *c,
1752 			       struct buffer_tree *tree, struct dm_buffer *b)
1753 {
1754 	bool wake;
1755 
1756 	/* Assuming tree == cache_get_tree(&c->cache, b->block) */
1757 	cache_read_lock(&c->cache, tree);
1758 	BUG_ON(!atomic_read(&b->hold_count));
1759 	wake = atomic_dec_and_test(&b->hold_count);
1760 	cache_read_unlock(&c->cache, tree);
1761 
1762 	/*
1763 	 * Relying on waitqueue_active() is racey, but we sleep
1764 	 * with schedule_timeout anyway.
1765 	 */
1766 	if (wake && unlikely(waitqueue_active(&c->free_buffer_wait)))
1767 		wake_up(&c->free_buffer_wait);
1768 }
1769 
1770 /*
1771  * This assumes you have already checked the cache to see if the buffer
1772  * is already present (it will recheck after dropping the lock for allocation).
1773  */
1774 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c,
1775 				     struct buffer_tree *tree, sector_t block,
1776 				     enum new_flag nf, int *need_submit,
1777 				     struct list_head *write_list)
1778 {
1779 	struct dm_buffer *b, *new_b = NULL;
1780 
1781 	*need_submit = 0;
1782 
1783 	/* This can't be called with NF_GET */
1784 	if (WARN_ON_ONCE(nf == NF_GET))
1785 		return NULL;
1786 
1787 	new_b = __alloc_buffer_wait(c, nf);
1788 	if (!new_b)
1789 		return NULL;
1790 
1791 	/*
1792 	 * We've had a period where the mutex was unlocked, so need to
1793 	 * recheck the buffer tree.
1794 	 */
1795 	b = cache_get(&c->cache, tree, block);
1796 	if (b) {
1797 		__free_buffer_wake(new_b);
1798 		goto found_buffer;
1799 	}
1800 
1801 	__check_watermark(c, write_list);
1802 
1803 	b = new_b;
1804 	atomic_set(&b->hold_count, 1);
1805 	WRITE_ONCE(b->last_accessed, jiffies);
1806 	b->block = block;
1807 	b->read_error = 0;
1808 	b->write_error = 0;
1809 	b->list_mode = LIST_CLEAN;
1810 
1811 	if (nf == NF_FRESH)
1812 		b->state = 0;
1813 	else {
1814 		b->state = 1 << B_READING;
1815 		*need_submit = 1;
1816 	}
1817 
1818 	/*
1819 	 * We mustn't insert into the cache until the B_READING state
1820 	 * is set.  Otherwise another thread could get it and use
1821 	 * it before it had been read.
1822 	 */
1823 	cache_insert(&c->cache, tree, b);
1824 
1825 	return b;
1826 
1827 found_buffer:
1828 	if (nf == NF_PREFETCH) {
1829 		cache_put_and_wake(c, tree, b);
1830 		return NULL;
1831 	}
1832 
1833 	/*
1834 	 * Note: it is essential that we don't wait for the buffer to be
1835 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1836 	 * dm_bufio_prefetch can be used in the driver request routine.
1837 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1838 	 * the same buffer, it would deadlock if we waited.
1839 	 */
1840 	if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1841 		cache_put_and_wake(c, tree, b);
1842 		return NULL;
1843 	}
1844 
1845 	return b;
1846 }
1847 
1848 /*
1849  * The endio routine for reading: set the error, clear the bit and wake up
1850  * anyone waiting on the buffer.
1851  */
1852 static void read_endio(struct dm_buffer *b, blk_status_t status)
1853 {
1854 	b->read_error = status;
1855 
1856 	BUG_ON(!test_bit(B_READING, &b->state));
1857 
1858 	smp_mb__before_atomic();
1859 	clear_bit(B_READING, &b->state);
1860 	smp_mb__after_atomic();
1861 
1862 	wake_up_bit(&b->state, B_READING);
1863 }
1864 
1865 /*
1866  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1867  * functions is similar except that dm_bufio_new doesn't read the
1868  * buffer from the disk (assuming that the caller overwrites all the data
1869  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1870  */
1871 static void *new_read(struct dm_bufio_client *c, sector_t block,
1872 		      enum new_flag nf, struct dm_buffer **bp,
1873 		      unsigned short ioprio)
1874 {
1875 	struct buffer_tree *tree;
1876 	int need_submit = 0;
1877 	struct dm_buffer *b;
1878 
1879 	LIST_HEAD(write_list);
1880 
1881 	*bp = NULL;
1882 
1883 	/*
1884 	 * Fast path, hopefully the block is already in the cache.  No need
1885 	 * to get the client lock for this.
1886 	 */
1887 	tree = cache_get_tree(&c->cache, block);
1888 	b = cache_get(&c->cache, tree, block);
1889 	if (b) {
1890 		if (nf == NF_PREFETCH) {
1891 			cache_put_and_wake(c, tree, b);
1892 			return NULL;
1893 		}
1894 
1895 		/*
1896 		 * Note: it is essential that we don't wait for the buffer to be
1897 		 * read if dm_bufio_get function is used. Both dm_bufio_get and
1898 		 * dm_bufio_prefetch can be used in the driver request routine.
1899 		 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1900 		 * the same buffer, it would deadlock if we waited.
1901 		 */
1902 		if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1903 			cache_put_and_wake(c, tree, b);
1904 			return NULL;
1905 		}
1906 	}
1907 
1908 	if (!b) {
1909 		if (nf == NF_GET)
1910 			return NULL;
1911 
1912 		dm_bufio_lock(c);
1913 		b = __bufio_new(c, tree, block, nf, &need_submit, &write_list);
1914 		dm_bufio_unlock(c);
1915 	}
1916 
1917 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1918 	if (b && (atomic_read(&b->hold_count) == 1))
1919 		buffer_record_stack(b);
1920 #endif
1921 
1922 	__flush_write_list(&write_list);
1923 
1924 	if (!b)
1925 		return NULL;
1926 
1927 	if (need_submit)
1928 		submit_io(b, REQ_OP_READ, ioprio, read_endio);
1929 
1930 	if (nf != NF_GET)	/* we already tested this condition above */
1931 		wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1932 
1933 	if (b->read_error) {
1934 		int error = blk_status_to_errno(b->read_error);
1935 
1936 		dm_bufio_release(b);
1937 
1938 		return ERR_PTR(error);
1939 	}
1940 
1941 	*bp = b;
1942 
1943 	return b->data;
1944 }
1945 
1946 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1947 		   struct dm_buffer **bp)
1948 {
1949 	return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT);
1950 }
1951 EXPORT_SYMBOL_GPL(dm_bufio_get);
1952 
1953 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1954 			struct dm_buffer **bp, unsigned short ioprio)
1955 {
1956 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1957 		return ERR_PTR(-EINVAL);
1958 
1959 	return new_read(c, block, NF_READ, bp, ioprio);
1960 }
1961 
1962 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1963 		    struct dm_buffer **bp)
1964 {
1965 	return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT);
1966 }
1967 EXPORT_SYMBOL_GPL(dm_bufio_read);
1968 
1969 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block,
1970 				struct dm_buffer **bp, unsigned short ioprio)
1971 {
1972 	return __dm_bufio_read(c, block, bp, ioprio);
1973 }
1974 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio);
1975 
1976 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1977 		   struct dm_buffer **bp)
1978 {
1979 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1980 		return ERR_PTR(-EINVAL);
1981 
1982 	return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT);
1983 }
1984 EXPORT_SYMBOL_GPL(dm_bufio_new);
1985 
1986 static void __dm_bufio_prefetch(struct dm_bufio_client *c,
1987 			sector_t block, unsigned int n_blocks,
1988 			unsigned short ioprio)
1989 {
1990 	struct blk_plug plug;
1991 
1992 	LIST_HEAD(write_list);
1993 
1994 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1995 		return; /* should never happen */
1996 
1997 	blk_start_plug(&plug);
1998 
1999 	for (; n_blocks--; block++) {
2000 		struct buffer_tree *tree;
2001 		struct dm_buffer *b;
2002 		int need_submit;
2003 
2004 		tree = cache_get_tree(&c->cache, block);
2005 		b = cache_get(&c->cache, tree, block);
2006 		if (b) {
2007 			/* already in cache */
2008 			cache_put_and_wake(c, tree, b);
2009 			continue;
2010 		}
2011 
2012 		dm_bufio_lock(c);
2013 		b = __bufio_new(c, tree, block, NF_PREFETCH, &need_submit,
2014 				&write_list);
2015 		if (unlikely(!list_empty(&write_list))) {
2016 			dm_bufio_unlock(c);
2017 			blk_finish_plug(&plug);
2018 			__flush_write_list(&write_list);
2019 			blk_start_plug(&plug);
2020 			dm_bufio_lock(c);
2021 		}
2022 		if (unlikely(b != NULL)) {
2023 			dm_bufio_unlock(c);
2024 
2025 			if (need_submit)
2026 				submit_io(b, REQ_OP_READ, ioprio, read_endio);
2027 			dm_bufio_release(b);
2028 
2029 			cond_resched();
2030 
2031 			if (!n_blocks)
2032 				goto flush_plug;
2033 			dm_bufio_lock(c);
2034 		}
2035 		dm_bufio_unlock(c);
2036 	}
2037 
2038 flush_plug:
2039 	blk_finish_plug(&plug);
2040 }
2041 
2042 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks)
2043 {
2044 	return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT);
2045 }
2046 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2047 
2048 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block,
2049 				unsigned int n_blocks, unsigned short ioprio)
2050 {
2051 	return __dm_bufio_prefetch(c, block, n_blocks, ioprio);
2052 }
2053 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio);
2054 
2055 void dm_bufio_release(struct dm_buffer *b)
2056 {
2057 	struct dm_bufio_client *c = b->c;
2058 	struct buffer_tree *tree = cache_get_tree(&c->cache, b->block);
2059 
2060 	/*
2061 	 * If there were errors on the buffer, and the buffer is not
2062 	 * to be written, free the buffer. There is no point in caching
2063 	 * invalid buffer.
2064 	 */
2065 	if ((b->read_error || b->write_error) &&
2066 	    !test_bit_acquire(B_READING, &b->state) &&
2067 	    !test_bit(B_WRITING, &b->state) &&
2068 	    !test_bit(B_DIRTY, &b->state)) {
2069 		dm_bufio_lock(c);
2070 
2071 		/* cache remove can fail if there are other holders */
2072 		if (cache_remove(&c->cache, tree, b)) {
2073 			__free_buffer_wake(b);
2074 			dm_bufio_unlock(c);
2075 			return;
2076 		}
2077 
2078 		dm_bufio_unlock(c);
2079 	}
2080 
2081 	cache_put_and_wake(c, tree, b);
2082 }
2083 EXPORT_SYMBOL_GPL(dm_bufio_release);
2084 
2085 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2086 					unsigned int start, unsigned int end)
2087 {
2088 	struct dm_bufio_client *c = b->c;
2089 
2090 	BUG_ON(start >= end);
2091 	BUG_ON(end > b->c->block_size);
2092 
2093 	dm_bufio_lock(c);
2094 
2095 	BUG_ON(test_bit(B_READING, &b->state));
2096 
2097 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
2098 		b->dirty_start = start;
2099 		b->dirty_end = end;
2100 		cache_mark(&c->cache, cache_get_tree(&c->cache, b->block), b,
2101 			   LIST_DIRTY);
2102 	} else {
2103 		if (start < b->dirty_start)
2104 			b->dirty_start = start;
2105 		if (end > b->dirty_end)
2106 			b->dirty_end = end;
2107 	}
2108 
2109 	dm_bufio_unlock(c);
2110 }
2111 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2112 
2113 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2114 {
2115 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2116 }
2117 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2118 
2119 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2120 {
2121 	LIST_HEAD(write_list);
2122 
2123 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2124 		return; /* should never happen */
2125 
2126 	dm_bufio_lock(c);
2127 	__write_dirty_buffers_async(c, 0, &write_list);
2128 	dm_bufio_unlock(c);
2129 	__flush_write_list(&write_list);
2130 }
2131 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2132 
2133 /*
2134  * For performance, it is essential that the buffers are written asynchronously
2135  * and simultaneously (so that the block layer can merge the writes) and then
2136  * waited upon.
2137  *
2138  * Finally, we flush hardware disk cache.
2139  */
2140 static bool is_writing(struct lru_entry *e, void *context)
2141 {
2142 	struct dm_buffer *b = le_to_buffer(e);
2143 
2144 	return test_bit(B_WRITING, &b->state);
2145 }
2146 
2147 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2148 {
2149 	int a, f;
2150 	unsigned long nr_buffers;
2151 	struct lru_entry *e;
2152 	struct lru_iter it;
2153 
2154 	LIST_HEAD(write_list);
2155 
2156 	dm_bufio_lock(c);
2157 	__write_dirty_buffers_async(c, 0, &write_list);
2158 	dm_bufio_unlock(c);
2159 	__flush_write_list(&write_list);
2160 	dm_bufio_lock(c);
2161 
2162 	nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2163 	lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2164 	while ((e = lru_iter_next(&it, is_writing, c))) {
2165 		struct dm_buffer *b = le_to_buffer(e);
2166 		struct buffer_tree *tree;
2167 		__cache_inc_buffer(b);
2168 
2169 		BUG_ON(test_bit(B_READING, &b->state));
2170 
2171 		if (nr_buffers) {
2172 			nr_buffers--;
2173 			dm_bufio_unlock(c);
2174 			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2175 			dm_bufio_lock(c);
2176 		} else {
2177 			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2178 		}
2179 
2180 		tree = cache_get_tree(&c->cache, b->block);
2181 
2182 		if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2183 			cache_mark(&c->cache, tree, b, LIST_CLEAN);
2184 
2185 		cache_put_and_wake(c, tree, b);
2186 
2187 		cond_resched();
2188 	}
2189 	lru_iter_end(&it);
2190 
2191 	wake_up(&c->free_buffer_wait);
2192 	dm_bufio_unlock(c);
2193 
2194 	a = xchg(&c->async_write_error, 0);
2195 	f = dm_bufio_issue_flush(c);
2196 	if (a)
2197 		return a;
2198 
2199 	return f;
2200 }
2201 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2202 
2203 /*
2204  * Use dm-io to send an empty barrier to flush the device.
2205  */
2206 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2207 {
2208 	struct dm_io_request io_req = {
2209 		.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2210 		.mem.type = DM_IO_KMEM,
2211 		.mem.ptr.addr = NULL,
2212 		.client = c->dm_io,
2213 	};
2214 	struct dm_io_region io_reg = {
2215 		.bdev = c->bdev,
2216 		.sector = 0,
2217 		.count = 0,
2218 	};
2219 
2220 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2221 		return -EINVAL;
2222 
2223 	return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2224 }
2225 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2226 
2227 /*
2228  * Use dm-io to send a discard request to flush the device.
2229  */
2230 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2231 {
2232 	struct dm_io_request io_req = {
2233 		.bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2234 		.mem.type = DM_IO_KMEM,
2235 		.mem.ptr.addr = NULL,
2236 		.client = c->dm_io,
2237 	};
2238 	struct dm_io_region io_reg = {
2239 		.bdev = c->bdev,
2240 		.sector = block_to_sector(c, block),
2241 		.count = block_to_sector(c, count),
2242 	};
2243 
2244 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2245 		return -EINVAL; /* discards are optional */
2246 
2247 	return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2248 }
2249 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2250 
2251 static void forget_buffer(struct dm_bufio_client *c, sector_t block)
2252 {
2253 	struct buffer_tree *tree = cache_get_tree(&c->cache, block);
2254 	struct dm_buffer *b;
2255 
2256 	b = cache_get(&c->cache, tree, block);
2257 	if (b) {
2258 		if (likely(!smp_load_acquire(&b->state))) {
2259 			if (cache_remove(&c->cache, tree, b))
2260 				__free_buffer_wake(b);
2261 			else
2262 				cache_put_and_wake(c, tree, b);
2263 		} else {
2264 			cache_put_and_wake(c, tree, b);
2265 		}
2266 	}
2267 }
2268 
2269 /*
2270  * Free the given buffer.
2271  *
2272  * This is just a hint, if the buffer is in use or dirty, this function
2273  * does nothing.
2274  */
2275 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2276 {
2277 	dm_bufio_lock(c);
2278 	forget_buffer(c, block);
2279 	dm_bufio_unlock(c);
2280 }
2281 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2282 
2283 static enum evict_result idle(struct dm_buffer *b, void *context)
2284 {
2285 	return b->state ? ER_DONT_EVICT : ER_EVICT;
2286 }
2287 
2288 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2289 {
2290 	dm_bufio_lock(c);
2291 	cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2292 	dm_bufio_unlock(c);
2293 }
2294 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2295 
2296 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2297 {
2298 	c->minimum_buffers = n;
2299 }
2300 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2301 
2302 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2303 {
2304 	return c->block_size;
2305 }
2306 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2307 
2308 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2309 {
2310 	sector_t s = bdev_nr_sectors(c->bdev);
2311 
2312 	if (s >= c->start)
2313 		s -= c->start;
2314 	else
2315 		s = 0;
2316 	if (likely(c->sectors_per_block_bits >= 0))
2317 		s >>= c->sectors_per_block_bits;
2318 	else
2319 		sector_div(s, c->block_size >> SECTOR_SHIFT);
2320 	return s;
2321 }
2322 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2323 
2324 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2325 {
2326 	return c->dm_io;
2327 }
2328 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2329 
2330 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2331 {
2332 	return b->block;
2333 }
2334 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2335 
2336 void *dm_bufio_get_block_data(struct dm_buffer *b)
2337 {
2338 	return b->data;
2339 }
2340 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2341 
2342 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2343 {
2344 	return b + 1;
2345 }
2346 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2347 
2348 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2349 {
2350 	return b->c;
2351 }
2352 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2353 
2354 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2355 {
2356 	bool *warned = context;
2357 
2358 	WARN_ON(!(*warned));
2359 	*warned = true;
2360 	DMERR("leaked buffer %llx, hold count %u, list %d",
2361 	      (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2362 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2363 	stack_trace_print(b->stack_entries, b->stack_len, 1);
2364 	/* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2365 	atomic_set(&b->hold_count, 0);
2366 #endif
2367 	return IT_NEXT;
2368 }
2369 
2370 static void drop_buffers(struct dm_bufio_client *c)
2371 {
2372 	int i;
2373 	struct dm_buffer *b;
2374 
2375 	if (WARN_ON(dm_bufio_in_request()))
2376 		return; /* should never happen */
2377 
2378 	/*
2379 	 * An optimization so that the buffers are not written one-by-one.
2380 	 */
2381 	dm_bufio_write_dirty_buffers_async(c);
2382 
2383 	dm_bufio_lock(c);
2384 
2385 	while ((b = __get_unclaimed_buffer(c)))
2386 		__free_buffer_wake(b);
2387 
2388 	for (i = 0; i < LIST_SIZE; i++) {
2389 		bool warned = false;
2390 
2391 		cache_iterate(&c->cache, i, warn_leak, &warned);
2392 	}
2393 
2394 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2395 	while ((b = __get_unclaimed_buffer(c)))
2396 		__free_buffer_wake(b);
2397 #endif
2398 
2399 	for (i = 0; i < LIST_SIZE; i++)
2400 		WARN_ON(cache_count(&c->cache, i));
2401 
2402 	dm_bufio_unlock(c);
2403 }
2404 
2405 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2406 {
2407 	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2408 
2409 	if (likely(c->sectors_per_block_bits >= 0))
2410 		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2411 	else
2412 		retain_bytes /= c->block_size;
2413 
2414 	return retain_bytes;
2415 }
2416 
2417 static void __scan(struct dm_bufio_client *c)
2418 {
2419 	int l;
2420 	struct dm_buffer *b;
2421 	unsigned long freed = 0;
2422 	unsigned long retain_target = get_retain_buffers(c);
2423 	unsigned long count = cache_total(&c->cache);
2424 
2425 	for (l = 0; l < LIST_SIZE; l++) {
2426 		while (true) {
2427 			if (count - freed <= retain_target)
2428 				atomic_long_set(&c->need_shrink, 0);
2429 			if (!atomic_long_read(&c->need_shrink))
2430 				break;
2431 
2432 			b = cache_evict(&c->cache, l,
2433 					l == LIST_CLEAN ? is_clean : is_dirty, c);
2434 			if (!b)
2435 				break;
2436 
2437 			__make_buffer_clean(b);
2438 			__free_buffer_wake(b);
2439 
2440 			atomic_long_dec(&c->need_shrink);
2441 			freed++;
2442 
2443 			if (unlikely(freed % SCAN_RESCHED_CYCLE == 0)) {
2444 				dm_bufio_unlock(c);
2445 				cond_resched();
2446 				dm_bufio_lock(c);
2447 			}
2448 		}
2449 	}
2450 }
2451 
2452 static void shrink_work(struct work_struct *w)
2453 {
2454 	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2455 
2456 	dm_bufio_lock(c);
2457 	__scan(c);
2458 	dm_bufio_unlock(c);
2459 }
2460 
2461 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2462 {
2463 	struct dm_bufio_client *c;
2464 
2465 	c = shrink->private_data;
2466 	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2467 	queue_work(dm_bufio_wq, &c->shrink_work);
2468 
2469 	return sc->nr_to_scan;
2470 }
2471 
2472 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2473 {
2474 	struct dm_bufio_client *c = shrink->private_data;
2475 	unsigned long count = cache_total(&c->cache);
2476 	unsigned long retain_target = get_retain_buffers(c);
2477 	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2478 
2479 	if (unlikely(count < retain_target))
2480 		count = 0;
2481 	else
2482 		count -= retain_target;
2483 
2484 	if (unlikely(count < queued_for_cleanup))
2485 		count = 0;
2486 	else
2487 		count -= queued_for_cleanup;
2488 
2489 	return count;
2490 }
2491 
2492 /*
2493  * Create the buffering interface
2494  */
2495 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2496 					       unsigned int reserved_buffers, unsigned int aux_size,
2497 					       void (*alloc_callback)(struct dm_buffer *),
2498 					       void (*write_callback)(struct dm_buffer *),
2499 					       unsigned int flags)
2500 {
2501 	int r;
2502 	unsigned int num_locks;
2503 	struct dm_bufio_client *c;
2504 	char slab_name[64];
2505 	static atomic_t seqno = ATOMIC_INIT(0);
2506 
2507 	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2508 		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2509 		r = -EINVAL;
2510 		goto bad_client;
2511 	}
2512 
2513 	num_locks = dm_num_hash_locks();
2514 	c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2515 	if (!c) {
2516 		r = -ENOMEM;
2517 		goto bad_client;
2518 	}
2519 	cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2520 
2521 	c->bdev = bdev;
2522 	c->block_size = block_size;
2523 	if (is_power_of_2(block_size))
2524 		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2525 	else
2526 		c->sectors_per_block_bits = -1;
2527 
2528 	c->alloc_callback = alloc_callback;
2529 	c->write_callback = write_callback;
2530 
2531 	if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2532 		c->no_sleep = true;
2533 		static_branch_inc(&no_sleep_enabled);
2534 	}
2535 
2536 	mutex_init(&c->lock);
2537 	spin_lock_init(&c->spinlock);
2538 	INIT_LIST_HEAD(&c->reserved_buffers);
2539 	c->need_reserved_buffers = reserved_buffers;
2540 
2541 	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2542 
2543 	init_waitqueue_head(&c->free_buffer_wait);
2544 	c->async_write_error = 0;
2545 
2546 	c->dm_io = dm_io_client_create();
2547 	if (IS_ERR(c->dm_io)) {
2548 		r = PTR_ERR(c->dm_io);
2549 		goto bad_dm_io;
2550 	}
2551 
2552 	if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) {
2553 		unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2554 
2555 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u",
2556 					block_size, atomic_inc_return(&seqno));
2557 		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2558 						  SLAB_RECLAIM_ACCOUNT, NULL);
2559 		if (!c->slab_cache) {
2560 			r = -ENOMEM;
2561 			goto bad;
2562 		}
2563 	}
2564 	if (aux_size)
2565 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u",
2566 					aux_size, atomic_inc_return(&seqno));
2567 	else
2568 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u",
2569 					atomic_inc_return(&seqno));
2570 	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2571 					   0, SLAB_RECLAIM_ACCOUNT, NULL);
2572 	if (!c->slab_buffer) {
2573 		r = -ENOMEM;
2574 		goto bad;
2575 	}
2576 
2577 	while (c->need_reserved_buffers) {
2578 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2579 
2580 		if (!b) {
2581 			r = -ENOMEM;
2582 			goto bad;
2583 		}
2584 		__free_buffer_wake(b);
2585 	}
2586 
2587 	INIT_WORK(&c->shrink_work, shrink_work);
2588 	atomic_long_set(&c->need_shrink, 0);
2589 
2590 	c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
2591 				     MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2592 	if (!c->shrinker) {
2593 		r = -ENOMEM;
2594 		goto bad;
2595 	}
2596 
2597 	c->shrinker->count_objects = dm_bufio_shrink_count;
2598 	c->shrinker->scan_objects = dm_bufio_shrink_scan;
2599 	c->shrinker->seeks = 1;
2600 	c->shrinker->batch = 0;
2601 	c->shrinker->private_data = c;
2602 
2603 	shrinker_register(c->shrinker);
2604 
2605 	mutex_lock(&dm_bufio_clients_lock);
2606 	dm_bufio_client_count++;
2607 	list_add(&c->client_list, &dm_bufio_all_clients);
2608 	__cache_size_refresh();
2609 	mutex_unlock(&dm_bufio_clients_lock);
2610 
2611 	return c;
2612 
2613 bad:
2614 	while (!list_empty(&c->reserved_buffers)) {
2615 		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2616 
2617 		list_del(&b->lru.list);
2618 		free_buffer(b);
2619 	}
2620 	kmem_cache_destroy(c->slab_cache);
2621 	kmem_cache_destroy(c->slab_buffer);
2622 	dm_io_client_destroy(c->dm_io);
2623 bad_dm_io:
2624 	mutex_destroy(&c->lock);
2625 	if (c->no_sleep)
2626 		static_branch_dec(&no_sleep_enabled);
2627 	kfree(c);
2628 bad_client:
2629 	return ERR_PTR(r);
2630 }
2631 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2632 
2633 /*
2634  * Free the buffering interface.
2635  * It is required that there are no references on any buffers.
2636  */
2637 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2638 {
2639 	unsigned int i;
2640 
2641 	drop_buffers(c);
2642 
2643 	shrinker_free(c->shrinker);
2644 	flush_work(&c->shrink_work);
2645 
2646 	mutex_lock(&dm_bufio_clients_lock);
2647 
2648 	list_del(&c->client_list);
2649 	dm_bufio_client_count--;
2650 	__cache_size_refresh();
2651 
2652 	mutex_unlock(&dm_bufio_clients_lock);
2653 
2654 	WARN_ON(c->need_reserved_buffers);
2655 
2656 	while (!list_empty(&c->reserved_buffers)) {
2657 		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2658 
2659 		list_del(&b->lru.list);
2660 		free_buffer(b);
2661 	}
2662 
2663 	for (i = 0; i < LIST_SIZE; i++)
2664 		if (cache_count(&c->cache, i))
2665 			DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2666 
2667 	for (i = 0; i < LIST_SIZE; i++)
2668 		WARN_ON(cache_count(&c->cache, i));
2669 
2670 	cache_destroy(&c->cache);
2671 	kmem_cache_destroy(c->slab_cache);
2672 	kmem_cache_destroy(c->slab_buffer);
2673 	dm_io_client_destroy(c->dm_io);
2674 	mutex_destroy(&c->lock);
2675 	if (c->no_sleep)
2676 		static_branch_dec(&no_sleep_enabled);
2677 	kfree(c);
2678 }
2679 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2680 
2681 void dm_bufio_client_reset(struct dm_bufio_client *c)
2682 {
2683 	drop_buffers(c);
2684 	flush_work(&c->shrink_work);
2685 }
2686 EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2687 
2688 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2689 {
2690 	c->start = start;
2691 }
2692 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2693 
2694 /*--------------------------------------------------------------*/
2695 
2696 /*
2697  * Global cleanup tries to evict the oldest buffers from across _all_
2698  * the clients.  It does this by repeatedly evicting a few buffers from
2699  * the client that holds the oldest buffer.  It's approximate, but hopefully
2700  * good enough.
2701  */
2702 static struct dm_bufio_client *__pop_client(void)
2703 {
2704 	struct list_head *h;
2705 
2706 	if (list_empty(&dm_bufio_all_clients))
2707 		return NULL;
2708 
2709 	h = dm_bufio_all_clients.next;
2710 	list_del(h);
2711 	return container_of(h, struct dm_bufio_client, client_list);
2712 }
2713 
2714 /*
2715  * Inserts the client in the global client list based on its
2716  * 'oldest_buffer' field.
2717  */
2718 static void __insert_client(struct dm_bufio_client *new_client)
2719 {
2720 	struct dm_bufio_client *c;
2721 	struct list_head *h = dm_bufio_all_clients.next;
2722 
2723 	while (h != &dm_bufio_all_clients) {
2724 		c = container_of(h, struct dm_bufio_client, client_list);
2725 		if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2726 			break;
2727 		h = h->next;
2728 	}
2729 
2730 	list_add_tail(&new_client->client_list, h);
2731 }
2732 
2733 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2734 {
2735 	/* In no-sleep mode, we cannot wait on IO. */
2736 	if (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep) {
2737 		if (test_bit_acquire(B_READING, &b->state) ||
2738 		    test_bit(B_WRITING, &b->state) ||
2739 		    test_bit(B_DIRTY, &b->state))
2740 			return ER_DONT_EVICT;
2741 	}
2742 	return ER_EVICT;
2743 }
2744 
2745 static unsigned long __evict_a_few(unsigned long nr_buffers)
2746 {
2747 	struct dm_bufio_client *c;
2748 	unsigned long oldest_buffer = jiffies;
2749 	unsigned long last_accessed;
2750 	unsigned long count;
2751 	struct dm_buffer *b;
2752 
2753 	c = __pop_client();
2754 	if (!c)
2755 		return 0;
2756 
2757 	dm_bufio_lock(c);
2758 
2759 	for (count = 0; count < nr_buffers; count++) {
2760 		b = cache_evict(&c->cache, LIST_CLEAN, select_for_evict, NULL);
2761 		if (!b)
2762 			break;
2763 
2764 		last_accessed = READ_ONCE(b->last_accessed);
2765 		if (time_after_eq(oldest_buffer, last_accessed))
2766 			oldest_buffer = last_accessed;
2767 
2768 		__make_buffer_clean(b);
2769 		__free_buffer_wake(b);
2770 
2771 		if (need_resched()) {
2772 			dm_bufio_unlock(c);
2773 			cond_resched();
2774 			dm_bufio_lock(c);
2775 		}
2776 	}
2777 
2778 	dm_bufio_unlock(c);
2779 
2780 	if (count)
2781 		c->oldest_buffer = oldest_buffer;
2782 	__insert_client(c);
2783 
2784 	return count;
2785 }
2786 
2787 static void check_watermarks(void)
2788 {
2789 	LIST_HEAD(write_list);
2790 	struct dm_bufio_client *c;
2791 
2792 	mutex_lock(&dm_bufio_clients_lock);
2793 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2794 		dm_bufio_lock(c);
2795 		__check_watermark(c, &write_list);
2796 		dm_bufio_unlock(c);
2797 	}
2798 	mutex_unlock(&dm_bufio_clients_lock);
2799 
2800 	__flush_write_list(&write_list);
2801 }
2802 
2803 static void evict_old(void)
2804 {
2805 	unsigned long threshold = dm_bufio_cache_size -
2806 		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2807 
2808 	mutex_lock(&dm_bufio_clients_lock);
2809 	while (dm_bufio_current_allocated > threshold) {
2810 		if (!__evict_a_few(64))
2811 			break;
2812 		cond_resched();
2813 	}
2814 	mutex_unlock(&dm_bufio_clients_lock);
2815 }
2816 
2817 static void do_global_cleanup(struct work_struct *w)
2818 {
2819 	check_watermarks();
2820 	evict_old();
2821 }
2822 
2823 /*
2824  *--------------------------------------------------------------
2825  * Module setup
2826  *--------------------------------------------------------------
2827  */
2828 
2829 /*
2830  * This is called only once for the whole dm_bufio module.
2831  * It initializes memory limit.
2832  */
2833 static int __init dm_bufio_init(void)
2834 {
2835 	__u64 mem;
2836 
2837 	dm_bufio_allocated_kmem_cache = 0;
2838 	dm_bufio_allocated_kmalloc = 0;
2839 	dm_bufio_allocated_get_free_pages = 0;
2840 	dm_bufio_allocated_vmalloc = 0;
2841 	dm_bufio_current_allocated = 0;
2842 
2843 	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2844 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2845 
2846 	if (mem > ULONG_MAX)
2847 		mem = ULONG_MAX;
2848 
2849 #ifdef CONFIG_MMU
2850 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2851 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2852 #endif
2853 
2854 	dm_bufio_default_cache_size = mem;
2855 
2856 	mutex_lock(&dm_bufio_clients_lock);
2857 	__cache_size_refresh();
2858 	mutex_unlock(&dm_bufio_clients_lock);
2859 
2860 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache",
2861 				      WQ_MEM_RECLAIM | WQ_PERCPU, 0);
2862 	if (!dm_bufio_wq)
2863 		return -ENOMEM;
2864 
2865 	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2866 
2867 	return 0;
2868 }
2869 
2870 /*
2871  * This is called once when unloading the dm_bufio module.
2872  */
2873 static void __exit dm_bufio_exit(void)
2874 {
2875 	int bug = 0;
2876 
2877 	destroy_workqueue(dm_bufio_wq);
2878 
2879 	if (dm_bufio_client_count) {
2880 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2881 			__func__, dm_bufio_client_count);
2882 		bug = 1;
2883 	}
2884 
2885 	if (dm_bufio_current_allocated) {
2886 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2887 			__func__, dm_bufio_current_allocated);
2888 		bug = 1;
2889 	}
2890 
2891 	if (dm_bufio_allocated_get_free_pages) {
2892 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2893 		       __func__, dm_bufio_allocated_get_free_pages);
2894 		bug = 1;
2895 	}
2896 
2897 	if (dm_bufio_allocated_vmalloc) {
2898 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2899 		       __func__, dm_bufio_allocated_vmalloc);
2900 		bug = 1;
2901 	}
2902 
2903 	WARN_ON(bug); /* leaks are not worth crashing the system */
2904 }
2905 
2906 module_init(dm_bufio_init)
2907 module_exit(dm_bufio_exit)
2908 
2909 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2910 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2911 
2912 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2913 MODULE_PARM_DESC(max_age_seconds, "No longer does anything");
2914 
2915 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2916 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2917 
2918 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
2919 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2920 
2921 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
2922 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2923 
2924 module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444);
2925 MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc");
2926 
2927 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
2928 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2929 
2930 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
2931 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2932 
2933 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
2934 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2935 
2936 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>");
2937 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2938 MODULE_LICENSE("GPL");
2939