xref: /linux/drivers/md/dm-bufio.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21 
22 #define DM_MSG_PREFIX "bufio"
23 
24 /*
25  * Memory management policy:
26  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *	dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS		8
33 
34 #define DM_BUFIO_MEMORY_PERCENT		2
35 #define DM_BUFIO_VMALLOC_PERCENT	25
36 #define DM_BUFIO_WRITEBACK_PERCENT	75
37 
38 /*
39  * Check buffer ages in this interval (seconds)
40  */
41 #define DM_BUFIO_WORK_TIMER_SECS	30
42 
43 /*
44  * Free buffers when they are older than this (seconds)
45  */
46 #define DM_BUFIO_DEFAULT_AGE_SECS	300
47 
48 /*
49  * The nr of bytes of cached data to keep around.
50  */
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
52 
53 /*
54  * The number of bvec entries that are embedded directly in the buffer.
55  * If the chunk size is larger, dm-io is used to do the io.
56  */
57 #define DM_BUFIO_INLINE_VECS		16
58 
59 /*
60  * Don't try to use kmem_cache_alloc for blocks larger than this.
61  * For explanation, see alloc_buffer_data below.
62  */
63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
65 
66 /*
67  * Align buffer writes to this boundary.
68  * Tests show that SSDs have the highest IOPS when using 4k writes.
69  */
70 #define DM_BUFIO_WRITE_ALIGN		4096
71 
72 /*
73  * dm_buffer->list_mode
74  */
75 #define LIST_CLEAN	0
76 #define LIST_DIRTY	1
77 #define LIST_SIZE	2
78 
79 /*
80  * Linking of buffers:
81  *	All buffers are linked to cache_hash with their hash_list field.
82  *
83  *	Clean buffers that are not being written (B_WRITING not set)
84  *	are linked to lru[LIST_CLEAN] with their lru_list field.
85  *
86  *	Dirty and clean buffers that are being written are linked to
87  *	lru[LIST_DIRTY] with their lru_list field. When the write
88  *	finishes, the buffer cannot be relinked immediately (because we
89  *	are in an interrupt context and relinking requires process
90  *	context), so some clean-not-writing buffers can be held on
91  *	dirty_lru too.  They are later added to lru in the process
92  *	context.
93  */
94 struct dm_bufio_client {
95 	struct mutex lock;
96 
97 	struct list_head lru[LIST_SIZE];
98 	unsigned long n_buffers[LIST_SIZE];
99 
100 	struct block_device *bdev;
101 	unsigned block_size;
102 	unsigned char sectors_per_block_bits;
103 	unsigned char pages_per_block_bits;
104 	unsigned char blocks_per_page_bits;
105 	unsigned aux_size;
106 	void (*alloc_callback)(struct dm_buffer *);
107 	void (*write_callback)(struct dm_buffer *);
108 
109 	struct dm_io_client *dm_io;
110 
111 	struct list_head reserved_buffers;
112 	unsigned need_reserved_buffers;
113 
114 	unsigned minimum_buffers;
115 
116 	struct rb_root buffer_tree;
117 	wait_queue_head_t free_buffer_wait;
118 
119 	sector_t start;
120 
121 	int async_write_error;
122 
123 	struct list_head client_list;
124 	struct shrinker shrinker;
125 };
126 
127 /*
128  * Buffer state bits.
129  */
130 #define B_READING	0
131 #define B_WRITING	1
132 #define B_DIRTY		2
133 
134 /*
135  * Describes how the block was allocated:
136  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
137  * See the comment at alloc_buffer_data.
138  */
139 enum data_mode {
140 	DATA_MODE_SLAB = 0,
141 	DATA_MODE_GET_FREE_PAGES = 1,
142 	DATA_MODE_VMALLOC = 2,
143 	DATA_MODE_LIMIT = 3
144 };
145 
146 struct dm_buffer {
147 	struct rb_node node;
148 	struct list_head lru_list;
149 	sector_t block;
150 	void *data;
151 	enum data_mode data_mode;
152 	unsigned char list_mode;		/* LIST_* */
153 	unsigned hold_count;
154 	blk_status_t read_error;
155 	blk_status_t write_error;
156 	unsigned long state;
157 	unsigned long last_accessed;
158 	unsigned dirty_start;
159 	unsigned dirty_end;
160 	unsigned write_start;
161 	unsigned write_end;
162 	struct dm_bufio_client *c;
163 	struct list_head write_list;
164 	struct bio bio;
165 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
166 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
167 #define MAX_STACK 10
168 	struct stack_trace stack_trace;
169 	unsigned long stack_entries[MAX_STACK];
170 #endif
171 };
172 
173 /*----------------------------------------------------------------*/
174 
175 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
176 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
177 
178 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
179 {
180 	unsigned ret = c->blocks_per_page_bits - 1;
181 
182 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
183 
184 	return ret;
185 }
186 
187 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
188 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
189 
190 #define dm_bufio_in_request()	(!!current->bio_list)
191 
192 static void dm_bufio_lock(struct dm_bufio_client *c)
193 {
194 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
195 }
196 
197 static int dm_bufio_trylock(struct dm_bufio_client *c)
198 {
199 	return mutex_trylock(&c->lock);
200 }
201 
202 static void dm_bufio_unlock(struct dm_bufio_client *c)
203 {
204 	mutex_unlock(&c->lock);
205 }
206 
207 /*----------------------------------------------------------------*/
208 
209 /*
210  * Default cache size: available memory divided by the ratio.
211  */
212 static unsigned long dm_bufio_default_cache_size;
213 
214 /*
215  * Total cache size set by the user.
216  */
217 static unsigned long dm_bufio_cache_size;
218 
219 /*
220  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
221  * at any time.  If it disagrees, the user has changed cache size.
222  */
223 static unsigned long dm_bufio_cache_size_latch;
224 
225 static DEFINE_SPINLOCK(param_spinlock);
226 
227 /*
228  * Buffers are freed after this timeout
229  */
230 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
231 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
232 
233 static unsigned long dm_bufio_peak_allocated;
234 static unsigned long dm_bufio_allocated_kmem_cache;
235 static unsigned long dm_bufio_allocated_get_free_pages;
236 static unsigned long dm_bufio_allocated_vmalloc;
237 static unsigned long dm_bufio_current_allocated;
238 
239 /*----------------------------------------------------------------*/
240 
241 /*
242  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
243  */
244 static unsigned long dm_bufio_cache_size_per_client;
245 
246 /*
247  * The current number of clients.
248  */
249 static int dm_bufio_client_count;
250 
251 /*
252  * The list of all clients.
253  */
254 static LIST_HEAD(dm_bufio_all_clients);
255 
256 /*
257  * This mutex protects dm_bufio_cache_size_latch,
258  * dm_bufio_cache_size_per_client and dm_bufio_client_count
259  */
260 static DEFINE_MUTEX(dm_bufio_clients_lock);
261 
262 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
263 static void buffer_record_stack(struct dm_buffer *b)
264 {
265 	b->stack_trace.nr_entries = 0;
266 	b->stack_trace.max_entries = MAX_STACK;
267 	b->stack_trace.entries = b->stack_entries;
268 	b->stack_trace.skip = 2;
269 	save_stack_trace(&b->stack_trace);
270 }
271 #endif
272 
273 /*----------------------------------------------------------------
274  * A red/black tree acts as an index for all the buffers.
275  *--------------------------------------------------------------*/
276 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
277 {
278 	struct rb_node *n = c->buffer_tree.rb_node;
279 	struct dm_buffer *b;
280 
281 	while (n) {
282 		b = container_of(n, struct dm_buffer, node);
283 
284 		if (b->block == block)
285 			return b;
286 
287 		n = (b->block < block) ? n->rb_left : n->rb_right;
288 	}
289 
290 	return NULL;
291 }
292 
293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
294 {
295 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
296 	struct dm_buffer *found;
297 
298 	while (*new) {
299 		found = container_of(*new, struct dm_buffer, node);
300 
301 		if (found->block == b->block) {
302 			BUG_ON(found != b);
303 			return;
304 		}
305 
306 		parent = *new;
307 		new = (found->block < b->block) ?
308 			&((*new)->rb_left) : &((*new)->rb_right);
309 	}
310 
311 	rb_link_node(&b->node, parent, new);
312 	rb_insert_color(&b->node, &c->buffer_tree);
313 }
314 
315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
316 {
317 	rb_erase(&b->node, &c->buffer_tree);
318 }
319 
320 /*----------------------------------------------------------------*/
321 
322 static void adjust_total_allocated(enum data_mode data_mode, long diff)
323 {
324 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
325 		&dm_bufio_allocated_kmem_cache,
326 		&dm_bufio_allocated_get_free_pages,
327 		&dm_bufio_allocated_vmalloc,
328 	};
329 
330 	spin_lock(&param_spinlock);
331 
332 	*class_ptr[data_mode] += diff;
333 
334 	dm_bufio_current_allocated += diff;
335 
336 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
337 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
338 
339 	spin_unlock(&param_spinlock);
340 }
341 
342 /*
343  * Change the number of clients and recalculate per-client limit.
344  */
345 static void __cache_size_refresh(void)
346 {
347 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
348 	BUG_ON(dm_bufio_client_count < 0);
349 
350 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
351 
352 	/*
353 	 * Use default if set to 0 and report the actual cache size used.
354 	 */
355 	if (!dm_bufio_cache_size_latch) {
356 		(void)cmpxchg(&dm_bufio_cache_size, 0,
357 			      dm_bufio_default_cache_size);
358 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
359 	}
360 
361 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
362 					 (dm_bufio_client_count ? : 1);
363 }
364 
365 /*
366  * Allocating buffer data.
367  *
368  * Small buffers are allocated with kmem_cache, to use space optimally.
369  *
370  * For large buffers, we choose between get_free_pages and vmalloc.
371  * Each has advantages and disadvantages.
372  *
373  * __get_free_pages can randomly fail if the memory is fragmented.
374  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
375  * as low as 128M) so using it for caching is not appropriate.
376  *
377  * If the allocation may fail we use __get_free_pages. Memory fragmentation
378  * won't have a fatal effect here, but it just causes flushes of some other
379  * buffers and more I/O will be performed. Don't use __get_free_pages if it
380  * always fails (i.e. order >= MAX_ORDER).
381  *
382  * If the allocation shouldn't fail we use __vmalloc. This is only for the
383  * initial reserve allocation, so there's no risk of wasting all vmalloc
384  * space.
385  */
386 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
387 			       enum data_mode *data_mode)
388 {
389 	unsigned noio_flag;
390 	void *ptr;
391 
392 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
393 		*data_mode = DATA_MODE_SLAB;
394 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
395 	}
396 
397 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
398 	    gfp_mask & __GFP_NORETRY) {
399 		*data_mode = DATA_MODE_GET_FREE_PAGES;
400 		return (void *)__get_free_pages(gfp_mask,
401 						c->pages_per_block_bits);
402 	}
403 
404 	*data_mode = DATA_MODE_VMALLOC;
405 
406 	/*
407 	 * __vmalloc allocates the data pages and auxiliary structures with
408 	 * gfp_flags that were specified, but pagetables are always allocated
409 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
410 	 *
411 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
412 	 * all allocations done by this process (including pagetables) are done
413 	 * as if GFP_NOIO was specified.
414 	 */
415 
416 	if (gfp_mask & __GFP_NORETRY)
417 		noio_flag = memalloc_noio_save();
418 
419 	ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
420 
421 	if (gfp_mask & __GFP_NORETRY)
422 		memalloc_noio_restore(noio_flag);
423 
424 	return ptr;
425 }
426 
427 /*
428  * Free buffer's data.
429  */
430 static void free_buffer_data(struct dm_bufio_client *c,
431 			     void *data, enum data_mode data_mode)
432 {
433 	switch (data_mode) {
434 	case DATA_MODE_SLAB:
435 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
436 		break;
437 
438 	case DATA_MODE_GET_FREE_PAGES:
439 		free_pages((unsigned long)data, c->pages_per_block_bits);
440 		break;
441 
442 	case DATA_MODE_VMALLOC:
443 		vfree(data);
444 		break;
445 
446 	default:
447 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
448 		       data_mode);
449 		BUG();
450 	}
451 }
452 
453 /*
454  * Allocate buffer and its data.
455  */
456 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
457 {
458 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
459 				      gfp_mask);
460 
461 	if (!b)
462 		return NULL;
463 
464 	b->c = c;
465 
466 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
467 	if (!b->data) {
468 		kfree(b);
469 		return NULL;
470 	}
471 
472 	adjust_total_allocated(b->data_mode, (long)c->block_size);
473 
474 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
475 	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
476 #endif
477 	return b;
478 }
479 
480 /*
481  * Free buffer and its data.
482  */
483 static void free_buffer(struct dm_buffer *b)
484 {
485 	struct dm_bufio_client *c = b->c;
486 
487 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
488 
489 	free_buffer_data(c, b->data, b->data_mode);
490 	kfree(b);
491 }
492 
493 /*
494  * Link buffer to the hash list and clean or dirty queue.
495  */
496 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
497 {
498 	struct dm_bufio_client *c = b->c;
499 
500 	c->n_buffers[dirty]++;
501 	b->block = block;
502 	b->list_mode = dirty;
503 	list_add(&b->lru_list, &c->lru[dirty]);
504 	__insert(b->c, b);
505 	b->last_accessed = jiffies;
506 }
507 
508 /*
509  * Unlink buffer from the hash list and dirty or clean queue.
510  */
511 static void __unlink_buffer(struct dm_buffer *b)
512 {
513 	struct dm_bufio_client *c = b->c;
514 
515 	BUG_ON(!c->n_buffers[b->list_mode]);
516 
517 	c->n_buffers[b->list_mode]--;
518 	__remove(b->c, b);
519 	list_del(&b->lru_list);
520 }
521 
522 /*
523  * Place the buffer to the head of dirty or clean LRU queue.
524  */
525 static void __relink_lru(struct dm_buffer *b, int dirty)
526 {
527 	struct dm_bufio_client *c = b->c;
528 
529 	BUG_ON(!c->n_buffers[b->list_mode]);
530 
531 	c->n_buffers[b->list_mode]--;
532 	c->n_buffers[dirty]++;
533 	b->list_mode = dirty;
534 	list_move(&b->lru_list, &c->lru[dirty]);
535 	b->last_accessed = jiffies;
536 }
537 
538 /*----------------------------------------------------------------
539  * Submit I/O on the buffer.
540  *
541  * Bio interface is faster but it has some problems:
542  *	the vector list is limited (increasing this limit increases
543  *	memory-consumption per buffer, so it is not viable);
544  *
545  *	the memory must be direct-mapped, not vmalloced;
546  *
547  *	the I/O driver can reject requests spuriously if it thinks that
548  *	the requests are too big for the device or if they cross a
549  *	controller-defined memory boundary.
550  *
551  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
552  * it is not vmalloced, try using the bio interface.
553  *
554  * If the buffer is big, if it is vmalloced or if the underlying device
555  * rejects the bio because it is too large, use dm-io layer to do the I/O.
556  * The dm-io layer splits the I/O into multiple requests, avoiding the above
557  * shortcomings.
558  *--------------------------------------------------------------*/
559 
560 /*
561  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
562  * that the request was handled directly with bio interface.
563  */
564 static void dmio_complete(unsigned long error, void *context)
565 {
566 	struct dm_buffer *b = context;
567 
568 	b->bio.bi_status = error ? BLK_STS_IOERR : 0;
569 	b->bio.bi_end_io(&b->bio);
570 }
571 
572 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
573 		     unsigned n_sectors, unsigned offset, bio_end_io_t *end_io)
574 {
575 	int r;
576 	struct dm_io_request io_req = {
577 		.bi_op = rw,
578 		.bi_op_flags = 0,
579 		.notify.fn = dmio_complete,
580 		.notify.context = b,
581 		.client = b->c->dm_io,
582 	};
583 	struct dm_io_region region = {
584 		.bdev = b->c->bdev,
585 		.sector = sector,
586 		.count = n_sectors,
587 	};
588 
589 	if (b->data_mode != DATA_MODE_VMALLOC) {
590 		io_req.mem.type = DM_IO_KMEM;
591 		io_req.mem.ptr.addr = (char *)b->data + offset;
592 	} else {
593 		io_req.mem.type = DM_IO_VMA;
594 		io_req.mem.ptr.vma = (char *)b->data + offset;
595 	}
596 
597 	b->bio.bi_end_io = end_io;
598 
599 	r = dm_io(&io_req, 1, &region, NULL);
600 	if (r) {
601 		b->bio.bi_status = errno_to_blk_status(r);
602 		end_io(&b->bio);
603 	}
604 }
605 
606 static void inline_endio(struct bio *bio)
607 {
608 	bio_end_io_t *end_fn = bio->bi_private;
609 	blk_status_t status = bio->bi_status;
610 
611 	/*
612 	 * Reset the bio to free any attached resources
613 	 * (e.g. bio integrity profiles).
614 	 */
615 	bio_reset(bio);
616 
617 	bio->bi_status = status;
618 	end_fn(bio);
619 }
620 
621 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t sector,
622 			   unsigned n_sectors, unsigned offset, bio_end_io_t *end_io)
623 {
624 	char *ptr;
625 	unsigned len;
626 
627 	bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
628 	b->bio.bi_iter.bi_sector = sector;
629 	bio_set_dev(&b->bio, b->c->bdev);
630 	b->bio.bi_end_io = inline_endio;
631 	/*
632 	 * Use of .bi_private isn't a problem here because
633 	 * the dm_buffer's inline bio is local to bufio.
634 	 */
635 	b->bio.bi_private = end_io;
636 	bio_set_op_attrs(&b->bio, rw, 0);
637 
638 	ptr = (char *)b->data + offset;
639 	len = n_sectors << SECTOR_SHIFT;
640 
641 	do {
642 		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
643 		if (!bio_add_page(&b->bio, virt_to_page(ptr), this_step,
644 				  offset_in_page(ptr))) {
645 			BUG_ON(b->c->block_size <= PAGE_SIZE);
646 			use_dmio(b, rw, sector, n_sectors, offset, end_io);
647 			return;
648 		}
649 
650 		len -= this_step;
651 		ptr += this_step;
652 	} while (len > 0);
653 
654 	submit_bio(&b->bio);
655 }
656 
657 static void submit_io(struct dm_buffer *b, int rw, bio_end_io_t *end_io)
658 {
659 	unsigned n_sectors;
660 	sector_t sector;
661 	unsigned offset, end;
662 
663 	sector = (b->block << b->c->sectors_per_block_bits) + b->c->start;
664 
665 	if (rw != REQ_OP_WRITE) {
666 		n_sectors = 1 << b->c->sectors_per_block_bits;
667 		offset = 0;
668 	} else {
669 		if (b->c->write_callback)
670 			b->c->write_callback(b);
671 		offset = b->write_start;
672 		end = b->write_end;
673 		offset &= -DM_BUFIO_WRITE_ALIGN;
674 		end += DM_BUFIO_WRITE_ALIGN - 1;
675 		end &= -DM_BUFIO_WRITE_ALIGN;
676 		if (unlikely(end > b->c->block_size))
677 			end = b->c->block_size;
678 
679 		sector += offset >> SECTOR_SHIFT;
680 		n_sectors = (end - offset) >> SECTOR_SHIFT;
681 	}
682 
683 	if (n_sectors <= ((DM_BUFIO_INLINE_VECS * PAGE_SIZE) >> SECTOR_SHIFT) &&
684 	    b->data_mode != DATA_MODE_VMALLOC)
685 		use_inline_bio(b, rw, sector, n_sectors, offset, end_io);
686 	else
687 		use_dmio(b, rw, sector, n_sectors, offset, end_io);
688 }
689 
690 /*----------------------------------------------------------------
691  * Writing dirty buffers
692  *--------------------------------------------------------------*/
693 
694 /*
695  * The endio routine for write.
696  *
697  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
698  * it.
699  */
700 static void write_endio(struct bio *bio)
701 {
702 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
703 
704 	b->write_error = bio->bi_status;
705 	if (unlikely(bio->bi_status)) {
706 		struct dm_bufio_client *c = b->c;
707 
708 		(void)cmpxchg(&c->async_write_error, 0,
709 				blk_status_to_errno(bio->bi_status));
710 	}
711 
712 	BUG_ON(!test_bit(B_WRITING, &b->state));
713 
714 	smp_mb__before_atomic();
715 	clear_bit(B_WRITING, &b->state);
716 	smp_mb__after_atomic();
717 
718 	wake_up_bit(&b->state, B_WRITING);
719 }
720 
721 /*
722  * Initiate a write on a dirty buffer, but don't wait for it.
723  *
724  * - If the buffer is not dirty, exit.
725  * - If there some previous write going on, wait for it to finish (we can't
726  *   have two writes on the same buffer simultaneously).
727  * - Submit our write and don't wait on it. We set B_WRITING indicating
728  *   that there is a write in progress.
729  */
730 static void __write_dirty_buffer(struct dm_buffer *b,
731 				 struct list_head *write_list)
732 {
733 	if (!test_bit(B_DIRTY, &b->state))
734 		return;
735 
736 	clear_bit(B_DIRTY, &b->state);
737 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
738 
739 	b->write_start = b->dirty_start;
740 	b->write_end = b->dirty_end;
741 
742 	if (!write_list)
743 		submit_io(b, REQ_OP_WRITE, write_endio);
744 	else
745 		list_add_tail(&b->write_list, write_list);
746 }
747 
748 static void __flush_write_list(struct list_head *write_list)
749 {
750 	struct blk_plug plug;
751 	blk_start_plug(&plug);
752 	while (!list_empty(write_list)) {
753 		struct dm_buffer *b =
754 			list_entry(write_list->next, struct dm_buffer, write_list);
755 		list_del(&b->write_list);
756 		submit_io(b, REQ_OP_WRITE, write_endio);
757 		cond_resched();
758 	}
759 	blk_finish_plug(&plug);
760 }
761 
762 /*
763  * Wait until any activity on the buffer finishes.  Possibly write the
764  * buffer if it is dirty.  When this function finishes, there is no I/O
765  * running on the buffer and the buffer is not dirty.
766  */
767 static void __make_buffer_clean(struct dm_buffer *b)
768 {
769 	BUG_ON(b->hold_count);
770 
771 	if (!b->state)	/* fast case */
772 		return;
773 
774 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
775 	__write_dirty_buffer(b, NULL);
776 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
777 }
778 
779 /*
780  * Find some buffer that is not held by anybody, clean it, unlink it and
781  * return it.
782  */
783 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
784 {
785 	struct dm_buffer *b;
786 
787 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
788 		BUG_ON(test_bit(B_WRITING, &b->state));
789 		BUG_ON(test_bit(B_DIRTY, &b->state));
790 
791 		if (!b->hold_count) {
792 			__make_buffer_clean(b);
793 			__unlink_buffer(b);
794 			return b;
795 		}
796 		cond_resched();
797 	}
798 
799 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
800 		BUG_ON(test_bit(B_READING, &b->state));
801 
802 		if (!b->hold_count) {
803 			__make_buffer_clean(b);
804 			__unlink_buffer(b);
805 			return b;
806 		}
807 		cond_resched();
808 	}
809 
810 	return NULL;
811 }
812 
813 /*
814  * Wait until some other threads free some buffer or release hold count on
815  * some buffer.
816  *
817  * This function is entered with c->lock held, drops it and regains it
818  * before exiting.
819  */
820 static void __wait_for_free_buffer(struct dm_bufio_client *c)
821 {
822 	DECLARE_WAITQUEUE(wait, current);
823 
824 	add_wait_queue(&c->free_buffer_wait, &wait);
825 	set_current_state(TASK_UNINTERRUPTIBLE);
826 	dm_bufio_unlock(c);
827 
828 	io_schedule();
829 
830 	remove_wait_queue(&c->free_buffer_wait, &wait);
831 
832 	dm_bufio_lock(c);
833 }
834 
835 enum new_flag {
836 	NF_FRESH = 0,
837 	NF_READ = 1,
838 	NF_GET = 2,
839 	NF_PREFETCH = 3
840 };
841 
842 /*
843  * Allocate a new buffer. If the allocation is not possible, wait until
844  * some other thread frees a buffer.
845  *
846  * May drop the lock and regain it.
847  */
848 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
849 {
850 	struct dm_buffer *b;
851 	bool tried_noio_alloc = false;
852 
853 	/*
854 	 * dm-bufio is resistant to allocation failures (it just keeps
855 	 * one buffer reserved in cases all the allocations fail).
856 	 * So set flags to not try too hard:
857 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
858 	 *		    mutex and wait ourselves.
859 	 *	__GFP_NORETRY: don't retry and rather return failure
860 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
861 	 *	__GFP_NOWARN: don't print a warning in case of failure
862 	 *
863 	 * For debugging, if we set the cache size to 1, no new buffers will
864 	 * be allocated.
865 	 */
866 	while (1) {
867 		if (dm_bufio_cache_size_latch != 1) {
868 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
869 			if (b)
870 				return b;
871 		}
872 
873 		if (nf == NF_PREFETCH)
874 			return NULL;
875 
876 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
877 			dm_bufio_unlock(c);
878 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
879 			dm_bufio_lock(c);
880 			if (b)
881 				return b;
882 			tried_noio_alloc = true;
883 		}
884 
885 		if (!list_empty(&c->reserved_buffers)) {
886 			b = list_entry(c->reserved_buffers.next,
887 				       struct dm_buffer, lru_list);
888 			list_del(&b->lru_list);
889 			c->need_reserved_buffers++;
890 
891 			return b;
892 		}
893 
894 		b = __get_unclaimed_buffer(c);
895 		if (b)
896 			return b;
897 
898 		__wait_for_free_buffer(c);
899 	}
900 }
901 
902 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
903 {
904 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
905 
906 	if (!b)
907 		return NULL;
908 
909 	if (c->alloc_callback)
910 		c->alloc_callback(b);
911 
912 	return b;
913 }
914 
915 /*
916  * Free a buffer and wake other threads waiting for free buffers.
917  */
918 static void __free_buffer_wake(struct dm_buffer *b)
919 {
920 	struct dm_bufio_client *c = b->c;
921 
922 	if (!c->need_reserved_buffers)
923 		free_buffer(b);
924 	else {
925 		list_add(&b->lru_list, &c->reserved_buffers);
926 		c->need_reserved_buffers--;
927 	}
928 
929 	wake_up(&c->free_buffer_wait);
930 }
931 
932 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
933 					struct list_head *write_list)
934 {
935 	struct dm_buffer *b, *tmp;
936 
937 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
938 		BUG_ON(test_bit(B_READING, &b->state));
939 
940 		if (!test_bit(B_DIRTY, &b->state) &&
941 		    !test_bit(B_WRITING, &b->state)) {
942 			__relink_lru(b, LIST_CLEAN);
943 			continue;
944 		}
945 
946 		if (no_wait && test_bit(B_WRITING, &b->state))
947 			return;
948 
949 		__write_dirty_buffer(b, write_list);
950 		cond_resched();
951 	}
952 }
953 
954 /*
955  * Get writeback threshold and buffer limit for a given client.
956  */
957 static void __get_memory_limit(struct dm_bufio_client *c,
958 			       unsigned long *threshold_buffers,
959 			       unsigned long *limit_buffers)
960 {
961 	unsigned long buffers;
962 
963 	if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
964 		if (mutex_trylock(&dm_bufio_clients_lock)) {
965 			__cache_size_refresh();
966 			mutex_unlock(&dm_bufio_clients_lock);
967 		}
968 	}
969 
970 	buffers = dm_bufio_cache_size_per_client >>
971 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
972 
973 	if (buffers < c->minimum_buffers)
974 		buffers = c->minimum_buffers;
975 
976 	*limit_buffers = buffers;
977 	*threshold_buffers = mult_frac(buffers,
978 				       DM_BUFIO_WRITEBACK_PERCENT, 100);
979 }
980 
981 /*
982  * Check if we're over watermark.
983  * If we are over threshold_buffers, start freeing buffers.
984  * If we're over "limit_buffers", block until we get under the limit.
985  */
986 static void __check_watermark(struct dm_bufio_client *c,
987 			      struct list_head *write_list)
988 {
989 	unsigned long threshold_buffers, limit_buffers;
990 
991 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
992 
993 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
994 	       limit_buffers) {
995 
996 		struct dm_buffer *b = __get_unclaimed_buffer(c);
997 
998 		if (!b)
999 			return;
1000 
1001 		__free_buffer_wake(b);
1002 		cond_resched();
1003 	}
1004 
1005 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
1006 		__write_dirty_buffers_async(c, 1, write_list);
1007 }
1008 
1009 /*----------------------------------------------------------------
1010  * Getting a buffer
1011  *--------------------------------------------------------------*/
1012 
1013 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1014 				     enum new_flag nf, int *need_submit,
1015 				     struct list_head *write_list)
1016 {
1017 	struct dm_buffer *b, *new_b = NULL;
1018 
1019 	*need_submit = 0;
1020 
1021 	b = __find(c, block);
1022 	if (b)
1023 		goto found_buffer;
1024 
1025 	if (nf == NF_GET)
1026 		return NULL;
1027 
1028 	new_b = __alloc_buffer_wait(c, nf);
1029 	if (!new_b)
1030 		return NULL;
1031 
1032 	/*
1033 	 * We've had a period where the mutex was unlocked, so need to
1034 	 * recheck the hash table.
1035 	 */
1036 	b = __find(c, block);
1037 	if (b) {
1038 		__free_buffer_wake(new_b);
1039 		goto found_buffer;
1040 	}
1041 
1042 	__check_watermark(c, write_list);
1043 
1044 	b = new_b;
1045 	b->hold_count = 1;
1046 	b->read_error = 0;
1047 	b->write_error = 0;
1048 	__link_buffer(b, block, LIST_CLEAN);
1049 
1050 	if (nf == NF_FRESH) {
1051 		b->state = 0;
1052 		return b;
1053 	}
1054 
1055 	b->state = 1 << B_READING;
1056 	*need_submit = 1;
1057 
1058 	return b;
1059 
1060 found_buffer:
1061 	if (nf == NF_PREFETCH)
1062 		return NULL;
1063 	/*
1064 	 * Note: it is essential that we don't wait for the buffer to be
1065 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1066 	 * dm_bufio_prefetch can be used in the driver request routine.
1067 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1068 	 * the same buffer, it would deadlock if we waited.
1069 	 */
1070 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1071 		return NULL;
1072 
1073 	b->hold_count++;
1074 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1075 		     test_bit(B_WRITING, &b->state));
1076 	return b;
1077 }
1078 
1079 /*
1080  * The endio routine for reading: set the error, clear the bit and wake up
1081  * anyone waiting on the buffer.
1082  */
1083 static void read_endio(struct bio *bio)
1084 {
1085 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1086 
1087 	b->read_error = bio->bi_status;
1088 
1089 	BUG_ON(!test_bit(B_READING, &b->state));
1090 
1091 	smp_mb__before_atomic();
1092 	clear_bit(B_READING, &b->state);
1093 	smp_mb__after_atomic();
1094 
1095 	wake_up_bit(&b->state, B_READING);
1096 }
1097 
1098 /*
1099  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1100  * functions is similar except that dm_bufio_new doesn't read the
1101  * buffer from the disk (assuming that the caller overwrites all the data
1102  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1103  */
1104 static void *new_read(struct dm_bufio_client *c, sector_t block,
1105 		      enum new_flag nf, struct dm_buffer **bp)
1106 {
1107 	int need_submit;
1108 	struct dm_buffer *b;
1109 
1110 	LIST_HEAD(write_list);
1111 
1112 	dm_bufio_lock(c);
1113 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1114 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1115 	if (b && b->hold_count == 1)
1116 		buffer_record_stack(b);
1117 #endif
1118 	dm_bufio_unlock(c);
1119 
1120 	__flush_write_list(&write_list);
1121 
1122 	if (!b)
1123 		return NULL;
1124 
1125 	if (need_submit)
1126 		submit_io(b, REQ_OP_READ, read_endio);
1127 
1128 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1129 
1130 	if (b->read_error) {
1131 		int error = blk_status_to_errno(b->read_error);
1132 
1133 		dm_bufio_release(b);
1134 
1135 		return ERR_PTR(error);
1136 	}
1137 
1138 	*bp = b;
1139 
1140 	return b->data;
1141 }
1142 
1143 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1144 		   struct dm_buffer **bp)
1145 {
1146 	return new_read(c, block, NF_GET, bp);
1147 }
1148 EXPORT_SYMBOL_GPL(dm_bufio_get);
1149 
1150 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1151 		    struct dm_buffer **bp)
1152 {
1153 	BUG_ON(dm_bufio_in_request());
1154 
1155 	return new_read(c, block, NF_READ, bp);
1156 }
1157 EXPORT_SYMBOL_GPL(dm_bufio_read);
1158 
1159 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1160 		   struct dm_buffer **bp)
1161 {
1162 	BUG_ON(dm_bufio_in_request());
1163 
1164 	return new_read(c, block, NF_FRESH, bp);
1165 }
1166 EXPORT_SYMBOL_GPL(dm_bufio_new);
1167 
1168 void dm_bufio_prefetch(struct dm_bufio_client *c,
1169 		       sector_t block, unsigned n_blocks)
1170 {
1171 	struct blk_plug plug;
1172 
1173 	LIST_HEAD(write_list);
1174 
1175 	BUG_ON(dm_bufio_in_request());
1176 
1177 	blk_start_plug(&plug);
1178 	dm_bufio_lock(c);
1179 
1180 	for (; n_blocks--; block++) {
1181 		int need_submit;
1182 		struct dm_buffer *b;
1183 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1184 				&write_list);
1185 		if (unlikely(!list_empty(&write_list))) {
1186 			dm_bufio_unlock(c);
1187 			blk_finish_plug(&plug);
1188 			__flush_write_list(&write_list);
1189 			blk_start_plug(&plug);
1190 			dm_bufio_lock(c);
1191 		}
1192 		if (unlikely(b != NULL)) {
1193 			dm_bufio_unlock(c);
1194 
1195 			if (need_submit)
1196 				submit_io(b, REQ_OP_READ, read_endio);
1197 			dm_bufio_release(b);
1198 
1199 			cond_resched();
1200 
1201 			if (!n_blocks)
1202 				goto flush_plug;
1203 			dm_bufio_lock(c);
1204 		}
1205 	}
1206 
1207 	dm_bufio_unlock(c);
1208 
1209 flush_plug:
1210 	blk_finish_plug(&plug);
1211 }
1212 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1213 
1214 void dm_bufio_release(struct dm_buffer *b)
1215 {
1216 	struct dm_bufio_client *c = b->c;
1217 
1218 	dm_bufio_lock(c);
1219 
1220 	BUG_ON(!b->hold_count);
1221 
1222 	b->hold_count--;
1223 	if (!b->hold_count) {
1224 		wake_up(&c->free_buffer_wait);
1225 
1226 		/*
1227 		 * If there were errors on the buffer, and the buffer is not
1228 		 * to be written, free the buffer. There is no point in caching
1229 		 * invalid buffer.
1230 		 */
1231 		if ((b->read_error || b->write_error) &&
1232 		    !test_bit(B_READING, &b->state) &&
1233 		    !test_bit(B_WRITING, &b->state) &&
1234 		    !test_bit(B_DIRTY, &b->state)) {
1235 			__unlink_buffer(b);
1236 			__free_buffer_wake(b);
1237 		}
1238 	}
1239 
1240 	dm_bufio_unlock(c);
1241 }
1242 EXPORT_SYMBOL_GPL(dm_bufio_release);
1243 
1244 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1245 					unsigned start, unsigned end)
1246 {
1247 	struct dm_bufio_client *c = b->c;
1248 
1249 	BUG_ON(start >= end);
1250 	BUG_ON(end > b->c->block_size);
1251 
1252 	dm_bufio_lock(c);
1253 
1254 	BUG_ON(test_bit(B_READING, &b->state));
1255 
1256 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1257 		b->dirty_start = start;
1258 		b->dirty_end = end;
1259 		__relink_lru(b, LIST_DIRTY);
1260 	} else {
1261 		if (start < b->dirty_start)
1262 			b->dirty_start = start;
1263 		if (end > b->dirty_end)
1264 			b->dirty_end = end;
1265 	}
1266 
1267 	dm_bufio_unlock(c);
1268 }
1269 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1270 
1271 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1272 {
1273 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1274 }
1275 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1276 
1277 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1278 {
1279 	LIST_HEAD(write_list);
1280 
1281 	BUG_ON(dm_bufio_in_request());
1282 
1283 	dm_bufio_lock(c);
1284 	__write_dirty_buffers_async(c, 0, &write_list);
1285 	dm_bufio_unlock(c);
1286 	__flush_write_list(&write_list);
1287 }
1288 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1289 
1290 /*
1291  * For performance, it is essential that the buffers are written asynchronously
1292  * and simultaneously (so that the block layer can merge the writes) and then
1293  * waited upon.
1294  *
1295  * Finally, we flush hardware disk cache.
1296  */
1297 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1298 {
1299 	int a, f;
1300 	unsigned long buffers_processed = 0;
1301 	struct dm_buffer *b, *tmp;
1302 
1303 	LIST_HEAD(write_list);
1304 
1305 	dm_bufio_lock(c);
1306 	__write_dirty_buffers_async(c, 0, &write_list);
1307 	dm_bufio_unlock(c);
1308 	__flush_write_list(&write_list);
1309 	dm_bufio_lock(c);
1310 
1311 again:
1312 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1313 		int dropped_lock = 0;
1314 
1315 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1316 			buffers_processed++;
1317 
1318 		BUG_ON(test_bit(B_READING, &b->state));
1319 
1320 		if (test_bit(B_WRITING, &b->state)) {
1321 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1322 				dropped_lock = 1;
1323 				b->hold_count++;
1324 				dm_bufio_unlock(c);
1325 				wait_on_bit_io(&b->state, B_WRITING,
1326 					       TASK_UNINTERRUPTIBLE);
1327 				dm_bufio_lock(c);
1328 				b->hold_count--;
1329 			} else
1330 				wait_on_bit_io(&b->state, B_WRITING,
1331 					       TASK_UNINTERRUPTIBLE);
1332 		}
1333 
1334 		if (!test_bit(B_DIRTY, &b->state) &&
1335 		    !test_bit(B_WRITING, &b->state))
1336 			__relink_lru(b, LIST_CLEAN);
1337 
1338 		cond_resched();
1339 
1340 		/*
1341 		 * If we dropped the lock, the list is no longer consistent,
1342 		 * so we must restart the search.
1343 		 *
1344 		 * In the most common case, the buffer just processed is
1345 		 * relinked to the clean list, so we won't loop scanning the
1346 		 * same buffer again and again.
1347 		 *
1348 		 * This may livelock if there is another thread simultaneously
1349 		 * dirtying buffers, so we count the number of buffers walked
1350 		 * and if it exceeds the total number of buffers, it means that
1351 		 * someone is doing some writes simultaneously with us.  In
1352 		 * this case, stop, dropping the lock.
1353 		 */
1354 		if (dropped_lock)
1355 			goto again;
1356 	}
1357 	wake_up(&c->free_buffer_wait);
1358 	dm_bufio_unlock(c);
1359 
1360 	a = xchg(&c->async_write_error, 0);
1361 	f = dm_bufio_issue_flush(c);
1362 	if (a)
1363 		return a;
1364 
1365 	return f;
1366 }
1367 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1368 
1369 /*
1370  * Use dm-io to send and empty barrier flush the device.
1371  */
1372 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1373 {
1374 	struct dm_io_request io_req = {
1375 		.bi_op = REQ_OP_WRITE,
1376 		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1377 		.mem.type = DM_IO_KMEM,
1378 		.mem.ptr.addr = NULL,
1379 		.client = c->dm_io,
1380 	};
1381 	struct dm_io_region io_reg = {
1382 		.bdev = c->bdev,
1383 		.sector = 0,
1384 		.count = 0,
1385 	};
1386 
1387 	BUG_ON(dm_bufio_in_request());
1388 
1389 	return dm_io(&io_req, 1, &io_reg, NULL);
1390 }
1391 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1392 
1393 /*
1394  * We first delete any other buffer that may be at that new location.
1395  *
1396  * Then, we write the buffer to the original location if it was dirty.
1397  *
1398  * Then, if we are the only one who is holding the buffer, relink the buffer
1399  * in the hash queue for the new location.
1400  *
1401  * If there was someone else holding the buffer, we write it to the new
1402  * location but not relink it, because that other user needs to have the buffer
1403  * at the same place.
1404  */
1405 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1406 {
1407 	struct dm_bufio_client *c = b->c;
1408 	struct dm_buffer *new;
1409 
1410 	BUG_ON(dm_bufio_in_request());
1411 
1412 	dm_bufio_lock(c);
1413 
1414 retry:
1415 	new = __find(c, new_block);
1416 	if (new) {
1417 		if (new->hold_count) {
1418 			__wait_for_free_buffer(c);
1419 			goto retry;
1420 		}
1421 
1422 		/*
1423 		 * FIXME: Is there any point waiting for a write that's going
1424 		 * to be overwritten in a bit?
1425 		 */
1426 		__make_buffer_clean(new);
1427 		__unlink_buffer(new);
1428 		__free_buffer_wake(new);
1429 	}
1430 
1431 	BUG_ON(!b->hold_count);
1432 	BUG_ON(test_bit(B_READING, &b->state));
1433 
1434 	__write_dirty_buffer(b, NULL);
1435 	if (b->hold_count == 1) {
1436 		wait_on_bit_io(&b->state, B_WRITING,
1437 			       TASK_UNINTERRUPTIBLE);
1438 		set_bit(B_DIRTY, &b->state);
1439 		b->dirty_start = 0;
1440 		b->dirty_end = c->block_size;
1441 		__unlink_buffer(b);
1442 		__link_buffer(b, new_block, LIST_DIRTY);
1443 	} else {
1444 		sector_t old_block;
1445 		wait_on_bit_lock_io(&b->state, B_WRITING,
1446 				    TASK_UNINTERRUPTIBLE);
1447 		/*
1448 		 * Relink buffer to "new_block" so that write_callback
1449 		 * sees "new_block" as a block number.
1450 		 * After the write, link the buffer back to old_block.
1451 		 * All this must be done in bufio lock, so that block number
1452 		 * change isn't visible to other threads.
1453 		 */
1454 		old_block = b->block;
1455 		__unlink_buffer(b);
1456 		__link_buffer(b, new_block, b->list_mode);
1457 		submit_io(b, REQ_OP_WRITE, write_endio);
1458 		wait_on_bit_io(&b->state, B_WRITING,
1459 			       TASK_UNINTERRUPTIBLE);
1460 		__unlink_buffer(b);
1461 		__link_buffer(b, old_block, b->list_mode);
1462 	}
1463 
1464 	dm_bufio_unlock(c);
1465 	dm_bufio_release(b);
1466 }
1467 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1468 
1469 /*
1470  * Free the given buffer.
1471  *
1472  * This is just a hint, if the buffer is in use or dirty, this function
1473  * does nothing.
1474  */
1475 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1476 {
1477 	struct dm_buffer *b;
1478 
1479 	dm_bufio_lock(c);
1480 
1481 	b = __find(c, block);
1482 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1483 		__unlink_buffer(b);
1484 		__free_buffer_wake(b);
1485 	}
1486 
1487 	dm_bufio_unlock(c);
1488 }
1489 EXPORT_SYMBOL(dm_bufio_forget);
1490 
1491 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1492 {
1493 	c->minimum_buffers = n;
1494 }
1495 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1496 
1497 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1498 {
1499 	return c->block_size;
1500 }
1501 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1502 
1503 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1504 {
1505 	return i_size_read(c->bdev->bd_inode) >>
1506 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1507 }
1508 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1509 
1510 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1511 {
1512 	return b->block;
1513 }
1514 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1515 
1516 void *dm_bufio_get_block_data(struct dm_buffer *b)
1517 {
1518 	return b->data;
1519 }
1520 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1521 
1522 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1523 {
1524 	return b + 1;
1525 }
1526 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1527 
1528 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1529 {
1530 	return b->c;
1531 }
1532 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1533 
1534 static void drop_buffers(struct dm_bufio_client *c)
1535 {
1536 	struct dm_buffer *b;
1537 	int i;
1538 	bool warned = false;
1539 
1540 	BUG_ON(dm_bufio_in_request());
1541 
1542 	/*
1543 	 * An optimization so that the buffers are not written one-by-one.
1544 	 */
1545 	dm_bufio_write_dirty_buffers_async(c);
1546 
1547 	dm_bufio_lock(c);
1548 
1549 	while ((b = __get_unclaimed_buffer(c)))
1550 		__free_buffer_wake(b);
1551 
1552 	for (i = 0; i < LIST_SIZE; i++)
1553 		list_for_each_entry(b, &c->lru[i], lru_list) {
1554 			WARN_ON(!warned);
1555 			warned = true;
1556 			DMERR("leaked buffer %llx, hold count %u, list %d",
1557 			      (unsigned long long)b->block, b->hold_count, i);
1558 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1559 			print_stack_trace(&b->stack_trace, 1);
1560 			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1561 #endif
1562 		}
1563 
1564 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1565 	while ((b = __get_unclaimed_buffer(c)))
1566 		__free_buffer_wake(b);
1567 #endif
1568 
1569 	for (i = 0; i < LIST_SIZE; i++)
1570 		BUG_ON(!list_empty(&c->lru[i]));
1571 
1572 	dm_bufio_unlock(c);
1573 }
1574 
1575 /*
1576  * We may not be able to evict this buffer if IO pending or the client
1577  * is still using it.  Caller is expected to know buffer is too old.
1578  *
1579  * And if GFP_NOFS is used, we must not do any I/O because we hold
1580  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1581  * rerouted to different bufio client.
1582  */
1583 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1584 {
1585 	if (!(gfp & __GFP_FS)) {
1586 		if (test_bit(B_READING, &b->state) ||
1587 		    test_bit(B_WRITING, &b->state) ||
1588 		    test_bit(B_DIRTY, &b->state))
1589 			return false;
1590 	}
1591 
1592 	if (b->hold_count)
1593 		return false;
1594 
1595 	__make_buffer_clean(b);
1596 	__unlink_buffer(b);
1597 	__free_buffer_wake(b);
1598 
1599 	return true;
1600 }
1601 
1602 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1603 {
1604         unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1605         return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1606 }
1607 
1608 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1609 			    gfp_t gfp_mask)
1610 {
1611 	int l;
1612 	struct dm_buffer *b, *tmp;
1613 	unsigned long freed = 0;
1614 	unsigned long count = c->n_buffers[LIST_CLEAN] +
1615 			      c->n_buffers[LIST_DIRTY];
1616 	unsigned long retain_target = get_retain_buffers(c);
1617 
1618 	for (l = 0; l < LIST_SIZE; l++) {
1619 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1620 			if (__try_evict_buffer(b, gfp_mask))
1621 				freed++;
1622 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1623 				return freed;
1624 			cond_resched();
1625 		}
1626 	}
1627 	return freed;
1628 }
1629 
1630 static unsigned long
1631 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1632 {
1633 	struct dm_bufio_client *c;
1634 	unsigned long freed;
1635 
1636 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1637 	if (sc->gfp_mask & __GFP_FS)
1638 		dm_bufio_lock(c);
1639 	else if (!dm_bufio_trylock(c))
1640 		return SHRINK_STOP;
1641 
1642 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1643 	dm_bufio_unlock(c);
1644 	return freed;
1645 }
1646 
1647 static unsigned long
1648 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1649 {
1650 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1651 	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1652 			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1653 	unsigned long retain_target = get_retain_buffers(c);
1654 
1655 	return (count < retain_target) ? 0 : (count - retain_target);
1656 }
1657 
1658 /*
1659  * Create the buffering interface
1660  */
1661 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1662 					       unsigned reserved_buffers, unsigned aux_size,
1663 					       void (*alloc_callback)(struct dm_buffer *),
1664 					       void (*write_callback)(struct dm_buffer *))
1665 {
1666 	int r;
1667 	struct dm_bufio_client *c;
1668 	unsigned i;
1669 
1670 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1671 	       (block_size & (block_size - 1)));
1672 
1673 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1674 	if (!c) {
1675 		r = -ENOMEM;
1676 		goto bad_client;
1677 	}
1678 	c->buffer_tree = RB_ROOT;
1679 
1680 	c->bdev = bdev;
1681 	c->block_size = block_size;
1682 	c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1683 	c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1684 				  __ffs(block_size) - PAGE_SHIFT : 0;
1685 	c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1686 				  PAGE_SHIFT - __ffs(block_size) : 0);
1687 
1688 	c->aux_size = aux_size;
1689 	c->alloc_callback = alloc_callback;
1690 	c->write_callback = write_callback;
1691 
1692 	for (i = 0; i < LIST_SIZE; i++) {
1693 		INIT_LIST_HEAD(&c->lru[i]);
1694 		c->n_buffers[i] = 0;
1695 	}
1696 
1697 	mutex_init(&c->lock);
1698 	INIT_LIST_HEAD(&c->reserved_buffers);
1699 	c->need_reserved_buffers = reserved_buffers;
1700 
1701 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1702 
1703 	init_waitqueue_head(&c->free_buffer_wait);
1704 	c->async_write_error = 0;
1705 
1706 	c->dm_io = dm_io_client_create();
1707 	if (IS_ERR(c->dm_io)) {
1708 		r = PTR_ERR(c->dm_io);
1709 		goto bad_dm_io;
1710 	}
1711 
1712 	mutex_lock(&dm_bufio_clients_lock);
1713 	if (c->blocks_per_page_bits) {
1714 		if (!DM_BUFIO_CACHE_NAME(c)) {
1715 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1716 			if (!DM_BUFIO_CACHE_NAME(c)) {
1717 				r = -ENOMEM;
1718 				mutex_unlock(&dm_bufio_clients_lock);
1719 				goto bad;
1720 			}
1721 		}
1722 
1723 		if (!DM_BUFIO_CACHE(c)) {
1724 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1725 							      c->block_size,
1726 							      c->block_size, 0, NULL);
1727 			if (!DM_BUFIO_CACHE(c)) {
1728 				r = -ENOMEM;
1729 				mutex_unlock(&dm_bufio_clients_lock);
1730 				goto bad;
1731 			}
1732 		}
1733 	}
1734 	mutex_unlock(&dm_bufio_clients_lock);
1735 
1736 	while (c->need_reserved_buffers) {
1737 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1738 
1739 		if (!b) {
1740 			r = -ENOMEM;
1741 			goto bad;
1742 		}
1743 		__free_buffer_wake(b);
1744 	}
1745 
1746 	c->shrinker.count_objects = dm_bufio_shrink_count;
1747 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1748 	c->shrinker.seeks = 1;
1749 	c->shrinker.batch = 0;
1750 	r = register_shrinker(&c->shrinker);
1751 	if (r)
1752 		goto bad;
1753 
1754 	mutex_lock(&dm_bufio_clients_lock);
1755 	dm_bufio_client_count++;
1756 	list_add(&c->client_list, &dm_bufio_all_clients);
1757 	__cache_size_refresh();
1758 	mutex_unlock(&dm_bufio_clients_lock);
1759 
1760 	return c;
1761 
1762 bad:
1763 	while (!list_empty(&c->reserved_buffers)) {
1764 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1765 						 struct dm_buffer, lru_list);
1766 		list_del(&b->lru_list);
1767 		free_buffer(b);
1768 	}
1769 	dm_io_client_destroy(c->dm_io);
1770 bad_dm_io:
1771 	mutex_destroy(&c->lock);
1772 	kfree(c);
1773 bad_client:
1774 	return ERR_PTR(r);
1775 }
1776 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1777 
1778 /*
1779  * Free the buffering interface.
1780  * It is required that there are no references on any buffers.
1781  */
1782 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1783 {
1784 	unsigned i;
1785 
1786 	drop_buffers(c);
1787 
1788 	unregister_shrinker(&c->shrinker);
1789 
1790 	mutex_lock(&dm_bufio_clients_lock);
1791 
1792 	list_del(&c->client_list);
1793 	dm_bufio_client_count--;
1794 	__cache_size_refresh();
1795 
1796 	mutex_unlock(&dm_bufio_clients_lock);
1797 
1798 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1799 	BUG_ON(c->need_reserved_buffers);
1800 
1801 	while (!list_empty(&c->reserved_buffers)) {
1802 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1803 						 struct dm_buffer, lru_list);
1804 		list_del(&b->lru_list);
1805 		free_buffer(b);
1806 	}
1807 
1808 	for (i = 0; i < LIST_SIZE; i++)
1809 		if (c->n_buffers[i])
1810 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1811 
1812 	for (i = 0; i < LIST_SIZE; i++)
1813 		BUG_ON(c->n_buffers[i]);
1814 
1815 	dm_io_client_destroy(c->dm_io);
1816 	mutex_destroy(&c->lock);
1817 	kfree(c);
1818 }
1819 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1820 
1821 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1822 {
1823 	c->start = start;
1824 }
1825 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1826 
1827 static unsigned get_max_age_hz(void)
1828 {
1829 	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1830 
1831 	if (max_age > UINT_MAX / HZ)
1832 		max_age = UINT_MAX / HZ;
1833 
1834 	return max_age * HZ;
1835 }
1836 
1837 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1838 {
1839 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1840 }
1841 
1842 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1843 {
1844 	struct dm_buffer *b, *tmp;
1845 	unsigned long retain_target = get_retain_buffers(c);
1846 	unsigned long count;
1847 	LIST_HEAD(write_list);
1848 
1849 	dm_bufio_lock(c);
1850 
1851 	__check_watermark(c, &write_list);
1852 	if (unlikely(!list_empty(&write_list))) {
1853 		dm_bufio_unlock(c);
1854 		__flush_write_list(&write_list);
1855 		dm_bufio_lock(c);
1856 	}
1857 
1858 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1859 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1860 		if (count <= retain_target)
1861 			break;
1862 
1863 		if (!older_than(b, age_hz))
1864 			break;
1865 
1866 		if (__try_evict_buffer(b, 0))
1867 			count--;
1868 
1869 		cond_resched();
1870 	}
1871 
1872 	dm_bufio_unlock(c);
1873 }
1874 
1875 static void cleanup_old_buffers(void)
1876 {
1877 	unsigned long max_age_hz = get_max_age_hz();
1878 	struct dm_bufio_client *c;
1879 
1880 	mutex_lock(&dm_bufio_clients_lock);
1881 
1882 	__cache_size_refresh();
1883 
1884 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1885 		__evict_old_buffers(c, max_age_hz);
1886 
1887 	mutex_unlock(&dm_bufio_clients_lock);
1888 }
1889 
1890 static struct workqueue_struct *dm_bufio_wq;
1891 static struct delayed_work dm_bufio_work;
1892 
1893 static void work_fn(struct work_struct *w)
1894 {
1895 	cleanup_old_buffers();
1896 
1897 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1898 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1899 }
1900 
1901 /*----------------------------------------------------------------
1902  * Module setup
1903  *--------------------------------------------------------------*/
1904 
1905 /*
1906  * This is called only once for the whole dm_bufio module.
1907  * It initializes memory limit.
1908  */
1909 static int __init dm_bufio_init(void)
1910 {
1911 	__u64 mem;
1912 
1913 	dm_bufio_allocated_kmem_cache = 0;
1914 	dm_bufio_allocated_get_free_pages = 0;
1915 	dm_bufio_allocated_vmalloc = 0;
1916 	dm_bufio_current_allocated = 0;
1917 
1918 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1919 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1920 
1921 	mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1922 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1923 
1924 	if (mem > ULONG_MAX)
1925 		mem = ULONG_MAX;
1926 
1927 #ifdef CONFIG_MMU
1928 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1929 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1930 #endif
1931 
1932 	dm_bufio_default_cache_size = mem;
1933 
1934 	mutex_lock(&dm_bufio_clients_lock);
1935 	__cache_size_refresh();
1936 	mutex_unlock(&dm_bufio_clients_lock);
1937 
1938 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1939 	if (!dm_bufio_wq)
1940 		return -ENOMEM;
1941 
1942 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1943 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1944 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1945 
1946 	return 0;
1947 }
1948 
1949 /*
1950  * This is called once when unloading the dm_bufio module.
1951  */
1952 static void __exit dm_bufio_exit(void)
1953 {
1954 	int bug = 0;
1955 	int i;
1956 
1957 	cancel_delayed_work_sync(&dm_bufio_work);
1958 	destroy_workqueue(dm_bufio_wq);
1959 
1960 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1961 		kmem_cache_destroy(dm_bufio_caches[i]);
1962 
1963 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1964 		kfree(dm_bufio_cache_names[i]);
1965 
1966 	if (dm_bufio_client_count) {
1967 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1968 			__func__, dm_bufio_client_count);
1969 		bug = 1;
1970 	}
1971 
1972 	if (dm_bufio_current_allocated) {
1973 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1974 			__func__, dm_bufio_current_allocated);
1975 		bug = 1;
1976 	}
1977 
1978 	if (dm_bufio_allocated_get_free_pages) {
1979 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1980 		       __func__, dm_bufio_allocated_get_free_pages);
1981 		bug = 1;
1982 	}
1983 
1984 	if (dm_bufio_allocated_vmalloc) {
1985 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1986 		       __func__, dm_bufio_allocated_vmalloc);
1987 		bug = 1;
1988 	}
1989 
1990 	BUG_ON(bug);
1991 }
1992 
1993 module_init(dm_bufio_init)
1994 module_exit(dm_bufio_exit)
1995 
1996 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1997 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1998 
1999 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2000 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2001 
2002 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2003 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2004 
2005 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2006 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2007 
2008 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2009 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2010 
2011 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2012 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2013 
2014 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2015 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2016 
2017 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2018 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2019 
2020 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2021 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2022 MODULE_LICENSE("GPL");
2023