1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009-2011 Red Hat, Inc. 4 * 5 * Author: Mikulas Patocka <mpatocka@redhat.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/dm-bufio.h> 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/slab.h> 15 #include <linux/sched/mm.h> 16 #include <linux/jiffies.h> 17 #include <linux/vmalloc.h> 18 #include <linux/shrinker.h> 19 #include <linux/module.h> 20 #include <linux/rbtree.h> 21 #include <linux/stacktrace.h> 22 #include <linux/jump_label.h> 23 24 #include "dm.h" 25 26 #define DM_MSG_PREFIX "bufio" 27 28 /* 29 * Memory management policy: 30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 34 * dirty buffers. 35 */ 36 #define DM_BUFIO_MIN_BUFFERS 8 37 38 #define DM_BUFIO_MEMORY_PERCENT 2 39 #define DM_BUFIO_VMALLOC_PERCENT 25 40 #define DM_BUFIO_WRITEBACK_RATIO 3 41 #define DM_BUFIO_LOW_WATERMARK_RATIO 16 42 43 /* 44 * Check buffer ages in this interval (seconds) 45 */ 46 #define DM_BUFIO_WORK_TIMER_SECS 30 47 48 /* 49 * Free buffers when they are older than this (seconds) 50 */ 51 #define DM_BUFIO_DEFAULT_AGE_SECS 300 52 53 /* 54 * The nr of bytes of cached data to keep around. 55 */ 56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 57 58 /* 59 * Align buffer writes to this boundary. 60 * Tests show that SSDs have the highest IOPS when using 4k writes. 61 */ 62 #define DM_BUFIO_WRITE_ALIGN 4096 63 64 /* 65 * dm_buffer->list_mode 66 */ 67 #define LIST_CLEAN 0 68 #define LIST_DIRTY 1 69 #define LIST_SIZE 2 70 71 /*--------------------------------------------------------------*/ 72 73 /* 74 * Rather than use an LRU list, we use a clock algorithm where entries 75 * are held in a circular list. When an entry is 'hit' a reference bit 76 * is set. The least recently used entry is approximated by running a 77 * cursor around the list selecting unreferenced entries. Referenced 78 * entries have their reference bit cleared as the cursor passes them. 79 */ 80 struct lru_entry { 81 struct list_head list; 82 atomic_t referenced; 83 }; 84 85 struct lru_iter { 86 struct lru *lru; 87 struct list_head list; 88 struct lru_entry *stop; 89 struct lru_entry *e; 90 }; 91 92 struct lru { 93 struct list_head *cursor; 94 unsigned long count; 95 96 struct list_head iterators; 97 }; 98 99 /*--------------*/ 100 101 static void lru_init(struct lru *lru) 102 { 103 lru->cursor = NULL; 104 lru->count = 0; 105 INIT_LIST_HEAD(&lru->iterators); 106 } 107 108 static void lru_destroy(struct lru *lru) 109 { 110 WARN_ON_ONCE(lru->cursor); 111 WARN_ON_ONCE(!list_empty(&lru->iterators)); 112 } 113 114 /* 115 * Insert a new entry into the lru. 116 */ 117 static void lru_insert(struct lru *lru, struct lru_entry *le) 118 { 119 /* 120 * Don't be tempted to set to 1, makes the lru aspect 121 * perform poorly. 122 */ 123 atomic_set(&le->referenced, 0); 124 125 if (lru->cursor) { 126 list_add_tail(&le->list, lru->cursor); 127 } else { 128 INIT_LIST_HEAD(&le->list); 129 lru->cursor = &le->list; 130 } 131 lru->count++; 132 } 133 134 /*--------------*/ 135 136 /* 137 * Convert a list_head pointer to an lru_entry pointer. 138 */ 139 static inline struct lru_entry *to_le(struct list_head *l) 140 { 141 return container_of(l, struct lru_entry, list); 142 } 143 144 /* 145 * Initialize an lru_iter and add it to the list of cursors in the lru. 146 */ 147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it) 148 { 149 it->lru = lru; 150 it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL; 151 it->e = lru->cursor ? to_le(lru->cursor) : NULL; 152 list_add(&it->list, &lru->iterators); 153 } 154 155 /* 156 * Remove an lru_iter from the list of cursors in the lru. 157 */ 158 static inline void lru_iter_end(struct lru_iter *it) 159 { 160 list_del(&it->list); 161 } 162 163 /* Predicate function type to be used with lru_iter_next */ 164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context); 165 166 /* 167 * Advance the cursor to the next entry that passes the 168 * predicate, and return that entry. Returns NULL if the 169 * iteration is complete. 170 */ 171 static struct lru_entry *lru_iter_next(struct lru_iter *it, 172 iter_predicate pred, void *context) 173 { 174 struct lru_entry *e; 175 176 while (it->e) { 177 e = it->e; 178 179 /* advance the cursor */ 180 if (it->e == it->stop) 181 it->e = NULL; 182 else 183 it->e = to_le(it->e->list.next); 184 185 if (pred(e, context)) 186 return e; 187 } 188 189 return NULL; 190 } 191 192 /* 193 * Invalidate a specific lru_entry and update all cursors in 194 * the lru accordingly. 195 */ 196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e) 197 { 198 struct lru_iter *it; 199 200 list_for_each_entry(it, &lru->iterators, list) { 201 /* Move c->e forwards if necc. */ 202 if (it->e == e) { 203 it->e = to_le(it->e->list.next); 204 if (it->e == e) 205 it->e = NULL; 206 } 207 208 /* Move it->stop backwards if necc. */ 209 if (it->stop == e) { 210 it->stop = to_le(it->stop->list.prev); 211 if (it->stop == e) 212 it->stop = NULL; 213 } 214 } 215 } 216 217 /*--------------*/ 218 219 /* 220 * Remove a specific entry from the lru. 221 */ 222 static void lru_remove(struct lru *lru, struct lru_entry *le) 223 { 224 lru_iter_invalidate(lru, le); 225 if (lru->count == 1) { 226 lru->cursor = NULL; 227 } else { 228 if (lru->cursor == &le->list) 229 lru->cursor = lru->cursor->next; 230 list_del(&le->list); 231 } 232 lru->count--; 233 } 234 235 /* 236 * Mark as referenced. 237 */ 238 static inline void lru_reference(struct lru_entry *le) 239 { 240 atomic_set(&le->referenced, 1); 241 } 242 243 /*--------------*/ 244 245 /* 246 * Remove the least recently used entry (approx), that passes the predicate. 247 * Returns NULL on failure. 248 */ 249 enum evict_result { 250 ER_EVICT, 251 ER_DONT_EVICT, 252 ER_STOP, /* stop looking for something to evict */ 253 }; 254 255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context); 256 257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep) 258 { 259 unsigned long tested = 0; 260 struct list_head *h = lru->cursor; 261 struct lru_entry *le; 262 263 if (!h) 264 return NULL; 265 /* 266 * In the worst case we have to loop around twice. Once to clear 267 * the reference flags, and then again to discover the predicate 268 * fails for all entries. 269 */ 270 while (tested < lru->count) { 271 le = container_of(h, struct lru_entry, list); 272 273 if (atomic_read(&le->referenced)) { 274 atomic_set(&le->referenced, 0); 275 } else { 276 tested++; 277 switch (pred(le, context)) { 278 case ER_EVICT: 279 /* 280 * Adjust the cursor, so we start the next 281 * search from here. 282 */ 283 lru->cursor = le->list.next; 284 lru_remove(lru, le); 285 return le; 286 287 case ER_DONT_EVICT: 288 break; 289 290 case ER_STOP: 291 lru->cursor = le->list.next; 292 return NULL; 293 } 294 } 295 296 h = h->next; 297 298 if (!no_sleep) 299 cond_resched(); 300 } 301 302 return NULL; 303 } 304 305 /*--------------------------------------------------------------*/ 306 307 /* 308 * Buffer state bits. 309 */ 310 #define B_READING 0 311 #define B_WRITING 1 312 #define B_DIRTY 2 313 314 /* 315 * Describes how the block was allocated: 316 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 317 * See the comment at alloc_buffer_data. 318 */ 319 enum data_mode { 320 DATA_MODE_SLAB = 0, 321 DATA_MODE_GET_FREE_PAGES = 1, 322 DATA_MODE_VMALLOC = 2, 323 DATA_MODE_LIMIT = 3 324 }; 325 326 struct dm_buffer { 327 /* protected by the locks in dm_buffer_cache */ 328 struct rb_node node; 329 330 /* immutable, so don't need protecting */ 331 sector_t block; 332 void *data; 333 unsigned char data_mode; /* DATA_MODE_* */ 334 335 /* 336 * These two fields are used in isolation, so do not need 337 * a surrounding lock. 338 */ 339 atomic_t hold_count; 340 unsigned long last_accessed; 341 342 /* 343 * Everything else is protected by the mutex in 344 * dm_bufio_client 345 */ 346 unsigned long state; 347 struct lru_entry lru; 348 unsigned char list_mode; /* LIST_* */ 349 blk_status_t read_error; 350 blk_status_t write_error; 351 unsigned int dirty_start; 352 unsigned int dirty_end; 353 unsigned int write_start; 354 unsigned int write_end; 355 struct list_head write_list; 356 struct dm_bufio_client *c; 357 void (*end_io)(struct dm_buffer *b, blk_status_t bs); 358 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 359 #define MAX_STACK 10 360 unsigned int stack_len; 361 unsigned long stack_entries[MAX_STACK]; 362 #endif 363 }; 364 365 /*--------------------------------------------------------------*/ 366 367 /* 368 * The buffer cache manages buffers, particularly: 369 * - inc/dec of holder count 370 * - setting the last_accessed field 371 * - maintains clean/dirty state along with lru 372 * - selecting buffers that match predicates 373 * 374 * It does *not* handle: 375 * - allocation/freeing of buffers. 376 * - IO 377 * - Eviction or cache sizing. 378 * 379 * cache_get() and cache_put() are threadsafe, you do not need to 380 * protect these calls with a surrounding mutex. All the other 381 * methods are not threadsafe; they do use locking primitives, but 382 * only enough to ensure get/put are threadsafe. 383 */ 384 385 struct buffer_tree { 386 union { 387 struct rw_semaphore lock; 388 rwlock_t spinlock; 389 } u; 390 struct rb_root root; 391 } ____cacheline_aligned_in_smp; 392 393 struct dm_buffer_cache { 394 struct lru lru[LIST_SIZE]; 395 /* 396 * We spread entries across multiple trees to reduce contention 397 * on the locks. 398 */ 399 unsigned int num_locks; 400 bool no_sleep; 401 struct buffer_tree trees[]; 402 }; 403 404 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled); 405 406 static inline unsigned int cache_index(sector_t block, unsigned int num_locks) 407 { 408 return dm_hash_locks_index(block, num_locks); 409 } 410 411 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block) 412 { 413 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 414 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 415 else 416 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 417 } 418 419 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block) 420 { 421 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 422 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 423 else 424 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 425 } 426 427 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block) 428 { 429 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 430 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 431 else 432 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 433 } 434 435 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block) 436 { 437 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 438 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 439 else 440 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 441 } 442 443 /* 444 * Sometimes we want to repeatedly get and drop locks as part of an iteration. 445 * This struct helps avoid redundant drop and gets of the same lock. 446 */ 447 struct lock_history { 448 struct dm_buffer_cache *cache; 449 bool write; 450 unsigned int previous; 451 unsigned int no_previous; 452 }; 453 454 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write) 455 { 456 lh->cache = cache; 457 lh->write = write; 458 lh->no_previous = cache->num_locks; 459 lh->previous = lh->no_previous; 460 } 461 462 static void __lh_lock(struct lock_history *lh, unsigned int index) 463 { 464 if (lh->write) { 465 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 466 write_lock_bh(&lh->cache->trees[index].u.spinlock); 467 else 468 down_write(&lh->cache->trees[index].u.lock); 469 } else { 470 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 471 read_lock_bh(&lh->cache->trees[index].u.spinlock); 472 else 473 down_read(&lh->cache->trees[index].u.lock); 474 } 475 } 476 477 static void __lh_unlock(struct lock_history *lh, unsigned int index) 478 { 479 if (lh->write) { 480 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 481 write_unlock_bh(&lh->cache->trees[index].u.spinlock); 482 else 483 up_write(&lh->cache->trees[index].u.lock); 484 } else { 485 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 486 read_unlock_bh(&lh->cache->trees[index].u.spinlock); 487 else 488 up_read(&lh->cache->trees[index].u.lock); 489 } 490 } 491 492 /* 493 * Make sure you call this since it will unlock the final lock. 494 */ 495 static void lh_exit(struct lock_history *lh) 496 { 497 if (lh->previous != lh->no_previous) { 498 __lh_unlock(lh, lh->previous); 499 lh->previous = lh->no_previous; 500 } 501 } 502 503 /* 504 * Named 'next' because there is no corresponding 505 * 'up/unlock' call since it's done automatically. 506 */ 507 static void lh_next(struct lock_history *lh, sector_t b) 508 { 509 unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */ 510 511 if (lh->previous != lh->no_previous) { 512 if (lh->previous != index) { 513 __lh_unlock(lh, lh->previous); 514 __lh_lock(lh, index); 515 lh->previous = index; 516 } 517 } else { 518 __lh_lock(lh, index); 519 lh->previous = index; 520 } 521 } 522 523 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le) 524 { 525 return container_of(le, struct dm_buffer, lru); 526 } 527 528 static struct dm_buffer *list_to_buffer(struct list_head *l) 529 { 530 struct lru_entry *le = list_entry(l, struct lru_entry, list); 531 532 return le_to_buffer(le); 533 } 534 535 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep) 536 { 537 unsigned int i; 538 539 bc->num_locks = num_locks; 540 bc->no_sleep = no_sleep; 541 542 for (i = 0; i < bc->num_locks; i++) { 543 if (no_sleep) 544 rwlock_init(&bc->trees[i].u.spinlock); 545 else 546 init_rwsem(&bc->trees[i].u.lock); 547 bc->trees[i].root = RB_ROOT; 548 } 549 550 lru_init(&bc->lru[LIST_CLEAN]); 551 lru_init(&bc->lru[LIST_DIRTY]); 552 } 553 554 static void cache_destroy(struct dm_buffer_cache *bc) 555 { 556 unsigned int i; 557 558 for (i = 0; i < bc->num_locks; i++) 559 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root)); 560 561 lru_destroy(&bc->lru[LIST_CLEAN]); 562 lru_destroy(&bc->lru[LIST_DIRTY]); 563 } 564 565 /*--------------*/ 566 567 /* 568 * not threadsafe, or racey depending how you look at it 569 */ 570 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode) 571 { 572 return bc->lru[list_mode].count; 573 } 574 575 static inline unsigned long cache_total(struct dm_buffer_cache *bc) 576 { 577 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY); 578 } 579 580 /*--------------*/ 581 582 /* 583 * Gets a specific buffer, indexed by block. 584 * If the buffer is found then its holder count will be incremented and 585 * lru_reference will be called. 586 * 587 * threadsafe 588 */ 589 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block) 590 { 591 struct rb_node *n = root->rb_node; 592 struct dm_buffer *b; 593 594 while (n) { 595 b = container_of(n, struct dm_buffer, node); 596 597 if (b->block == block) 598 return b; 599 600 n = block < b->block ? n->rb_left : n->rb_right; 601 } 602 603 return NULL; 604 } 605 606 static void __cache_inc_buffer(struct dm_buffer *b) 607 { 608 atomic_inc(&b->hold_count); 609 WRITE_ONCE(b->last_accessed, jiffies); 610 } 611 612 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block) 613 { 614 struct dm_buffer *b; 615 616 cache_read_lock(bc, block); 617 b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block); 618 if (b) { 619 lru_reference(&b->lru); 620 __cache_inc_buffer(b); 621 } 622 cache_read_unlock(bc, block); 623 624 return b; 625 } 626 627 /*--------------*/ 628 629 /* 630 * Returns true if the hold count hits zero. 631 * threadsafe 632 */ 633 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b) 634 { 635 bool r; 636 637 cache_read_lock(bc, b->block); 638 BUG_ON(!atomic_read(&b->hold_count)); 639 r = atomic_dec_and_test(&b->hold_count); 640 cache_read_unlock(bc, b->block); 641 642 return r; 643 } 644 645 /*--------------*/ 646 647 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *); 648 649 /* 650 * Evicts a buffer based on a predicate. The oldest buffer that 651 * matches the predicate will be selected. In addition to the 652 * predicate the hold_count of the selected buffer will be zero. 653 */ 654 struct evict_wrapper { 655 struct lock_history *lh; 656 b_predicate pred; 657 void *context; 658 }; 659 660 /* 661 * Wraps the buffer predicate turning it into an lru predicate. Adds 662 * extra test for hold_count. 663 */ 664 static enum evict_result __evict_pred(struct lru_entry *le, void *context) 665 { 666 struct evict_wrapper *w = context; 667 struct dm_buffer *b = le_to_buffer(le); 668 669 lh_next(w->lh, b->block); 670 671 if (atomic_read(&b->hold_count)) 672 return ER_DONT_EVICT; 673 674 return w->pred(b, w->context); 675 } 676 677 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode, 678 b_predicate pred, void *context, 679 struct lock_history *lh) 680 { 681 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 682 struct lru_entry *le; 683 struct dm_buffer *b; 684 685 le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep); 686 if (!le) 687 return NULL; 688 689 b = le_to_buffer(le); 690 /* __evict_pred will have locked the appropriate tree. */ 691 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 692 693 return b; 694 } 695 696 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode, 697 b_predicate pred, void *context) 698 { 699 struct dm_buffer *b; 700 struct lock_history lh; 701 702 lh_init(&lh, bc, true); 703 b = __cache_evict(bc, list_mode, pred, context, &lh); 704 lh_exit(&lh); 705 706 return b; 707 } 708 709 /*--------------*/ 710 711 /* 712 * Mark a buffer as clean or dirty. Not threadsafe. 713 */ 714 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode) 715 { 716 cache_write_lock(bc, b->block); 717 if (list_mode != b->list_mode) { 718 lru_remove(&bc->lru[b->list_mode], &b->lru); 719 b->list_mode = list_mode; 720 lru_insert(&bc->lru[b->list_mode], &b->lru); 721 } 722 cache_write_unlock(bc, b->block); 723 } 724 725 /*--------------*/ 726 727 /* 728 * Runs through the lru associated with 'old_mode', if the predicate matches then 729 * it moves them to 'new_mode'. Not threadsafe. 730 */ 731 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 732 b_predicate pred, void *context, struct lock_history *lh) 733 { 734 struct lru_entry *le; 735 struct dm_buffer *b; 736 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 737 738 while (true) { 739 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep); 740 if (!le) 741 break; 742 743 b = le_to_buffer(le); 744 b->list_mode = new_mode; 745 lru_insert(&bc->lru[b->list_mode], &b->lru); 746 } 747 } 748 749 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 750 b_predicate pred, void *context) 751 { 752 struct lock_history lh; 753 754 lh_init(&lh, bc, true); 755 __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh); 756 lh_exit(&lh); 757 } 758 759 /*--------------*/ 760 761 /* 762 * Iterates through all clean or dirty entries calling a function for each 763 * entry. The callback may terminate the iteration early. Not threadsafe. 764 */ 765 766 /* 767 * Iterator functions should return one of these actions to indicate 768 * how the iteration should proceed. 769 */ 770 enum it_action { 771 IT_NEXT, 772 IT_COMPLETE, 773 }; 774 775 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context); 776 777 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode, 778 iter_fn fn, void *context, struct lock_history *lh) 779 { 780 struct lru *lru = &bc->lru[list_mode]; 781 struct lru_entry *le, *first; 782 783 if (!lru->cursor) 784 return; 785 786 first = le = to_le(lru->cursor); 787 do { 788 struct dm_buffer *b = le_to_buffer(le); 789 790 lh_next(lh, b->block); 791 792 switch (fn(b, context)) { 793 case IT_NEXT: 794 break; 795 796 case IT_COMPLETE: 797 return; 798 } 799 cond_resched(); 800 801 le = to_le(le->list.next); 802 } while (le != first); 803 } 804 805 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode, 806 iter_fn fn, void *context) 807 { 808 struct lock_history lh; 809 810 lh_init(&lh, bc, false); 811 __cache_iterate(bc, list_mode, fn, context, &lh); 812 lh_exit(&lh); 813 } 814 815 /*--------------*/ 816 817 /* 818 * Passes ownership of the buffer to the cache. Returns false if the 819 * buffer was already present (in which case ownership does not pass). 820 * eg, a race with another thread. 821 * 822 * Holder count should be 1 on insertion. 823 * 824 * Not threadsafe. 825 */ 826 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b) 827 { 828 struct rb_node **new = &root->rb_node, *parent = NULL; 829 struct dm_buffer *found; 830 831 while (*new) { 832 found = container_of(*new, struct dm_buffer, node); 833 834 if (found->block == b->block) 835 return false; 836 837 parent = *new; 838 new = b->block < found->block ? 839 &found->node.rb_left : &found->node.rb_right; 840 } 841 842 rb_link_node(&b->node, parent, new); 843 rb_insert_color(&b->node, root); 844 845 return true; 846 } 847 848 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b) 849 { 850 bool r; 851 852 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE)) 853 return false; 854 855 cache_write_lock(bc, b->block); 856 BUG_ON(atomic_read(&b->hold_count) != 1); 857 r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b); 858 if (r) 859 lru_insert(&bc->lru[b->list_mode], &b->lru); 860 cache_write_unlock(bc, b->block); 861 862 return r; 863 } 864 865 /*--------------*/ 866 867 /* 868 * Removes buffer from cache, ownership of the buffer passes back to the caller. 869 * Fails if the hold_count is not one (ie. the caller holds the only reference). 870 * 871 * Not threadsafe. 872 */ 873 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b) 874 { 875 bool r; 876 877 cache_write_lock(bc, b->block); 878 879 if (atomic_read(&b->hold_count) != 1) { 880 r = false; 881 } else { 882 r = true; 883 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 884 lru_remove(&bc->lru[b->list_mode], &b->lru); 885 } 886 887 cache_write_unlock(bc, b->block); 888 889 return r; 890 } 891 892 /*--------------*/ 893 894 typedef void (*b_release)(struct dm_buffer *); 895 896 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block) 897 { 898 struct rb_node *n = root->rb_node; 899 struct dm_buffer *b; 900 struct dm_buffer *best = NULL; 901 902 while (n) { 903 b = container_of(n, struct dm_buffer, node); 904 905 if (b->block == block) 906 return b; 907 908 if (block <= b->block) { 909 n = n->rb_left; 910 best = b; 911 } else { 912 n = n->rb_right; 913 } 914 } 915 916 return best; 917 } 918 919 static void __remove_range(struct dm_buffer_cache *bc, 920 struct rb_root *root, 921 sector_t begin, sector_t end, 922 b_predicate pred, b_release release) 923 { 924 struct dm_buffer *b; 925 926 while (true) { 927 cond_resched(); 928 929 b = __find_next(root, begin); 930 if (!b || (b->block >= end)) 931 break; 932 933 begin = b->block + 1; 934 935 if (atomic_read(&b->hold_count)) 936 continue; 937 938 if (pred(b, NULL) == ER_EVICT) { 939 rb_erase(&b->node, root); 940 lru_remove(&bc->lru[b->list_mode], &b->lru); 941 release(b); 942 } 943 } 944 } 945 946 static void cache_remove_range(struct dm_buffer_cache *bc, 947 sector_t begin, sector_t end, 948 b_predicate pred, b_release release) 949 { 950 unsigned int i; 951 952 BUG_ON(bc->no_sleep); 953 for (i = 0; i < bc->num_locks; i++) { 954 down_write(&bc->trees[i].u.lock); 955 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release); 956 up_write(&bc->trees[i].u.lock); 957 } 958 } 959 960 /*----------------------------------------------------------------*/ 961 962 /* 963 * Linking of buffers: 964 * All buffers are linked to buffer_cache with their node field. 965 * 966 * Clean buffers that are not being written (B_WRITING not set) 967 * are linked to lru[LIST_CLEAN] with their lru_list field. 968 * 969 * Dirty and clean buffers that are being written are linked to 970 * lru[LIST_DIRTY] with their lru_list field. When the write 971 * finishes, the buffer cannot be relinked immediately (because we 972 * are in an interrupt context and relinking requires process 973 * context), so some clean-not-writing buffers can be held on 974 * dirty_lru too. They are later added to lru in the process 975 * context. 976 */ 977 struct dm_bufio_client { 978 struct block_device *bdev; 979 unsigned int block_size; 980 s8 sectors_per_block_bits; 981 982 bool no_sleep; 983 struct mutex lock; 984 spinlock_t spinlock; 985 986 int async_write_error; 987 988 void (*alloc_callback)(struct dm_buffer *buf); 989 void (*write_callback)(struct dm_buffer *buf); 990 struct kmem_cache *slab_buffer; 991 struct kmem_cache *slab_cache; 992 struct dm_io_client *dm_io; 993 994 struct list_head reserved_buffers; 995 unsigned int need_reserved_buffers; 996 997 unsigned int minimum_buffers; 998 999 sector_t start; 1000 1001 struct shrinker *shrinker; 1002 struct work_struct shrink_work; 1003 atomic_long_t need_shrink; 1004 1005 wait_queue_head_t free_buffer_wait; 1006 1007 struct list_head client_list; 1008 1009 /* 1010 * Used by global_cleanup to sort the clients list. 1011 */ 1012 unsigned long oldest_buffer; 1013 1014 struct dm_buffer_cache cache; /* must be last member */ 1015 }; 1016 1017 /*----------------------------------------------------------------*/ 1018 1019 #define dm_bufio_in_request() (!!current->bio_list) 1020 1021 static void dm_bufio_lock(struct dm_bufio_client *c) 1022 { 1023 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1024 spin_lock_bh(&c->spinlock); 1025 else 1026 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 1027 } 1028 1029 static void dm_bufio_unlock(struct dm_bufio_client *c) 1030 { 1031 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1032 spin_unlock_bh(&c->spinlock); 1033 else 1034 mutex_unlock(&c->lock); 1035 } 1036 1037 /*----------------------------------------------------------------*/ 1038 1039 /* 1040 * Default cache size: available memory divided by the ratio. 1041 */ 1042 static unsigned long dm_bufio_default_cache_size; 1043 1044 /* 1045 * Total cache size set by the user. 1046 */ 1047 static unsigned long dm_bufio_cache_size; 1048 1049 /* 1050 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 1051 * at any time. If it disagrees, the user has changed cache size. 1052 */ 1053 static unsigned long dm_bufio_cache_size_latch; 1054 1055 static DEFINE_SPINLOCK(global_spinlock); 1056 1057 /* 1058 * Buffers are freed after this timeout 1059 */ 1060 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 1061 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 1062 1063 static unsigned long dm_bufio_peak_allocated; 1064 static unsigned long dm_bufio_allocated_kmem_cache; 1065 static unsigned long dm_bufio_allocated_get_free_pages; 1066 static unsigned long dm_bufio_allocated_vmalloc; 1067 static unsigned long dm_bufio_current_allocated; 1068 1069 /*----------------------------------------------------------------*/ 1070 1071 /* 1072 * The current number of clients. 1073 */ 1074 static int dm_bufio_client_count; 1075 1076 /* 1077 * The list of all clients. 1078 */ 1079 static LIST_HEAD(dm_bufio_all_clients); 1080 1081 /* 1082 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count 1083 */ 1084 static DEFINE_MUTEX(dm_bufio_clients_lock); 1085 1086 static struct workqueue_struct *dm_bufio_wq; 1087 static struct delayed_work dm_bufio_cleanup_old_work; 1088 static struct work_struct dm_bufio_replacement_work; 1089 1090 1091 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1092 static void buffer_record_stack(struct dm_buffer *b) 1093 { 1094 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); 1095 } 1096 #endif 1097 1098 /*----------------------------------------------------------------*/ 1099 1100 static void adjust_total_allocated(struct dm_buffer *b, bool unlink) 1101 { 1102 unsigned char data_mode; 1103 long diff; 1104 1105 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 1106 &dm_bufio_allocated_kmem_cache, 1107 &dm_bufio_allocated_get_free_pages, 1108 &dm_bufio_allocated_vmalloc, 1109 }; 1110 1111 data_mode = b->data_mode; 1112 diff = (long)b->c->block_size; 1113 if (unlink) 1114 diff = -diff; 1115 1116 spin_lock(&global_spinlock); 1117 1118 *class_ptr[data_mode] += diff; 1119 1120 dm_bufio_current_allocated += diff; 1121 1122 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 1123 dm_bufio_peak_allocated = dm_bufio_current_allocated; 1124 1125 if (!unlink) { 1126 if (dm_bufio_current_allocated > dm_bufio_cache_size) 1127 queue_work(dm_bufio_wq, &dm_bufio_replacement_work); 1128 } 1129 1130 spin_unlock(&global_spinlock); 1131 } 1132 1133 /* 1134 * Change the number of clients and recalculate per-client limit. 1135 */ 1136 static void __cache_size_refresh(void) 1137 { 1138 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock))) 1139 return; 1140 if (WARN_ON(dm_bufio_client_count < 0)) 1141 return; 1142 1143 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 1144 1145 /* 1146 * Use default if set to 0 and report the actual cache size used. 1147 */ 1148 if (!dm_bufio_cache_size_latch) { 1149 (void)cmpxchg(&dm_bufio_cache_size, 0, 1150 dm_bufio_default_cache_size); 1151 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 1152 } 1153 } 1154 1155 /* 1156 * Allocating buffer data. 1157 * 1158 * Small buffers are allocated with kmem_cache, to use space optimally. 1159 * 1160 * For large buffers, we choose between get_free_pages and vmalloc. 1161 * Each has advantages and disadvantages. 1162 * 1163 * __get_free_pages can randomly fail if the memory is fragmented. 1164 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 1165 * as low as 128M) so using it for caching is not appropriate. 1166 * 1167 * If the allocation may fail we use __get_free_pages. Memory fragmentation 1168 * won't have a fatal effect here, but it just causes flushes of some other 1169 * buffers and more I/O will be performed. Don't use __get_free_pages if it 1170 * always fails (i.e. order > MAX_PAGE_ORDER). 1171 * 1172 * If the allocation shouldn't fail we use __vmalloc. This is only for the 1173 * initial reserve allocation, so there's no risk of wasting all vmalloc 1174 * space. 1175 */ 1176 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 1177 unsigned char *data_mode) 1178 { 1179 if (unlikely(c->slab_cache != NULL)) { 1180 *data_mode = DATA_MODE_SLAB; 1181 return kmem_cache_alloc(c->slab_cache, gfp_mask); 1182 } 1183 1184 if (c->block_size <= KMALLOC_MAX_SIZE && 1185 gfp_mask & __GFP_NORETRY) { 1186 *data_mode = DATA_MODE_GET_FREE_PAGES; 1187 return (void *)__get_free_pages(gfp_mask, 1188 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1189 } 1190 1191 *data_mode = DATA_MODE_VMALLOC; 1192 1193 return __vmalloc(c->block_size, gfp_mask); 1194 } 1195 1196 /* 1197 * Free buffer's data. 1198 */ 1199 static void free_buffer_data(struct dm_bufio_client *c, 1200 void *data, unsigned char data_mode) 1201 { 1202 switch (data_mode) { 1203 case DATA_MODE_SLAB: 1204 kmem_cache_free(c->slab_cache, data); 1205 break; 1206 1207 case DATA_MODE_GET_FREE_PAGES: 1208 free_pages((unsigned long)data, 1209 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1210 break; 1211 1212 case DATA_MODE_VMALLOC: 1213 vfree(data); 1214 break; 1215 1216 default: 1217 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 1218 data_mode); 1219 BUG(); 1220 } 1221 } 1222 1223 /* 1224 * Allocate buffer and its data. 1225 */ 1226 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 1227 { 1228 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 1229 1230 if (!b) 1231 return NULL; 1232 1233 b->c = c; 1234 1235 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 1236 if (!b->data) { 1237 kmem_cache_free(c->slab_buffer, b); 1238 return NULL; 1239 } 1240 adjust_total_allocated(b, false); 1241 1242 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1243 b->stack_len = 0; 1244 #endif 1245 return b; 1246 } 1247 1248 /* 1249 * Free buffer and its data. 1250 */ 1251 static void free_buffer(struct dm_buffer *b) 1252 { 1253 struct dm_bufio_client *c = b->c; 1254 1255 adjust_total_allocated(b, true); 1256 free_buffer_data(c, b->data, b->data_mode); 1257 kmem_cache_free(c->slab_buffer, b); 1258 } 1259 1260 /* 1261 *-------------------------------------------------------------------------- 1262 * Submit I/O on the buffer. 1263 * 1264 * Bio interface is faster but it has some problems: 1265 * the vector list is limited (increasing this limit increases 1266 * memory-consumption per buffer, so it is not viable); 1267 * 1268 * the memory must be direct-mapped, not vmalloced; 1269 * 1270 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 1271 * it is not vmalloced, try using the bio interface. 1272 * 1273 * If the buffer is big, if it is vmalloced or if the underlying device 1274 * rejects the bio because it is too large, use dm-io layer to do the I/O. 1275 * The dm-io layer splits the I/O into multiple requests, avoiding the above 1276 * shortcomings. 1277 *-------------------------------------------------------------------------- 1278 */ 1279 1280 /* 1281 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 1282 * that the request was handled directly with bio interface. 1283 */ 1284 static void dmio_complete(unsigned long error, void *context) 1285 { 1286 struct dm_buffer *b = context; 1287 1288 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 1289 } 1290 1291 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector, 1292 unsigned int n_sectors, unsigned int offset, 1293 unsigned short ioprio) 1294 { 1295 int r; 1296 struct dm_io_request io_req = { 1297 .bi_opf = op, 1298 .notify.fn = dmio_complete, 1299 .notify.context = b, 1300 .client = b->c->dm_io, 1301 }; 1302 struct dm_io_region region = { 1303 .bdev = b->c->bdev, 1304 .sector = sector, 1305 .count = n_sectors, 1306 }; 1307 1308 if (b->data_mode != DATA_MODE_VMALLOC) { 1309 io_req.mem.type = DM_IO_KMEM; 1310 io_req.mem.ptr.addr = (char *)b->data + offset; 1311 } else { 1312 io_req.mem.type = DM_IO_VMA; 1313 io_req.mem.ptr.vma = (char *)b->data + offset; 1314 } 1315 1316 r = dm_io(&io_req, 1, ®ion, NULL, ioprio); 1317 if (unlikely(r)) 1318 b->end_io(b, errno_to_blk_status(r)); 1319 } 1320 1321 static void bio_complete(struct bio *bio) 1322 { 1323 struct dm_buffer *b = bio->bi_private; 1324 blk_status_t status = bio->bi_status; 1325 1326 bio_uninit(bio); 1327 kfree(bio); 1328 b->end_io(b, status); 1329 } 1330 1331 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector, 1332 unsigned int n_sectors, unsigned int offset, 1333 unsigned short ioprio) 1334 { 1335 struct bio *bio; 1336 char *ptr; 1337 unsigned int len; 1338 1339 bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN); 1340 if (!bio) { 1341 use_dmio(b, op, sector, n_sectors, offset, ioprio); 1342 return; 1343 } 1344 bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op); 1345 bio->bi_iter.bi_sector = sector; 1346 bio->bi_end_io = bio_complete; 1347 bio->bi_private = b; 1348 bio->bi_ioprio = ioprio; 1349 1350 ptr = (char *)b->data + offset; 1351 len = n_sectors << SECTOR_SHIFT; 1352 1353 __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr)); 1354 1355 submit_bio(bio); 1356 } 1357 1358 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) 1359 { 1360 sector_t sector; 1361 1362 if (likely(c->sectors_per_block_bits >= 0)) 1363 sector = block << c->sectors_per_block_bits; 1364 else 1365 sector = block * (c->block_size >> SECTOR_SHIFT); 1366 sector += c->start; 1367 1368 return sector; 1369 } 1370 1371 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio, 1372 void (*end_io)(struct dm_buffer *, blk_status_t)) 1373 { 1374 unsigned int n_sectors; 1375 sector_t sector; 1376 unsigned int offset, end; 1377 1378 b->end_io = end_io; 1379 1380 sector = block_to_sector(b->c, b->block); 1381 1382 if (op != REQ_OP_WRITE) { 1383 n_sectors = b->c->block_size >> SECTOR_SHIFT; 1384 offset = 0; 1385 } else { 1386 if (b->c->write_callback) 1387 b->c->write_callback(b); 1388 offset = b->write_start; 1389 end = b->write_end; 1390 offset &= -DM_BUFIO_WRITE_ALIGN; 1391 end += DM_BUFIO_WRITE_ALIGN - 1; 1392 end &= -DM_BUFIO_WRITE_ALIGN; 1393 if (unlikely(end > b->c->block_size)) 1394 end = b->c->block_size; 1395 1396 sector += offset >> SECTOR_SHIFT; 1397 n_sectors = (end - offset) >> SECTOR_SHIFT; 1398 } 1399 1400 if (b->data_mode != DATA_MODE_VMALLOC) 1401 use_bio(b, op, sector, n_sectors, offset, ioprio); 1402 else 1403 use_dmio(b, op, sector, n_sectors, offset, ioprio); 1404 } 1405 1406 /* 1407 *-------------------------------------------------------------- 1408 * Writing dirty buffers 1409 *-------------------------------------------------------------- 1410 */ 1411 1412 /* 1413 * The endio routine for write. 1414 * 1415 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 1416 * it. 1417 */ 1418 static void write_endio(struct dm_buffer *b, blk_status_t status) 1419 { 1420 b->write_error = status; 1421 if (unlikely(status)) { 1422 struct dm_bufio_client *c = b->c; 1423 1424 (void)cmpxchg(&c->async_write_error, 0, 1425 blk_status_to_errno(status)); 1426 } 1427 1428 BUG_ON(!test_bit(B_WRITING, &b->state)); 1429 1430 smp_mb__before_atomic(); 1431 clear_bit(B_WRITING, &b->state); 1432 smp_mb__after_atomic(); 1433 1434 wake_up_bit(&b->state, B_WRITING); 1435 } 1436 1437 /* 1438 * Initiate a write on a dirty buffer, but don't wait for it. 1439 * 1440 * - If the buffer is not dirty, exit. 1441 * - If there some previous write going on, wait for it to finish (we can't 1442 * have two writes on the same buffer simultaneously). 1443 * - Submit our write and don't wait on it. We set B_WRITING indicating 1444 * that there is a write in progress. 1445 */ 1446 static void __write_dirty_buffer(struct dm_buffer *b, 1447 struct list_head *write_list) 1448 { 1449 if (!test_bit(B_DIRTY, &b->state)) 1450 return; 1451 1452 clear_bit(B_DIRTY, &b->state); 1453 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1454 1455 b->write_start = b->dirty_start; 1456 b->write_end = b->dirty_end; 1457 1458 if (!write_list) 1459 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio); 1460 else 1461 list_add_tail(&b->write_list, write_list); 1462 } 1463 1464 static void __flush_write_list(struct list_head *write_list) 1465 { 1466 struct blk_plug plug; 1467 1468 blk_start_plug(&plug); 1469 while (!list_empty(write_list)) { 1470 struct dm_buffer *b = 1471 list_entry(write_list->next, struct dm_buffer, write_list); 1472 list_del(&b->write_list); 1473 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio); 1474 cond_resched(); 1475 } 1476 blk_finish_plug(&plug); 1477 } 1478 1479 /* 1480 * Wait until any activity on the buffer finishes. Possibly write the 1481 * buffer if it is dirty. When this function finishes, there is no I/O 1482 * running on the buffer and the buffer is not dirty. 1483 */ 1484 static void __make_buffer_clean(struct dm_buffer *b) 1485 { 1486 BUG_ON(atomic_read(&b->hold_count)); 1487 1488 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */ 1489 if (!smp_load_acquire(&b->state)) /* fast case */ 1490 return; 1491 1492 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1493 __write_dirty_buffer(b, NULL); 1494 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1495 } 1496 1497 static enum evict_result is_clean(struct dm_buffer *b, void *context) 1498 { 1499 struct dm_bufio_client *c = context; 1500 1501 /* These should never happen */ 1502 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state))) 1503 return ER_DONT_EVICT; 1504 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state))) 1505 return ER_DONT_EVICT; 1506 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN)) 1507 return ER_DONT_EVICT; 1508 1509 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep && 1510 unlikely(test_bit(B_READING, &b->state))) 1511 return ER_DONT_EVICT; 1512 1513 return ER_EVICT; 1514 } 1515 1516 static enum evict_result is_dirty(struct dm_buffer *b, void *context) 1517 { 1518 /* These should never happen */ 1519 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1520 return ER_DONT_EVICT; 1521 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY)) 1522 return ER_DONT_EVICT; 1523 1524 return ER_EVICT; 1525 } 1526 1527 /* 1528 * Find some buffer that is not held by anybody, clean it, unlink it and 1529 * return it. 1530 */ 1531 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 1532 { 1533 struct dm_buffer *b; 1534 1535 b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c); 1536 if (b) { 1537 /* this also waits for pending reads */ 1538 __make_buffer_clean(b); 1539 return b; 1540 } 1541 1542 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1543 return NULL; 1544 1545 b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL); 1546 if (b) { 1547 __make_buffer_clean(b); 1548 return b; 1549 } 1550 1551 return NULL; 1552 } 1553 1554 /* 1555 * Wait until some other threads free some buffer or release hold count on 1556 * some buffer. 1557 * 1558 * This function is entered with c->lock held, drops it and regains it 1559 * before exiting. 1560 */ 1561 static void __wait_for_free_buffer(struct dm_bufio_client *c) 1562 { 1563 DECLARE_WAITQUEUE(wait, current); 1564 1565 add_wait_queue(&c->free_buffer_wait, &wait); 1566 set_current_state(TASK_UNINTERRUPTIBLE); 1567 dm_bufio_unlock(c); 1568 1569 /* 1570 * It's possible to miss a wake up event since we don't always 1571 * hold c->lock when wake_up is called. So we have a timeout here, 1572 * just in case. 1573 */ 1574 io_schedule_timeout(5 * HZ); 1575 1576 remove_wait_queue(&c->free_buffer_wait, &wait); 1577 1578 dm_bufio_lock(c); 1579 } 1580 1581 enum new_flag { 1582 NF_FRESH = 0, 1583 NF_READ = 1, 1584 NF_GET = 2, 1585 NF_PREFETCH = 3 1586 }; 1587 1588 /* 1589 * Allocate a new buffer. If the allocation is not possible, wait until 1590 * some other thread frees a buffer. 1591 * 1592 * May drop the lock and regain it. 1593 */ 1594 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 1595 { 1596 struct dm_buffer *b; 1597 bool tried_noio_alloc = false; 1598 1599 /* 1600 * dm-bufio is resistant to allocation failures (it just keeps 1601 * one buffer reserved in cases all the allocations fail). 1602 * So set flags to not try too hard: 1603 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 1604 * mutex and wait ourselves. 1605 * __GFP_NORETRY: don't retry and rather return failure 1606 * __GFP_NOMEMALLOC: don't use emergency reserves 1607 * __GFP_NOWARN: don't print a warning in case of failure 1608 * 1609 * For debugging, if we set the cache size to 1, no new buffers will 1610 * be allocated. 1611 */ 1612 while (1) { 1613 if (dm_bufio_cache_size_latch != 1) { 1614 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1615 if (b) 1616 return b; 1617 } 1618 1619 if (nf == NF_PREFETCH) 1620 return NULL; 1621 1622 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 1623 dm_bufio_unlock(c); 1624 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1625 dm_bufio_lock(c); 1626 if (b) 1627 return b; 1628 tried_noio_alloc = true; 1629 } 1630 1631 if (!list_empty(&c->reserved_buffers)) { 1632 b = list_to_buffer(c->reserved_buffers.next); 1633 list_del(&b->lru.list); 1634 c->need_reserved_buffers++; 1635 1636 return b; 1637 } 1638 1639 b = __get_unclaimed_buffer(c); 1640 if (b) 1641 return b; 1642 1643 __wait_for_free_buffer(c); 1644 } 1645 } 1646 1647 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 1648 { 1649 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 1650 1651 if (!b) 1652 return NULL; 1653 1654 if (c->alloc_callback) 1655 c->alloc_callback(b); 1656 1657 return b; 1658 } 1659 1660 /* 1661 * Free a buffer and wake other threads waiting for free buffers. 1662 */ 1663 static void __free_buffer_wake(struct dm_buffer *b) 1664 { 1665 struct dm_bufio_client *c = b->c; 1666 1667 b->block = -1; 1668 if (!c->need_reserved_buffers) 1669 free_buffer(b); 1670 else { 1671 list_add(&b->lru.list, &c->reserved_buffers); 1672 c->need_reserved_buffers--; 1673 } 1674 1675 /* 1676 * We hold the bufio lock here, so no one can add entries to the 1677 * wait queue anyway. 1678 */ 1679 if (unlikely(waitqueue_active(&c->free_buffer_wait))) 1680 wake_up(&c->free_buffer_wait); 1681 } 1682 1683 static enum evict_result cleaned(struct dm_buffer *b, void *context) 1684 { 1685 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1686 return ER_DONT_EVICT; /* should never happen */ 1687 1688 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state)) 1689 return ER_DONT_EVICT; 1690 else 1691 return ER_EVICT; 1692 } 1693 1694 static void __move_clean_buffers(struct dm_bufio_client *c) 1695 { 1696 cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL); 1697 } 1698 1699 struct write_context { 1700 int no_wait; 1701 struct list_head *write_list; 1702 }; 1703 1704 static enum it_action write_one(struct dm_buffer *b, void *context) 1705 { 1706 struct write_context *wc = context; 1707 1708 if (wc->no_wait && test_bit(B_WRITING, &b->state)) 1709 return IT_COMPLETE; 1710 1711 __write_dirty_buffer(b, wc->write_list); 1712 return IT_NEXT; 1713 } 1714 1715 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 1716 struct list_head *write_list) 1717 { 1718 struct write_context wc = {.no_wait = no_wait, .write_list = write_list}; 1719 1720 __move_clean_buffers(c); 1721 cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc); 1722 } 1723 1724 /* 1725 * Check if we're over watermark. 1726 * If we are over threshold_buffers, start freeing buffers. 1727 * If we're over "limit_buffers", block until we get under the limit. 1728 */ 1729 static void __check_watermark(struct dm_bufio_client *c, 1730 struct list_head *write_list) 1731 { 1732 if (cache_count(&c->cache, LIST_DIRTY) > 1733 cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO) 1734 __write_dirty_buffers_async(c, 1, write_list); 1735 } 1736 1737 /* 1738 *-------------------------------------------------------------- 1739 * Getting a buffer 1740 *-------------------------------------------------------------- 1741 */ 1742 1743 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b) 1744 { 1745 /* 1746 * Relying on waitqueue_active() is racey, but we sleep 1747 * with schedule_timeout anyway. 1748 */ 1749 if (cache_put(&c->cache, b) && 1750 unlikely(waitqueue_active(&c->free_buffer_wait))) 1751 wake_up(&c->free_buffer_wait); 1752 } 1753 1754 /* 1755 * This assumes you have already checked the cache to see if the buffer 1756 * is already present (it will recheck after dropping the lock for allocation). 1757 */ 1758 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 1759 enum new_flag nf, int *need_submit, 1760 struct list_head *write_list) 1761 { 1762 struct dm_buffer *b, *new_b = NULL; 1763 1764 *need_submit = 0; 1765 1766 /* This can't be called with NF_GET */ 1767 if (WARN_ON_ONCE(nf == NF_GET)) 1768 return NULL; 1769 1770 new_b = __alloc_buffer_wait(c, nf); 1771 if (!new_b) 1772 return NULL; 1773 1774 /* 1775 * We've had a period where the mutex was unlocked, so need to 1776 * recheck the buffer tree. 1777 */ 1778 b = cache_get(&c->cache, block); 1779 if (b) { 1780 __free_buffer_wake(new_b); 1781 goto found_buffer; 1782 } 1783 1784 __check_watermark(c, write_list); 1785 1786 b = new_b; 1787 atomic_set(&b->hold_count, 1); 1788 WRITE_ONCE(b->last_accessed, jiffies); 1789 b->block = block; 1790 b->read_error = 0; 1791 b->write_error = 0; 1792 b->list_mode = LIST_CLEAN; 1793 1794 if (nf == NF_FRESH) 1795 b->state = 0; 1796 else { 1797 b->state = 1 << B_READING; 1798 *need_submit = 1; 1799 } 1800 1801 /* 1802 * We mustn't insert into the cache until the B_READING state 1803 * is set. Otherwise another thread could get it and use 1804 * it before it had been read. 1805 */ 1806 cache_insert(&c->cache, b); 1807 1808 return b; 1809 1810 found_buffer: 1811 if (nf == NF_PREFETCH) { 1812 cache_put_and_wake(c, b); 1813 return NULL; 1814 } 1815 1816 /* 1817 * Note: it is essential that we don't wait for the buffer to be 1818 * read if dm_bufio_get function is used. Both dm_bufio_get and 1819 * dm_bufio_prefetch can be used in the driver request routine. 1820 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1821 * the same buffer, it would deadlock if we waited. 1822 */ 1823 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1824 cache_put_and_wake(c, b); 1825 return NULL; 1826 } 1827 1828 return b; 1829 } 1830 1831 /* 1832 * The endio routine for reading: set the error, clear the bit and wake up 1833 * anyone waiting on the buffer. 1834 */ 1835 static void read_endio(struct dm_buffer *b, blk_status_t status) 1836 { 1837 b->read_error = status; 1838 1839 BUG_ON(!test_bit(B_READING, &b->state)); 1840 1841 smp_mb__before_atomic(); 1842 clear_bit(B_READING, &b->state); 1843 smp_mb__after_atomic(); 1844 1845 wake_up_bit(&b->state, B_READING); 1846 } 1847 1848 /* 1849 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1850 * functions is similar except that dm_bufio_new doesn't read the 1851 * buffer from the disk (assuming that the caller overwrites all the data 1852 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1853 */ 1854 static void *new_read(struct dm_bufio_client *c, sector_t block, 1855 enum new_flag nf, struct dm_buffer **bp, 1856 unsigned short ioprio) 1857 { 1858 int need_submit = 0; 1859 struct dm_buffer *b; 1860 1861 LIST_HEAD(write_list); 1862 1863 *bp = NULL; 1864 1865 /* 1866 * Fast path, hopefully the block is already in the cache. No need 1867 * to get the client lock for this. 1868 */ 1869 b = cache_get(&c->cache, block); 1870 if (b) { 1871 if (nf == NF_PREFETCH) { 1872 cache_put_and_wake(c, b); 1873 return NULL; 1874 } 1875 1876 /* 1877 * Note: it is essential that we don't wait for the buffer to be 1878 * read if dm_bufio_get function is used. Both dm_bufio_get and 1879 * dm_bufio_prefetch can be used in the driver request routine. 1880 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1881 * the same buffer, it would deadlock if we waited. 1882 */ 1883 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1884 cache_put_and_wake(c, b); 1885 return NULL; 1886 } 1887 } 1888 1889 if (!b) { 1890 if (nf == NF_GET) 1891 return NULL; 1892 1893 dm_bufio_lock(c); 1894 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1895 dm_bufio_unlock(c); 1896 } 1897 1898 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1899 if (b && (atomic_read(&b->hold_count) == 1)) 1900 buffer_record_stack(b); 1901 #endif 1902 1903 __flush_write_list(&write_list); 1904 1905 if (!b) 1906 return NULL; 1907 1908 if (need_submit) 1909 submit_io(b, REQ_OP_READ, ioprio, read_endio); 1910 1911 if (nf != NF_GET) /* we already tested this condition above */ 1912 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1913 1914 if (b->read_error) { 1915 int error = blk_status_to_errno(b->read_error); 1916 1917 dm_bufio_release(b); 1918 1919 return ERR_PTR(error); 1920 } 1921 1922 *bp = b; 1923 1924 return b->data; 1925 } 1926 1927 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1928 struct dm_buffer **bp) 1929 { 1930 return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT); 1931 } 1932 EXPORT_SYMBOL_GPL(dm_bufio_get); 1933 1934 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1935 struct dm_buffer **bp, unsigned short ioprio) 1936 { 1937 if (WARN_ON_ONCE(dm_bufio_in_request())) 1938 return ERR_PTR(-EINVAL); 1939 1940 return new_read(c, block, NF_READ, bp, ioprio); 1941 } 1942 1943 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1944 struct dm_buffer **bp) 1945 { 1946 return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT); 1947 } 1948 EXPORT_SYMBOL_GPL(dm_bufio_read); 1949 1950 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block, 1951 struct dm_buffer **bp, unsigned short ioprio) 1952 { 1953 return __dm_bufio_read(c, block, bp, ioprio); 1954 } 1955 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio); 1956 1957 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1958 struct dm_buffer **bp) 1959 { 1960 if (WARN_ON_ONCE(dm_bufio_in_request())) 1961 return ERR_PTR(-EINVAL); 1962 1963 return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT); 1964 } 1965 EXPORT_SYMBOL_GPL(dm_bufio_new); 1966 1967 static void __dm_bufio_prefetch(struct dm_bufio_client *c, 1968 sector_t block, unsigned int n_blocks, 1969 unsigned short ioprio) 1970 { 1971 struct blk_plug plug; 1972 1973 LIST_HEAD(write_list); 1974 1975 if (WARN_ON_ONCE(dm_bufio_in_request())) 1976 return; /* should never happen */ 1977 1978 blk_start_plug(&plug); 1979 1980 for (; n_blocks--; block++) { 1981 int need_submit; 1982 struct dm_buffer *b; 1983 1984 b = cache_get(&c->cache, block); 1985 if (b) { 1986 /* already in cache */ 1987 cache_put_and_wake(c, b); 1988 continue; 1989 } 1990 1991 dm_bufio_lock(c); 1992 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1993 &write_list); 1994 if (unlikely(!list_empty(&write_list))) { 1995 dm_bufio_unlock(c); 1996 blk_finish_plug(&plug); 1997 __flush_write_list(&write_list); 1998 blk_start_plug(&plug); 1999 dm_bufio_lock(c); 2000 } 2001 if (unlikely(b != NULL)) { 2002 dm_bufio_unlock(c); 2003 2004 if (need_submit) 2005 submit_io(b, REQ_OP_READ, ioprio, read_endio); 2006 dm_bufio_release(b); 2007 2008 cond_resched(); 2009 2010 if (!n_blocks) 2011 goto flush_plug; 2012 dm_bufio_lock(c); 2013 } 2014 dm_bufio_unlock(c); 2015 } 2016 2017 flush_plug: 2018 blk_finish_plug(&plug); 2019 } 2020 2021 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks) 2022 { 2023 return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT); 2024 } 2025 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 2026 2027 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block, 2028 unsigned int n_blocks, unsigned short ioprio) 2029 { 2030 return __dm_bufio_prefetch(c, block, n_blocks, ioprio); 2031 } 2032 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio); 2033 2034 void dm_bufio_release(struct dm_buffer *b) 2035 { 2036 struct dm_bufio_client *c = b->c; 2037 2038 /* 2039 * If there were errors on the buffer, and the buffer is not 2040 * to be written, free the buffer. There is no point in caching 2041 * invalid buffer. 2042 */ 2043 if ((b->read_error || b->write_error) && 2044 !test_bit_acquire(B_READING, &b->state) && 2045 !test_bit(B_WRITING, &b->state) && 2046 !test_bit(B_DIRTY, &b->state)) { 2047 dm_bufio_lock(c); 2048 2049 /* cache remove can fail if there are other holders */ 2050 if (cache_remove(&c->cache, b)) { 2051 __free_buffer_wake(b); 2052 dm_bufio_unlock(c); 2053 return; 2054 } 2055 2056 dm_bufio_unlock(c); 2057 } 2058 2059 cache_put_and_wake(c, b); 2060 } 2061 EXPORT_SYMBOL_GPL(dm_bufio_release); 2062 2063 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 2064 unsigned int start, unsigned int end) 2065 { 2066 struct dm_bufio_client *c = b->c; 2067 2068 BUG_ON(start >= end); 2069 BUG_ON(end > b->c->block_size); 2070 2071 dm_bufio_lock(c); 2072 2073 BUG_ON(test_bit(B_READING, &b->state)); 2074 2075 if (!test_and_set_bit(B_DIRTY, &b->state)) { 2076 b->dirty_start = start; 2077 b->dirty_end = end; 2078 cache_mark(&c->cache, b, LIST_DIRTY); 2079 } else { 2080 if (start < b->dirty_start) 2081 b->dirty_start = start; 2082 if (end > b->dirty_end) 2083 b->dirty_end = end; 2084 } 2085 2086 dm_bufio_unlock(c); 2087 } 2088 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 2089 2090 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 2091 { 2092 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 2093 } 2094 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 2095 2096 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 2097 { 2098 LIST_HEAD(write_list); 2099 2100 if (WARN_ON_ONCE(dm_bufio_in_request())) 2101 return; /* should never happen */ 2102 2103 dm_bufio_lock(c); 2104 __write_dirty_buffers_async(c, 0, &write_list); 2105 dm_bufio_unlock(c); 2106 __flush_write_list(&write_list); 2107 } 2108 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 2109 2110 /* 2111 * For performance, it is essential that the buffers are written asynchronously 2112 * and simultaneously (so that the block layer can merge the writes) and then 2113 * waited upon. 2114 * 2115 * Finally, we flush hardware disk cache. 2116 */ 2117 static bool is_writing(struct lru_entry *e, void *context) 2118 { 2119 struct dm_buffer *b = le_to_buffer(e); 2120 2121 return test_bit(B_WRITING, &b->state); 2122 } 2123 2124 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 2125 { 2126 int a, f; 2127 unsigned long nr_buffers; 2128 struct lru_entry *e; 2129 struct lru_iter it; 2130 2131 LIST_HEAD(write_list); 2132 2133 dm_bufio_lock(c); 2134 __write_dirty_buffers_async(c, 0, &write_list); 2135 dm_bufio_unlock(c); 2136 __flush_write_list(&write_list); 2137 dm_bufio_lock(c); 2138 2139 nr_buffers = cache_count(&c->cache, LIST_DIRTY); 2140 lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it); 2141 while ((e = lru_iter_next(&it, is_writing, c))) { 2142 struct dm_buffer *b = le_to_buffer(e); 2143 __cache_inc_buffer(b); 2144 2145 BUG_ON(test_bit(B_READING, &b->state)); 2146 2147 if (nr_buffers) { 2148 nr_buffers--; 2149 dm_bufio_unlock(c); 2150 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2151 dm_bufio_lock(c); 2152 } else { 2153 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2154 } 2155 2156 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state)) 2157 cache_mark(&c->cache, b, LIST_CLEAN); 2158 2159 cache_put_and_wake(c, b); 2160 2161 cond_resched(); 2162 } 2163 lru_iter_end(&it); 2164 2165 wake_up(&c->free_buffer_wait); 2166 dm_bufio_unlock(c); 2167 2168 a = xchg(&c->async_write_error, 0); 2169 f = dm_bufio_issue_flush(c); 2170 if (a) 2171 return a; 2172 2173 return f; 2174 } 2175 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 2176 2177 /* 2178 * Use dm-io to send an empty barrier to flush the device. 2179 */ 2180 int dm_bufio_issue_flush(struct dm_bufio_client *c) 2181 { 2182 struct dm_io_request io_req = { 2183 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 2184 .mem.type = DM_IO_KMEM, 2185 .mem.ptr.addr = NULL, 2186 .client = c->dm_io, 2187 }; 2188 struct dm_io_region io_reg = { 2189 .bdev = c->bdev, 2190 .sector = 0, 2191 .count = 0, 2192 }; 2193 2194 if (WARN_ON_ONCE(dm_bufio_in_request())) 2195 return -EINVAL; 2196 2197 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT); 2198 } 2199 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 2200 2201 /* 2202 * Use dm-io to send a discard request to flush the device. 2203 */ 2204 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) 2205 { 2206 struct dm_io_request io_req = { 2207 .bi_opf = REQ_OP_DISCARD | REQ_SYNC, 2208 .mem.type = DM_IO_KMEM, 2209 .mem.ptr.addr = NULL, 2210 .client = c->dm_io, 2211 }; 2212 struct dm_io_region io_reg = { 2213 .bdev = c->bdev, 2214 .sector = block_to_sector(c, block), 2215 .count = block_to_sector(c, count), 2216 }; 2217 2218 if (WARN_ON_ONCE(dm_bufio_in_request())) 2219 return -EINVAL; /* discards are optional */ 2220 2221 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT); 2222 } 2223 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); 2224 2225 static bool forget_buffer(struct dm_bufio_client *c, sector_t block) 2226 { 2227 struct dm_buffer *b; 2228 2229 b = cache_get(&c->cache, block); 2230 if (b) { 2231 if (likely(!smp_load_acquire(&b->state))) { 2232 if (cache_remove(&c->cache, b)) 2233 __free_buffer_wake(b); 2234 else 2235 cache_put_and_wake(c, b); 2236 } else { 2237 cache_put_and_wake(c, b); 2238 } 2239 } 2240 2241 return b ? true : false; 2242 } 2243 2244 /* 2245 * Free the given buffer. 2246 * 2247 * This is just a hint, if the buffer is in use or dirty, this function 2248 * does nothing. 2249 */ 2250 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 2251 { 2252 dm_bufio_lock(c); 2253 forget_buffer(c, block); 2254 dm_bufio_unlock(c); 2255 } 2256 EXPORT_SYMBOL_GPL(dm_bufio_forget); 2257 2258 static enum evict_result idle(struct dm_buffer *b, void *context) 2259 { 2260 return b->state ? ER_DONT_EVICT : ER_EVICT; 2261 } 2262 2263 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks) 2264 { 2265 dm_bufio_lock(c); 2266 cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake); 2267 dm_bufio_unlock(c); 2268 } 2269 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers); 2270 2271 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n) 2272 { 2273 c->minimum_buffers = n; 2274 } 2275 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 2276 2277 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c) 2278 { 2279 return c->block_size; 2280 } 2281 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 2282 2283 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 2284 { 2285 sector_t s = bdev_nr_sectors(c->bdev); 2286 2287 if (s >= c->start) 2288 s -= c->start; 2289 else 2290 s = 0; 2291 if (likely(c->sectors_per_block_bits >= 0)) 2292 s >>= c->sectors_per_block_bits; 2293 else 2294 sector_div(s, c->block_size >> SECTOR_SHIFT); 2295 return s; 2296 } 2297 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 2298 2299 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c) 2300 { 2301 return c->dm_io; 2302 } 2303 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client); 2304 2305 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 2306 { 2307 return b->block; 2308 } 2309 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 2310 2311 void *dm_bufio_get_block_data(struct dm_buffer *b) 2312 { 2313 return b->data; 2314 } 2315 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 2316 2317 void *dm_bufio_get_aux_data(struct dm_buffer *b) 2318 { 2319 return b + 1; 2320 } 2321 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 2322 2323 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 2324 { 2325 return b->c; 2326 } 2327 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 2328 2329 static enum it_action warn_leak(struct dm_buffer *b, void *context) 2330 { 2331 bool *warned = context; 2332 2333 WARN_ON(!(*warned)); 2334 *warned = true; 2335 DMERR("leaked buffer %llx, hold count %u, list %d", 2336 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode); 2337 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2338 stack_trace_print(b->stack_entries, b->stack_len, 1); 2339 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */ 2340 atomic_set(&b->hold_count, 0); 2341 #endif 2342 return IT_NEXT; 2343 } 2344 2345 static void drop_buffers(struct dm_bufio_client *c) 2346 { 2347 int i; 2348 struct dm_buffer *b; 2349 2350 if (WARN_ON(dm_bufio_in_request())) 2351 return; /* should never happen */ 2352 2353 /* 2354 * An optimization so that the buffers are not written one-by-one. 2355 */ 2356 dm_bufio_write_dirty_buffers_async(c); 2357 2358 dm_bufio_lock(c); 2359 2360 while ((b = __get_unclaimed_buffer(c))) 2361 __free_buffer_wake(b); 2362 2363 for (i = 0; i < LIST_SIZE; i++) { 2364 bool warned = false; 2365 2366 cache_iterate(&c->cache, i, warn_leak, &warned); 2367 } 2368 2369 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2370 while ((b = __get_unclaimed_buffer(c))) 2371 __free_buffer_wake(b); 2372 #endif 2373 2374 for (i = 0; i < LIST_SIZE; i++) 2375 WARN_ON(cache_count(&c->cache, i)); 2376 2377 dm_bufio_unlock(c); 2378 } 2379 2380 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 2381 { 2382 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 2383 2384 if (likely(c->sectors_per_block_bits >= 0)) 2385 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 2386 else 2387 retain_bytes /= c->block_size; 2388 2389 return retain_bytes; 2390 } 2391 2392 static void __scan(struct dm_bufio_client *c) 2393 { 2394 int l; 2395 struct dm_buffer *b; 2396 unsigned long freed = 0; 2397 unsigned long retain_target = get_retain_buffers(c); 2398 unsigned long count = cache_total(&c->cache); 2399 2400 for (l = 0; l < LIST_SIZE; l++) { 2401 while (true) { 2402 if (count - freed <= retain_target) 2403 atomic_long_set(&c->need_shrink, 0); 2404 if (!atomic_long_read(&c->need_shrink)) 2405 break; 2406 2407 b = cache_evict(&c->cache, l, 2408 l == LIST_CLEAN ? is_clean : is_dirty, c); 2409 if (!b) 2410 break; 2411 2412 __make_buffer_clean(b); 2413 __free_buffer_wake(b); 2414 2415 atomic_long_dec(&c->need_shrink); 2416 freed++; 2417 cond_resched(); 2418 } 2419 } 2420 } 2421 2422 static void shrink_work(struct work_struct *w) 2423 { 2424 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work); 2425 2426 dm_bufio_lock(c); 2427 __scan(c); 2428 dm_bufio_unlock(c); 2429 } 2430 2431 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 2432 { 2433 struct dm_bufio_client *c; 2434 2435 c = shrink->private_data; 2436 atomic_long_add(sc->nr_to_scan, &c->need_shrink); 2437 queue_work(dm_bufio_wq, &c->shrink_work); 2438 2439 return sc->nr_to_scan; 2440 } 2441 2442 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 2443 { 2444 struct dm_bufio_client *c = shrink->private_data; 2445 unsigned long count = cache_total(&c->cache); 2446 unsigned long retain_target = get_retain_buffers(c); 2447 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink); 2448 2449 if (unlikely(count < retain_target)) 2450 count = 0; 2451 else 2452 count -= retain_target; 2453 2454 if (unlikely(count < queued_for_cleanup)) 2455 count = 0; 2456 else 2457 count -= queued_for_cleanup; 2458 2459 return count; 2460 } 2461 2462 /* 2463 * Create the buffering interface 2464 */ 2465 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size, 2466 unsigned int reserved_buffers, unsigned int aux_size, 2467 void (*alloc_callback)(struct dm_buffer *), 2468 void (*write_callback)(struct dm_buffer *), 2469 unsigned int flags) 2470 { 2471 int r; 2472 unsigned int num_locks; 2473 struct dm_bufio_client *c; 2474 char slab_name[64]; 2475 static atomic_t seqno = ATOMIC_INIT(0); 2476 2477 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 2478 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 2479 r = -EINVAL; 2480 goto bad_client; 2481 } 2482 2483 num_locks = dm_num_hash_locks(); 2484 c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL); 2485 if (!c) { 2486 r = -ENOMEM; 2487 goto bad_client; 2488 } 2489 cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0); 2490 2491 c->bdev = bdev; 2492 c->block_size = block_size; 2493 if (is_power_of_2(block_size)) 2494 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 2495 else 2496 c->sectors_per_block_bits = -1; 2497 2498 c->alloc_callback = alloc_callback; 2499 c->write_callback = write_callback; 2500 2501 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) { 2502 c->no_sleep = true; 2503 static_branch_inc(&no_sleep_enabled); 2504 } 2505 2506 mutex_init(&c->lock); 2507 spin_lock_init(&c->spinlock); 2508 INIT_LIST_HEAD(&c->reserved_buffers); 2509 c->need_reserved_buffers = reserved_buffers; 2510 2511 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 2512 2513 init_waitqueue_head(&c->free_buffer_wait); 2514 c->async_write_error = 0; 2515 2516 c->dm_io = dm_io_client_create(); 2517 if (IS_ERR(c->dm_io)) { 2518 r = PTR_ERR(c->dm_io); 2519 goto bad_dm_io; 2520 } 2521 2522 if (block_size <= KMALLOC_MAX_SIZE && 2523 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) { 2524 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE); 2525 2526 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u", 2527 block_size, atomic_inc_return(&seqno)); 2528 c->slab_cache = kmem_cache_create(slab_name, block_size, align, 2529 SLAB_RECLAIM_ACCOUNT, NULL); 2530 if (!c->slab_cache) { 2531 r = -ENOMEM; 2532 goto bad; 2533 } 2534 } 2535 if (aux_size) 2536 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u", 2537 aux_size, atomic_inc_return(&seqno)); 2538 else 2539 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", 2540 atomic_inc_return(&seqno)); 2541 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 2542 0, SLAB_RECLAIM_ACCOUNT, NULL); 2543 if (!c->slab_buffer) { 2544 r = -ENOMEM; 2545 goto bad; 2546 } 2547 2548 while (c->need_reserved_buffers) { 2549 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 2550 2551 if (!b) { 2552 r = -ENOMEM; 2553 goto bad; 2554 } 2555 __free_buffer_wake(b); 2556 } 2557 2558 INIT_WORK(&c->shrink_work, shrink_work); 2559 atomic_long_set(&c->need_shrink, 0); 2560 2561 c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)", 2562 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2563 if (!c->shrinker) { 2564 r = -ENOMEM; 2565 goto bad; 2566 } 2567 2568 c->shrinker->count_objects = dm_bufio_shrink_count; 2569 c->shrinker->scan_objects = dm_bufio_shrink_scan; 2570 c->shrinker->seeks = 1; 2571 c->shrinker->batch = 0; 2572 c->shrinker->private_data = c; 2573 2574 shrinker_register(c->shrinker); 2575 2576 mutex_lock(&dm_bufio_clients_lock); 2577 dm_bufio_client_count++; 2578 list_add(&c->client_list, &dm_bufio_all_clients); 2579 __cache_size_refresh(); 2580 mutex_unlock(&dm_bufio_clients_lock); 2581 2582 return c; 2583 2584 bad: 2585 while (!list_empty(&c->reserved_buffers)) { 2586 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2587 2588 list_del(&b->lru.list); 2589 free_buffer(b); 2590 } 2591 kmem_cache_destroy(c->slab_cache); 2592 kmem_cache_destroy(c->slab_buffer); 2593 dm_io_client_destroy(c->dm_io); 2594 bad_dm_io: 2595 mutex_destroy(&c->lock); 2596 if (c->no_sleep) 2597 static_branch_dec(&no_sleep_enabled); 2598 kfree(c); 2599 bad_client: 2600 return ERR_PTR(r); 2601 } 2602 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 2603 2604 /* 2605 * Free the buffering interface. 2606 * It is required that there are no references on any buffers. 2607 */ 2608 void dm_bufio_client_destroy(struct dm_bufio_client *c) 2609 { 2610 unsigned int i; 2611 2612 drop_buffers(c); 2613 2614 shrinker_free(c->shrinker); 2615 flush_work(&c->shrink_work); 2616 2617 mutex_lock(&dm_bufio_clients_lock); 2618 2619 list_del(&c->client_list); 2620 dm_bufio_client_count--; 2621 __cache_size_refresh(); 2622 2623 mutex_unlock(&dm_bufio_clients_lock); 2624 2625 WARN_ON(c->need_reserved_buffers); 2626 2627 while (!list_empty(&c->reserved_buffers)) { 2628 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2629 2630 list_del(&b->lru.list); 2631 free_buffer(b); 2632 } 2633 2634 for (i = 0; i < LIST_SIZE; i++) 2635 if (cache_count(&c->cache, i)) 2636 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i)); 2637 2638 for (i = 0; i < LIST_SIZE; i++) 2639 WARN_ON(cache_count(&c->cache, i)); 2640 2641 cache_destroy(&c->cache); 2642 kmem_cache_destroy(c->slab_cache); 2643 kmem_cache_destroy(c->slab_buffer); 2644 dm_io_client_destroy(c->dm_io); 2645 mutex_destroy(&c->lock); 2646 if (c->no_sleep) 2647 static_branch_dec(&no_sleep_enabled); 2648 kfree(c); 2649 } 2650 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 2651 2652 void dm_bufio_client_reset(struct dm_bufio_client *c) 2653 { 2654 drop_buffers(c); 2655 flush_work(&c->shrink_work); 2656 } 2657 EXPORT_SYMBOL_GPL(dm_bufio_client_reset); 2658 2659 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 2660 { 2661 c->start = start; 2662 } 2663 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 2664 2665 /*--------------------------------------------------------------*/ 2666 2667 static unsigned int get_max_age_hz(void) 2668 { 2669 unsigned int max_age = READ_ONCE(dm_bufio_max_age); 2670 2671 if (max_age > UINT_MAX / HZ) 2672 max_age = UINT_MAX / HZ; 2673 2674 return max_age * HZ; 2675 } 2676 2677 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 2678 { 2679 return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz); 2680 } 2681 2682 struct evict_params { 2683 gfp_t gfp; 2684 unsigned long age_hz; 2685 2686 /* 2687 * This gets updated with the largest last_accessed (ie. most 2688 * recently used) of the evicted buffers. It will not be reinitialised 2689 * by __evict_many(), so you can use it across multiple invocations. 2690 */ 2691 unsigned long last_accessed; 2692 }; 2693 2694 /* 2695 * We may not be able to evict this buffer if IO pending or the client 2696 * is still using it. 2697 * 2698 * And if GFP_NOFS is used, we must not do any I/O because we hold 2699 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 2700 * rerouted to different bufio client. 2701 */ 2702 static enum evict_result select_for_evict(struct dm_buffer *b, void *context) 2703 { 2704 struct evict_params *params = context; 2705 2706 if (!(params->gfp & __GFP_FS) || 2707 (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) { 2708 if (test_bit_acquire(B_READING, &b->state) || 2709 test_bit(B_WRITING, &b->state) || 2710 test_bit(B_DIRTY, &b->state)) 2711 return ER_DONT_EVICT; 2712 } 2713 2714 return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP; 2715 } 2716 2717 static unsigned long __evict_many(struct dm_bufio_client *c, 2718 struct evict_params *params, 2719 int list_mode, unsigned long max_count) 2720 { 2721 unsigned long count; 2722 unsigned long last_accessed; 2723 struct dm_buffer *b; 2724 2725 for (count = 0; count < max_count; count++) { 2726 b = cache_evict(&c->cache, list_mode, select_for_evict, params); 2727 if (!b) 2728 break; 2729 2730 last_accessed = READ_ONCE(b->last_accessed); 2731 if (time_after_eq(params->last_accessed, last_accessed)) 2732 params->last_accessed = last_accessed; 2733 2734 __make_buffer_clean(b); 2735 __free_buffer_wake(b); 2736 2737 cond_resched(); 2738 } 2739 2740 return count; 2741 } 2742 2743 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 2744 { 2745 struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0}; 2746 unsigned long retain = get_retain_buffers(c); 2747 unsigned long count; 2748 LIST_HEAD(write_list); 2749 2750 dm_bufio_lock(c); 2751 2752 __check_watermark(c, &write_list); 2753 if (unlikely(!list_empty(&write_list))) { 2754 dm_bufio_unlock(c); 2755 __flush_write_list(&write_list); 2756 dm_bufio_lock(c); 2757 } 2758 2759 count = cache_total(&c->cache); 2760 if (count > retain) 2761 __evict_many(c, ¶ms, LIST_CLEAN, count - retain); 2762 2763 dm_bufio_unlock(c); 2764 } 2765 2766 static void cleanup_old_buffers(void) 2767 { 2768 unsigned long max_age_hz = get_max_age_hz(); 2769 struct dm_bufio_client *c; 2770 2771 mutex_lock(&dm_bufio_clients_lock); 2772 2773 __cache_size_refresh(); 2774 2775 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 2776 evict_old_buffers(c, max_age_hz); 2777 2778 mutex_unlock(&dm_bufio_clients_lock); 2779 } 2780 2781 static void work_fn(struct work_struct *w) 2782 { 2783 cleanup_old_buffers(); 2784 2785 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2786 DM_BUFIO_WORK_TIMER_SECS * HZ); 2787 } 2788 2789 /*--------------------------------------------------------------*/ 2790 2791 /* 2792 * Global cleanup tries to evict the oldest buffers from across _all_ 2793 * the clients. It does this by repeatedly evicting a few buffers from 2794 * the client that holds the oldest buffer. It's approximate, but hopefully 2795 * good enough. 2796 */ 2797 static struct dm_bufio_client *__pop_client(void) 2798 { 2799 struct list_head *h; 2800 2801 if (list_empty(&dm_bufio_all_clients)) 2802 return NULL; 2803 2804 h = dm_bufio_all_clients.next; 2805 list_del(h); 2806 return container_of(h, struct dm_bufio_client, client_list); 2807 } 2808 2809 /* 2810 * Inserts the client in the global client list based on its 2811 * 'oldest_buffer' field. 2812 */ 2813 static void __insert_client(struct dm_bufio_client *new_client) 2814 { 2815 struct dm_bufio_client *c; 2816 struct list_head *h = dm_bufio_all_clients.next; 2817 2818 while (h != &dm_bufio_all_clients) { 2819 c = container_of(h, struct dm_bufio_client, client_list); 2820 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer)) 2821 break; 2822 h = h->next; 2823 } 2824 2825 list_add_tail(&new_client->client_list, h); 2826 } 2827 2828 static unsigned long __evict_a_few(unsigned long nr_buffers) 2829 { 2830 unsigned long count; 2831 struct dm_bufio_client *c; 2832 struct evict_params params = { 2833 .gfp = GFP_KERNEL, 2834 .age_hz = 0, 2835 /* set to jiffies in case there are no buffers in this client */ 2836 .last_accessed = jiffies 2837 }; 2838 2839 c = __pop_client(); 2840 if (!c) 2841 return 0; 2842 2843 dm_bufio_lock(c); 2844 count = __evict_many(c, ¶ms, LIST_CLEAN, nr_buffers); 2845 dm_bufio_unlock(c); 2846 2847 if (count) 2848 c->oldest_buffer = params.last_accessed; 2849 __insert_client(c); 2850 2851 return count; 2852 } 2853 2854 static void check_watermarks(void) 2855 { 2856 LIST_HEAD(write_list); 2857 struct dm_bufio_client *c; 2858 2859 mutex_lock(&dm_bufio_clients_lock); 2860 list_for_each_entry(c, &dm_bufio_all_clients, client_list) { 2861 dm_bufio_lock(c); 2862 __check_watermark(c, &write_list); 2863 dm_bufio_unlock(c); 2864 } 2865 mutex_unlock(&dm_bufio_clients_lock); 2866 2867 __flush_write_list(&write_list); 2868 } 2869 2870 static void evict_old(void) 2871 { 2872 unsigned long threshold = dm_bufio_cache_size - 2873 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; 2874 2875 mutex_lock(&dm_bufio_clients_lock); 2876 while (dm_bufio_current_allocated > threshold) { 2877 if (!__evict_a_few(64)) 2878 break; 2879 cond_resched(); 2880 } 2881 mutex_unlock(&dm_bufio_clients_lock); 2882 } 2883 2884 static void do_global_cleanup(struct work_struct *w) 2885 { 2886 check_watermarks(); 2887 evict_old(); 2888 } 2889 2890 /* 2891 *-------------------------------------------------------------- 2892 * Module setup 2893 *-------------------------------------------------------------- 2894 */ 2895 2896 /* 2897 * This is called only once for the whole dm_bufio module. 2898 * It initializes memory limit. 2899 */ 2900 static int __init dm_bufio_init(void) 2901 { 2902 __u64 mem; 2903 2904 dm_bufio_allocated_kmem_cache = 0; 2905 dm_bufio_allocated_get_free_pages = 0; 2906 dm_bufio_allocated_vmalloc = 0; 2907 dm_bufio_current_allocated = 0; 2908 2909 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), 2910 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 2911 2912 if (mem > ULONG_MAX) 2913 mem = ULONG_MAX; 2914 2915 #ifdef CONFIG_MMU 2916 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 2917 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 2918 #endif 2919 2920 dm_bufio_default_cache_size = mem; 2921 2922 mutex_lock(&dm_bufio_clients_lock); 2923 __cache_size_refresh(); 2924 mutex_unlock(&dm_bufio_clients_lock); 2925 2926 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 2927 if (!dm_bufio_wq) 2928 return -ENOMEM; 2929 2930 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn); 2931 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); 2932 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2933 DM_BUFIO_WORK_TIMER_SECS * HZ); 2934 2935 return 0; 2936 } 2937 2938 /* 2939 * This is called once when unloading the dm_bufio module. 2940 */ 2941 static void __exit dm_bufio_exit(void) 2942 { 2943 int bug = 0; 2944 2945 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work); 2946 destroy_workqueue(dm_bufio_wq); 2947 2948 if (dm_bufio_client_count) { 2949 DMCRIT("%s: dm_bufio_client_count leaked: %d", 2950 __func__, dm_bufio_client_count); 2951 bug = 1; 2952 } 2953 2954 if (dm_bufio_current_allocated) { 2955 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 2956 __func__, dm_bufio_current_allocated); 2957 bug = 1; 2958 } 2959 2960 if (dm_bufio_allocated_get_free_pages) { 2961 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 2962 __func__, dm_bufio_allocated_get_free_pages); 2963 bug = 1; 2964 } 2965 2966 if (dm_bufio_allocated_vmalloc) { 2967 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 2968 __func__, dm_bufio_allocated_vmalloc); 2969 bug = 1; 2970 } 2971 2972 WARN_ON(bug); /* leaks are not worth crashing the system */ 2973 } 2974 2975 module_init(dm_bufio_init) 2976 module_exit(dm_bufio_exit) 2977 2978 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644); 2979 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 2980 2981 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644); 2982 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 2983 2984 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644); 2985 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2986 2987 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644); 2988 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 2989 2990 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444); 2991 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 2992 2993 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444); 2994 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 2995 2996 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444); 2997 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 2998 2999 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444); 3000 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 3001 3002 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>"); 3003 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 3004 MODULE_LICENSE("GPL"); 3005