1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/dm-bufio.h> 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/sched/mm.h> 15 #include <linux/jiffies.h> 16 #include <linux/vmalloc.h> 17 #include <linux/shrinker.h> 18 #include <linux/module.h> 19 #include <linux/rbtree.h> 20 #include <linux/stacktrace.h> 21 22 #define DM_MSG_PREFIX "bufio" 23 24 /* 25 * Memory management policy: 26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 30 * dirty buffers. 31 */ 32 #define DM_BUFIO_MIN_BUFFERS 8 33 34 #define DM_BUFIO_MEMORY_PERCENT 2 35 #define DM_BUFIO_VMALLOC_PERCENT 25 36 #define DM_BUFIO_WRITEBACK_RATIO 3 37 #define DM_BUFIO_LOW_WATERMARK_RATIO 16 38 39 /* 40 * Check buffer ages in this interval (seconds) 41 */ 42 #define DM_BUFIO_WORK_TIMER_SECS 30 43 44 /* 45 * Free buffers when they are older than this (seconds) 46 */ 47 #define DM_BUFIO_DEFAULT_AGE_SECS 300 48 49 /* 50 * The nr of bytes of cached data to keep around. 51 */ 52 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 53 54 /* 55 * Align buffer writes to this boundary. 56 * Tests show that SSDs have the highest IOPS when using 4k writes. 57 */ 58 #define DM_BUFIO_WRITE_ALIGN 4096 59 60 /* 61 * dm_buffer->list_mode 62 */ 63 #define LIST_CLEAN 0 64 #define LIST_DIRTY 1 65 #define LIST_SIZE 2 66 67 /* 68 * Linking of buffers: 69 * All buffers are linked to buffer_tree with their node field. 70 * 71 * Clean buffers that are not being written (B_WRITING not set) 72 * are linked to lru[LIST_CLEAN] with their lru_list field. 73 * 74 * Dirty and clean buffers that are being written are linked to 75 * lru[LIST_DIRTY] with their lru_list field. When the write 76 * finishes, the buffer cannot be relinked immediately (because we 77 * are in an interrupt context and relinking requires process 78 * context), so some clean-not-writing buffers can be held on 79 * dirty_lru too. They are later added to lru in the process 80 * context. 81 */ 82 struct dm_bufio_client { 83 struct mutex lock; 84 85 struct list_head lru[LIST_SIZE]; 86 unsigned long n_buffers[LIST_SIZE]; 87 88 struct block_device *bdev; 89 unsigned block_size; 90 s8 sectors_per_block_bits; 91 void (*alloc_callback)(struct dm_buffer *); 92 void (*write_callback)(struct dm_buffer *); 93 94 struct kmem_cache *slab_buffer; 95 struct kmem_cache *slab_cache; 96 struct dm_io_client *dm_io; 97 98 struct list_head reserved_buffers; 99 unsigned need_reserved_buffers; 100 101 unsigned minimum_buffers; 102 103 struct rb_root buffer_tree; 104 wait_queue_head_t free_buffer_wait; 105 106 sector_t start; 107 108 int async_write_error; 109 110 struct list_head client_list; 111 112 struct shrinker shrinker; 113 struct work_struct shrink_work; 114 atomic_long_t need_shrink; 115 }; 116 117 /* 118 * Buffer state bits. 119 */ 120 #define B_READING 0 121 #define B_WRITING 1 122 #define B_DIRTY 2 123 124 /* 125 * Describes how the block was allocated: 126 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 127 * See the comment at alloc_buffer_data. 128 */ 129 enum data_mode { 130 DATA_MODE_SLAB = 0, 131 DATA_MODE_GET_FREE_PAGES = 1, 132 DATA_MODE_VMALLOC = 2, 133 DATA_MODE_LIMIT = 3 134 }; 135 136 struct dm_buffer { 137 struct rb_node node; 138 struct list_head lru_list; 139 struct list_head global_list; 140 sector_t block; 141 void *data; 142 unsigned char data_mode; /* DATA_MODE_* */ 143 unsigned char list_mode; /* LIST_* */ 144 blk_status_t read_error; 145 blk_status_t write_error; 146 unsigned accessed; 147 unsigned hold_count; 148 unsigned long state; 149 unsigned long last_accessed; 150 unsigned dirty_start; 151 unsigned dirty_end; 152 unsigned write_start; 153 unsigned write_end; 154 struct dm_bufio_client *c; 155 struct list_head write_list; 156 void (*end_io)(struct dm_buffer *, blk_status_t); 157 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 158 #define MAX_STACK 10 159 unsigned int stack_len; 160 unsigned long stack_entries[MAX_STACK]; 161 #endif 162 }; 163 164 /*----------------------------------------------------------------*/ 165 166 #define dm_bufio_in_request() (!!current->bio_list) 167 168 static void dm_bufio_lock(struct dm_bufio_client *c) 169 { 170 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 171 } 172 173 static int dm_bufio_trylock(struct dm_bufio_client *c) 174 { 175 return mutex_trylock(&c->lock); 176 } 177 178 static void dm_bufio_unlock(struct dm_bufio_client *c) 179 { 180 mutex_unlock(&c->lock); 181 } 182 183 /*----------------------------------------------------------------*/ 184 185 /* 186 * Default cache size: available memory divided by the ratio. 187 */ 188 static unsigned long dm_bufio_default_cache_size; 189 190 /* 191 * Total cache size set by the user. 192 */ 193 static unsigned long dm_bufio_cache_size; 194 195 /* 196 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 197 * at any time. If it disagrees, the user has changed cache size. 198 */ 199 static unsigned long dm_bufio_cache_size_latch; 200 201 static DEFINE_SPINLOCK(global_spinlock); 202 203 static LIST_HEAD(global_queue); 204 205 static unsigned long global_num = 0; 206 207 /* 208 * Buffers are freed after this timeout 209 */ 210 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 211 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 212 213 static unsigned long dm_bufio_peak_allocated; 214 static unsigned long dm_bufio_allocated_kmem_cache; 215 static unsigned long dm_bufio_allocated_get_free_pages; 216 static unsigned long dm_bufio_allocated_vmalloc; 217 static unsigned long dm_bufio_current_allocated; 218 219 /*----------------------------------------------------------------*/ 220 221 /* 222 * The current number of clients. 223 */ 224 static int dm_bufio_client_count; 225 226 /* 227 * The list of all clients. 228 */ 229 static LIST_HEAD(dm_bufio_all_clients); 230 231 /* 232 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count 233 */ 234 static DEFINE_MUTEX(dm_bufio_clients_lock); 235 236 static struct workqueue_struct *dm_bufio_wq; 237 static struct delayed_work dm_bufio_cleanup_old_work; 238 static struct work_struct dm_bufio_replacement_work; 239 240 241 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 242 static void buffer_record_stack(struct dm_buffer *b) 243 { 244 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); 245 } 246 #endif 247 248 /*---------------------------------------------------------------- 249 * A red/black tree acts as an index for all the buffers. 250 *--------------------------------------------------------------*/ 251 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 252 { 253 struct rb_node *n = c->buffer_tree.rb_node; 254 struct dm_buffer *b; 255 256 while (n) { 257 b = container_of(n, struct dm_buffer, node); 258 259 if (b->block == block) 260 return b; 261 262 n = block < b->block ? n->rb_left : n->rb_right; 263 } 264 265 return NULL; 266 } 267 268 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block) 269 { 270 struct rb_node *n = c->buffer_tree.rb_node; 271 struct dm_buffer *b; 272 struct dm_buffer *best = NULL; 273 274 while (n) { 275 b = container_of(n, struct dm_buffer, node); 276 277 if (b->block == block) 278 return b; 279 280 if (block <= b->block) { 281 n = n->rb_left; 282 best = b; 283 } else { 284 n = n->rb_right; 285 } 286 } 287 288 return best; 289 } 290 291 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 292 { 293 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 294 struct dm_buffer *found; 295 296 while (*new) { 297 found = container_of(*new, struct dm_buffer, node); 298 299 if (found->block == b->block) { 300 BUG_ON(found != b); 301 return; 302 } 303 304 parent = *new; 305 new = b->block < found->block ? 306 &found->node.rb_left : &found->node.rb_right; 307 } 308 309 rb_link_node(&b->node, parent, new); 310 rb_insert_color(&b->node, &c->buffer_tree); 311 } 312 313 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 314 { 315 rb_erase(&b->node, &c->buffer_tree); 316 } 317 318 /*----------------------------------------------------------------*/ 319 320 static void adjust_total_allocated(struct dm_buffer *b, bool unlink) 321 { 322 unsigned char data_mode; 323 long diff; 324 325 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 326 &dm_bufio_allocated_kmem_cache, 327 &dm_bufio_allocated_get_free_pages, 328 &dm_bufio_allocated_vmalloc, 329 }; 330 331 data_mode = b->data_mode; 332 diff = (long)b->c->block_size; 333 if (unlink) 334 diff = -diff; 335 336 spin_lock(&global_spinlock); 337 338 *class_ptr[data_mode] += diff; 339 340 dm_bufio_current_allocated += diff; 341 342 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 343 dm_bufio_peak_allocated = dm_bufio_current_allocated; 344 345 b->accessed = 1; 346 347 if (!unlink) { 348 list_add(&b->global_list, &global_queue); 349 global_num++; 350 if (dm_bufio_current_allocated > dm_bufio_cache_size) 351 queue_work(dm_bufio_wq, &dm_bufio_replacement_work); 352 } else { 353 list_del(&b->global_list); 354 global_num--; 355 } 356 357 spin_unlock(&global_spinlock); 358 } 359 360 /* 361 * Change the number of clients and recalculate per-client limit. 362 */ 363 static void __cache_size_refresh(void) 364 { 365 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 366 BUG_ON(dm_bufio_client_count < 0); 367 368 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 369 370 /* 371 * Use default if set to 0 and report the actual cache size used. 372 */ 373 if (!dm_bufio_cache_size_latch) { 374 (void)cmpxchg(&dm_bufio_cache_size, 0, 375 dm_bufio_default_cache_size); 376 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 377 } 378 } 379 380 /* 381 * Allocating buffer data. 382 * 383 * Small buffers are allocated with kmem_cache, to use space optimally. 384 * 385 * For large buffers, we choose between get_free_pages and vmalloc. 386 * Each has advantages and disadvantages. 387 * 388 * __get_free_pages can randomly fail if the memory is fragmented. 389 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 390 * as low as 128M) so using it for caching is not appropriate. 391 * 392 * If the allocation may fail we use __get_free_pages. Memory fragmentation 393 * won't have a fatal effect here, but it just causes flushes of some other 394 * buffers and more I/O will be performed. Don't use __get_free_pages if it 395 * always fails (i.e. order >= MAX_ORDER). 396 * 397 * If the allocation shouldn't fail we use __vmalloc. This is only for the 398 * initial reserve allocation, so there's no risk of wasting all vmalloc 399 * space. 400 */ 401 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 402 unsigned char *data_mode) 403 { 404 if (unlikely(c->slab_cache != NULL)) { 405 *data_mode = DATA_MODE_SLAB; 406 return kmem_cache_alloc(c->slab_cache, gfp_mask); 407 } 408 409 if (c->block_size <= KMALLOC_MAX_SIZE && 410 gfp_mask & __GFP_NORETRY) { 411 *data_mode = DATA_MODE_GET_FREE_PAGES; 412 return (void *)__get_free_pages(gfp_mask, 413 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 414 } 415 416 *data_mode = DATA_MODE_VMALLOC; 417 418 /* 419 * __vmalloc allocates the data pages and auxiliary structures with 420 * gfp_flags that were specified, but pagetables are always allocated 421 * with GFP_KERNEL, no matter what was specified as gfp_mask. 422 * 423 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 424 * all allocations done by this process (including pagetables) are done 425 * as if GFP_NOIO was specified. 426 */ 427 if (gfp_mask & __GFP_NORETRY) { 428 unsigned noio_flag = memalloc_noio_save(); 429 void *ptr = __vmalloc(c->block_size, gfp_mask); 430 431 memalloc_noio_restore(noio_flag); 432 return ptr; 433 } 434 435 return __vmalloc(c->block_size, gfp_mask); 436 } 437 438 /* 439 * Free buffer's data. 440 */ 441 static void free_buffer_data(struct dm_bufio_client *c, 442 void *data, unsigned char data_mode) 443 { 444 switch (data_mode) { 445 case DATA_MODE_SLAB: 446 kmem_cache_free(c->slab_cache, data); 447 break; 448 449 case DATA_MODE_GET_FREE_PAGES: 450 free_pages((unsigned long)data, 451 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 452 break; 453 454 case DATA_MODE_VMALLOC: 455 vfree(data); 456 break; 457 458 default: 459 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 460 data_mode); 461 BUG(); 462 } 463 } 464 465 /* 466 * Allocate buffer and its data. 467 */ 468 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 469 { 470 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 471 472 if (!b) 473 return NULL; 474 475 b->c = c; 476 477 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 478 if (!b->data) { 479 kmem_cache_free(c->slab_buffer, b); 480 return NULL; 481 } 482 483 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 484 b->stack_len = 0; 485 #endif 486 return b; 487 } 488 489 /* 490 * Free buffer and its data. 491 */ 492 static void free_buffer(struct dm_buffer *b) 493 { 494 struct dm_bufio_client *c = b->c; 495 496 free_buffer_data(c, b->data, b->data_mode); 497 kmem_cache_free(c->slab_buffer, b); 498 } 499 500 /* 501 * Link buffer to the buffer tree and clean or dirty queue. 502 */ 503 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 504 { 505 struct dm_bufio_client *c = b->c; 506 507 c->n_buffers[dirty]++; 508 b->block = block; 509 b->list_mode = dirty; 510 list_add(&b->lru_list, &c->lru[dirty]); 511 __insert(b->c, b); 512 b->last_accessed = jiffies; 513 514 adjust_total_allocated(b, false); 515 } 516 517 /* 518 * Unlink buffer from the buffer tree and dirty or clean queue. 519 */ 520 static void __unlink_buffer(struct dm_buffer *b) 521 { 522 struct dm_bufio_client *c = b->c; 523 524 BUG_ON(!c->n_buffers[b->list_mode]); 525 526 c->n_buffers[b->list_mode]--; 527 __remove(b->c, b); 528 list_del(&b->lru_list); 529 530 adjust_total_allocated(b, true); 531 } 532 533 /* 534 * Place the buffer to the head of dirty or clean LRU queue. 535 */ 536 static void __relink_lru(struct dm_buffer *b, int dirty) 537 { 538 struct dm_bufio_client *c = b->c; 539 540 b->accessed = 1; 541 542 BUG_ON(!c->n_buffers[b->list_mode]); 543 544 c->n_buffers[b->list_mode]--; 545 c->n_buffers[dirty]++; 546 b->list_mode = dirty; 547 list_move(&b->lru_list, &c->lru[dirty]); 548 b->last_accessed = jiffies; 549 } 550 551 /*---------------------------------------------------------------- 552 * Submit I/O on the buffer. 553 * 554 * Bio interface is faster but it has some problems: 555 * the vector list is limited (increasing this limit increases 556 * memory-consumption per buffer, so it is not viable); 557 * 558 * the memory must be direct-mapped, not vmalloced; 559 * 560 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 561 * it is not vmalloced, try using the bio interface. 562 * 563 * If the buffer is big, if it is vmalloced or if the underlying device 564 * rejects the bio because it is too large, use dm-io layer to do the I/O. 565 * The dm-io layer splits the I/O into multiple requests, avoiding the above 566 * shortcomings. 567 *--------------------------------------------------------------*/ 568 569 /* 570 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 571 * that the request was handled directly with bio interface. 572 */ 573 static void dmio_complete(unsigned long error, void *context) 574 { 575 struct dm_buffer *b = context; 576 577 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 578 } 579 580 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector, 581 unsigned n_sectors, unsigned offset) 582 { 583 int r; 584 struct dm_io_request io_req = { 585 .bi_op = rw, 586 .bi_op_flags = 0, 587 .notify.fn = dmio_complete, 588 .notify.context = b, 589 .client = b->c->dm_io, 590 }; 591 struct dm_io_region region = { 592 .bdev = b->c->bdev, 593 .sector = sector, 594 .count = n_sectors, 595 }; 596 597 if (b->data_mode != DATA_MODE_VMALLOC) { 598 io_req.mem.type = DM_IO_KMEM; 599 io_req.mem.ptr.addr = (char *)b->data + offset; 600 } else { 601 io_req.mem.type = DM_IO_VMA; 602 io_req.mem.ptr.vma = (char *)b->data + offset; 603 } 604 605 r = dm_io(&io_req, 1, ®ion, NULL); 606 if (unlikely(r)) 607 b->end_io(b, errno_to_blk_status(r)); 608 } 609 610 static void bio_complete(struct bio *bio) 611 { 612 struct dm_buffer *b = bio->bi_private; 613 blk_status_t status = bio->bi_status; 614 bio_put(bio); 615 b->end_io(b, status); 616 } 617 618 static void use_bio(struct dm_buffer *b, int rw, sector_t sector, 619 unsigned n_sectors, unsigned offset) 620 { 621 struct bio *bio; 622 char *ptr; 623 unsigned vec_size, len; 624 625 vec_size = b->c->block_size >> PAGE_SHIFT; 626 if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT)) 627 vec_size += 2; 628 629 bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size); 630 if (!bio) { 631 dmio: 632 use_dmio(b, rw, sector, n_sectors, offset); 633 return; 634 } 635 636 bio->bi_iter.bi_sector = sector; 637 bio_set_dev(bio, b->c->bdev); 638 bio_set_op_attrs(bio, rw, 0); 639 bio->bi_end_io = bio_complete; 640 bio->bi_private = b; 641 642 ptr = (char *)b->data + offset; 643 len = n_sectors << SECTOR_SHIFT; 644 645 do { 646 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len); 647 if (!bio_add_page(bio, virt_to_page(ptr), this_step, 648 offset_in_page(ptr))) { 649 bio_put(bio); 650 goto dmio; 651 } 652 653 len -= this_step; 654 ptr += this_step; 655 } while (len > 0); 656 657 submit_bio(bio); 658 } 659 660 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) 661 { 662 sector_t sector; 663 664 if (likely(c->sectors_per_block_bits >= 0)) 665 sector = block << c->sectors_per_block_bits; 666 else 667 sector = block * (c->block_size >> SECTOR_SHIFT); 668 sector += c->start; 669 670 return sector; 671 } 672 673 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t)) 674 { 675 unsigned n_sectors; 676 sector_t sector; 677 unsigned offset, end; 678 679 b->end_io = end_io; 680 681 sector = block_to_sector(b->c, b->block); 682 683 if (rw != REQ_OP_WRITE) { 684 n_sectors = b->c->block_size >> SECTOR_SHIFT; 685 offset = 0; 686 } else { 687 if (b->c->write_callback) 688 b->c->write_callback(b); 689 offset = b->write_start; 690 end = b->write_end; 691 offset &= -DM_BUFIO_WRITE_ALIGN; 692 end += DM_BUFIO_WRITE_ALIGN - 1; 693 end &= -DM_BUFIO_WRITE_ALIGN; 694 if (unlikely(end > b->c->block_size)) 695 end = b->c->block_size; 696 697 sector += offset >> SECTOR_SHIFT; 698 n_sectors = (end - offset) >> SECTOR_SHIFT; 699 } 700 701 if (b->data_mode != DATA_MODE_VMALLOC) 702 use_bio(b, rw, sector, n_sectors, offset); 703 else 704 use_dmio(b, rw, sector, n_sectors, offset); 705 } 706 707 /*---------------------------------------------------------------- 708 * Writing dirty buffers 709 *--------------------------------------------------------------*/ 710 711 /* 712 * The endio routine for write. 713 * 714 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 715 * it. 716 */ 717 static void write_endio(struct dm_buffer *b, blk_status_t status) 718 { 719 b->write_error = status; 720 if (unlikely(status)) { 721 struct dm_bufio_client *c = b->c; 722 723 (void)cmpxchg(&c->async_write_error, 0, 724 blk_status_to_errno(status)); 725 } 726 727 BUG_ON(!test_bit(B_WRITING, &b->state)); 728 729 smp_mb__before_atomic(); 730 clear_bit(B_WRITING, &b->state); 731 smp_mb__after_atomic(); 732 733 wake_up_bit(&b->state, B_WRITING); 734 } 735 736 /* 737 * Initiate a write on a dirty buffer, but don't wait for it. 738 * 739 * - If the buffer is not dirty, exit. 740 * - If there some previous write going on, wait for it to finish (we can't 741 * have two writes on the same buffer simultaneously). 742 * - Submit our write and don't wait on it. We set B_WRITING indicating 743 * that there is a write in progress. 744 */ 745 static void __write_dirty_buffer(struct dm_buffer *b, 746 struct list_head *write_list) 747 { 748 if (!test_bit(B_DIRTY, &b->state)) 749 return; 750 751 clear_bit(B_DIRTY, &b->state); 752 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 753 754 b->write_start = b->dirty_start; 755 b->write_end = b->dirty_end; 756 757 if (!write_list) 758 submit_io(b, REQ_OP_WRITE, write_endio); 759 else 760 list_add_tail(&b->write_list, write_list); 761 } 762 763 static void __flush_write_list(struct list_head *write_list) 764 { 765 struct blk_plug plug; 766 blk_start_plug(&plug); 767 while (!list_empty(write_list)) { 768 struct dm_buffer *b = 769 list_entry(write_list->next, struct dm_buffer, write_list); 770 list_del(&b->write_list); 771 submit_io(b, REQ_OP_WRITE, write_endio); 772 cond_resched(); 773 } 774 blk_finish_plug(&plug); 775 } 776 777 /* 778 * Wait until any activity on the buffer finishes. Possibly write the 779 * buffer if it is dirty. When this function finishes, there is no I/O 780 * running on the buffer and the buffer is not dirty. 781 */ 782 static void __make_buffer_clean(struct dm_buffer *b) 783 { 784 BUG_ON(b->hold_count); 785 786 if (!b->state) /* fast case */ 787 return; 788 789 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 790 __write_dirty_buffer(b, NULL); 791 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 792 } 793 794 /* 795 * Find some buffer that is not held by anybody, clean it, unlink it and 796 * return it. 797 */ 798 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 799 { 800 struct dm_buffer *b; 801 802 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 803 BUG_ON(test_bit(B_WRITING, &b->state)); 804 BUG_ON(test_bit(B_DIRTY, &b->state)); 805 806 if (!b->hold_count) { 807 __make_buffer_clean(b); 808 __unlink_buffer(b); 809 return b; 810 } 811 cond_resched(); 812 } 813 814 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 815 BUG_ON(test_bit(B_READING, &b->state)); 816 817 if (!b->hold_count) { 818 __make_buffer_clean(b); 819 __unlink_buffer(b); 820 return b; 821 } 822 cond_resched(); 823 } 824 825 return NULL; 826 } 827 828 /* 829 * Wait until some other threads free some buffer or release hold count on 830 * some buffer. 831 * 832 * This function is entered with c->lock held, drops it and regains it 833 * before exiting. 834 */ 835 static void __wait_for_free_buffer(struct dm_bufio_client *c) 836 { 837 DECLARE_WAITQUEUE(wait, current); 838 839 add_wait_queue(&c->free_buffer_wait, &wait); 840 set_current_state(TASK_UNINTERRUPTIBLE); 841 dm_bufio_unlock(c); 842 843 io_schedule(); 844 845 remove_wait_queue(&c->free_buffer_wait, &wait); 846 847 dm_bufio_lock(c); 848 } 849 850 enum new_flag { 851 NF_FRESH = 0, 852 NF_READ = 1, 853 NF_GET = 2, 854 NF_PREFETCH = 3 855 }; 856 857 /* 858 * Allocate a new buffer. If the allocation is not possible, wait until 859 * some other thread frees a buffer. 860 * 861 * May drop the lock and regain it. 862 */ 863 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 864 { 865 struct dm_buffer *b; 866 bool tried_noio_alloc = false; 867 868 /* 869 * dm-bufio is resistant to allocation failures (it just keeps 870 * one buffer reserved in cases all the allocations fail). 871 * So set flags to not try too hard: 872 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 873 * mutex and wait ourselves. 874 * __GFP_NORETRY: don't retry and rather return failure 875 * __GFP_NOMEMALLOC: don't use emergency reserves 876 * __GFP_NOWARN: don't print a warning in case of failure 877 * 878 * For debugging, if we set the cache size to 1, no new buffers will 879 * be allocated. 880 */ 881 while (1) { 882 if (dm_bufio_cache_size_latch != 1) { 883 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 884 if (b) 885 return b; 886 } 887 888 if (nf == NF_PREFETCH) 889 return NULL; 890 891 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 892 dm_bufio_unlock(c); 893 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 894 dm_bufio_lock(c); 895 if (b) 896 return b; 897 tried_noio_alloc = true; 898 } 899 900 if (!list_empty(&c->reserved_buffers)) { 901 b = list_entry(c->reserved_buffers.next, 902 struct dm_buffer, lru_list); 903 list_del(&b->lru_list); 904 c->need_reserved_buffers++; 905 906 return b; 907 } 908 909 b = __get_unclaimed_buffer(c); 910 if (b) 911 return b; 912 913 __wait_for_free_buffer(c); 914 } 915 } 916 917 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 918 { 919 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 920 921 if (!b) 922 return NULL; 923 924 if (c->alloc_callback) 925 c->alloc_callback(b); 926 927 return b; 928 } 929 930 /* 931 * Free a buffer and wake other threads waiting for free buffers. 932 */ 933 static void __free_buffer_wake(struct dm_buffer *b) 934 { 935 struct dm_bufio_client *c = b->c; 936 937 if (!c->need_reserved_buffers) 938 free_buffer(b); 939 else { 940 list_add(&b->lru_list, &c->reserved_buffers); 941 c->need_reserved_buffers--; 942 } 943 944 wake_up(&c->free_buffer_wait); 945 } 946 947 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 948 struct list_head *write_list) 949 { 950 struct dm_buffer *b, *tmp; 951 952 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 953 BUG_ON(test_bit(B_READING, &b->state)); 954 955 if (!test_bit(B_DIRTY, &b->state) && 956 !test_bit(B_WRITING, &b->state)) { 957 __relink_lru(b, LIST_CLEAN); 958 continue; 959 } 960 961 if (no_wait && test_bit(B_WRITING, &b->state)) 962 return; 963 964 __write_dirty_buffer(b, write_list); 965 cond_resched(); 966 } 967 } 968 969 /* 970 * Check if we're over watermark. 971 * If we are over threshold_buffers, start freeing buffers. 972 * If we're over "limit_buffers", block until we get under the limit. 973 */ 974 static void __check_watermark(struct dm_bufio_client *c, 975 struct list_head *write_list) 976 { 977 if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO) 978 __write_dirty_buffers_async(c, 1, write_list); 979 } 980 981 /*---------------------------------------------------------------- 982 * Getting a buffer 983 *--------------------------------------------------------------*/ 984 985 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 986 enum new_flag nf, int *need_submit, 987 struct list_head *write_list) 988 { 989 struct dm_buffer *b, *new_b = NULL; 990 991 *need_submit = 0; 992 993 b = __find(c, block); 994 if (b) 995 goto found_buffer; 996 997 if (nf == NF_GET) 998 return NULL; 999 1000 new_b = __alloc_buffer_wait(c, nf); 1001 if (!new_b) 1002 return NULL; 1003 1004 /* 1005 * We've had a period where the mutex was unlocked, so need to 1006 * recheck the buffer tree. 1007 */ 1008 b = __find(c, block); 1009 if (b) { 1010 __free_buffer_wake(new_b); 1011 goto found_buffer; 1012 } 1013 1014 __check_watermark(c, write_list); 1015 1016 b = new_b; 1017 b->hold_count = 1; 1018 b->read_error = 0; 1019 b->write_error = 0; 1020 __link_buffer(b, block, LIST_CLEAN); 1021 1022 if (nf == NF_FRESH) { 1023 b->state = 0; 1024 return b; 1025 } 1026 1027 b->state = 1 << B_READING; 1028 *need_submit = 1; 1029 1030 return b; 1031 1032 found_buffer: 1033 if (nf == NF_PREFETCH) 1034 return NULL; 1035 /* 1036 * Note: it is essential that we don't wait for the buffer to be 1037 * read if dm_bufio_get function is used. Both dm_bufio_get and 1038 * dm_bufio_prefetch can be used in the driver request routine. 1039 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1040 * the same buffer, it would deadlock if we waited. 1041 */ 1042 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1043 return NULL; 1044 1045 b->hold_count++; 1046 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1047 test_bit(B_WRITING, &b->state)); 1048 return b; 1049 } 1050 1051 /* 1052 * The endio routine for reading: set the error, clear the bit and wake up 1053 * anyone waiting on the buffer. 1054 */ 1055 static void read_endio(struct dm_buffer *b, blk_status_t status) 1056 { 1057 b->read_error = status; 1058 1059 BUG_ON(!test_bit(B_READING, &b->state)); 1060 1061 smp_mb__before_atomic(); 1062 clear_bit(B_READING, &b->state); 1063 smp_mb__after_atomic(); 1064 1065 wake_up_bit(&b->state, B_READING); 1066 } 1067 1068 /* 1069 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1070 * functions is similar except that dm_bufio_new doesn't read the 1071 * buffer from the disk (assuming that the caller overwrites all the data 1072 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1073 */ 1074 static void *new_read(struct dm_bufio_client *c, sector_t block, 1075 enum new_flag nf, struct dm_buffer **bp) 1076 { 1077 int need_submit; 1078 struct dm_buffer *b; 1079 1080 LIST_HEAD(write_list); 1081 1082 dm_bufio_lock(c); 1083 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1084 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1085 if (b && b->hold_count == 1) 1086 buffer_record_stack(b); 1087 #endif 1088 dm_bufio_unlock(c); 1089 1090 __flush_write_list(&write_list); 1091 1092 if (!b) 1093 return NULL; 1094 1095 if (need_submit) 1096 submit_io(b, REQ_OP_READ, read_endio); 1097 1098 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1099 1100 if (b->read_error) { 1101 int error = blk_status_to_errno(b->read_error); 1102 1103 dm_bufio_release(b); 1104 1105 return ERR_PTR(error); 1106 } 1107 1108 *bp = b; 1109 1110 return b->data; 1111 } 1112 1113 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1114 struct dm_buffer **bp) 1115 { 1116 return new_read(c, block, NF_GET, bp); 1117 } 1118 EXPORT_SYMBOL_GPL(dm_bufio_get); 1119 1120 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1121 struct dm_buffer **bp) 1122 { 1123 BUG_ON(dm_bufio_in_request()); 1124 1125 return new_read(c, block, NF_READ, bp); 1126 } 1127 EXPORT_SYMBOL_GPL(dm_bufio_read); 1128 1129 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1130 struct dm_buffer **bp) 1131 { 1132 BUG_ON(dm_bufio_in_request()); 1133 1134 return new_read(c, block, NF_FRESH, bp); 1135 } 1136 EXPORT_SYMBOL_GPL(dm_bufio_new); 1137 1138 void dm_bufio_prefetch(struct dm_bufio_client *c, 1139 sector_t block, unsigned n_blocks) 1140 { 1141 struct blk_plug plug; 1142 1143 LIST_HEAD(write_list); 1144 1145 BUG_ON(dm_bufio_in_request()); 1146 1147 blk_start_plug(&plug); 1148 dm_bufio_lock(c); 1149 1150 for (; n_blocks--; block++) { 1151 int need_submit; 1152 struct dm_buffer *b; 1153 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1154 &write_list); 1155 if (unlikely(!list_empty(&write_list))) { 1156 dm_bufio_unlock(c); 1157 blk_finish_plug(&plug); 1158 __flush_write_list(&write_list); 1159 blk_start_plug(&plug); 1160 dm_bufio_lock(c); 1161 } 1162 if (unlikely(b != NULL)) { 1163 dm_bufio_unlock(c); 1164 1165 if (need_submit) 1166 submit_io(b, REQ_OP_READ, read_endio); 1167 dm_bufio_release(b); 1168 1169 cond_resched(); 1170 1171 if (!n_blocks) 1172 goto flush_plug; 1173 dm_bufio_lock(c); 1174 } 1175 } 1176 1177 dm_bufio_unlock(c); 1178 1179 flush_plug: 1180 blk_finish_plug(&plug); 1181 } 1182 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1183 1184 void dm_bufio_release(struct dm_buffer *b) 1185 { 1186 struct dm_bufio_client *c = b->c; 1187 1188 dm_bufio_lock(c); 1189 1190 BUG_ON(!b->hold_count); 1191 1192 b->hold_count--; 1193 if (!b->hold_count) { 1194 wake_up(&c->free_buffer_wait); 1195 1196 /* 1197 * If there were errors on the buffer, and the buffer is not 1198 * to be written, free the buffer. There is no point in caching 1199 * invalid buffer. 1200 */ 1201 if ((b->read_error || b->write_error) && 1202 !test_bit(B_READING, &b->state) && 1203 !test_bit(B_WRITING, &b->state) && 1204 !test_bit(B_DIRTY, &b->state)) { 1205 __unlink_buffer(b); 1206 __free_buffer_wake(b); 1207 } 1208 } 1209 1210 dm_bufio_unlock(c); 1211 } 1212 EXPORT_SYMBOL_GPL(dm_bufio_release); 1213 1214 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 1215 unsigned start, unsigned end) 1216 { 1217 struct dm_bufio_client *c = b->c; 1218 1219 BUG_ON(start >= end); 1220 BUG_ON(end > b->c->block_size); 1221 1222 dm_bufio_lock(c); 1223 1224 BUG_ON(test_bit(B_READING, &b->state)); 1225 1226 if (!test_and_set_bit(B_DIRTY, &b->state)) { 1227 b->dirty_start = start; 1228 b->dirty_end = end; 1229 __relink_lru(b, LIST_DIRTY); 1230 } else { 1231 if (start < b->dirty_start) 1232 b->dirty_start = start; 1233 if (end > b->dirty_end) 1234 b->dirty_end = end; 1235 } 1236 1237 dm_bufio_unlock(c); 1238 } 1239 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 1240 1241 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1242 { 1243 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 1244 } 1245 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1246 1247 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1248 { 1249 LIST_HEAD(write_list); 1250 1251 BUG_ON(dm_bufio_in_request()); 1252 1253 dm_bufio_lock(c); 1254 __write_dirty_buffers_async(c, 0, &write_list); 1255 dm_bufio_unlock(c); 1256 __flush_write_list(&write_list); 1257 } 1258 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1259 1260 /* 1261 * For performance, it is essential that the buffers are written asynchronously 1262 * and simultaneously (so that the block layer can merge the writes) and then 1263 * waited upon. 1264 * 1265 * Finally, we flush hardware disk cache. 1266 */ 1267 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1268 { 1269 int a, f; 1270 unsigned long buffers_processed = 0; 1271 struct dm_buffer *b, *tmp; 1272 1273 LIST_HEAD(write_list); 1274 1275 dm_bufio_lock(c); 1276 __write_dirty_buffers_async(c, 0, &write_list); 1277 dm_bufio_unlock(c); 1278 __flush_write_list(&write_list); 1279 dm_bufio_lock(c); 1280 1281 again: 1282 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1283 int dropped_lock = 0; 1284 1285 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1286 buffers_processed++; 1287 1288 BUG_ON(test_bit(B_READING, &b->state)); 1289 1290 if (test_bit(B_WRITING, &b->state)) { 1291 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1292 dropped_lock = 1; 1293 b->hold_count++; 1294 dm_bufio_unlock(c); 1295 wait_on_bit_io(&b->state, B_WRITING, 1296 TASK_UNINTERRUPTIBLE); 1297 dm_bufio_lock(c); 1298 b->hold_count--; 1299 } else 1300 wait_on_bit_io(&b->state, B_WRITING, 1301 TASK_UNINTERRUPTIBLE); 1302 } 1303 1304 if (!test_bit(B_DIRTY, &b->state) && 1305 !test_bit(B_WRITING, &b->state)) 1306 __relink_lru(b, LIST_CLEAN); 1307 1308 cond_resched(); 1309 1310 /* 1311 * If we dropped the lock, the list is no longer consistent, 1312 * so we must restart the search. 1313 * 1314 * In the most common case, the buffer just processed is 1315 * relinked to the clean list, so we won't loop scanning the 1316 * same buffer again and again. 1317 * 1318 * This may livelock if there is another thread simultaneously 1319 * dirtying buffers, so we count the number of buffers walked 1320 * and if it exceeds the total number of buffers, it means that 1321 * someone is doing some writes simultaneously with us. In 1322 * this case, stop, dropping the lock. 1323 */ 1324 if (dropped_lock) 1325 goto again; 1326 } 1327 wake_up(&c->free_buffer_wait); 1328 dm_bufio_unlock(c); 1329 1330 a = xchg(&c->async_write_error, 0); 1331 f = dm_bufio_issue_flush(c); 1332 if (a) 1333 return a; 1334 1335 return f; 1336 } 1337 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1338 1339 /* 1340 * Use dm-io to send an empty barrier to flush the device. 1341 */ 1342 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1343 { 1344 struct dm_io_request io_req = { 1345 .bi_op = REQ_OP_WRITE, 1346 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1347 .mem.type = DM_IO_KMEM, 1348 .mem.ptr.addr = NULL, 1349 .client = c->dm_io, 1350 }; 1351 struct dm_io_region io_reg = { 1352 .bdev = c->bdev, 1353 .sector = 0, 1354 .count = 0, 1355 }; 1356 1357 BUG_ON(dm_bufio_in_request()); 1358 1359 return dm_io(&io_req, 1, &io_reg, NULL); 1360 } 1361 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1362 1363 /* 1364 * Use dm-io to send a discard request to flush the device. 1365 */ 1366 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) 1367 { 1368 struct dm_io_request io_req = { 1369 .bi_op = REQ_OP_DISCARD, 1370 .bi_op_flags = REQ_SYNC, 1371 .mem.type = DM_IO_KMEM, 1372 .mem.ptr.addr = NULL, 1373 .client = c->dm_io, 1374 }; 1375 struct dm_io_region io_reg = { 1376 .bdev = c->bdev, 1377 .sector = block_to_sector(c, block), 1378 .count = block_to_sector(c, count), 1379 }; 1380 1381 BUG_ON(dm_bufio_in_request()); 1382 1383 return dm_io(&io_req, 1, &io_reg, NULL); 1384 } 1385 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); 1386 1387 /* 1388 * We first delete any other buffer that may be at that new location. 1389 * 1390 * Then, we write the buffer to the original location if it was dirty. 1391 * 1392 * Then, if we are the only one who is holding the buffer, relink the buffer 1393 * in the buffer tree for the new location. 1394 * 1395 * If there was someone else holding the buffer, we write it to the new 1396 * location but not relink it, because that other user needs to have the buffer 1397 * at the same place. 1398 */ 1399 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1400 { 1401 struct dm_bufio_client *c = b->c; 1402 struct dm_buffer *new; 1403 1404 BUG_ON(dm_bufio_in_request()); 1405 1406 dm_bufio_lock(c); 1407 1408 retry: 1409 new = __find(c, new_block); 1410 if (new) { 1411 if (new->hold_count) { 1412 __wait_for_free_buffer(c); 1413 goto retry; 1414 } 1415 1416 /* 1417 * FIXME: Is there any point waiting for a write that's going 1418 * to be overwritten in a bit? 1419 */ 1420 __make_buffer_clean(new); 1421 __unlink_buffer(new); 1422 __free_buffer_wake(new); 1423 } 1424 1425 BUG_ON(!b->hold_count); 1426 BUG_ON(test_bit(B_READING, &b->state)); 1427 1428 __write_dirty_buffer(b, NULL); 1429 if (b->hold_count == 1) { 1430 wait_on_bit_io(&b->state, B_WRITING, 1431 TASK_UNINTERRUPTIBLE); 1432 set_bit(B_DIRTY, &b->state); 1433 b->dirty_start = 0; 1434 b->dirty_end = c->block_size; 1435 __unlink_buffer(b); 1436 __link_buffer(b, new_block, LIST_DIRTY); 1437 } else { 1438 sector_t old_block; 1439 wait_on_bit_lock_io(&b->state, B_WRITING, 1440 TASK_UNINTERRUPTIBLE); 1441 /* 1442 * Relink buffer to "new_block" so that write_callback 1443 * sees "new_block" as a block number. 1444 * After the write, link the buffer back to old_block. 1445 * All this must be done in bufio lock, so that block number 1446 * change isn't visible to other threads. 1447 */ 1448 old_block = b->block; 1449 __unlink_buffer(b); 1450 __link_buffer(b, new_block, b->list_mode); 1451 submit_io(b, REQ_OP_WRITE, write_endio); 1452 wait_on_bit_io(&b->state, B_WRITING, 1453 TASK_UNINTERRUPTIBLE); 1454 __unlink_buffer(b); 1455 __link_buffer(b, old_block, b->list_mode); 1456 } 1457 1458 dm_bufio_unlock(c); 1459 dm_bufio_release(b); 1460 } 1461 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1462 1463 static void forget_buffer_locked(struct dm_buffer *b) 1464 { 1465 if (likely(!b->hold_count) && likely(!b->state)) { 1466 __unlink_buffer(b); 1467 __free_buffer_wake(b); 1468 } 1469 } 1470 1471 /* 1472 * Free the given buffer. 1473 * 1474 * This is just a hint, if the buffer is in use or dirty, this function 1475 * does nothing. 1476 */ 1477 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1478 { 1479 struct dm_buffer *b; 1480 1481 dm_bufio_lock(c); 1482 1483 b = __find(c, block); 1484 if (b) 1485 forget_buffer_locked(b); 1486 1487 dm_bufio_unlock(c); 1488 } 1489 EXPORT_SYMBOL_GPL(dm_bufio_forget); 1490 1491 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks) 1492 { 1493 struct dm_buffer *b; 1494 sector_t end_block = block + n_blocks; 1495 1496 while (block < end_block) { 1497 dm_bufio_lock(c); 1498 1499 b = __find_next(c, block); 1500 if (b) { 1501 block = b->block + 1; 1502 forget_buffer_locked(b); 1503 } 1504 1505 dm_bufio_unlock(c); 1506 1507 if (!b) 1508 break; 1509 } 1510 1511 } 1512 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers); 1513 1514 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1515 { 1516 c->minimum_buffers = n; 1517 } 1518 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 1519 1520 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1521 { 1522 return c->block_size; 1523 } 1524 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1525 1526 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1527 { 1528 sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT; 1529 if (likely(c->sectors_per_block_bits >= 0)) 1530 s >>= c->sectors_per_block_bits; 1531 else 1532 sector_div(s, c->block_size >> SECTOR_SHIFT); 1533 return s; 1534 } 1535 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1536 1537 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1538 { 1539 return b->block; 1540 } 1541 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1542 1543 void *dm_bufio_get_block_data(struct dm_buffer *b) 1544 { 1545 return b->data; 1546 } 1547 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1548 1549 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1550 { 1551 return b + 1; 1552 } 1553 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1554 1555 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1556 { 1557 return b->c; 1558 } 1559 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1560 1561 static void drop_buffers(struct dm_bufio_client *c) 1562 { 1563 struct dm_buffer *b; 1564 int i; 1565 bool warned = false; 1566 1567 BUG_ON(dm_bufio_in_request()); 1568 1569 /* 1570 * An optimization so that the buffers are not written one-by-one. 1571 */ 1572 dm_bufio_write_dirty_buffers_async(c); 1573 1574 dm_bufio_lock(c); 1575 1576 while ((b = __get_unclaimed_buffer(c))) 1577 __free_buffer_wake(b); 1578 1579 for (i = 0; i < LIST_SIZE; i++) 1580 list_for_each_entry(b, &c->lru[i], lru_list) { 1581 WARN_ON(!warned); 1582 warned = true; 1583 DMERR("leaked buffer %llx, hold count %u, list %d", 1584 (unsigned long long)b->block, b->hold_count, i); 1585 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1586 stack_trace_print(b->stack_entries, b->stack_len, 1); 1587 /* mark unclaimed to avoid BUG_ON below */ 1588 b->hold_count = 0; 1589 #endif 1590 } 1591 1592 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1593 while ((b = __get_unclaimed_buffer(c))) 1594 __free_buffer_wake(b); 1595 #endif 1596 1597 for (i = 0; i < LIST_SIZE; i++) 1598 BUG_ON(!list_empty(&c->lru[i])); 1599 1600 dm_bufio_unlock(c); 1601 } 1602 1603 /* 1604 * We may not be able to evict this buffer if IO pending or the client 1605 * is still using it. Caller is expected to know buffer is too old. 1606 * 1607 * And if GFP_NOFS is used, we must not do any I/O because we hold 1608 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1609 * rerouted to different bufio client. 1610 */ 1611 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1612 { 1613 if (!(gfp & __GFP_FS)) { 1614 if (test_bit(B_READING, &b->state) || 1615 test_bit(B_WRITING, &b->state) || 1616 test_bit(B_DIRTY, &b->state)) 1617 return false; 1618 } 1619 1620 if (b->hold_count) 1621 return false; 1622 1623 __make_buffer_clean(b); 1624 __unlink_buffer(b); 1625 __free_buffer_wake(b); 1626 1627 return true; 1628 } 1629 1630 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 1631 { 1632 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 1633 if (likely(c->sectors_per_block_bits >= 0)) 1634 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 1635 else 1636 retain_bytes /= c->block_size; 1637 return retain_bytes; 1638 } 1639 1640 static void __scan(struct dm_bufio_client *c) 1641 { 1642 int l; 1643 struct dm_buffer *b, *tmp; 1644 unsigned long freed = 0; 1645 unsigned long count = c->n_buffers[LIST_CLEAN] + 1646 c->n_buffers[LIST_DIRTY]; 1647 unsigned long retain_target = get_retain_buffers(c); 1648 1649 for (l = 0; l < LIST_SIZE; l++) { 1650 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1651 if (count - freed <= retain_target) 1652 atomic_long_set(&c->need_shrink, 0); 1653 if (!atomic_long_read(&c->need_shrink)) 1654 return; 1655 if (__try_evict_buffer(b, GFP_KERNEL)) { 1656 atomic_long_dec(&c->need_shrink); 1657 freed++; 1658 } 1659 cond_resched(); 1660 } 1661 } 1662 } 1663 1664 static void shrink_work(struct work_struct *w) 1665 { 1666 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work); 1667 1668 dm_bufio_lock(c); 1669 __scan(c); 1670 dm_bufio_unlock(c); 1671 } 1672 1673 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1674 { 1675 struct dm_bufio_client *c; 1676 1677 c = container_of(shrink, struct dm_bufio_client, shrinker); 1678 atomic_long_add(sc->nr_to_scan, &c->need_shrink); 1679 queue_work(dm_bufio_wq, &c->shrink_work); 1680 1681 return sc->nr_to_scan; 1682 } 1683 1684 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1685 { 1686 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1687 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) + 1688 READ_ONCE(c->n_buffers[LIST_DIRTY]); 1689 unsigned long retain_target = get_retain_buffers(c); 1690 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink); 1691 1692 if (unlikely(count < retain_target)) 1693 count = 0; 1694 else 1695 count -= retain_target; 1696 1697 if (unlikely(count < queued_for_cleanup)) 1698 count = 0; 1699 else 1700 count -= queued_for_cleanup; 1701 1702 return count; 1703 } 1704 1705 /* 1706 * Create the buffering interface 1707 */ 1708 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1709 unsigned reserved_buffers, unsigned aux_size, 1710 void (*alloc_callback)(struct dm_buffer *), 1711 void (*write_callback)(struct dm_buffer *)) 1712 { 1713 int r; 1714 struct dm_bufio_client *c; 1715 unsigned i; 1716 char slab_name[27]; 1717 1718 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 1719 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 1720 r = -EINVAL; 1721 goto bad_client; 1722 } 1723 1724 c = kzalloc(sizeof(*c), GFP_KERNEL); 1725 if (!c) { 1726 r = -ENOMEM; 1727 goto bad_client; 1728 } 1729 c->buffer_tree = RB_ROOT; 1730 1731 c->bdev = bdev; 1732 c->block_size = block_size; 1733 if (is_power_of_2(block_size)) 1734 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1735 else 1736 c->sectors_per_block_bits = -1; 1737 1738 c->alloc_callback = alloc_callback; 1739 c->write_callback = write_callback; 1740 1741 for (i = 0; i < LIST_SIZE; i++) { 1742 INIT_LIST_HEAD(&c->lru[i]); 1743 c->n_buffers[i] = 0; 1744 } 1745 1746 mutex_init(&c->lock); 1747 INIT_LIST_HEAD(&c->reserved_buffers); 1748 c->need_reserved_buffers = reserved_buffers; 1749 1750 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 1751 1752 init_waitqueue_head(&c->free_buffer_wait); 1753 c->async_write_error = 0; 1754 1755 c->dm_io = dm_io_client_create(); 1756 if (IS_ERR(c->dm_io)) { 1757 r = PTR_ERR(c->dm_io); 1758 goto bad_dm_io; 1759 } 1760 1761 if (block_size <= KMALLOC_MAX_SIZE && 1762 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) { 1763 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE); 1764 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size); 1765 c->slab_cache = kmem_cache_create(slab_name, block_size, align, 1766 SLAB_RECLAIM_ACCOUNT, NULL); 1767 if (!c->slab_cache) { 1768 r = -ENOMEM; 1769 goto bad; 1770 } 1771 } 1772 if (aux_size) 1773 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size); 1774 else 1775 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer"); 1776 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 1777 0, SLAB_RECLAIM_ACCOUNT, NULL); 1778 if (!c->slab_buffer) { 1779 r = -ENOMEM; 1780 goto bad; 1781 } 1782 1783 while (c->need_reserved_buffers) { 1784 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1785 1786 if (!b) { 1787 r = -ENOMEM; 1788 goto bad; 1789 } 1790 __free_buffer_wake(b); 1791 } 1792 1793 INIT_WORK(&c->shrink_work, shrink_work); 1794 atomic_long_set(&c->need_shrink, 0); 1795 1796 c->shrinker.count_objects = dm_bufio_shrink_count; 1797 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1798 c->shrinker.seeks = 1; 1799 c->shrinker.batch = 0; 1800 r = register_shrinker(&c->shrinker); 1801 if (r) 1802 goto bad; 1803 1804 mutex_lock(&dm_bufio_clients_lock); 1805 dm_bufio_client_count++; 1806 list_add(&c->client_list, &dm_bufio_all_clients); 1807 __cache_size_refresh(); 1808 mutex_unlock(&dm_bufio_clients_lock); 1809 1810 return c; 1811 1812 bad: 1813 while (!list_empty(&c->reserved_buffers)) { 1814 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1815 struct dm_buffer, lru_list); 1816 list_del(&b->lru_list); 1817 free_buffer(b); 1818 } 1819 kmem_cache_destroy(c->slab_cache); 1820 kmem_cache_destroy(c->slab_buffer); 1821 dm_io_client_destroy(c->dm_io); 1822 bad_dm_io: 1823 mutex_destroy(&c->lock); 1824 kfree(c); 1825 bad_client: 1826 return ERR_PTR(r); 1827 } 1828 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1829 1830 /* 1831 * Free the buffering interface. 1832 * It is required that there are no references on any buffers. 1833 */ 1834 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1835 { 1836 unsigned i; 1837 1838 drop_buffers(c); 1839 1840 unregister_shrinker(&c->shrinker); 1841 flush_work(&c->shrink_work); 1842 1843 mutex_lock(&dm_bufio_clients_lock); 1844 1845 list_del(&c->client_list); 1846 dm_bufio_client_count--; 1847 __cache_size_refresh(); 1848 1849 mutex_unlock(&dm_bufio_clients_lock); 1850 1851 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1852 BUG_ON(c->need_reserved_buffers); 1853 1854 while (!list_empty(&c->reserved_buffers)) { 1855 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1856 struct dm_buffer, lru_list); 1857 list_del(&b->lru_list); 1858 free_buffer(b); 1859 } 1860 1861 for (i = 0; i < LIST_SIZE; i++) 1862 if (c->n_buffers[i]) 1863 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1864 1865 for (i = 0; i < LIST_SIZE; i++) 1866 BUG_ON(c->n_buffers[i]); 1867 1868 kmem_cache_destroy(c->slab_cache); 1869 kmem_cache_destroy(c->slab_buffer); 1870 dm_io_client_destroy(c->dm_io); 1871 mutex_destroy(&c->lock); 1872 kfree(c); 1873 } 1874 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1875 1876 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 1877 { 1878 c->start = start; 1879 } 1880 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 1881 1882 static unsigned get_max_age_hz(void) 1883 { 1884 unsigned max_age = READ_ONCE(dm_bufio_max_age); 1885 1886 if (max_age > UINT_MAX / HZ) 1887 max_age = UINT_MAX / HZ; 1888 1889 return max_age * HZ; 1890 } 1891 1892 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1893 { 1894 return time_after_eq(jiffies, b->last_accessed + age_hz); 1895 } 1896 1897 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1898 { 1899 struct dm_buffer *b, *tmp; 1900 unsigned long retain_target = get_retain_buffers(c); 1901 unsigned long count; 1902 LIST_HEAD(write_list); 1903 1904 dm_bufio_lock(c); 1905 1906 __check_watermark(c, &write_list); 1907 if (unlikely(!list_empty(&write_list))) { 1908 dm_bufio_unlock(c); 1909 __flush_write_list(&write_list); 1910 dm_bufio_lock(c); 1911 } 1912 1913 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1914 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1915 if (count <= retain_target) 1916 break; 1917 1918 if (!older_than(b, age_hz)) 1919 break; 1920 1921 if (__try_evict_buffer(b, 0)) 1922 count--; 1923 1924 cond_resched(); 1925 } 1926 1927 dm_bufio_unlock(c); 1928 } 1929 1930 static void do_global_cleanup(struct work_struct *w) 1931 { 1932 struct dm_bufio_client *locked_client = NULL; 1933 struct dm_bufio_client *current_client; 1934 struct dm_buffer *b; 1935 unsigned spinlock_hold_count; 1936 unsigned long threshold = dm_bufio_cache_size - 1937 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; 1938 unsigned long loops = global_num * 2; 1939 1940 mutex_lock(&dm_bufio_clients_lock); 1941 1942 while (1) { 1943 cond_resched(); 1944 1945 spin_lock(&global_spinlock); 1946 if (unlikely(dm_bufio_current_allocated <= threshold)) 1947 break; 1948 1949 spinlock_hold_count = 0; 1950 get_next: 1951 if (!loops--) 1952 break; 1953 if (unlikely(list_empty(&global_queue))) 1954 break; 1955 b = list_entry(global_queue.prev, struct dm_buffer, global_list); 1956 1957 if (b->accessed) { 1958 b->accessed = 0; 1959 list_move(&b->global_list, &global_queue); 1960 if (likely(++spinlock_hold_count < 16)) 1961 goto get_next; 1962 spin_unlock(&global_spinlock); 1963 continue; 1964 } 1965 1966 current_client = b->c; 1967 if (unlikely(current_client != locked_client)) { 1968 if (locked_client) 1969 dm_bufio_unlock(locked_client); 1970 1971 if (!dm_bufio_trylock(current_client)) { 1972 spin_unlock(&global_spinlock); 1973 dm_bufio_lock(current_client); 1974 locked_client = current_client; 1975 continue; 1976 } 1977 1978 locked_client = current_client; 1979 } 1980 1981 spin_unlock(&global_spinlock); 1982 1983 if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) { 1984 spin_lock(&global_spinlock); 1985 list_move(&b->global_list, &global_queue); 1986 spin_unlock(&global_spinlock); 1987 } 1988 } 1989 1990 spin_unlock(&global_spinlock); 1991 1992 if (locked_client) 1993 dm_bufio_unlock(locked_client); 1994 1995 mutex_unlock(&dm_bufio_clients_lock); 1996 } 1997 1998 static void cleanup_old_buffers(void) 1999 { 2000 unsigned long max_age_hz = get_max_age_hz(); 2001 struct dm_bufio_client *c; 2002 2003 mutex_lock(&dm_bufio_clients_lock); 2004 2005 __cache_size_refresh(); 2006 2007 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 2008 __evict_old_buffers(c, max_age_hz); 2009 2010 mutex_unlock(&dm_bufio_clients_lock); 2011 } 2012 2013 static void work_fn(struct work_struct *w) 2014 { 2015 cleanup_old_buffers(); 2016 2017 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2018 DM_BUFIO_WORK_TIMER_SECS * HZ); 2019 } 2020 2021 /*---------------------------------------------------------------- 2022 * Module setup 2023 *--------------------------------------------------------------*/ 2024 2025 /* 2026 * This is called only once for the whole dm_bufio module. 2027 * It initializes memory limit. 2028 */ 2029 static int __init dm_bufio_init(void) 2030 { 2031 __u64 mem; 2032 2033 dm_bufio_allocated_kmem_cache = 0; 2034 dm_bufio_allocated_get_free_pages = 0; 2035 dm_bufio_allocated_vmalloc = 0; 2036 dm_bufio_current_allocated = 0; 2037 2038 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), 2039 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 2040 2041 if (mem > ULONG_MAX) 2042 mem = ULONG_MAX; 2043 2044 #ifdef CONFIG_MMU 2045 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 2046 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 2047 #endif 2048 2049 dm_bufio_default_cache_size = mem; 2050 2051 mutex_lock(&dm_bufio_clients_lock); 2052 __cache_size_refresh(); 2053 mutex_unlock(&dm_bufio_clients_lock); 2054 2055 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 2056 if (!dm_bufio_wq) 2057 return -ENOMEM; 2058 2059 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn); 2060 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); 2061 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2062 DM_BUFIO_WORK_TIMER_SECS * HZ); 2063 2064 return 0; 2065 } 2066 2067 /* 2068 * This is called once when unloading the dm_bufio module. 2069 */ 2070 static void __exit dm_bufio_exit(void) 2071 { 2072 int bug = 0; 2073 2074 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work); 2075 flush_workqueue(dm_bufio_wq); 2076 destroy_workqueue(dm_bufio_wq); 2077 2078 if (dm_bufio_client_count) { 2079 DMCRIT("%s: dm_bufio_client_count leaked: %d", 2080 __func__, dm_bufio_client_count); 2081 bug = 1; 2082 } 2083 2084 if (dm_bufio_current_allocated) { 2085 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 2086 __func__, dm_bufio_current_allocated); 2087 bug = 1; 2088 } 2089 2090 if (dm_bufio_allocated_get_free_pages) { 2091 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 2092 __func__, dm_bufio_allocated_get_free_pages); 2093 bug = 1; 2094 } 2095 2096 if (dm_bufio_allocated_vmalloc) { 2097 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 2098 __func__, dm_bufio_allocated_vmalloc); 2099 bug = 1; 2100 } 2101 2102 BUG_ON(bug); 2103 } 2104 2105 module_init(dm_bufio_init) 2106 module_exit(dm_bufio_exit) 2107 2108 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 2109 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 2110 2111 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 2112 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 2113 2114 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR); 2115 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2116 2117 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 2118 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 2119 2120 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 2121 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 2122 2123 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 2124 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 2125 2126 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 2127 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 2128 2129 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 2130 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 2131 2132 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2133 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 2134 MODULE_LICENSE("GPL"); 2135