xref: /linux/drivers/md/dm-bufio.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009-2011 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/dm-bufio.h>
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
23 
24 #include "dm.h"
25 
26 #define DM_MSG_PREFIX "bufio"
27 
28 /*
29  * Memory management policy:
30  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34  *	dirty buffers.
35  */
36 #define DM_BUFIO_MIN_BUFFERS		8
37 
38 #define DM_BUFIO_MEMORY_PERCENT		2
39 #define DM_BUFIO_VMALLOC_PERCENT	25
40 #define DM_BUFIO_WRITEBACK_RATIO	3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO	16
42 
43 /*
44  * Check buffer ages in this interval (seconds)
45  */
46 #define DM_BUFIO_WORK_TIMER_SECS	30
47 
48 /*
49  * Free buffers when they are older than this (seconds)
50  */
51 #define DM_BUFIO_DEFAULT_AGE_SECS	300
52 
53 /*
54  * The nr of bytes of cached data to keep around.
55  */
56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
57 
58 /*
59  * Align buffer writes to this boundary.
60  * Tests show that SSDs have the highest IOPS when using 4k writes.
61  */
62 #define DM_BUFIO_WRITE_ALIGN		4096
63 
64 /*
65  * dm_buffer->list_mode
66  */
67 #define LIST_CLEAN	0
68 #define LIST_DIRTY	1
69 #define LIST_SIZE	2
70 
71 /*--------------------------------------------------------------*/
72 
73 /*
74  * Rather than use an LRU list, we use a clock algorithm where entries
75  * are held in a circular list.  When an entry is 'hit' a reference bit
76  * is set.  The least recently used entry is approximated by running a
77  * cursor around the list selecting unreferenced entries. Referenced
78  * entries have their reference bit cleared as the cursor passes them.
79  */
80 struct lru_entry {
81 	struct list_head list;
82 	atomic_t referenced;
83 };
84 
85 struct lru_iter {
86 	struct lru *lru;
87 	struct list_head list;
88 	struct lru_entry *stop;
89 	struct lru_entry *e;
90 };
91 
92 struct lru {
93 	struct list_head *cursor;
94 	unsigned long count;
95 
96 	struct list_head iterators;
97 };
98 
99 /*--------------*/
100 
101 static void lru_init(struct lru *lru)
102 {
103 	lru->cursor = NULL;
104 	lru->count = 0;
105 	INIT_LIST_HEAD(&lru->iterators);
106 }
107 
108 static void lru_destroy(struct lru *lru)
109 {
110 	WARN_ON_ONCE(lru->cursor);
111 	WARN_ON_ONCE(!list_empty(&lru->iterators));
112 }
113 
114 /*
115  * Insert a new entry into the lru.
116  */
117 static void lru_insert(struct lru *lru, struct lru_entry *le)
118 {
119 	/*
120 	 * Don't be tempted to set to 1, makes the lru aspect
121 	 * perform poorly.
122 	 */
123 	atomic_set(&le->referenced, 0);
124 
125 	if (lru->cursor) {
126 		list_add_tail(&le->list, lru->cursor);
127 	} else {
128 		INIT_LIST_HEAD(&le->list);
129 		lru->cursor = &le->list;
130 	}
131 	lru->count++;
132 }
133 
134 /*--------------*/
135 
136 /*
137  * Convert a list_head pointer to an lru_entry pointer.
138  */
139 static inline struct lru_entry *to_le(struct list_head *l)
140 {
141 	return container_of(l, struct lru_entry, list);
142 }
143 
144 /*
145  * Initialize an lru_iter and add it to the list of cursors in the lru.
146  */
147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
148 {
149 	it->lru = lru;
150 	it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
151 	it->e = lru->cursor ? to_le(lru->cursor) : NULL;
152 	list_add(&it->list, &lru->iterators);
153 }
154 
155 /*
156  * Remove an lru_iter from the list of cursors in the lru.
157  */
158 static inline void lru_iter_end(struct lru_iter *it)
159 {
160 	list_del(&it->list);
161 }
162 
163 /* Predicate function type to be used with lru_iter_next */
164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
165 
166 /*
167  * Advance the cursor to the next entry that passes the
168  * predicate, and return that entry.  Returns NULL if the
169  * iteration is complete.
170  */
171 static struct lru_entry *lru_iter_next(struct lru_iter *it,
172 				       iter_predicate pred, void *context)
173 {
174 	struct lru_entry *e;
175 
176 	while (it->e) {
177 		e = it->e;
178 
179 		/* advance the cursor */
180 		if (it->e == it->stop)
181 			it->e = NULL;
182 		else
183 			it->e = to_le(it->e->list.next);
184 
185 		if (pred(e, context))
186 			return e;
187 	}
188 
189 	return NULL;
190 }
191 
192 /*
193  * Invalidate a specific lru_entry and update all cursors in
194  * the lru accordingly.
195  */
196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
197 {
198 	struct lru_iter *it;
199 
200 	list_for_each_entry(it, &lru->iterators, list) {
201 		/* Move c->e forwards if necc. */
202 		if (it->e == e) {
203 			it->e = to_le(it->e->list.next);
204 			if (it->e == e)
205 				it->e = NULL;
206 		}
207 
208 		/* Move it->stop backwards if necc. */
209 		if (it->stop == e) {
210 			it->stop = to_le(it->stop->list.prev);
211 			if (it->stop == e)
212 				it->stop = NULL;
213 		}
214 	}
215 }
216 
217 /*--------------*/
218 
219 /*
220  * Remove a specific entry from the lru.
221  */
222 static void lru_remove(struct lru *lru, struct lru_entry *le)
223 {
224 	lru_iter_invalidate(lru, le);
225 	if (lru->count == 1) {
226 		lru->cursor = NULL;
227 	} else {
228 		if (lru->cursor == &le->list)
229 			lru->cursor = lru->cursor->next;
230 		list_del(&le->list);
231 	}
232 	lru->count--;
233 }
234 
235 /*
236  * Mark as referenced.
237  */
238 static inline void lru_reference(struct lru_entry *le)
239 {
240 	atomic_set(&le->referenced, 1);
241 }
242 
243 /*--------------*/
244 
245 /*
246  * Remove the least recently used entry (approx), that passes the predicate.
247  * Returns NULL on failure.
248  */
249 enum evict_result {
250 	ER_EVICT,
251 	ER_DONT_EVICT,
252 	ER_STOP, /* stop looking for something to evict */
253 };
254 
255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
256 
257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
258 {
259 	unsigned long tested = 0;
260 	struct list_head *h = lru->cursor;
261 	struct lru_entry *le;
262 
263 	if (!h)
264 		return NULL;
265 	/*
266 	 * In the worst case we have to loop around twice. Once to clear
267 	 * the reference flags, and then again to discover the predicate
268 	 * fails for all entries.
269 	 */
270 	while (tested < lru->count) {
271 		le = container_of(h, struct lru_entry, list);
272 
273 		if (atomic_read(&le->referenced)) {
274 			atomic_set(&le->referenced, 0);
275 		} else {
276 			tested++;
277 			switch (pred(le, context)) {
278 			case ER_EVICT:
279 				/*
280 				 * Adjust the cursor, so we start the next
281 				 * search from here.
282 				 */
283 				lru->cursor = le->list.next;
284 				lru_remove(lru, le);
285 				return le;
286 
287 			case ER_DONT_EVICT:
288 				break;
289 
290 			case ER_STOP:
291 				lru->cursor = le->list.next;
292 				return NULL;
293 			}
294 		}
295 
296 		h = h->next;
297 
298 		if (!no_sleep)
299 			cond_resched();
300 	}
301 
302 	return NULL;
303 }
304 
305 /*--------------------------------------------------------------*/
306 
307 /*
308  * Buffer state bits.
309  */
310 #define B_READING	0
311 #define B_WRITING	1
312 #define B_DIRTY		2
313 
314 /*
315  * Describes how the block was allocated:
316  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
317  * See the comment at alloc_buffer_data.
318  */
319 enum data_mode {
320 	DATA_MODE_SLAB = 0,
321 	DATA_MODE_GET_FREE_PAGES = 1,
322 	DATA_MODE_VMALLOC = 2,
323 	DATA_MODE_LIMIT = 3
324 };
325 
326 struct dm_buffer {
327 	/* protected by the locks in dm_buffer_cache */
328 	struct rb_node node;
329 
330 	/* immutable, so don't need protecting */
331 	sector_t block;
332 	void *data;
333 	unsigned char data_mode;		/* DATA_MODE_* */
334 
335 	/*
336 	 * These two fields are used in isolation, so do not need
337 	 * a surrounding lock.
338 	 */
339 	atomic_t hold_count;
340 	unsigned long last_accessed;
341 
342 	/*
343 	 * Everything else is protected by the mutex in
344 	 * dm_bufio_client
345 	 */
346 	unsigned long state;
347 	struct lru_entry lru;
348 	unsigned char list_mode;		/* LIST_* */
349 	blk_status_t read_error;
350 	blk_status_t write_error;
351 	unsigned int dirty_start;
352 	unsigned int dirty_end;
353 	unsigned int write_start;
354 	unsigned int write_end;
355 	struct list_head write_list;
356 	struct dm_bufio_client *c;
357 	void (*end_io)(struct dm_buffer *b, blk_status_t bs);
358 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
359 #define MAX_STACK 10
360 	unsigned int stack_len;
361 	unsigned long stack_entries[MAX_STACK];
362 #endif
363 };
364 
365 /*--------------------------------------------------------------*/
366 
367 /*
368  * The buffer cache manages buffers, particularly:
369  *  - inc/dec of holder count
370  *  - setting the last_accessed field
371  *  - maintains clean/dirty state along with lru
372  *  - selecting buffers that match predicates
373  *
374  * It does *not* handle:
375  *  - allocation/freeing of buffers.
376  *  - IO
377  *  - Eviction or cache sizing.
378  *
379  * cache_get() and cache_put() are threadsafe, you do not need to
380  * protect these calls with a surrounding mutex.  All the other
381  * methods are not threadsafe; they do use locking primitives, but
382  * only enough to ensure get/put are threadsafe.
383  */
384 
385 struct buffer_tree {
386 	union {
387 		struct rw_semaphore lock;
388 		rwlock_t spinlock;
389 	} u;
390 	struct rb_root root;
391 } ____cacheline_aligned_in_smp;
392 
393 struct dm_buffer_cache {
394 	struct lru lru[LIST_SIZE];
395 	/*
396 	 * We spread entries across multiple trees to reduce contention
397 	 * on the locks.
398 	 */
399 	unsigned int num_locks;
400 	bool no_sleep;
401 	struct buffer_tree trees[];
402 };
403 
404 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
405 
406 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
407 {
408 	return dm_hash_locks_index(block, num_locks);
409 }
410 
411 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
412 {
413 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
414 		read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
415 	else
416 		down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
417 }
418 
419 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
420 {
421 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
422 		read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
423 	else
424 		up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
425 }
426 
427 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
428 {
429 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
430 		write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
431 	else
432 		down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
433 }
434 
435 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
436 {
437 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
438 		write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
439 	else
440 		up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
441 }
442 
443 /*
444  * Sometimes we want to repeatedly get and drop locks as part of an iteration.
445  * This struct helps avoid redundant drop and gets of the same lock.
446  */
447 struct lock_history {
448 	struct dm_buffer_cache *cache;
449 	bool write;
450 	unsigned int previous;
451 	unsigned int no_previous;
452 };
453 
454 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
455 {
456 	lh->cache = cache;
457 	lh->write = write;
458 	lh->no_previous = cache->num_locks;
459 	lh->previous = lh->no_previous;
460 }
461 
462 static void __lh_lock(struct lock_history *lh, unsigned int index)
463 {
464 	if (lh->write) {
465 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
466 			write_lock_bh(&lh->cache->trees[index].u.spinlock);
467 		else
468 			down_write(&lh->cache->trees[index].u.lock);
469 	} else {
470 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
471 			read_lock_bh(&lh->cache->trees[index].u.spinlock);
472 		else
473 			down_read(&lh->cache->trees[index].u.lock);
474 	}
475 }
476 
477 static void __lh_unlock(struct lock_history *lh, unsigned int index)
478 {
479 	if (lh->write) {
480 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
481 			write_unlock_bh(&lh->cache->trees[index].u.spinlock);
482 		else
483 			up_write(&lh->cache->trees[index].u.lock);
484 	} else {
485 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
486 			read_unlock_bh(&lh->cache->trees[index].u.spinlock);
487 		else
488 			up_read(&lh->cache->trees[index].u.lock);
489 	}
490 }
491 
492 /*
493  * Make sure you call this since it will unlock the final lock.
494  */
495 static void lh_exit(struct lock_history *lh)
496 {
497 	if (lh->previous != lh->no_previous) {
498 		__lh_unlock(lh, lh->previous);
499 		lh->previous = lh->no_previous;
500 	}
501 }
502 
503 /*
504  * Named 'next' because there is no corresponding
505  * 'up/unlock' call since it's done automatically.
506  */
507 static void lh_next(struct lock_history *lh, sector_t b)
508 {
509 	unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
510 
511 	if (lh->previous != lh->no_previous) {
512 		if (lh->previous != index) {
513 			__lh_unlock(lh, lh->previous);
514 			__lh_lock(lh, index);
515 			lh->previous = index;
516 		}
517 	} else {
518 		__lh_lock(lh, index);
519 		lh->previous = index;
520 	}
521 }
522 
523 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
524 {
525 	return container_of(le, struct dm_buffer, lru);
526 }
527 
528 static struct dm_buffer *list_to_buffer(struct list_head *l)
529 {
530 	struct lru_entry *le = list_entry(l, struct lru_entry, list);
531 
532 	return le_to_buffer(le);
533 }
534 
535 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
536 {
537 	unsigned int i;
538 
539 	bc->num_locks = num_locks;
540 	bc->no_sleep = no_sleep;
541 
542 	for (i = 0; i < bc->num_locks; i++) {
543 		if (no_sleep)
544 			rwlock_init(&bc->trees[i].u.spinlock);
545 		else
546 			init_rwsem(&bc->trees[i].u.lock);
547 		bc->trees[i].root = RB_ROOT;
548 	}
549 
550 	lru_init(&bc->lru[LIST_CLEAN]);
551 	lru_init(&bc->lru[LIST_DIRTY]);
552 }
553 
554 static void cache_destroy(struct dm_buffer_cache *bc)
555 {
556 	unsigned int i;
557 
558 	for (i = 0; i < bc->num_locks; i++)
559 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
560 
561 	lru_destroy(&bc->lru[LIST_CLEAN]);
562 	lru_destroy(&bc->lru[LIST_DIRTY]);
563 }
564 
565 /*--------------*/
566 
567 /*
568  * not threadsafe, or racey depending how you look at it
569  */
570 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
571 {
572 	return bc->lru[list_mode].count;
573 }
574 
575 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
576 {
577 	return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
578 }
579 
580 /*--------------*/
581 
582 /*
583  * Gets a specific buffer, indexed by block.
584  * If the buffer is found then its holder count will be incremented and
585  * lru_reference will be called.
586  *
587  * threadsafe
588  */
589 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
590 {
591 	struct rb_node *n = root->rb_node;
592 	struct dm_buffer *b;
593 
594 	while (n) {
595 		b = container_of(n, struct dm_buffer, node);
596 
597 		if (b->block == block)
598 			return b;
599 
600 		n = block < b->block ? n->rb_left : n->rb_right;
601 	}
602 
603 	return NULL;
604 }
605 
606 static void __cache_inc_buffer(struct dm_buffer *b)
607 {
608 	atomic_inc(&b->hold_count);
609 	WRITE_ONCE(b->last_accessed, jiffies);
610 }
611 
612 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
613 {
614 	struct dm_buffer *b;
615 
616 	cache_read_lock(bc, block);
617 	b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
618 	if (b) {
619 		lru_reference(&b->lru);
620 		__cache_inc_buffer(b);
621 	}
622 	cache_read_unlock(bc, block);
623 
624 	return b;
625 }
626 
627 /*--------------*/
628 
629 /*
630  * Returns true if the hold count hits zero.
631  * threadsafe
632  */
633 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
634 {
635 	bool r;
636 
637 	cache_read_lock(bc, b->block);
638 	BUG_ON(!atomic_read(&b->hold_count));
639 	r = atomic_dec_and_test(&b->hold_count);
640 	cache_read_unlock(bc, b->block);
641 
642 	return r;
643 }
644 
645 /*--------------*/
646 
647 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
648 
649 /*
650  * Evicts a buffer based on a predicate.  The oldest buffer that
651  * matches the predicate will be selected.  In addition to the
652  * predicate the hold_count of the selected buffer will be zero.
653  */
654 struct evict_wrapper {
655 	struct lock_history *lh;
656 	b_predicate pred;
657 	void *context;
658 };
659 
660 /*
661  * Wraps the buffer predicate turning it into an lru predicate.  Adds
662  * extra test for hold_count.
663  */
664 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
665 {
666 	struct evict_wrapper *w = context;
667 	struct dm_buffer *b = le_to_buffer(le);
668 
669 	lh_next(w->lh, b->block);
670 
671 	if (atomic_read(&b->hold_count))
672 		return ER_DONT_EVICT;
673 
674 	return w->pred(b, w->context);
675 }
676 
677 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
678 				       b_predicate pred, void *context,
679 				       struct lock_history *lh)
680 {
681 	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
682 	struct lru_entry *le;
683 	struct dm_buffer *b;
684 
685 	le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
686 	if (!le)
687 		return NULL;
688 
689 	b = le_to_buffer(le);
690 	/* __evict_pred will have locked the appropriate tree. */
691 	rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
692 
693 	return b;
694 }
695 
696 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
697 				     b_predicate pred, void *context)
698 {
699 	struct dm_buffer *b;
700 	struct lock_history lh;
701 
702 	lh_init(&lh, bc, true);
703 	b = __cache_evict(bc, list_mode, pred, context, &lh);
704 	lh_exit(&lh);
705 
706 	return b;
707 }
708 
709 /*--------------*/
710 
711 /*
712  * Mark a buffer as clean or dirty. Not threadsafe.
713  */
714 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
715 {
716 	cache_write_lock(bc, b->block);
717 	if (list_mode != b->list_mode) {
718 		lru_remove(&bc->lru[b->list_mode], &b->lru);
719 		b->list_mode = list_mode;
720 		lru_insert(&bc->lru[b->list_mode], &b->lru);
721 	}
722 	cache_write_unlock(bc, b->block);
723 }
724 
725 /*--------------*/
726 
727 /*
728  * Runs through the lru associated with 'old_mode', if the predicate matches then
729  * it moves them to 'new_mode'.  Not threadsafe.
730  */
731 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
732 			      b_predicate pred, void *context, struct lock_history *lh)
733 {
734 	struct lru_entry *le;
735 	struct dm_buffer *b;
736 	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
737 
738 	while (true) {
739 		le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
740 		if (!le)
741 			break;
742 
743 		b = le_to_buffer(le);
744 		b->list_mode = new_mode;
745 		lru_insert(&bc->lru[b->list_mode], &b->lru);
746 	}
747 }
748 
749 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
750 			    b_predicate pred, void *context)
751 {
752 	struct lock_history lh;
753 
754 	lh_init(&lh, bc, true);
755 	__cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
756 	lh_exit(&lh);
757 }
758 
759 /*--------------*/
760 
761 /*
762  * Iterates through all clean or dirty entries calling a function for each
763  * entry.  The callback may terminate the iteration early.  Not threadsafe.
764  */
765 
766 /*
767  * Iterator functions should return one of these actions to indicate
768  * how the iteration should proceed.
769  */
770 enum it_action {
771 	IT_NEXT,
772 	IT_COMPLETE,
773 };
774 
775 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
776 
777 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
778 			    iter_fn fn, void *context, struct lock_history *lh)
779 {
780 	struct lru *lru = &bc->lru[list_mode];
781 	struct lru_entry *le, *first;
782 
783 	if (!lru->cursor)
784 		return;
785 
786 	first = le = to_le(lru->cursor);
787 	do {
788 		struct dm_buffer *b = le_to_buffer(le);
789 
790 		lh_next(lh, b->block);
791 
792 		switch (fn(b, context)) {
793 		case IT_NEXT:
794 			break;
795 
796 		case IT_COMPLETE:
797 			return;
798 		}
799 		cond_resched();
800 
801 		le = to_le(le->list.next);
802 	} while (le != first);
803 }
804 
805 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
806 			  iter_fn fn, void *context)
807 {
808 	struct lock_history lh;
809 
810 	lh_init(&lh, bc, false);
811 	__cache_iterate(bc, list_mode, fn, context, &lh);
812 	lh_exit(&lh);
813 }
814 
815 /*--------------*/
816 
817 /*
818  * Passes ownership of the buffer to the cache. Returns false if the
819  * buffer was already present (in which case ownership does not pass).
820  * eg, a race with another thread.
821  *
822  * Holder count should be 1 on insertion.
823  *
824  * Not threadsafe.
825  */
826 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
827 {
828 	struct rb_node **new = &root->rb_node, *parent = NULL;
829 	struct dm_buffer *found;
830 
831 	while (*new) {
832 		found = container_of(*new, struct dm_buffer, node);
833 
834 		if (found->block == b->block)
835 			return false;
836 
837 		parent = *new;
838 		new = b->block < found->block ?
839 			&found->node.rb_left : &found->node.rb_right;
840 	}
841 
842 	rb_link_node(&b->node, parent, new);
843 	rb_insert_color(&b->node, root);
844 
845 	return true;
846 }
847 
848 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
849 {
850 	bool r;
851 
852 	if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
853 		return false;
854 
855 	cache_write_lock(bc, b->block);
856 	BUG_ON(atomic_read(&b->hold_count) != 1);
857 	r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
858 	if (r)
859 		lru_insert(&bc->lru[b->list_mode], &b->lru);
860 	cache_write_unlock(bc, b->block);
861 
862 	return r;
863 }
864 
865 /*--------------*/
866 
867 /*
868  * Removes buffer from cache, ownership of the buffer passes back to the caller.
869  * Fails if the hold_count is not one (ie. the caller holds the only reference).
870  *
871  * Not threadsafe.
872  */
873 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
874 {
875 	bool r;
876 
877 	cache_write_lock(bc, b->block);
878 
879 	if (atomic_read(&b->hold_count) != 1) {
880 		r = false;
881 	} else {
882 		r = true;
883 		rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
884 		lru_remove(&bc->lru[b->list_mode], &b->lru);
885 	}
886 
887 	cache_write_unlock(bc, b->block);
888 
889 	return r;
890 }
891 
892 /*--------------*/
893 
894 typedef void (*b_release)(struct dm_buffer *);
895 
896 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
897 {
898 	struct rb_node *n = root->rb_node;
899 	struct dm_buffer *b;
900 	struct dm_buffer *best = NULL;
901 
902 	while (n) {
903 		b = container_of(n, struct dm_buffer, node);
904 
905 		if (b->block == block)
906 			return b;
907 
908 		if (block <= b->block) {
909 			n = n->rb_left;
910 			best = b;
911 		} else {
912 			n = n->rb_right;
913 		}
914 	}
915 
916 	return best;
917 }
918 
919 static void __remove_range(struct dm_buffer_cache *bc,
920 			   struct rb_root *root,
921 			   sector_t begin, sector_t end,
922 			   b_predicate pred, b_release release)
923 {
924 	struct dm_buffer *b;
925 
926 	while (true) {
927 		cond_resched();
928 
929 		b = __find_next(root, begin);
930 		if (!b || (b->block >= end))
931 			break;
932 
933 		begin = b->block + 1;
934 
935 		if (atomic_read(&b->hold_count))
936 			continue;
937 
938 		if (pred(b, NULL) == ER_EVICT) {
939 			rb_erase(&b->node, root);
940 			lru_remove(&bc->lru[b->list_mode], &b->lru);
941 			release(b);
942 		}
943 	}
944 }
945 
946 static void cache_remove_range(struct dm_buffer_cache *bc,
947 			       sector_t begin, sector_t end,
948 			       b_predicate pred, b_release release)
949 {
950 	unsigned int i;
951 
952 	BUG_ON(bc->no_sleep);
953 	for (i = 0; i < bc->num_locks; i++) {
954 		down_write(&bc->trees[i].u.lock);
955 		__remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
956 		up_write(&bc->trees[i].u.lock);
957 	}
958 }
959 
960 /*----------------------------------------------------------------*/
961 
962 /*
963  * Linking of buffers:
964  *	All buffers are linked to buffer_cache with their node field.
965  *
966  *	Clean buffers that are not being written (B_WRITING not set)
967  *	are linked to lru[LIST_CLEAN] with their lru_list field.
968  *
969  *	Dirty and clean buffers that are being written are linked to
970  *	lru[LIST_DIRTY] with their lru_list field. When the write
971  *	finishes, the buffer cannot be relinked immediately (because we
972  *	are in an interrupt context and relinking requires process
973  *	context), so some clean-not-writing buffers can be held on
974  *	dirty_lru too.  They are later added to lru in the process
975  *	context.
976  */
977 struct dm_bufio_client {
978 	struct block_device *bdev;
979 	unsigned int block_size;
980 	s8 sectors_per_block_bits;
981 
982 	bool no_sleep;
983 	struct mutex lock;
984 	spinlock_t spinlock;
985 
986 	int async_write_error;
987 
988 	void (*alloc_callback)(struct dm_buffer *buf);
989 	void (*write_callback)(struct dm_buffer *buf);
990 	struct kmem_cache *slab_buffer;
991 	struct kmem_cache *slab_cache;
992 	struct dm_io_client *dm_io;
993 
994 	struct list_head reserved_buffers;
995 	unsigned int need_reserved_buffers;
996 
997 	unsigned int minimum_buffers;
998 
999 	sector_t start;
1000 
1001 	struct shrinker *shrinker;
1002 	struct work_struct shrink_work;
1003 	atomic_long_t need_shrink;
1004 
1005 	wait_queue_head_t free_buffer_wait;
1006 
1007 	struct list_head client_list;
1008 
1009 	/*
1010 	 * Used by global_cleanup to sort the clients list.
1011 	 */
1012 	unsigned long oldest_buffer;
1013 
1014 	struct dm_buffer_cache cache; /* must be last member */
1015 };
1016 
1017 /*----------------------------------------------------------------*/
1018 
1019 #define dm_bufio_in_request()	(!!current->bio_list)
1020 
1021 static void dm_bufio_lock(struct dm_bufio_client *c)
1022 {
1023 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1024 		spin_lock_bh(&c->spinlock);
1025 	else
1026 		mutex_lock_nested(&c->lock, dm_bufio_in_request());
1027 }
1028 
1029 static void dm_bufio_unlock(struct dm_bufio_client *c)
1030 {
1031 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1032 		spin_unlock_bh(&c->spinlock);
1033 	else
1034 		mutex_unlock(&c->lock);
1035 }
1036 
1037 /*----------------------------------------------------------------*/
1038 
1039 /*
1040  * Default cache size: available memory divided by the ratio.
1041  */
1042 static unsigned long dm_bufio_default_cache_size;
1043 
1044 /*
1045  * Total cache size set by the user.
1046  */
1047 static unsigned long dm_bufio_cache_size;
1048 
1049 /*
1050  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1051  * at any time.  If it disagrees, the user has changed cache size.
1052  */
1053 static unsigned long dm_bufio_cache_size_latch;
1054 
1055 static DEFINE_SPINLOCK(global_spinlock);
1056 
1057 /*
1058  * Buffers are freed after this timeout
1059  */
1060 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1061 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1062 
1063 static unsigned long dm_bufio_peak_allocated;
1064 static unsigned long dm_bufio_allocated_kmem_cache;
1065 static unsigned long dm_bufio_allocated_get_free_pages;
1066 static unsigned long dm_bufio_allocated_vmalloc;
1067 static unsigned long dm_bufio_current_allocated;
1068 
1069 /*----------------------------------------------------------------*/
1070 
1071 /*
1072  * The current number of clients.
1073  */
1074 static int dm_bufio_client_count;
1075 
1076 /*
1077  * The list of all clients.
1078  */
1079 static LIST_HEAD(dm_bufio_all_clients);
1080 
1081 /*
1082  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1083  */
1084 static DEFINE_MUTEX(dm_bufio_clients_lock);
1085 
1086 static struct workqueue_struct *dm_bufio_wq;
1087 static struct delayed_work dm_bufio_cleanup_old_work;
1088 static struct work_struct dm_bufio_replacement_work;
1089 
1090 
1091 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1092 static void buffer_record_stack(struct dm_buffer *b)
1093 {
1094 	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1095 }
1096 #endif
1097 
1098 /*----------------------------------------------------------------*/
1099 
1100 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1101 {
1102 	unsigned char data_mode;
1103 	long diff;
1104 
1105 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1106 		&dm_bufio_allocated_kmem_cache,
1107 		&dm_bufio_allocated_get_free_pages,
1108 		&dm_bufio_allocated_vmalloc,
1109 	};
1110 
1111 	data_mode = b->data_mode;
1112 	diff = (long)b->c->block_size;
1113 	if (unlink)
1114 		diff = -diff;
1115 
1116 	spin_lock(&global_spinlock);
1117 
1118 	*class_ptr[data_mode] += diff;
1119 
1120 	dm_bufio_current_allocated += diff;
1121 
1122 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1123 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
1124 
1125 	if (!unlink) {
1126 		if (dm_bufio_current_allocated > dm_bufio_cache_size)
1127 			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1128 	}
1129 
1130 	spin_unlock(&global_spinlock);
1131 }
1132 
1133 /*
1134  * Change the number of clients and recalculate per-client limit.
1135  */
1136 static void __cache_size_refresh(void)
1137 {
1138 	if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1139 		return;
1140 	if (WARN_ON(dm_bufio_client_count < 0))
1141 		return;
1142 
1143 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1144 
1145 	/*
1146 	 * Use default if set to 0 and report the actual cache size used.
1147 	 */
1148 	if (!dm_bufio_cache_size_latch) {
1149 		(void)cmpxchg(&dm_bufio_cache_size, 0,
1150 			      dm_bufio_default_cache_size);
1151 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1152 	}
1153 }
1154 
1155 /*
1156  * Allocating buffer data.
1157  *
1158  * Small buffers are allocated with kmem_cache, to use space optimally.
1159  *
1160  * For large buffers, we choose between get_free_pages and vmalloc.
1161  * Each has advantages and disadvantages.
1162  *
1163  * __get_free_pages can randomly fail if the memory is fragmented.
1164  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1165  * as low as 128M) so using it for caching is not appropriate.
1166  *
1167  * If the allocation may fail we use __get_free_pages. Memory fragmentation
1168  * won't have a fatal effect here, but it just causes flushes of some other
1169  * buffers and more I/O will be performed. Don't use __get_free_pages if it
1170  * always fails (i.e. order > MAX_PAGE_ORDER).
1171  *
1172  * If the allocation shouldn't fail we use __vmalloc. This is only for the
1173  * initial reserve allocation, so there's no risk of wasting all vmalloc
1174  * space.
1175  */
1176 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1177 			       unsigned char *data_mode)
1178 {
1179 	if (unlikely(c->slab_cache != NULL)) {
1180 		*data_mode = DATA_MODE_SLAB;
1181 		return kmem_cache_alloc(c->slab_cache, gfp_mask);
1182 	}
1183 
1184 	if (c->block_size <= KMALLOC_MAX_SIZE &&
1185 	    gfp_mask & __GFP_NORETRY) {
1186 		*data_mode = DATA_MODE_GET_FREE_PAGES;
1187 		return (void *)__get_free_pages(gfp_mask,
1188 						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1189 	}
1190 
1191 	*data_mode = DATA_MODE_VMALLOC;
1192 
1193 	return __vmalloc(c->block_size, gfp_mask);
1194 }
1195 
1196 /*
1197  * Free buffer's data.
1198  */
1199 static void free_buffer_data(struct dm_bufio_client *c,
1200 			     void *data, unsigned char data_mode)
1201 {
1202 	switch (data_mode) {
1203 	case DATA_MODE_SLAB:
1204 		kmem_cache_free(c->slab_cache, data);
1205 		break;
1206 
1207 	case DATA_MODE_GET_FREE_PAGES:
1208 		free_pages((unsigned long)data,
1209 			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1210 		break;
1211 
1212 	case DATA_MODE_VMALLOC:
1213 		vfree(data);
1214 		break;
1215 
1216 	default:
1217 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1218 		       data_mode);
1219 		BUG();
1220 	}
1221 }
1222 
1223 /*
1224  * Allocate buffer and its data.
1225  */
1226 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1227 {
1228 	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1229 
1230 	if (!b)
1231 		return NULL;
1232 
1233 	b->c = c;
1234 
1235 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1236 	if (!b->data) {
1237 		kmem_cache_free(c->slab_buffer, b);
1238 		return NULL;
1239 	}
1240 	adjust_total_allocated(b, false);
1241 
1242 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1243 	b->stack_len = 0;
1244 #endif
1245 	return b;
1246 }
1247 
1248 /*
1249  * Free buffer and its data.
1250  */
1251 static void free_buffer(struct dm_buffer *b)
1252 {
1253 	struct dm_bufio_client *c = b->c;
1254 
1255 	adjust_total_allocated(b, true);
1256 	free_buffer_data(c, b->data, b->data_mode);
1257 	kmem_cache_free(c->slab_buffer, b);
1258 }
1259 
1260 /*
1261  *--------------------------------------------------------------------------
1262  * Submit I/O on the buffer.
1263  *
1264  * Bio interface is faster but it has some problems:
1265  *	the vector list is limited (increasing this limit increases
1266  *	memory-consumption per buffer, so it is not viable);
1267  *
1268  *	the memory must be direct-mapped, not vmalloced;
1269  *
1270  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1271  * it is not vmalloced, try using the bio interface.
1272  *
1273  * If the buffer is big, if it is vmalloced or if the underlying device
1274  * rejects the bio because it is too large, use dm-io layer to do the I/O.
1275  * The dm-io layer splits the I/O into multiple requests, avoiding the above
1276  * shortcomings.
1277  *--------------------------------------------------------------------------
1278  */
1279 
1280 /*
1281  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1282  * that the request was handled directly with bio interface.
1283  */
1284 static void dmio_complete(unsigned long error, void *context)
1285 {
1286 	struct dm_buffer *b = context;
1287 
1288 	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1289 }
1290 
1291 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1292 		     unsigned int n_sectors, unsigned int offset,
1293 		     unsigned short ioprio)
1294 {
1295 	int r;
1296 	struct dm_io_request io_req = {
1297 		.bi_opf = op,
1298 		.notify.fn = dmio_complete,
1299 		.notify.context = b,
1300 		.client = b->c->dm_io,
1301 	};
1302 	struct dm_io_region region = {
1303 		.bdev = b->c->bdev,
1304 		.sector = sector,
1305 		.count = n_sectors,
1306 	};
1307 
1308 	if (b->data_mode != DATA_MODE_VMALLOC) {
1309 		io_req.mem.type = DM_IO_KMEM;
1310 		io_req.mem.ptr.addr = (char *)b->data + offset;
1311 	} else {
1312 		io_req.mem.type = DM_IO_VMA;
1313 		io_req.mem.ptr.vma = (char *)b->data + offset;
1314 	}
1315 
1316 	r = dm_io(&io_req, 1, &region, NULL, ioprio);
1317 	if (unlikely(r))
1318 		b->end_io(b, errno_to_blk_status(r));
1319 }
1320 
1321 static void bio_complete(struct bio *bio)
1322 {
1323 	struct dm_buffer *b = bio->bi_private;
1324 	blk_status_t status = bio->bi_status;
1325 
1326 	bio_uninit(bio);
1327 	kfree(bio);
1328 	b->end_io(b, status);
1329 }
1330 
1331 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1332 		    unsigned int n_sectors, unsigned int offset,
1333 		    unsigned short ioprio)
1334 {
1335 	struct bio *bio;
1336 	char *ptr;
1337 	unsigned int len;
1338 
1339 	bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
1340 	if (!bio) {
1341 		use_dmio(b, op, sector, n_sectors, offset, ioprio);
1342 		return;
1343 	}
1344 	bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
1345 	bio->bi_iter.bi_sector = sector;
1346 	bio->bi_end_io = bio_complete;
1347 	bio->bi_private = b;
1348 	bio->bi_ioprio = ioprio;
1349 
1350 	ptr = (char *)b->data + offset;
1351 	len = n_sectors << SECTOR_SHIFT;
1352 
1353 	__bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
1354 
1355 	submit_bio(bio);
1356 }
1357 
1358 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1359 {
1360 	sector_t sector;
1361 
1362 	if (likely(c->sectors_per_block_bits >= 0))
1363 		sector = block << c->sectors_per_block_bits;
1364 	else
1365 		sector = block * (c->block_size >> SECTOR_SHIFT);
1366 	sector += c->start;
1367 
1368 	return sector;
1369 }
1370 
1371 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio,
1372 		      void (*end_io)(struct dm_buffer *, blk_status_t))
1373 {
1374 	unsigned int n_sectors;
1375 	sector_t sector;
1376 	unsigned int offset, end;
1377 
1378 	b->end_io = end_io;
1379 
1380 	sector = block_to_sector(b->c, b->block);
1381 
1382 	if (op != REQ_OP_WRITE) {
1383 		n_sectors = b->c->block_size >> SECTOR_SHIFT;
1384 		offset = 0;
1385 	} else {
1386 		if (b->c->write_callback)
1387 			b->c->write_callback(b);
1388 		offset = b->write_start;
1389 		end = b->write_end;
1390 		offset &= -DM_BUFIO_WRITE_ALIGN;
1391 		end += DM_BUFIO_WRITE_ALIGN - 1;
1392 		end &= -DM_BUFIO_WRITE_ALIGN;
1393 		if (unlikely(end > b->c->block_size))
1394 			end = b->c->block_size;
1395 
1396 		sector += offset >> SECTOR_SHIFT;
1397 		n_sectors = (end - offset) >> SECTOR_SHIFT;
1398 	}
1399 
1400 	if (b->data_mode != DATA_MODE_VMALLOC)
1401 		use_bio(b, op, sector, n_sectors, offset, ioprio);
1402 	else
1403 		use_dmio(b, op, sector, n_sectors, offset, ioprio);
1404 }
1405 
1406 /*
1407  *--------------------------------------------------------------
1408  * Writing dirty buffers
1409  *--------------------------------------------------------------
1410  */
1411 
1412 /*
1413  * The endio routine for write.
1414  *
1415  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1416  * it.
1417  */
1418 static void write_endio(struct dm_buffer *b, blk_status_t status)
1419 {
1420 	b->write_error = status;
1421 	if (unlikely(status)) {
1422 		struct dm_bufio_client *c = b->c;
1423 
1424 		(void)cmpxchg(&c->async_write_error, 0,
1425 				blk_status_to_errno(status));
1426 	}
1427 
1428 	BUG_ON(!test_bit(B_WRITING, &b->state));
1429 
1430 	smp_mb__before_atomic();
1431 	clear_bit(B_WRITING, &b->state);
1432 	smp_mb__after_atomic();
1433 
1434 	wake_up_bit(&b->state, B_WRITING);
1435 }
1436 
1437 /*
1438  * Initiate a write on a dirty buffer, but don't wait for it.
1439  *
1440  * - If the buffer is not dirty, exit.
1441  * - If there some previous write going on, wait for it to finish (we can't
1442  *   have two writes on the same buffer simultaneously).
1443  * - Submit our write and don't wait on it. We set B_WRITING indicating
1444  *   that there is a write in progress.
1445  */
1446 static void __write_dirty_buffer(struct dm_buffer *b,
1447 				 struct list_head *write_list)
1448 {
1449 	if (!test_bit(B_DIRTY, &b->state))
1450 		return;
1451 
1452 	clear_bit(B_DIRTY, &b->state);
1453 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1454 
1455 	b->write_start = b->dirty_start;
1456 	b->write_end = b->dirty_end;
1457 
1458 	if (!write_list)
1459 		submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1460 	else
1461 		list_add_tail(&b->write_list, write_list);
1462 }
1463 
1464 static void __flush_write_list(struct list_head *write_list)
1465 {
1466 	struct blk_plug plug;
1467 
1468 	blk_start_plug(&plug);
1469 	while (!list_empty(write_list)) {
1470 		struct dm_buffer *b =
1471 			list_entry(write_list->next, struct dm_buffer, write_list);
1472 		list_del(&b->write_list);
1473 		submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1474 		cond_resched();
1475 	}
1476 	blk_finish_plug(&plug);
1477 }
1478 
1479 /*
1480  * Wait until any activity on the buffer finishes.  Possibly write the
1481  * buffer if it is dirty.  When this function finishes, there is no I/O
1482  * running on the buffer and the buffer is not dirty.
1483  */
1484 static void __make_buffer_clean(struct dm_buffer *b)
1485 {
1486 	BUG_ON(atomic_read(&b->hold_count));
1487 
1488 	/* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1489 	if (!smp_load_acquire(&b->state))	/* fast case */
1490 		return;
1491 
1492 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1493 	__write_dirty_buffer(b, NULL);
1494 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1495 }
1496 
1497 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1498 {
1499 	struct dm_bufio_client *c = context;
1500 
1501 	/* These should never happen */
1502 	if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1503 		return ER_DONT_EVICT;
1504 	if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1505 		return ER_DONT_EVICT;
1506 	if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1507 		return ER_DONT_EVICT;
1508 
1509 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1510 	    unlikely(test_bit(B_READING, &b->state)))
1511 		return ER_DONT_EVICT;
1512 
1513 	return ER_EVICT;
1514 }
1515 
1516 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1517 {
1518 	/* These should never happen */
1519 	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1520 		return ER_DONT_EVICT;
1521 	if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1522 		return ER_DONT_EVICT;
1523 
1524 	return ER_EVICT;
1525 }
1526 
1527 /*
1528  * Find some buffer that is not held by anybody, clean it, unlink it and
1529  * return it.
1530  */
1531 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1532 {
1533 	struct dm_buffer *b;
1534 
1535 	b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1536 	if (b) {
1537 		/* this also waits for pending reads */
1538 		__make_buffer_clean(b);
1539 		return b;
1540 	}
1541 
1542 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1543 		return NULL;
1544 
1545 	b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1546 	if (b) {
1547 		__make_buffer_clean(b);
1548 		return b;
1549 	}
1550 
1551 	return NULL;
1552 }
1553 
1554 /*
1555  * Wait until some other threads free some buffer or release hold count on
1556  * some buffer.
1557  *
1558  * This function is entered with c->lock held, drops it and regains it
1559  * before exiting.
1560  */
1561 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1562 {
1563 	DECLARE_WAITQUEUE(wait, current);
1564 
1565 	add_wait_queue(&c->free_buffer_wait, &wait);
1566 	set_current_state(TASK_UNINTERRUPTIBLE);
1567 	dm_bufio_unlock(c);
1568 
1569 	/*
1570 	 * It's possible to miss a wake up event since we don't always
1571 	 * hold c->lock when wake_up is called.  So we have a timeout here,
1572 	 * just in case.
1573 	 */
1574 	io_schedule_timeout(5 * HZ);
1575 
1576 	remove_wait_queue(&c->free_buffer_wait, &wait);
1577 
1578 	dm_bufio_lock(c);
1579 }
1580 
1581 enum new_flag {
1582 	NF_FRESH = 0,
1583 	NF_READ = 1,
1584 	NF_GET = 2,
1585 	NF_PREFETCH = 3
1586 };
1587 
1588 /*
1589  * Allocate a new buffer. If the allocation is not possible, wait until
1590  * some other thread frees a buffer.
1591  *
1592  * May drop the lock and regain it.
1593  */
1594 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1595 {
1596 	struct dm_buffer *b;
1597 	bool tried_noio_alloc = false;
1598 
1599 	/*
1600 	 * dm-bufio is resistant to allocation failures (it just keeps
1601 	 * one buffer reserved in cases all the allocations fail).
1602 	 * So set flags to not try too hard:
1603 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1604 	 *		    mutex and wait ourselves.
1605 	 *	__GFP_NORETRY: don't retry and rather return failure
1606 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
1607 	 *	__GFP_NOWARN: don't print a warning in case of failure
1608 	 *
1609 	 * For debugging, if we set the cache size to 1, no new buffers will
1610 	 * be allocated.
1611 	 */
1612 	while (1) {
1613 		if (dm_bufio_cache_size_latch != 1) {
1614 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1615 			if (b)
1616 				return b;
1617 		}
1618 
1619 		if (nf == NF_PREFETCH)
1620 			return NULL;
1621 
1622 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1623 			dm_bufio_unlock(c);
1624 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1625 			dm_bufio_lock(c);
1626 			if (b)
1627 				return b;
1628 			tried_noio_alloc = true;
1629 		}
1630 
1631 		if (!list_empty(&c->reserved_buffers)) {
1632 			b = list_to_buffer(c->reserved_buffers.next);
1633 			list_del(&b->lru.list);
1634 			c->need_reserved_buffers++;
1635 
1636 			return b;
1637 		}
1638 
1639 		b = __get_unclaimed_buffer(c);
1640 		if (b)
1641 			return b;
1642 
1643 		__wait_for_free_buffer(c);
1644 	}
1645 }
1646 
1647 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1648 {
1649 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1650 
1651 	if (!b)
1652 		return NULL;
1653 
1654 	if (c->alloc_callback)
1655 		c->alloc_callback(b);
1656 
1657 	return b;
1658 }
1659 
1660 /*
1661  * Free a buffer and wake other threads waiting for free buffers.
1662  */
1663 static void __free_buffer_wake(struct dm_buffer *b)
1664 {
1665 	struct dm_bufio_client *c = b->c;
1666 
1667 	b->block = -1;
1668 	if (!c->need_reserved_buffers)
1669 		free_buffer(b);
1670 	else {
1671 		list_add(&b->lru.list, &c->reserved_buffers);
1672 		c->need_reserved_buffers--;
1673 	}
1674 
1675 	/*
1676 	 * We hold the bufio lock here, so no one can add entries to the
1677 	 * wait queue anyway.
1678 	 */
1679 	if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1680 		wake_up(&c->free_buffer_wait);
1681 }
1682 
1683 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1684 {
1685 	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1686 		return ER_DONT_EVICT; /* should never happen */
1687 
1688 	if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1689 		return ER_DONT_EVICT;
1690 	else
1691 		return ER_EVICT;
1692 }
1693 
1694 static void __move_clean_buffers(struct dm_bufio_client *c)
1695 {
1696 	cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1697 }
1698 
1699 struct write_context {
1700 	int no_wait;
1701 	struct list_head *write_list;
1702 };
1703 
1704 static enum it_action write_one(struct dm_buffer *b, void *context)
1705 {
1706 	struct write_context *wc = context;
1707 
1708 	if (wc->no_wait && test_bit(B_WRITING, &b->state))
1709 		return IT_COMPLETE;
1710 
1711 	__write_dirty_buffer(b, wc->write_list);
1712 	return IT_NEXT;
1713 }
1714 
1715 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1716 					struct list_head *write_list)
1717 {
1718 	struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1719 
1720 	__move_clean_buffers(c);
1721 	cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1722 }
1723 
1724 /*
1725  * Check if we're over watermark.
1726  * If we are over threshold_buffers, start freeing buffers.
1727  * If we're over "limit_buffers", block until we get under the limit.
1728  */
1729 static void __check_watermark(struct dm_bufio_client *c,
1730 			      struct list_head *write_list)
1731 {
1732 	if (cache_count(&c->cache, LIST_DIRTY) >
1733 	    cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1734 		__write_dirty_buffers_async(c, 1, write_list);
1735 }
1736 
1737 /*
1738  *--------------------------------------------------------------
1739  * Getting a buffer
1740  *--------------------------------------------------------------
1741  */
1742 
1743 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1744 {
1745 	/*
1746 	 * Relying on waitqueue_active() is racey, but we sleep
1747 	 * with schedule_timeout anyway.
1748 	 */
1749 	if (cache_put(&c->cache, b) &&
1750 	    unlikely(waitqueue_active(&c->free_buffer_wait)))
1751 		wake_up(&c->free_buffer_wait);
1752 }
1753 
1754 /*
1755  * This assumes you have already checked the cache to see if the buffer
1756  * is already present (it will recheck after dropping the lock for allocation).
1757  */
1758 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1759 				     enum new_flag nf, int *need_submit,
1760 				     struct list_head *write_list)
1761 {
1762 	struct dm_buffer *b, *new_b = NULL;
1763 
1764 	*need_submit = 0;
1765 
1766 	/* This can't be called with NF_GET */
1767 	if (WARN_ON_ONCE(nf == NF_GET))
1768 		return NULL;
1769 
1770 	new_b = __alloc_buffer_wait(c, nf);
1771 	if (!new_b)
1772 		return NULL;
1773 
1774 	/*
1775 	 * We've had a period where the mutex was unlocked, so need to
1776 	 * recheck the buffer tree.
1777 	 */
1778 	b = cache_get(&c->cache, block);
1779 	if (b) {
1780 		__free_buffer_wake(new_b);
1781 		goto found_buffer;
1782 	}
1783 
1784 	__check_watermark(c, write_list);
1785 
1786 	b = new_b;
1787 	atomic_set(&b->hold_count, 1);
1788 	WRITE_ONCE(b->last_accessed, jiffies);
1789 	b->block = block;
1790 	b->read_error = 0;
1791 	b->write_error = 0;
1792 	b->list_mode = LIST_CLEAN;
1793 
1794 	if (nf == NF_FRESH)
1795 		b->state = 0;
1796 	else {
1797 		b->state = 1 << B_READING;
1798 		*need_submit = 1;
1799 	}
1800 
1801 	/*
1802 	 * We mustn't insert into the cache until the B_READING state
1803 	 * is set.  Otherwise another thread could get it and use
1804 	 * it before it had been read.
1805 	 */
1806 	cache_insert(&c->cache, b);
1807 
1808 	return b;
1809 
1810 found_buffer:
1811 	if (nf == NF_PREFETCH) {
1812 		cache_put_and_wake(c, b);
1813 		return NULL;
1814 	}
1815 
1816 	/*
1817 	 * Note: it is essential that we don't wait for the buffer to be
1818 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1819 	 * dm_bufio_prefetch can be used in the driver request routine.
1820 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1821 	 * the same buffer, it would deadlock if we waited.
1822 	 */
1823 	if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1824 		cache_put_and_wake(c, b);
1825 		return NULL;
1826 	}
1827 
1828 	return b;
1829 }
1830 
1831 /*
1832  * The endio routine for reading: set the error, clear the bit and wake up
1833  * anyone waiting on the buffer.
1834  */
1835 static void read_endio(struct dm_buffer *b, blk_status_t status)
1836 {
1837 	b->read_error = status;
1838 
1839 	BUG_ON(!test_bit(B_READING, &b->state));
1840 
1841 	smp_mb__before_atomic();
1842 	clear_bit(B_READING, &b->state);
1843 	smp_mb__after_atomic();
1844 
1845 	wake_up_bit(&b->state, B_READING);
1846 }
1847 
1848 /*
1849  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1850  * functions is similar except that dm_bufio_new doesn't read the
1851  * buffer from the disk (assuming that the caller overwrites all the data
1852  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1853  */
1854 static void *new_read(struct dm_bufio_client *c, sector_t block,
1855 		      enum new_flag nf, struct dm_buffer **bp,
1856 		      unsigned short ioprio)
1857 {
1858 	int need_submit = 0;
1859 	struct dm_buffer *b;
1860 
1861 	LIST_HEAD(write_list);
1862 
1863 	*bp = NULL;
1864 
1865 	/*
1866 	 * Fast path, hopefully the block is already in the cache.  No need
1867 	 * to get the client lock for this.
1868 	 */
1869 	b = cache_get(&c->cache, block);
1870 	if (b) {
1871 		if (nf == NF_PREFETCH) {
1872 			cache_put_and_wake(c, b);
1873 			return NULL;
1874 		}
1875 
1876 		/*
1877 		 * Note: it is essential that we don't wait for the buffer to be
1878 		 * read if dm_bufio_get function is used. Both dm_bufio_get and
1879 		 * dm_bufio_prefetch can be used in the driver request routine.
1880 		 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1881 		 * the same buffer, it would deadlock if we waited.
1882 		 */
1883 		if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1884 			cache_put_and_wake(c, b);
1885 			return NULL;
1886 		}
1887 	}
1888 
1889 	if (!b) {
1890 		if (nf == NF_GET)
1891 			return NULL;
1892 
1893 		dm_bufio_lock(c);
1894 		b = __bufio_new(c, block, nf, &need_submit, &write_list);
1895 		dm_bufio_unlock(c);
1896 	}
1897 
1898 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1899 	if (b && (atomic_read(&b->hold_count) == 1))
1900 		buffer_record_stack(b);
1901 #endif
1902 
1903 	__flush_write_list(&write_list);
1904 
1905 	if (!b)
1906 		return NULL;
1907 
1908 	if (need_submit)
1909 		submit_io(b, REQ_OP_READ, ioprio, read_endio);
1910 
1911 	if (nf != NF_GET)	/* we already tested this condition above */
1912 		wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1913 
1914 	if (b->read_error) {
1915 		int error = blk_status_to_errno(b->read_error);
1916 
1917 		dm_bufio_release(b);
1918 
1919 		return ERR_PTR(error);
1920 	}
1921 
1922 	*bp = b;
1923 
1924 	return b->data;
1925 }
1926 
1927 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1928 		   struct dm_buffer **bp)
1929 {
1930 	return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT);
1931 }
1932 EXPORT_SYMBOL_GPL(dm_bufio_get);
1933 
1934 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1935 			struct dm_buffer **bp, unsigned short ioprio)
1936 {
1937 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1938 		return ERR_PTR(-EINVAL);
1939 
1940 	return new_read(c, block, NF_READ, bp, ioprio);
1941 }
1942 
1943 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1944 		    struct dm_buffer **bp)
1945 {
1946 	return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT);
1947 }
1948 EXPORT_SYMBOL_GPL(dm_bufio_read);
1949 
1950 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block,
1951 				struct dm_buffer **bp, unsigned short ioprio)
1952 {
1953 	return __dm_bufio_read(c, block, bp, ioprio);
1954 }
1955 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio);
1956 
1957 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1958 		   struct dm_buffer **bp)
1959 {
1960 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1961 		return ERR_PTR(-EINVAL);
1962 
1963 	return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT);
1964 }
1965 EXPORT_SYMBOL_GPL(dm_bufio_new);
1966 
1967 static void __dm_bufio_prefetch(struct dm_bufio_client *c,
1968 			sector_t block, unsigned int n_blocks,
1969 			unsigned short ioprio)
1970 {
1971 	struct blk_plug plug;
1972 
1973 	LIST_HEAD(write_list);
1974 
1975 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1976 		return; /* should never happen */
1977 
1978 	blk_start_plug(&plug);
1979 
1980 	for (; n_blocks--; block++) {
1981 		int need_submit;
1982 		struct dm_buffer *b;
1983 
1984 		b = cache_get(&c->cache, block);
1985 		if (b) {
1986 			/* already in cache */
1987 			cache_put_and_wake(c, b);
1988 			continue;
1989 		}
1990 
1991 		dm_bufio_lock(c);
1992 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1993 				&write_list);
1994 		if (unlikely(!list_empty(&write_list))) {
1995 			dm_bufio_unlock(c);
1996 			blk_finish_plug(&plug);
1997 			__flush_write_list(&write_list);
1998 			blk_start_plug(&plug);
1999 			dm_bufio_lock(c);
2000 		}
2001 		if (unlikely(b != NULL)) {
2002 			dm_bufio_unlock(c);
2003 
2004 			if (need_submit)
2005 				submit_io(b, REQ_OP_READ, ioprio, read_endio);
2006 			dm_bufio_release(b);
2007 
2008 			cond_resched();
2009 
2010 			if (!n_blocks)
2011 				goto flush_plug;
2012 			dm_bufio_lock(c);
2013 		}
2014 		dm_bufio_unlock(c);
2015 	}
2016 
2017 flush_plug:
2018 	blk_finish_plug(&plug);
2019 }
2020 
2021 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks)
2022 {
2023 	return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT);
2024 }
2025 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2026 
2027 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block,
2028 				unsigned int n_blocks, unsigned short ioprio)
2029 {
2030 	return __dm_bufio_prefetch(c, block, n_blocks, ioprio);
2031 }
2032 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio);
2033 
2034 void dm_bufio_release(struct dm_buffer *b)
2035 {
2036 	struct dm_bufio_client *c = b->c;
2037 
2038 	/*
2039 	 * If there were errors on the buffer, and the buffer is not
2040 	 * to be written, free the buffer. There is no point in caching
2041 	 * invalid buffer.
2042 	 */
2043 	if ((b->read_error || b->write_error) &&
2044 	    !test_bit_acquire(B_READING, &b->state) &&
2045 	    !test_bit(B_WRITING, &b->state) &&
2046 	    !test_bit(B_DIRTY, &b->state)) {
2047 		dm_bufio_lock(c);
2048 
2049 		/* cache remove can fail if there are other holders */
2050 		if (cache_remove(&c->cache, b)) {
2051 			__free_buffer_wake(b);
2052 			dm_bufio_unlock(c);
2053 			return;
2054 		}
2055 
2056 		dm_bufio_unlock(c);
2057 	}
2058 
2059 	cache_put_and_wake(c, b);
2060 }
2061 EXPORT_SYMBOL_GPL(dm_bufio_release);
2062 
2063 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2064 					unsigned int start, unsigned int end)
2065 {
2066 	struct dm_bufio_client *c = b->c;
2067 
2068 	BUG_ON(start >= end);
2069 	BUG_ON(end > b->c->block_size);
2070 
2071 	dm_bufio_lock(c);
2072 
2073 	BUG_ON(test_bit(B_READING, &b->state));
2074 
2075 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
2076 		b->dirty_start = start;
2077 		b->dirty_end = end;
2078 		cache_mark(&c->cache, b, LIST_DIRTY);
2079 	} else {
2080 		if (start < b->dirty_start)
2081 			b->dirty_start = start;
2082 		if (end > b->dirty_end)
2083 			b->dirty_end = end;
2084 	}
2085 
2086 	dm_bufio_unlock(c);
2087 }
2088 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2089 
2090 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2091 {
2092 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2093 }
2094 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2095 
2096 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2097 {
2098 	LIST_HEAD(write_list);
2099 
2100 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2101 		return; /* should never happen */
2102 
2103 	dm_bufio_lock(c);
2104 	__write_dirty_buffers_async(c, 0, &write_list);
2105 	dm_bufio_unlock(c);
2106 	__flush_write_list(&write_list);
2107 }
2108 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2109 
2110 /*
2111  * For performance, it is essential that the buffers are written asynchronously
2112  * and simultaneously (so that the block layer can merge the writes) and then
2113  * waited upon.
2114  *
2115  * Finally, we flush hardware disk cache.
2116  */
2117 static bool is_writing(struct lru_entry *e, void *context)
2118 {
2119 	struct dm_buffer *b = le_to_buffer(e);
2120 
2121 	return test_bit(B_WRITING, &b->state);
2122 }
2123 
2124 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2125 {
2126 	int a, f;
2127 	unsigned long nr_buffers;
2128 	struct lru_entry *e;
2129 	struct lru_iter it;
2130 
2131 	LIST_HEAD(write_list);
2132 
2133 	dm_bufio_lock(c);
2134 	__write_dirty_buffers_async(c, 0, &write_list);
2135 	dm_bufio_unlock(c);
2136 	__flush_write_list(&write_list);
2137 	dm_bufio_lock(c);
2138 
2139 	nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2140 	lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2141 	while ((e = lru_iter_next(&it, is_writing, c))) {
2142 		struct dm_buffer *b = le_to_buffer(e);
2143 		__cache_inc_buffer(b);
2144 
2145 		BUG_ON(test_bit(B_READING, &b->state));
2146 
2147 		if (nr_buffers) {
2148 			nr_buffers--;
2149 			dm_bufio_unlock(c);
2150 			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2151 			dm_bufio_lock(c);
2152 		} else {
2153 			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2154 		}
2155 
2156 		if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2157 			cache_mark(&c->cache, b, LIST_CLEAN);
2158 
2159 		cache_put_and_wake(c, b);
2160 
2161 		cond_resched();
2162 	}
2163 	lru_iter_end(&it);
2164 
2165 	wake_up(&c->free_buffer_wait);
2166 	dm_bufio_unlock(c);
2167 
2168 	a = xchg(&c->async_write_error, 0);
2169 	f = dm_bufio_issue_flush(c);
2170 	if (a)
2171 		return a;
2172 
2173 	return f;
2174 }
2175 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2176 
2177 /*
2178  * Use dm-io to send an empty barrier to flush the device.
2179  */
2180 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2181 {
2182 	struct dm_io_request io_req = {
2183 		.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2184 		.mem.type = DM_IO_KMEM,
2185 		.mem.ptr.addr = NULL,
2186 		.client = c->dm_io,
2187 	};
2188 	struct dm_io_region io_reg = {
2189 		.bdev = c->bdev,
2190 		.sector = 0,
2191 		.count = 0,
2192 	};
2193 
2194 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2195 		return -EINVAL;
2196 
2197 	return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2198 }
2199 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2200 
2201 /*
2202  * Use dm-io to send a discard request to flush the device.
2203  */
2204 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2205 {
2206 	struct dm_io_request io_req = {
2207 		.bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2208 		.mem.type = DM_IO_KMEM,
2209 		.mem.ptr.addr = NULL,
2210 		.client = c->dm_io,
2211 	};
2212 	struct dm_io_region io_reg = {
2213 		.bdev = c->bdev,
2214 		.sector = block_to_sector(c, block),
2215 		.count = block_to_sector(c, count),
2216 	};
2217 
2218 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2219 		return -EINVAL; /* discards are optional */
2220 
2221 	return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2222 }
2223 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2224 
2225 static bool forget_buffer(struct dm_bufio_client *c, sector_t block)
2226 {
2227 	struct dm_buffer *b;
2228 
2229 	b = cache_get(&c->cache, block);
2230 	if (b) {
2231 		if (likely(!smp_load_acquire(&b->state))) {
2232 			if (cache_remove(&c->cache, b))
2233 				__free_buffer_wake(b);
2234 			else
2235 				cache_put_and_wake(c, b);
2236 		} else {
2237 			cache_put_and_wake(c, b);
2238 		}
2239 	}
2240 
2241 	return b ? true : false;
2242 }
2243 
2244 /*
2245  * Free the given buffer.
2246  *
2247  * This is just a hint, if the buffer is in use or dirty, this function
2248  * does nothing.
2249  */
2250 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2251 {
2252 	dm_bufio_lock(c);
2253 	forget_buffer(c, block);
2254 	dm_bufio_unlock(c);
2255 }
2256 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2257 
2258 static enum evict_result idle(struct dm_buffer *b, void *context)
2259 {
2260 	return b->state ? ER_DONT_EVICT : ER_EVICT;
2261 }
2262 
2263 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2264 {
2265 	dm_bufio_lock(c);
2266 	cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2267 	dm_bufio_unlock(c);
2268 }
2269 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2270 
2271 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2272 {
2273 	c->minimum_buffers = n;
2274 }
2275 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2276 
2277 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2278 {
2279 	return c->block_size;
2280 }
2281 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2282 
2283 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2284 {
2285 	sector_t s = bdev_nr_sectors(c->bdev);
2286 
2287 	if (s >= c->start)
2288 		s -= c->start;
2289 	else
2290 		s = 0;
2291 	if (likely(c->sectors_per_block_bits >= 0))
2292 		s >>= c->sectors_per_block_bits;
2293 	else
2294 		sector_div(s, c->block_size >> SECTOR_SHIFT);
2295 	return s;
2296 }
2297 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2298 
2299 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2300 {
2301 	return c->dm_io;
2302 }
2303 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2304 
2305 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2306 {
2307 	return b->block;
2308 }
2309 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2310 
2311 void *dm_bufio_get_block_data(struct dm_buffer *b)
2312 {
2313 	return b->data;
2314 }
2315 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2316 
2317 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2318 {
2319 	return b + 1;
2320 }
2321 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2322 
2323 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2324 {
2325 	return b->c;
2326 }
2327 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2328 
2329 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2330 {
2331 	bool *warned = context;
2332 
2333 	WARN_ON(!(*warned));
2334 	*warned = true;
2335 	DMERR("leaked buffer %llx, hold count %u, list %d",
2336 	      (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2337 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2338 	stack_trace_print(b->stack_entries, b->stack_len, 1);
2339 	/* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2340 	atomic_set(&b->hold_count, 0);
2341 #endif
2342 	return IT_NEXT;
2343 }
2344 
2345 static void drop_buffers(struct dm_bufio_client *c)
2346 {
2347 	int i;
2348 	struct dm_buffer *b;
2349 
2350 	if (WARN_ON(dm_bufio_in_request()))
2351 		return; /* should never happen */
2352 
2353 	/*
2354 	 * An optimization so that the buffers are not written one-by-one.
2355 	 */
2356 	dm_bufio_write_dirty_buffers_async(c);
2357 
2358 	dm_bufio_lock(c);
2359 
2360 	while ((b = __get_unclaimed_buffer(c)))
2361 		__free_buffer_wake(b);
2362 
2363 	for (i = 0; i < LIST_SIZE; i++) {
2364 		bool warned = false;
2365 
2366 		cache_iterate(&c->cache, i, warn_leak, &warned);
2367 	}
2368 
2369 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2370 	while ((b = __get_unclaimed_buffer(c)))
2371 		__free_buffer_wake(b);
2372 #endif
2373 
2374 	for (i = 0; i < LIST_SIZE; i++)
2375 		WARN_ON(cache_count(&c->cache, i));
2376 
2377 	dm_bufio_unlock(c);
2378 }
2379 
2380 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2381 {
2382 	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2383 
2384 	if (likely(c->sectors_per_block_bits >= 0))
2385 		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2386 	else
2387 		retain_bytes /= c->block_size;
2388 
2389 	return retain_bytes;
2390 }
2391 
2392 static void __scan(struct dm_bufio_client *c)
2393 {
2394 	int l;
2395 	struct dm_buffer *b;
2396 	unsigned long freed = 0;
2397 	unsigned long retain_target = get_retain_buffers(c);
2398 	unsigned long count = cache_total(&c->cache);
2399 
2400 	for (l = 0; l < LIST_SIZE; l++) {
2401 		while (true) {
2402 			if (count - freed <= retain_target)
2403 				atomic_long_set(&c->need_shrink, 0);
2404 			if (!atomic_long_read(&c->need_shrink))
2405 				break;
2406 
2407 			b = cache_evict(&c->cache, l,
2408 					l == LIST_CLEAN ? is_clean : is_dirty, c);
2409 			if (!b)
2410 				break;
2411 
2412 			__make_buffer_clean(b);
2413 			__free_buffer_wake(b);
2414 
2415 			atomic_long_dec(&c->need_shrink);
2416 			freed++;
2417 			cond_resched();
2418 		}
2419 	}
2420 }
2421 
2422 static void shrink_work(struct work_struct *w)
2423 {
2424 	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2425 
2426 	dm_bufio_lock(c);
2427 	__scan(c);
2428 	dm_bufio_unlock(c);
2429 }
2430 
2431 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2432 {
2433 	struct dm_bufio_client *c;
2434 
2435 	c = shrink->private_data;
2436 	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2437 	queue_work(dm_bufio_wq, &c->shrink_work);
2438 
2439 	return sc->nr_to_scan;
2440 }
2441 
2442 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2443 {
2444 	struct dm_bufio_client *c = shrink->private_data;
2445 	unsigned long count = cache_total(&c->cache);
2446 	unsigned long retain_target = get_retain_buffers(c);
2447 	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2448 
2449 	if (unlikely(count < retain_target))
2450 		count = 0;
2451 	else
2452 		count -= retain_target;
2453 
2454 	if (unlikely(count < queued_for_cleanup))
2455 		count = 0;
2456 	else
2457 		count -= queued_for_cleanup;
2458 
2459 	return count;
2460 }
2461 
2462 /*
2463  * Create the buffering interface
2464  */
2465 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2466 					       unsigned int reserved_buffers, unsigned int aux_size,
2467 					       void (*alloc_callback)(struct dm_buffer *),
2468 					       void (*write_callback)(struct dm_buffer *),
2469 					       unsigned int flags)
2470 {
2471 	int r;
2472 	unsigned int num_locks;
2473 	struct dm_bufio_client *c;
2474 	char slab_name[64];
2475 	static atomic_t seqno = ATOMIC_INIT(0);
2476 
2477 	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2478 		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2479 		r = -EINVAL;
2480 		goto bad_client;
2481 	}
2482 
2483 	num_locks = dm_num_hash_locks();
2484 	c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2485 	if (!c) {
2486 		r = -ENOMEM;
2487 		goto bad_client;
2488 	}
2489 	cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2490 
2491 	c->bdev = bdev;
2492 	c->block_size = block_size;
2493 	if (is_power_of_2(block_size))
2494 		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2495 	else
2496 		c->sectors_per_block_bits = -1;
2497 
2498 	c->alloc_callback = alloc_callback;
2499 	c->write_callback = write_callback;
2500 
2501 	if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2502 		c->no_sleep = true;
2503 		static_branch_inc(&no_sleep_enabled);
2504 	}
2505 
2506 	mutex_init(&c->lock);
2507 	spin_lock_init(&c->spinlock);
2508 	INIT_LIST_HEAD(&c->reserved_buffers);
2509 	c->need_reserved_buffers = reserved_buffers;
2510 
2511 	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2512 
2513 	init_waitqueue_head(&c->free_buffer_wait);
2514 	c->async_write_error = 0;
2515 
2516 	c->dm_io = dm_io_client_create();
2517 	if (IS_ERR(c->dm_io)) {
2518 		r = PTR_ERR(c->dm_io);
2519 		goto bad_dm_io;
2520 	}
2521 
2522 	if (block_size <= KMALLOC_MAX_SIZE &&
2523 	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
2524 		unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2525 
2526 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u",
2527 					block_size, atomic_inc_return(&seqno));
2528 		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2529 						  SLAB_RECLAIM_ACCOUNT, NULL);
2530 		if (!c->slab_cache) {
2531 			r = -ENOMEM;
2532 			goto bad;
2533 		}
2534 	}
2535 	if (aux_size)
2536 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u",
2537 					aux_size, atomic_inc_return(&seqno));
2538 	else
2539 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u",
2540 					atomic_inc_return(&seqno));
2541 	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2542 					   0, SLAB_RECLAIM_ACCOUNT, NULL);
2543 	if (!c->slab_buffer) {
2544 		r = -ENOMEM;
2545 		goto bad;
2546 	}
2547 
2548 	while (c->need_reserved_buffers) {
2549 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2550 
2551 		if (!b) {
2552 			r = -ENOMEM;
2553 			goto bad;
2554 		}
2555 		__free_buffer_wake(b);
2556 	}
2557 
2558 	INIT_WORK(&c->shrink_work, shrink_work);
2559 	atomic_long_set(&c->need_shrink, 0);
2560 
2561 	c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
2562 				     MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2563 	if (!c->shrinker) {
2564 		r = -ENOMEM;
2565 		goto bad;
2566 	}
2567 
2568 	c->shrinker->count_objects = dm_bufio_shrink_count;
2569 	c->shrinker->scan_objects = dm_bufio_shrink_scan;
2570 	c->shrinker->seeks = 1;
2571 	c->shrinker->batch = 0;
2572 	c->shrinker->private_data = c;
2573 
2574 	shrinker_register(c->shrinker);
2575 
2576 	mutex_lock(&dm_bufio_clients_lock);
2577 	dm_bufio_client_count++;
2578 	list_add(&c->client_list, &dm_bufio_all_clients);
2579 	__cache_size_refresh();
2580 	mutex_unlock(&dm_bufio_clients_lock);
2581 
2582 	return c;
2583 
2584 bad:
2585 	while (!list_empty(&c->reserved_buffers)) {
2586 		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2587 
2588 		list_del(&b->lru.list);
2589 		free_buffer(b);
2590 	}
2591 	kmem_cache_destroy(c->slab_cache);
2592 	kmem_cache_destroy(c->slab_buffer);
2593 	dm_io_client_destroy(c->dm_io);
2594 bad_dm_io:
2595 	mutex_destroy(&c->lock);
2596 	if (c->no_sleep)
2597 		static_branch_dec(&no_sleep_enabled);
2598 	kfree(c);
2599 bad_client:
2600 	return ERR_PTR(r);
2601 }
2602 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2603 
2604 /*
2605  * Free the buffering interface.
2606  * It is required that there are no references on any buffers.
2607  */
2608 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2609 {
2610 	unsigned int i;
2611 
2612 	drop_buffers(c);
2613 
2614 	shrinker_free(c->shrinker);
2615 	flush_work(&c->shrink_work);
2616 
2617 	mutex_lock(&dm_bufio_clients_lock);
2618 
2619 	list_del(&c->client_list);
2620 	dm_bufio_client_count--;
2621 	__cache_size_refresh();
2622 
2623 	mutex_unlock(&dm_bufio_clients_lock);
2624 
2625 	WARN_ON(c->need_reserved_buffers);
2626 
2627 	while (!list_empty(&c->reserved_buffers)) {
2628 		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2629 
2630 		list_del(&b->lru.list);
2631 		free_buffer(b);
2632 	}
2633 
2634 	for (i = 0; i < LIST_SIZE; i++)
2635 		if (cache_count(&c->cache, i))
2636 			DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2637 
2638 	for (i = 0; i < LIST_SIZE; i++)
2639 		WARN_ON(cache_count(&c->cache, i));
2640 
2641 	cache_destroy(&c->cache);
2642 	kmem_cache_destroy(c->slab_cache);
2643 	kmem_cache_destroy(c->slab_buffer);
2644 	dm_io_client_destroy(c->dm_io);
2645 	mutex_destroy(&c->lock);
2646 	if (c->no_sleep)
2647 		static_branch_dec(&no_sleep_enabled);
2648 	kfree(c);
2649 }
2650 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2651 
2652 void dm_bufio_client_reset(struct dm_bufio_client *c)
2653 {
2654 	drop_buffers(c);
2655 	flush_work(&c->shrink_work);
2656 }
2657 EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2658 
2659 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2660 {
2661 	c->start = start;
2662 }
2663 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2664 
2665 /*--------------------------------------------------------------*/
2666 
2667 static unsigned int get_max_age_hz(void)
2668 {
2669 	unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2670 
2671 	if (max_age > UINT_MAX / HZ)
2672 		max_age = UINT_MAX / HZ;
2673 
2674 	return max_age * HZ;
2675 }
2676 
2677 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2678 {
2679 	return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2680 }
2681 
2682 struct evict_params {
2683 	gfp_t gfp;
2684 	unsigned long age_hz;
2685 
2686 	/*
2687 	 * This gets updated with the largest last_accessed (ie. most
2688 	 * recently used) of the evicted buffers.  It will not be reinitialised
2689 	 * by __evict_many(), so you can use it across multiple invocations.
2690 	 */
2691 	unsigned long last_accessed;
2692 };
2693 
2694 /*
2695  * We may not be able to evict this buffer if IO pending or the client
2696  * is still using it.
2697  *
2698  * And if GFP_NOFS is used, we must not do any I/O because we hold
2699  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2700  * rerouted to different bufio client.
2701  */
2702 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2703 {
2704 	struct evict_params *params = context;
2705 
2706 	if (!(params->gfp & __GFP_FS) ||
2707 	    (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2708 		if (test_bit_acquire(B_READING, &b->state) ||
2709 		    test_bit(B_WRITING, &b->state) ||
2710 		    test_bit(B_DIRTY, &b->state))
2711 			return ER_DONT_EVICT;
2712 	}
2713 
2714 	return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
2715 }
2716 
2717 static unsigned long __evict_many(struct dm_bufio_client *c,
2718 				  struct evict_params *params,
2719 				  int list_mode, unsigned long max_count)
2720 {
2721 	unsigned long count;
2722 	unsigned long last_accessed;
2723 	struct dm_buffer *b;
2724 
2725 	for (count = 0; count < max_count; count++) {
2726 		b = cache_evict(&c->cache, list_mode, select_for_evict, params);
2727 		if (!b)
2728 			break;
2729 
2730 		last_accessed = READ_ONCE(b->last_accessed);
2731 		if (time_after_eq(params->last_accessed, last_accessed))
2732 			params->last_accessed = last_accessed;
2733 
2734 		__make_buffer_clean(b);
2735 		__free_buffer_wake(b);
2736 
2737 		cond_resched();
2738 	}
2739 
2740 	return count;
2741 }
2742 
2743 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2744 {
2745 	struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2746 	unsigned long retain = get_retain_buffers(c);
2747 	unsigned long count;
2748 	LIST_HEAD(write_list);
2749 
2750 	dm_bufio_lock(c);
2751 
2752 	__check_watermark(c, &write_list);
2753 	if (unlikely(!list_empty(&write_list))) {
2754 		dm_bufio_unlock(c);
2755 		__flush_write_list(&write_list);
2756 		dm_bufio_lock(c);
2757 	}
2758 
2759 	count = cache_total(&c->cache);
2760 	if (count > retain)
2761 		__evict_many(c, &params, LIST_CLEAN, count - retain);
2762 
2763 	dm_bufio_unlock(c);
2764 }
2765 
2766 static void cleanup_old_buffers(void)
2767 {
2768 	unsigned long max_age_hz = get_max_age_hz();
2769 	struct dm_bufio_client *c;
2770 
2771 	mutex_lock(&dm_bufio_clients_lock);
2772 
2773 	__cache_size_refresh();
2774 
2775 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2776 		evict_old_buffers(c, max_age_hz);
2777 
2778 	mutex_unlock(&dm_bufio_clients_lock);
2779 }
2780 
2781 static void work_fn(struct work_struct *w)
2782 {
2783 	cleanup_old_buffers();
2784 
2785 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2786 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2787 }
2788 
2789 /*--------------------------------------------------------------*/
2790 
2791 /*
2792  * Global cleanup tries to evict the oldest buffers from across _all_
2793  * the clients.  It does this by repeatedly evicting a few buffers from
2794  * the client that holds the oldest buffer.  It's approximate, but hopefully
2795  * good enough.
2796  */
2797 static struct dm_bufio_client *__pop_client(void)
2798 {
2799 	struct list_head *h;
2800 
2801 	if (list_empty(&dm_bufio_all_clients))
2802 		return NULL;
2803 
2804 	h = dm_bufio_all_clients.next;
2805 	list_del(h);
2806 	return container_of(h, struct dm_bufio_client, client_list);
2807 }
2808 
2809 /*
2810  * Inserts the client in the global client list based on its
2811  * 'oldest_buffer' field.
2812  */
2813 static void __insert_client(struct dm_bufio_client *new_client)
2814 {
2815 	struct dm_bufio_client *c;
2816 	struct list_head *h = dm_bufio_all_clients.next;
2817 
2818 	while (h != &dm_bufio_all_clients) {
2819 		c = container_of(h, struct dm_bufio_client, client_list);
2820 		if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2821 			break;
2822 		h = h->next;
2823 	}
2824 
2825 	list_add_tail(&new_client->client_list, h);
2826 }
2827 
2828 static unsigned long __evict_a_few(unsigned long nr_buffers)
2829 {
2830 	unsigned long count;
2831 	struct dm_bufio_client *c;
2832 	struct evict_params params = {
2833 		.gfp = GFP_KERNEL,
2834 		.age_hz = 0,
2835 		/* set to jiffies in case there are no buffers in this client */
2836 		.last_accessed = jiffies
2837 	};
2838 
2839 	c = __pop_client();
2840 	if (!c)
2841 		return 0;
2842 
2843 	dm_bufio_lock(c);
2844 	count = __evict_many(c, &params, LIST_CLEAN, nr_buffers);
2845 	dm_bufio_unlock(c);
2846 
2847 	if (count)
2848 		c->oldest_buffer = params.last_accessed;
2849 	__insert_client(c);
2850 
2851 	return count;
2852 }
2853 
2854 static void check_watermarks(void)
2855 {
2856 	LIST_HEAD(write_list);
2857 	struct dm_bufio_client *c;
2858 
2859 	mutex_lock(&dm_bufio_clients_lock);
2860 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2861 		dm_bufio_lock(c);
2862 		__check_watermark(c, &write_list);
2863 		dm_bufio_unlock(c);
2864 	}
2865 	mutex_unlock(&dm_bufio_clients_lock);
2866 
2867 	__flush_write_list(&write_list);
2868 }
2869 
2870 static void evict_old(void)
2871 {
2872 	unsigned long threshold = dm_bufio_cache_size -
2873 		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2874 
2875 	mutex_lock(&dm_bufio_clients_lock);
2876 	while (dm_bufio_current_allocated > threshold) {
2877 		if (!__evict_a_few(64))
2878 			break;
2879 		cond_resched();
2880 	}
2881 	mutex_unlock(&dm_bufio_clients_lock);
2882 }
2883 
2884 static void do_global_cleanup(struct work_struct *w)
2885 {
2886 	check_watermarks();
2887 	evict_old();
2888 }
2889 
2890 /*
2891  *--------------------------------------------------------------
2892  * Module setup
2893  *--------------------------------------------------------------
2894  */
2895 
2896 /*
2897  * This is called only once for the whole dm_bufio module.
2898  * It initializes memory limit.
2899  */
2900 static int __init dm_bufio_init(void)
2901 {
2902 	__u64 mem;
2903 
2904 	dm_bufio_allocated_kmem_cache = 0;
2905 	dm_bufio_allocated_get_free_pages = 0;
2906 	dm_bufio_allocated_vmalloc = 0;
2907 	dm_bufio_current_allocated = 0;
2908 
2909 	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2910 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2911 
2912 	if (mem > ULONG_MAX)
2913 		mem = ULONG_MAX;
2914 
2915 #ifdef CONFIG_MMU
2916 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2917 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2918 #endif
2919 
2920 	dm_bufio_default_cache_size = mem;
2921 
2922 	mutex_lock(&dm_bufio_clients_lock);
2923 	__cache_size_refresh();
2924 	mutex_unlock(&dm_bufio_clients_lock);
2925 
2926 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2927 	if (!dm_bufio_wq)
2928 		return -ENOMEM;
2929 
2930 	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2931 	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2932 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2933 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2934 
2935 	return 0;
2936 }
2937 
2938 /*
2939  * This is called once when unloading the dm_bufio module.
2940  */
2941 static void __exit dm_bufio_exit(void)
2942 {
2943 	int bug = 0;
2944 
2945 	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2946 	destroy_workqueue(dm_bufio_wq);
2947 
2948 	if (dm_bufio_client_count) {
2949 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2950 			__func__, dm_bufio_client_count);
2951 		bug = 1;
2952 	}
2953 
2954 	if (dm_bufio_current_allocated) {
2955 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2956 			__func__, dm_bufio_current_allocated);
2957 		bug = 1;
2958 	}
2959 
2960 	if (dm_bufio_allocated_get_free_pages) {
2961 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2962 		       __func__, dm_bufio_allocated_get_free_pages);
2963 		bug = 1;
2964 	}
2965 
2966 	if (dm_bufio_allocated_vmalloc) {
2967 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2968 		       __func__, dm_bufio_allocated_vmalloc);
2969 		bug = 1;
2970 	}
2971 
2972 	WARN_ON(bug); /* leaks are not worth crashing the system */
2973 }
2974 
2975 module_init(dm_bufio_init)
2976 module_exit(dm_bufio_exit)
2977 
2978 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2979 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2980 
2981 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2982 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2983 
2984 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2985 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2986 
2987 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
2988 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2989 
2990 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
2991 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2992 
2993 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
2994 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2995 
2996 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
2997 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2998 
2999 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
3000 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
3001 
3002 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>");
3003 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
3004 MODULE_LICENSE("GPL");
3005