xref: /linux/drivers/md/dm-bufio.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 #include <linux/stacktrace.h>
20 
21 #define DM_MSG_PREFIX "bufio"
22 
23 /*
24  * Memory management policy:
25  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
26  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
27  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
28  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
29  *	dirty buffers.
30  */
31 #define DM_BUFIO_MIN_BUFFERS		8
32 
33 #define DM_BUFIO_MEMORY_PERCENT		2
34 #define DM_BUFIO_VMALLOC_PERCENT	25
35 #define DM_BUFIO_WRITEBACK_PERCENT	75
36 
37 /*
38  * Check buffer ages in this interval (seconds)
39  */
40 #define DM_BUFIO_WORK_TIMER_SECS	30
41 
42 /*
43  * Free buffers when they are older than this (seconds)
44  */
45 #define DM_BUFIO_DEFAULT_AGE_SECS	300
46 
47 /*
48  * The nr of bytes of cached data to keep around.
49  */
50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
51 
52 /*
53  * The number of bvec entries that are embedded directly in the buffer.
54  * If the chunk size is larger, dm-io is used to do the io.
55  */
56 #define DM_BUFIO_INLINE_VECS		16
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	unsigned minimum_buffers;
108 
109 	struct rb_root buffer_tree;
110 	wait_queue_head_t free_buffer_wait;
111 
112 	int async_write_error;
113 
114 	struct list_head client_list;
115 	struct shrinker shrinker;
116 };
117 
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING	0
122 #define B_WRITING	1
123 #define B_DIRTY		2
124 
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131 	DATA_MODE_SLAB = 0,
132 	DATA_MODE_GET_FREE_PAGES = 1,
133 	DATA_MODE_VMALLOC = 2,
134 	DATA_MODE_LIMIT = 3
135 };
136 
137 struct dm_buffer {
138 	struct rb_node node;
139 	struct list_head lru_list;
140 	sector_t block;
141 	void *data;
142 	enum data_mode data_mode;
143 	unsigned char list_mode;		/* LIST_* */
144 	unsigned hold_count;
145 	int read_error;
146 	int write_error;
147 	unsigned long state;
148 	unsigned long last_accessed;
149 	struct dm_bufio_client *c;
150 	struct list_head write_list;
151 	struct bio bio;
152 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
154 #define MAX_STACK 10
155 	struct stack_trace stack_trace;
156 	unsigned long stack_entries[MAX_STACK];
157 #endif
158 };
159 
160 /*----------------------------------------------------------------*/
161 
162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
164 
165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
166 {
167 	unsigned ret = c->blocks_per_page_bits - 1;
168 
169 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
170 
171 	return ret;
172 }
173 
174 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
175 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
176 
177 #define dm_bufio_in_request()	(!!current->bio_list)
178 
179 static void dm_bufio_lock(struct dm_bufio_client *c)
180 {
181 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
182 }
183 
184 static int dm_bufio_trylock(struct dm_bufio_client *c)
185 {
186 	return mutex_trylock(&c->lock);
187 }
188 
189 static void dm_bufio_unlock(struct dm_bufio_client *c)
190 {
191 	mutex_unlock(&c->lock);
192 }
193 
194 /*
195  * FIXME Move to sched.h?
196  */
197 #ifdef CONFIG_PREEMPT_VOLUNTARY
198 #  define dm_bufio_cond_resched()		\
199 do {						\
200 	if (unlikely(need_resched()))		\
201 		_cond_resched();		\
202 } while (0)
203 #else
204 #  define dm_bufio_cond_resched()                do { } while (0)
205 #endif
206 
207 /*----------------------------------------------------------------*/
208 
209 /*
210  * Default cache size: available memory divided by the ratio.
211  */
212 static unsigned long dm_bufio_default_cache_size;
213 
214 /*
215  * Total cache size set by the user.
216  */
217 static unsigned long dm_bufio_cache_size;
218 
219 /*
220  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
221  * at any time.  If it disagrees, the user has changed cache size.
222  */
223 static unsigned long dm_bufio_cache_size_latch;
224 
225 static DEFINE_SPINLOCK(param_spinlock);
226 
227 /*
228  * Buffers are freed after this timeout
229  */
230 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
231 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
232 
233 static unsigned long dm_bufio_peak_allocated;
234 static unsigned long dm_bufio_allocated_kmem_cache;
235 static unsigned long dm_bufio_allocated_get_free_pages;
236 static unsigned long dm_bufio_allocated_vmalloc;
237 static unsigned long dm_bufio_current_allocated;
238 
239 /*----------------------------------------------------------------*/
240 
241 /*
242  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
243  */
244 static unsigned long dm_bufio_cache_size_per_client;
245 
246 /*
247  * The current number of clients.
248  */
249 static int dm_bufio_client_count;
250 
251 /*
252  * The list of all clients.
253  */
254 static LIST_HEAD(dm_bufio_all_clients);
255 
256 /*
257  * This mutex protects dm_bufio_cache_size_latch,
258  * dm_bufio_cache_size_per_client and dm_bufio_client_count
259  */
260 static DEFINE_MUTEX(dm_bufio_clients_lock);
261 
262 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
263 static void buffer_record_stack(struct dm_buffer *b)
264 {
265 	b->stack_trace.nr_entries = 0;
266 	b->stack_trace.max_entries = MAX_STACK;
267 	b->stack_trace.entries = b->stack_entries;
268 	b->stack_trace.skip = 2;
269 	save_stack_trace(&b->stack_trace);
270 }
271 #endif
272 
273 /*----------------------------------------------------------------
274  * A red/black tree acts as an index for all the buffers.
275  *--------------------------------------------------------------*/
276 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
277 {
278 	struct rb_node *n = c->buffer_tree.rb_node;
279 	struct dm_buffer *b;
280 
281 	while (n) {
282 		b = container_of(n, struct dm_buffer, node);
283 
284 		if (b->block == block)
285 			return b;
286 
287 		n = (b->block < block) ? n->rb_left : n->rb_right;
288 	}
289 
290 	return NULL;
291 }
292 
293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
294 {
295 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
296 	struct dm_buffer *found;
297 
298 	while (*new) {
299 		found = container_of(*new, struct dm_buffer, node);
300 
301 		if (found->block == b->block) {
302 			BUG_ON(found != b);
303 			return;
304 		}
305 
306 		parent = *new;
307 		new = (found->block < b->block) ?
308 			&((*new)->rb_left) : &((*new)->rb_right);
309 	}
310 
311 	rb_link_node(&b->node, parent, new);
312 	rb_insert_color(&b->node, &c->buffer_tree);
313 }
314 
315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
316 {
317 	rb_erase(&b->node, &c->buffer_tree);
318 }
319 
320 /*----------------------------------------------------------------*/
321 
322 static void adjust_total_allocated(enum data_mode data_mode, long diff)
323 {
324 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
325 		&dm_bufio_allocated_kmem_cache,
326 		&dm_bufio_allocated_get_free_pages,
327 		&dm_bufio_allocated_vmalloc,
328 	};
329 
330 	spin_lock(&param_spinlock);
331 
332 	*class_ptr[data_mode] += diff;
333 
334 	dm_bufio_current_allocated += diff;
335 
336 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
337 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
338 
339 	spin_unlock(&param_spinlock);
340 }
341 
342 /*
343  * Change the number of clients and recalculate per-client limit.
344  */
345 static void __cache_size_refresh(void)
346 {
347 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
348 	BUG_ON(dm_bufio_client_count < 0);
349 
350 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
351 
352 	/*
353 	 * Use default if set to 0 and report the actual cache size used.
354 	 */
355 	if (!dm_bufio_cache_size_latch) {
356 		(void)cmpxchg(&dm_bufio_cache_size, 0,
357 			      dm_bufio_default_cache_size);
358 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
359 	}
360 
361 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
362 					 (dm_bufio_client_count ? : 1);
363 }
364 
365 /*
366  * Allocating buffer data.
367  *
368  * Small buffers are allocated with kmem_cache, to use space optimally.
369  *
370  * For large buffers, we choose between get_free_pages and vmalloc.
371  * Each has advantages and disadvantages.
372  *
373  * __get_free_pages can randomly fail if the memory is fragmented.
374  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
375  * as low as 128M) so using it for caching is not appropriate.
376  *
377  * If the allocation may fail we use __get_free_pages. Memory fragmentation
378  * won't have a fatal effect here, but it just causes flushes of some other
379  * buffers and more I/O will be performed. Don't use __get_free_pages if it
380  * always fails (i.e. order >= MAX_ORDER).
381  *
382  * If the allocation shouldn't fail we use __vmalloc. This is only for the
383  * initial reserve allocation, so there's no risk of wasting all vmalloc
384  * space.
385  */
386 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
387 			       enum data_mode *data_mode)
388 {
389 	unsigned noio_flag;
390 	void *ptr;
391 
392 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
393 		*data_mode = DATA_MODE_SLAB;
394 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
395 	}
396 
397 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
398 	    gfp_mask & __GFP_NORETRY) {
399 		*data_mode = DATA_MODE_GET_FREE_PAGES;
400 		return (void *)__get_free_pages(gfp_mask,
401 						c->pages_per_block_bits);
402 	}
403 
404 	*data_mode = DATA_MODE_VMALLOC;
405 
406 	/*
407 	 * __vmalloc allocates the data pages and auxiliary structures with
408 	 * gfp_flags that were specified, but pagetables are always allocated
409 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
410 	 *
411 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
412 	 * all allocations done by this process (including pagetables) are done
413 	 * as if GFP_NOIO was specified.
414 	 */
415 
416 	if (gfp_mask & __GFP_NORETRY)
417 		noio_flag = memalloc_noio_save();
418 
419 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
420 
421 	if (gfp_mask & __GFP_NORETRY)
422 		memalloc_noio_restore(noio_flag);
423 
424 	return ptr;
425 }
426 
427 /*
428  * Free buffer's data.
429  */
430 static void free_buffer_data(struct dm_bufio_client *c,
431 			     void *data, enum data_mode data_mode)
432 {
433 	switch (data_mode) {
434 	case DATA_MODE_SLAB:
435 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
436 		break;
437 
438 	case DATA_MODE_GET_FREE_PAGES:
439 		free_pages((unsigned long)data, c->pages_per_block_bits);
440 		break;
441 
442 	case DATA_MODE_VMALLOC:
443 		vfree(data);
444 		break;
445 
446 	default:
447 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
448 		       data_mode);
449 		BUG();
450 	}
451 }
452 
453 /*
454  * Allocate buffer and its data.
455  */
456 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
457 {
458 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
459 				      gfp_mask);
460 
461 	if (!b)
462 		return NULL;
463 
464 	b->c = c;
465 
466 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
467 	if (!b->data) {
468 		kfree(b);
469 		return NULL;
470 	}
471 
472 	adjust_total_allocated(b->data_mode, (long)c->block_size);
473 
474 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
475 	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
476 #endif
477 	return b;
478 }
479 
480 /*
481  * Free buffer and its data.
482  */
483 static void free_buffer(struct dm_buffer *b)
484 {
485 	struct dm_bufio_client *c = b->c;
486 
487 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
488 
489 	free_buffer_data(c, b->data, b->data_mode);
490 	kfree(b);
491 }
492 
493 /*
494  * Link buffer to the hash list and clean or dirty queue.
495  */
496 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
497 {
498 	struct dm_bufio_client *c = b->c;
499 
500 	c->n_buffers[dirty]++;
501 	b->block = block;
502 	b->list_mode = dirty;
503 	list_add(&b->lru_list, &c->lru[dirty]);
504 	__insert(b->c, b);
505 	b->last_accessed = jiffies;
506 }
507 
508 /*
509  * Unlink buffer from the hash list and dirty or clean queue.
510  */
511 static void __unlink_buffer(struct dm_buffer *b)
512 {
513 	struct dm_bufio_client *c = b->c;
514 
515 	BUG_ON(!c->n_buffers[b->list_mode]);
516 
517 	c->n_buffers[b->list_mode]--;
518 	__remove(b->c, b);
519 	list_del(&b->lru_list);
520 }
521 
522 /*
523  * Place the buffer to the head of dirty or clean LRU queue.
524  */
525 static void __relink_lru(struct dm_buffer *b, int dirty)
526 {
527 	struct dm_bufio_client *c = b->c;
528 
529 	BUG_ON(!c->n_buffers[b->list_mode]);
530 
531 	c->n_buffers[b->list_mode]--;
532 	c->n_buffers[dirty]++;
533 	b->list_mode = dirty;
534 	list_move(&b->lru_list, &c->lru[dirty]);
535 	b->last_accessed = jiffies;
536 }
537 
538 /*----------------------------------------------------------------
539  * Submit I/O on the buffer.
540  *
541  * Bio interface is faster but it has some problems:
542  *	the vector list is limited (increasing this limit increases
543  *	memory-consumption per buffer, so it is not viable);
544  *
545  *	the memory must be direct-mapped, not vmalloced;
546  *
547  *	the I/O driver can reject requests spuriously if it thinks that
548  *	the requests are too big for the device or if they cross a
549  *	controller-defined memory boundary.
550  *
551  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
552  * it is not vmalloced, try using the bio interface.
553  *
554  * If the buffer is big, if it is vmalloced or if the underlying device
555  * rejects the bio because it is too large, use dm-io layer to do the I/O.
556  * The dm-io layer splits the I/O into multiple requests, avoiding the above
557  * shortcomings.
558  *--------------------------------------------------------------*/
559 
560 /*
561  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
562  * that the request was handled directly with bio interface.
563  */
564 static void dmio_complete(unsigned long error, void *context)
565 {
566 	struct dm_buffer *b = context;
567 
568 	b->bio.bi_error = error ? -EIO : 0;
569 	b->bio.bi_end_io(&b->bio);
570 }
571 
572 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
573 		     bio_end_io_t *end_io)
574 {
575 	int r;
576 	struct dm_io_request io_req = {
577 		.bi_rw = rw,
578 		.notify.fn = dmio_complete,
579 		.notify.context = b,
580 		.client = b->c->dm_io,
581 	};
582 	struct dm_io_region region = {
583 		.bdev = b->c->bdev,
584 		.sector = block << b->c->sectors_per_block_bits,
585 		.count = b->c->block_size >> SECTOR_SHIFT,
586 	};
587 
588 	if (b->data_mode != DATA_MODE_VMALLOC) {
589 		io_req.mem.type = DM_IO_KMEM;
590 		io_req.mem.ptr.addr = b->data;
591 	} else {
592 		io_req.mem.type = DM_IO_VMA;
593 		io_req.mem.ptr.vma = b->data;
594 	}
595 
596 	b->bio.bi_end_io = end_io;
597 
598 	r = dm_io(&io_req, 1, &region, NULL);
599 	if (r) {
600 		b->bio.bi_error = r;
601 		end_io(&b->bio);
602 	}
603 }
604 
605 static void inline_endio(struct bio *bio)
606 {
607 	bio_end_io_t *end_fn = bio->bi_private;
608 	int error = bio->bi_error;
609 
610 	/*
611 	 * Reset the bio to free any attached resources
612 	 * (e.g. bio integrity profiles).
613 	 */
614 	bio_reset(bio);
615 
616 	bio->bi_error = error;
617 	end_fn(bio);
618 }
619 
620 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
621 			   bio_end_io_t *end_io)
622 {
623 	char *ptr;
624 	int len;
625 
626 	bio_init(&b->bio);
627 	b->bio.bi_io_vec = b->bio_vec;
628 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
629 	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
630 	b->bio.bi_bdev = b->c->bdev;
631 	b->bio.bi_end_io = inline_endio;
632 	/*
633 	 * Use of .bi_private isn't a problem here because
634 	 * the dm_buffer's inline bio is local to bufio.
635 	 */
636 	b->bio.bi_private = end_io;
637 
638 	/*
639 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
640 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
641 	 */
642 	ptr = b->data;
643 	len = b->c->block_size;
644 
645 	if (len >= PAGE_SIZE)
646 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
647 	else
648 		BUG_ON((unsigned long)ptr & (len - 1));
649 
650 	do {
651 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
652 				  len < PAGE_SIZE ? len : PAGE_SIZE,
653 				  offset_in_page(ptr))) {
654 			BUG_ON(b->c->block_size <= PAGE_SIZE);
655 			use_dmio(b, rw, block, end_io);
656 			return;
657 		}
658 
659 		len -= PAGE_SIZE;
660 		ptr += PAGE_SIZE;
661 	} while (len > 0);
662 
663 	submit_bio(rw, &b->bio);
664 }
665 
666 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
667 		      bio_end_io_t *end_io)
668 {
669 	if (rw == WRITE && b->c->write_callback)
670 		b->c->write_callback(b);
671 
672 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
673 	    b->data_mode != DATA_MODE_VMALLOC)
674 		use_inline_bio(b, rw, block, end_io);
675 	else
676 		use_dmio(b, rw, block, end_io);
677 }
678 
679 /*----------------------------------------------------------------
680  * Writing dirty buffers
681  *--------------------------------------------------------------*/
682 
683 /*
684  * The endio routine for write.
685  *
686  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
687  * it.
688  */
689 static void write_endio(struct bio *bio)
690 {
691 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
692 
693 	b->write_error = bio->bi_error;
694 	if (unlikely(bio->bi_error)) {
695 		struct dm_bufio_client *c = b->c;
696 		int error = bio->bi_error;
697 		(void)cmpxchg(&c->async_write_error, 0, error);
698 	}
699 
700 	BUG_ON(!test_bit(B_WRITING, &b->state));
701 
702 	smp_mb__before_atomic();
703 	clear_bit(B_WRITING, &b->state);
704 	smp_mb__after_atomic();
705 
706 	wake_up_bit(&b->state, B_WRITING);
707 }
708 
709 /*
710  * Initiate a write on a dirty buffer, but don't wait for it.
711  *
712  * - If the buffer is not dirty, exit.
713  * - If there some previous write going on, wait for it to finish (we can't
714  *   have two writes on the same buffer simultaneously).
715  * - Submit our write and don't wait on it. We set B_WRITING indicating
716  *   that there is a write in progress.
717  */
718 static void __write_dirty_buffer(struct dm_buffer *b,
719 				 struct list_head *write_list)
720 {
721 	if (!test_bit(B_DIRTY, &b->state))
722 		return;
723 
724 	clear_bit(B_DIRTY, &b->state);
725 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
726 
727 	if (!write_list)
728 		submit_io(b, WRITE, b->block, write_endio);
729 	else
730 		list_add_tail(&b->write_list, write_list);
731 }
732 
733 static void __flush_write_list(struct list_head *write_list)
734 {
735 	struct blk_plug plug;
736 	blk_start_plug(&plug);
737 	while (!list_empty(write_list)) {
738 		struct dm_buffer *b =
739 			list_entry(write_list->next, struct dm_buffer, write_list);
740 		list_del(&b->write_list);
741 		submit_io(b, WRITE, b->block, write_endio);
742 		dm_bufio_cond_resched();
743 	}
744 	blk_finish_plug(&plug);
745 }
746 
747 /*
748  * Wait until any activity on the buffer finishes.  Possibly write the
749  * buffer if it is dirty.  When this function finishes, there is no I/O
750  * running on the buffer and the buffer is not dirty.
751  */
752 static void __make_buffer_clean(struct dm_buffer *b)
753 {
754 	BUG_ON(b->hold_count);
755 
756 	if (!b->state)	/* fast case */
757 		return;
758 
759 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
760 	__write_dirty_buffer(b, NULL);
761 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
762 }
763 
764 /*
765  * Find some buffer that is not held by anybody, clean it, unlink it and
766  * return it.
767  */
768 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
769 {
770 	struct dm_buffer *b;
771 
772 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
773 		BUG_ON(test_bit(B_WRITING, &b->state));
774 		BUG_ON(test_bit(B_DIRTY, &b->state));
775 
776 		if (!b->hold_count) {
777 			__make_buffer_clean(b);
778 			__unlink_buffer(b);
779 			return b;
780 		}
781 		dm_bufio_cond_resched();
782 	}
783 
784 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
785 		BUG_ON(test_bit(B_READING, &b->state));
786 
787 		if (!b->hold_count) {
788 			__make_buffer_clean(b);
789 			__unlink_buffer(b);
790 			return b;
791 		}
792 		dm_bufio_cond_resched();
793 	}
794 
795 	return NULL;
796 }
797 
798 /*
799  * Wait until some other threads free some buffer or release hold count on
800  * some buffer.
801  *
802  * This function is entered with c->lock held, drops it and regains it
803  * before exiting.
804  */
805 static void __wait_for_free_buffer(struct dm_bufio_client *c)
806 {
807 	DECLARE_WAITQUEUE(wait, current);
808 
809 	add_wait_queue(&c->free_buffer_wait, &wait);
810 	set_task_state(current, TASK_UNINTERRUPTIBLE);
811 	dm_bufio_unlock(c);
812 
813 	io_schedule();
814 
815 	remove_wait_queue(&c->free_buffer_wait, &wait);
816 
817 	dm_bufio_lock(c);
818 }
819 
820 enum new_flag {
821 	NF_FRESH = 0,
822 	NF_READ = 1,
823 	NF_GET = 2,
824 	NF_PREFETCH = 3
825 };
826 
827 /*
828  * Allocate a new buffer. If the allocation is not possible, wait until
829  * some other thread frees a buffer.
830  *
831  * May drop the lock and regain it.
832  */
833 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
834 {
835 	struct dm_buffer *b;
836 
837 	/*
838 	 * dm-bufio is resistant to allocation failures (it just keeps
839 	 * one buffer reserved in cases all the allocations fail).
840 	 * So set flags to not try too hard:
841 	 *	GFP_NOIO: don't recurse into the I/O layer
842 	 *	__GFP_NORETRY: don't retry and rather return failure
843 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
844 	 *	__GFP_NOWARN: don't print a warning in case of failure
845 	 *
846 	 * For debugging, if we set the cache size to 1, no new buffers will
847 	 * be allocated.
848 	 */
849 	while (1) {
850 		if (dm_bufio_cache_size_latch != 1) {
851 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
852 			if (b)
853 				return b;
854 		}
855 
856 		if (nf == NF_PREFETCH)
857 			return NULL;
858 
859 		if (!list_empty(&c->reserved_buffers)) {
860 			b = list_entry(c->reserved_buffers.next,
861 				       struct dm_buffer, lru_list);
862 			list_del(&b->lru_list);
863 			c->need_reserved_buffers++;
864 
865 			return b;
866 		}
867 
868 		b = __get_unclaimed_buffer(c);
869 		if (b)
870 			return b;
871 
872 		__wait_for_free_buffer(c);
873 	}
874 }
875 
876 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
877 {
878 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
879 
880 	if (!b)
881 		return NULL;
882 
883 	if (c->alloc_callback)
884 		c->alloc_callback(b);
885 
886 	return b;
887 }
888 
889 /*
890  * Free a buffer and wake other threads waiting for free buffers.
891  */
892 static void __free_buffer_wake(struct dm_buffer *b)
893 {
894 	struct dm_bufio_client *c = b->c;
895 
896 	if (!c->need_reserved_buffers)
897 		free_buffer(b);
898 	else {
899 		list_add(&b->lru_list, &c->reserved_buffers);
900 		c->need_reserved_buffers--;
901 	}
902 
903 	wake_up(&c->free_buffer_wait);
904 }
905 
906 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
907 					struct list_head *write_list)
908 {
909 	struct dm_buffer *b, *tmp;
910 
911 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
912 		BUG_ON(test_bit(B_READING, &b->state));
913 
914 		if (!test_bit(B_DIRTY, &b->state) &&
915 		    !test_bit(B_WRITING, &b->state)) {
916 			__relink_lru(b, LIST_CLEAN);
917 			continue;
918 		}
919 
920 		if (no_wait && test_bit(B_WRITING, &b->state))
921 			return;
922 
923 		__write_dirty_buffer(b, write_list);
924 		dm_bufio_cond_resched();
925 	}
926 }
927 
928 /*
929  * Get writeback threshold and buffer limit for a given client.
930  */
931 static void __get_memory_limit(struct dm_bufio_client *c,
932 			       unsigned long *threshold_buffers,
933 			       unsigned long *limit_buffers)
934 {
935 	unsigned long buffers;
936 
937 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
938 		mutex_lock(&dm_bufio_clients_lock);
939 		__cache_size_refresh();
940 		mutex_unlock(&dm_bufio_clients_lock);
941 	}
942 
943 	buffers = dm_bufio_cache_size_per_client >>
944 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
945 
946 	if (buffers < c->minimum_buffers)
947 		buffers = c->minimum_buffers;
948 
949 	*limit_buffers = buffers;
950 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
951 }
952 
953 /*
954  * Check if we're over watermark.
955  * If we are over threshold_buffers, start freeing buffers.
956  * If we're over "limit_buffers", block until we get under the limit.
957  */
958 static void __check_watermark(struct dm_bufio_client *c,
959 			      struct list_head *write_list)
960 {
961 	unsigned long threshold_buffers, limit_buffers;
962 
963 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
964 
965 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
966 	       limit_buffers) {
967 
968 		struct dm_buffer *b = __get_unclaimed_buffer(c);
969 
970 		if (!b)
971 			return;
972 
973 		__free_buffer_wake(b);
974 		dm_bufio_cond_resched();
975 	}
976 
977 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
978 		__write_dirty_buffers_async(c, 1, write_list);
979 }
980 
981 /*----------------------------------------------------------------
982  * Getting a buffer
983  *--------------------------------------------------------------*/
984 
985 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
986 				     enum new_flag nf, int *need_submit,
987 				     struct list_head *write_list)
988 {
989 	struct dm_buffer *b, *new_b = NULL;
990 
991 	*need_submit = 0;
992 
993 	b = __find(c, block);
994 	if (b)
995 		goto found_buffer;
996 
997 	if (nf == NF_GET)
998 		return NULL;
999 
1000 	new_b = __alloc_buffer_wait(c, nf);
1001 	if (!new_b)
1002 		return NULL;
1003 
1004 	/*
1005 	 * We've had a period where the mutex was unlocked, so need to
1006 	 * recheck the hash table.
1007 	 */
1008 	b = __find(c, block);
1009 	if (b) {
1010 		__free_buffer_wake(new_b);
1011 		goto found_buffer;
1012 	}
1013 
1014 	__check_watermark(c, write_list);
1015 
1016 	b = new_b;
1017 	b->hold_count = 1;
1018 	b->read_error = 0;
1019 	b->write_error = 0;
1020 	__link_buffer(b, block, LIST_CLEAN);
1021 
1022 	if (nf == NF_FRESH) {
1023 		b->state = 0;
1024 		return b;
1025 	}
1026 
1027 	b->state = 1 << B_READING;
1028 	*need_submit = 1;
1029 
1030 	return b;
1031 
1032 found_buffer:
1033 	if (nf == NF_PREFETCH)
1034 		return NULL;
1035 	/*
1036 	 * Note: it is essential that we don't wait for the buffer to be
1037 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1038 	 * dm_bufio_prefetch can be used in the driver request routine.
1039 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1040 	 * the same buffer, it would deadlock if we waited.
1041 	 */
1042 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1043 		return NULL;
1044 
1045 	b->hold_count++;
1046 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1047 		     test_bit(B_WRITING, &b->state));
1048 	return b;
1049 }
1050 
1051 /*
1052  * The endio routine for reading: set the error, clear the bit and wake up
1053  * anyone waiting on the buffer.
1054  */
1055 static void read_endio(struct bio *bio)
1056 {
1057 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1058 
1059 	b->read_error = bio->bi_error;
1060 
1061 	BUG_ON(!test_bit(B_READING, &b->state));
1062 
1063 	smp_mb__before_atomic();
1064 	clear_bit(B_READING, &b->state);
1065 	smp_mb__after_atomic();
1066 
1067 	wake_up_bit(&b->state, B_READING);
1068 }
1069 
1070 /*
1071  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1072  * functions is similar except that dm_bufio_new doesn't read the
1073  * buffer from the disk (assuming that the caller overwrites all the data
1074  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1075  */
1076 static void *new_read(struct dm_bufio_client *c, sector_t block,
1077 		      enum new_flag nf, struct dm_buffer **bp)
1078 {
1079 	int need_submit;
1080 	struct dm_buffer *b;
1081 
1082 	LIST_HEAD(write_list);
1083 
1084 	dm_bufio_lock(c);
1085 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1086 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1087 	if (b && b->hold_count == 1)
1088 		buffer_record_stack(b);
1089 #endif
1090 	dm_bufio_unlock(c);
1091 
1092 	__flush_write_list(&write_list);
1093 
1094 	if (!b)
1095 		return NULL;
1096 
1097 	if (need_submit)
1098 		submit_io(b, READ, b->block, read_endio);
1099 
1100 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1101 
1102 	if (b->read_error) {
1103 		int error = b->read_error;
1104 
1105 		dm_bufio_release(b);
1106 
1107 		return ERR_PTR(error);
1108 	}
1109 
1110 	*bp = b;
1111 
1112 	return b->data;
1113 }
1114 
1115 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1116 		   struct dm_buffer **bp)
1117 {
1118 	return new_read(c, block, NF_GET, bp);
1119 }
1120 EXPORT_SYMBOL_GPL(dm_bufio_get);
1121 
1122 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1123 		    struct dm_buffer **bp)
1124 {
1125 	BUG_ON(dm_bufio_in_request());
1126 
1127 	return new_read(c, block, NF_READ, bp);
1128 }
1129 EXPORT_SYMBOL_GPL(dm_bufio_read);
1130 
1131 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1132 		   struct dm_buffer **bp)
1133 {
1134 	BUG_ON(dm_bufio_in_request());
1135 
1136 	return new_read(c, block, NF_FRESH, bp);
1137 }
1138 EXPORT_SYMBOL_GPL(dm_bufio_new);
1139 
1140 void dm_bufio_prefetch(struct dm_bufio_client *c,
1141 		       sector_t block, unsigned n_blocks)
1142 {
1143 	struct blk_plug plug;
1144 
1145 	LIST_HEAD(write_list);
1146 
1147 	BUG_ON(dm_bufio_in_request());
1148 
1149 	blk_start_plug(&plug);
1150 	dm_bufio_lock(c);
1151 
1152 	for (; n_blocks--; block++) {
1153 		int need_submit;
1154 		struct dm_buffer *b;
1155 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1156 				&write_list);
1157 		if (unlikely(!list_empty(&write_list))) {
1158 			dm_bufio_unlock(c);
1159 			blk_finish_plug(&plug);
1160 			__flush_write_list(&write_list);
1161 			blk_start_plug(&plug);
1162 			dm_bufio_lock(c);
1163 		}
1164 		if (unlikely(b != NULL)) {
1165 			dm_bufio_unlock(c);
1166 
1167 			if (need_submit)
1168 				submit_io(b, READ, b->block, read_endio);
1169 			dm_bufio_release(b);
1170 
1171 			dm_bufio_cond_resched();
1172 
1173 			if (!n_blocks)
1174 				goto flush_plug;
1175 			dm_bufio_lock(c);
1176 		}
1177 	}
1178 
1179 	dm_bufio_unlock(c);
1180 
1181 flush_plug:
1182 	blk_finish_plug(&plug);
1183 }
1184 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1185 
1186 void dm_bufio_release(struct dm_buffer *b)
1187 {
1188 	struct dm_bufio_client *c = b->c;
1189 
1190 	dm_bufio_lock(c);
1191 
1192 	BUG_ON(!b->hold_count);
1193 
1194 	b->hold_count--;
1195 	if (!b->hold_count) {
1196 		wake_up(&c->free_buffer_wait);
1197 
1198 		/*
1199 		 * If there were errors on the buffer, and the buffer is not
1200 		 * to be written, free the buffer. There is no point in caching
1201 		 * invalid buffer.
1202 		 */
1203 		if ((b->read_error || b->write_error) &&
1204 		    !test_bit(B_READING, &b->state) &&
1205 		    !test_bit(B_WRITING, &b->state) &&
1206 		    !test_bit(B_DIRTY, &b->state)) {
1207 			__unlink_buffer(b);
1208 			__free_buffer_wake(b);
1209 		}
1210 	}
1211 
1212 	dm_bufio_unlock(c);
1213 }
1214 EXPORT_SYMBOL_GPL(dm_bufio_release);
1215 
1216 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1217 {
1218 	struct dm_bufio_client *c = b->c;
1219 
1220 	dm_bufio_lock(c);
1221 
1222 	BUG_ON(test_bit(B_READING, &b->state));
1223 
1224 	if (!test_and_set_bit(B_DIRTY, &b->state))
1225 		__relink_lru(b, LIST_DIRTY);
1226 
1227 	dm_bufio_unlock(c);
1228 }
1229 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1230 
1231 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1232 {
1233 	LIST_HEAD(write_list);
1234 
1235 	BUG_ON(dm_bufio_in_request());
1236 
1237 	dm_bufio_lock(c);
1238 	__write_dirty_buffers_async(c, 0, &write_list);
1239 	dm_bufio_unlock(c);
1240 	__flush_write_list(&write_list);
1241 }
1242 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1243 
1244 /*
1245  * For performance, it is essential that the buffers are written asynchronously
1246  * and simultaneously (so that the block layer can merge the writes) and then
1247  * waited upon.
1248  *
1249  * Finally, we flush hardware disk cache.
1250  */
1251 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1252 {
1253 	int a, f;
1254 	unsigned long buffers_processed = 0;
1255 	struct dm_buffer *b, *tmp;
1256 
1257 	LIST_HEAD(write_list);
1258 
1259 	dm_bufio_lock(c);
1260 	__write_dirty_buffers_async(c, 0, &write_list);
1261 	dm_bufio_unlock(c);
1262 	__flush_write_list(&write_list);
1263 	dm_bufio_lock(c);
1264 
1265 again:
1266 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1267 		int dropped_lock = 0;
1268 
1269 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1270 			buffers_processed++;
1271 
1272 		BUG_ON(test_bit(B_READING, &b->state));
1273 
1274 		if (test_bit(B_WRITING, &b->state)) {
1275 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1276 				dropped_lock = 1;
1277 				b->hold_count++;
1278 				dm_bufio_unlock(c);
1279 				wait_on_bit_io(&b->state, B_WRITING,
1280 					       TASK_UNINTERRUPTIBLE);
1281 				dm_bufio_lock(c);
1282 				b->hold_count--;
1283 			} else
1284 				wait_on_bit_io(&b->state, B_WRITING,
1285 					       TASK_UNINTERRUPTIBLE);
1286 		}
1287 
1288 		if (!test_bit(B_DIRTY, &b->state) &&
1289 		    !test_bit(B_WRITING, &b->state))
1290 			__relink_lru(b, LIST_CLEAN);
1291 
1292 		dm_bufio_cond_resched();
1293 
1294 		/*
1295 		 * If we dropped the lock, the list is no longer consistent,
1296 		 * so we must restart the search.
1297 		 *
1298 		 * In the most common case, the buffer just processed is
1299 		 * relinked to the clean list, so we won't loop scanning the
1300 		 * same buffer again and again.
1301 		 *
1302 		 * This may livelock if there is another thread simultaneously
1303 		 * dirtying buffers, so we count the number of buffers walked
1304 		 * and if it exceeds the total number of buffers, it means that
1305 		 * someone is doing some writes simultaneously with us.  In
1306 		 * this case, stop, dropping the lock.
1307 		 */
1308 		if (dropped_lock)
1309 			goto again;
1310 	}
1311 	wake_up(&c->free_buffer_wait);
1312 	dm_bufio_unlock(c);
1313 
1314 	a = xchg(&c->async_write_error, 0);
1315 	f = dm_bufio_issue_flush(c);
1316 	if (a)
1317 		return a;
1318 
1319 	return f;
1320 }
1321 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1322 
1323 /*
1324  * Use dm-io to send and empty barrier flush the device.
1325  */
1326 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1327 {
1328 	struct dm_io_request io_req = {
1329 		.bi_rw = WRITE_FLUSH,
1330 		.mem.type = DM_IO_KMEM,
1331 		.mem.ptr.addr = NULL,
1332 		.client = c->dm_io,
1333 	};
1334 	struct dm_io_region io_reg = {
1335 		.bdev = c->bdev,
1336 		.sector = 0,
1337 		.count = 0,
1338 	};
1339 
1340 	BUG_ON(dm_bufio_in_request());
1341 
1342 	return dm_io(&io_req, 1, &io_reg, NULL);
1343 }
1344 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1345 
1346 /*
1347  * We first delete any other buffer that may be at that new location.
1348  *
1349  * Then, we write the buffer to the original location if it was dirty.
1350  *
1351  * Then, if we are the only one who is holding the buffer, relink the buffer
1352  * in the hash queue for the new location.
1353  *
1354  * If there was someone else holding the buffer, we write it to the new
1355  * location but not relink it, because that other user needs to have the buffer
1356  * at the same place.
1357  */
1358 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1359 {
1360 	struct dm_bufio_client *c = b->c;
1361 	struct dm_buffer *new;
1362 
1363 	BUG_ON(dm_bufio_in_request());
1364 
1365 	dm_bufio_lock(c);
1366 
1367 retry:
1368 	new = __find(c, new_block);
1369 	if (new) {
1370 		if (new->hold_count) {
1371 			__wait_for_free_buffer(c);
1372 			goto retry;
1373 		}
1374 
1375 		/*
1376 		 * FIXME: Is there any point waiting for a write that's going
1377 		 * to be overwritten in a bit?
1378 		 */
1379 		__make_buffer_clean(new);
1380 		__unlink_buffer(new);
1381 		__free_buffer_wake(new);
1382 	}
1383 
1384 	BUG_ON(!b->hold_count);
1385 	BUG_ON(test_bit(B_READING, &b->state));
1386 
1387 	__write_dirty_buffer(b, NULL);
1388 	if (b->hold_count == 1) {
1389 		wait_on_bit_io(&b->state, B_WRITING,
1390 			       TASK_UNINTERRUPTIBLE);
1391 		set_bit(B_DIRTY, &b->state);
1392 		__unlink_buffer(b);
1393 		__link_buffer(b, new_block, LIST_DIRTY);
1394 	} else {
1395 		sector_t old_block;
1396 		wait_on_bit_lock_io(&b->state, B_WRITING,
1397 				    TASK_UNINTERRUPTIBLE);
1398 		/*
1399 		 * Relink buffer to "new_block" so that write_callback
1400 		 * sees "new_block" as a block number.
1401 		 * After the write, link the buffer back to old_block.
1402 		 * All this must be done in bufio lock, so that block number
1403 		 * change isn't visible to other threads.
1404 		 */
1405 		old_block = b->block;
1406 		__unlink_buffer(b);
1407 		__link_buffer(b, new_block, b->list_mode);
1408 		submit_io(b, WRITE, new_block, write_endio);
1409 		wait_on_bit_io(&b->state, B_WRITING,
1410 			       TASK_UNINTERRUPTIBLE);
1411 		__unlink_buffer(b);
1412 		__link_buffer(b, old_block, b->list_mode);
1413 	}
1414 
1415 	dm_bufio_unlock(c);
1416 	dm_bufio_release(b);
1417 }
1418 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1419 
1420 /*
1421  * Free the given buffer.
1422  *
1423  * This is just a hint, if the buffer is in use or dirty, this function
1424  * does nothing.
1425  */
1426 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1427 {
1428 	struct dm_buffer *b;
1429 
1430 	dm_bufio_lock(c);
1431 
1432 	b = __find(c, block);
1433 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1434 		__unlink_buffer(b);
1435 		__free_buffer_wake(b);
1436 	}
1437 
1438 	dm_bufio_unlock(c);
1439 }
1440 EXPORT_SYMBOL(dm_bufio_forget);
1441 
1442 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1443 {
1444 	c->minimum_buffers = n;
1445 }
1446 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1447 
1448 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1449 {
1450 	return c->block_size;
1451 }
1452 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1453 
1454 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1455 {
1456 	return i_size_read(c->bdev->bd_inode) >>
1457 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1458 }
1459 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1460 
1461 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1462 {
1463 	return b->block;
1464 }
1465 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1466 
1467 void *dm_bufio_get_block_data(struct dm_buffer *b)
1468 {
1469 	return b->data;
1470 }
1471 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1472 
1473 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1474 {
1475 	return b + 1;
1476 }
1477 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1478 
1479 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1480 {
1481 	return b->c;
1482 }
1483 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1484 
1485 static void drop_buffers(struct dm_bufio_client *c)
1486 {
1487 	struct dm_buffer *b;
1488 	int i;
1489 	bool warned = false;
1490 
1491 	BUG_ON(dm_bufio_in_request());
1492 
1493 	/*
1494 	 * An optimization so that the buffers are not written one-by-one.
1495 	 */
1496 	dm_bufio_write_dirty_buffers_async(c);
1497 
1498 	dm_bufio_lock(c);
1499 
1500 	while ((b = __get_unclaimed_buffer(c)))
1501 		__free_buffer_wake(b);
1502 
1503 	for (i = 0; i < LIST_SIZE; i++)
1504 		list_for_each_entry(b, &c->lru[i], lru_list) {
1505 			WARN_ON(!warned);
1506 			warned = true;
1507 			DMERR("leaked buffer %llx, hold count %u, list %d",
1508 			      (unsigned long long)b->block, b->hold_count, i);
1509 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1510 			print_stack_trace(&b->stack_trace, 1);
1511 			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1512 #endif
1513 		}
1514 
1515 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1516 	while ((b = __get_unclaimed_buffer(c)))
1517 		__free_buffer_wake(b);
1518 #endif
1519 
1520 	for (i = 0; i < LIST_SIZE; i++)
1521 		BUG_ON(!list_empty(&c->lru[i]));
1522 
1523 	dm_bufio_unlock(c);
1524 }
1525 
1526 /*
1527  * We may not be able to evict this buffer if IO pending or the client
1528  * is still using it.  Caller is expected to know buffer is too old.
1529  *
1530  * And if GFP_NOFS is used, we must not do any I/O because we hold
1531  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1532  * rerouted to different bufio client.
1533  */
1534 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1535 {
1536 	if (!(gfp & __GFP_FS)) {
1537 		if (test_bit(B_READING, &b->state) ||
1538 		    test_bit(B_WRITING, &b->state) ||
1539 		    test_bit(B_DIRTY, &b->state))
1540 			return false;
1541 	}
1542 
1543 	if (b->hold_count)
1544 		return false;
1545 
1546 	__make_buffer_clean(b);
1547 	__unlink_buffer(b);
1548 	__free_buffer_wake(b);
1549 
1550 	return true;
1551 }
1552 
1553 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1554 {
1555         unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1556         return retain_bytes / c->block_size;
1557 }
1558 
1559 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1560 			    gfp_t gfp_mask)
1561 {
1562 	int l;
1563 	struct dm_buffer *b, *tmp;
1564 	unsigned long freed = 0;
1565 	unsigned long count = nr_to_scan;
1566 	unsigned retain_target = get_retain_buffers(c);
1567 
1568 	for (l = 0; l < LIST_SIZE; l++) {
1569 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1570 			if (__try_evict_buffer(b, gfp_mask))
1571 				freed++;
1572 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1573 				return freed;
1574 			dm_bufio_cond_resched();
1575 		}
1576 	}
1577 	return freed;
1578 }
1579 
1580 static unsigned long
1581 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1582 {
1583 	struct dm_bufio_client *c;
1584 	unsigned long freed;
1585 
1586 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1587 	if (sc->gfp_mask & __GFP_FS)
1588 		dm_bufio_lock(c);
1589 	else if (!dm_bufio_trylock(c))
1590 		return SHRINK_STOP;
1591 
1592 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1593 	dm_bufio_unlock(c);
1594 	return freed;
1595 }
1596 
1597 static unsigned long
1598 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1599 {
1600 	struct dm_bufio_client *c;
1601 	unsigned long count;
1602 
1603 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1604 	if (sc->gfp_mask & __GFP_FS)
1605 		dm_bufio_lock(c);
1606 	else if (!dm_bufio_trylock(c))
1607 		return 0;
1608 
1609 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1610 	dm_bufio_unlock(c);
1611 	return count;
1612 }
1613 
1614 /*
1615  * Create the buffering interface
1616  */
1617 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1618 					       unsigned reserved_buffers, unsigned aux_size,
1619 					       void (*alloc_callback)(struct dm_buffer *),
1620 					       void (*write_callback)(struct dm_buffer *))
1621 {
1622 	int r;
1623 	struct dm_bufio_client *c;
1624 	unsigned i;
1625 
1626 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1627 	       (block_size & (block_size - 1)));
1628 
1629 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1630 	if (!c) {
1631 		r = -ENOMEM;
1632 		goto bad_client;
1633 	}
1634 	c->buffer_tree = RB_ROOT;
1635 
1636 	c->bdev = bdev;
1637 	c->block_size = block_size;
1638 	c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1639 	c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1640 				  __ffs(block_size) - PAGE_SHIFT : 0;
1641 	c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1642 				  PAGE_SHIFT - __ffs(block_size) : 0);
1643 
1644 	c->aux_size = aux_size;
1645 	c->alloc_callback = alloc_callback;
1646 	c->write_callback = write_callback;
1647 
1648 	for (i = 0; i < LIST_SIZE; i++) {
1649 		INIT_LIST_HEAD(&c->lru[i]);
1650 		c->n_buffers[i] = 0;
1651 	}
1652 
1653 	mutex_init(&c->lock);
1654 	INIT_LIST_HEAD(&c->reserved_buffers);
1655 	c->need_reserved_buffers = reserved_buffers;
1656 
1657 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1658 
1659 	init_waitqueue_head(&c->free_buffer_wait);
1660 	c->async_write_error = 0;
1661 
1662 	c->dm_io = dm_io_client_create();
1663 	if (IS_ERR(c->dm_io)) {
1664 		r = PTR_ERR(c->dm_io);
1665 		goto bad_dm_io;
1666 	}
1667 
1668 	mutex_lock(&dm_bufio_clients_lock);
1669 	if (c->blocks_per_page_bits) {
1670 		if (!DM_BUFIO_CACHE_NAME(c)) {
1671 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1672 			if (!DM_BUFIO_CACHE_NAME(c)) {
1673 				r = -ENOMEM;
1674 				mutex_unlock(&dm_bufio_clients_lock);
1675 				goto bad_cache;
1676 			}
1677 		}
1678 
1679 		if (!DM_BUFIO_CACHE(c)) {
1680 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1681 							      c->block_size,
1682 							      c->block_size, 0, NULL);
1683 			if (!DM_BUFIO_CACHE(c)) {
1684 				r = -ENOMEM;
1685 				mutex_unlock(&dm_bufio_clients_lock);
1686 				goto bad_cache;
1687 			}
1688 		}
1689 	}
1690 	mutex_unlock(&dm_bufio_clients_lock);
1691 
1692 	while (c->need_reserved_buffers) {
1693 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1694 
1695 		if (!b) {
1696 			r = -ENOMEM;
1697 			goto bad_buffer;
1698 		}
1699 		__free_buffer_wake(b);
1700 	}
1701 
1702 	mutex_lock(&dm_bufio_clients_lock);
1703 	dm_bufio_client_count++;
1704 	list_add(&c->client_list, &dm_bufio_all_clients);
1705 	__cache_size_refresh();
1706 	mutex_unlock(&dm_bufio_clients_lock);
1707 
1708 	c->shrinker.count_objects = dm_bufio_shrink_count;
1709 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1710 	c->shrinker.seeks = 1;
1711 	c->shrinker.batch = 0;
1712 	register_shrinker(&c->shrinker);
1713 
1714 	return c;
1715 
1716 bad_buffer:
1717 bad_cache:
1718 	while (!list_empty(&c->reserved_buffers)) {
1719 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1720 						 struct dm_buffer, lru_list);
1721 		list_del(&b->lru_list);
1722 		free_buffer(b);
1723 	}
1724 	dm_io_client_destroy(c->dm_io);
1725 bad_dm_io:
1726 	kfree(c);
1727 bad_client:
1728 	return ERR_PTR(r);
1729 }
1730 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1731 
1732 /*
1733  * Free the buffering interface.
1734  * It is required that there are no references on any buffers.
1735  */
1736 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1737 {
1738 	unsigned i;
1739 
1740 	drop_buffers(c);
1741 
1742 	unregister_shrinker(&c->shrinker);
1743 
1744 	mutex_lock(&dm_bufio_clients_lock);
1745 
1746 	list_del(&c->client_list);
1747 	dm_bufio_client_count--;
1748 	__cache_size_refresh();
1749 
1750 	mutex_unlock(&dm_bufio_clients_lock);
1751 
1752 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1753 	BUG_ON(c->need_reserved_buffers);
1754 
1755 	while (!list_empty(&c->reserved_buffers)) {
1756 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1757 						 struct dm_buffer, lru_list);
1758 		list_del(&b->lru_list);
1759 		free_buffer(b);
1760 	}
1761 
1762 	for (i = 0; i < LIST_SIZE; i++)
1763 		if (c->n_buffers[i])
1764 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1765 
1766 	for (i = 0; i < LIST_SIZE; i++)
1767 		BUG_ON(c->n_buffers[i]);
1768 
1769 	dm_io_client_destroy(c->dm_io);
1770 	kfree(c);
1771 }
1772 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1773 
1774 static unsigned get_max_age_hz(void)
1775 {
1776 	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1777 
1778 	if (max_age > UINT_MAX / HZ)
1779 		max_age = UINT_MAX / HZ;
1780 
1781 	return max_age * HZ;
1782 }
1783 
1784 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1785 {
1786 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1787 }
1788 
1789 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1790 {
1791 	struct dm_buffer *b, *tmp;
1792 	unsigned retain_target = get_retain_buffers(c);
1793 	unsigned count;
1794 
1795 	dm_bufio_lock(c);
1796 
1797 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1798 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1799 		if (count <= retain_target)
1800 			break;
1801 
1802 		if (!older_than(b, age_hz))
1803 			break;
1804 
1805 		if (__try_evict_buffer(b, 0))
1806 			count--;
1807 
1808 		dm_bufio_cond_resched();
1809 	}
1810 
1811 	dm_bufio_unlock(c);
1812 }
1813 
1814 static void cleanup_old_buffers(void)
1815 {
1816 	unsigned long max_age_hz = get_max_age_hz();
1817 	struct dm_bufio_client *c;
1818 
1819 	mutex_lock(&dm_bufio_clients_lock);
1820 
1821 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1822 		__evict_old_buffers(c, max_age_hz);
1823 
1824 	mutex_unlock(&dm_bufio_clients_lock);
1825 }
1826 
1827 static struct workqueue_struct *dm_bufio_wq;
1828 static struct delayed_work dm_bufio_work;
1829 
1830 static void work_fn(struct work_struct *w)
1831 {
1832 	cleanup_old_buffers();
1833 
1834 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1835 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1836 }
1837 
1838 /*----------------------------------------------------------------
1839  * Module setup
1840  *--------------------------------------------------------------*/
1841 
1842 /*
1843  * This is called only once for the whole dm_bufio module.
1844  * It initializes memory limit.
1845  */
1846 static int __init dm_bufio_init(void)
1847 {
1848 	__u64 mem;
1849 
1850 	dm_bufio_allocated_kmem_cache = 0;
1851 	dm_bufio_allocated_get_free_pages = 0;
1852 	dm_bufio_allocated_vmalloc = 0;
1853 	dm_bufio_current_allocated = 0;
1854 
1855 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1856 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1857 
1858 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1859 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1860 
1861 	if (mem > ULONG_MAX)
1862 		mem = ULONG_MAX;
1863 
1864 #ifdef CONFIG_MMU
1865 	/*
1866 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1867 	 * in fs/proc/internal.h
1868 	 */
1869 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1870 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1871 #endif
1872 
1873 	dm_bufio_default_cache_size = mem;
1874 
1875 	mutex_lock(&dm_bufio_clients_lock);
1876 	__cache_size_refresh();
1877 	mutex_unlock(&dm_bufio_clients_lock);
1878 
1879 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1880 	if (!dm_bufio_wq)
1881 		return -ENOMEM;
1882 
1883 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1884 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1885 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1886 
1887 	return 0;
1888 }
1889 
1890 /*
1891  * This is called once when unloading the dm_bufio module.
1892  */
1893 static void __exit dm_bufio_exit(void)
1894 {
1895 	int bug = 0;
1896 	int i;
1897 
1898 	cancel_delayed_work_sync(&dm_bufio_work);
1899 	destroy_workqueue(dm_bufio_wq);
1900 
1901 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1902 		kmem_cache_destroy(dm_bufio_caches[i]);
1903 
1904 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1905 		kfree(dm_bufio_cache_names[i]);
1906 
1907 	if (dm_bufio_client_count) {
1908 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1909 			__func__, dm_bufio_client_count);
1910 		bug = 1;
1911 	}
1912 
1913 	if (dm_bufio_current_allocated) {
1914 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1915 			__func__, dm_bufio_current_allocated);
1916 		bug = 1;
1917 	}
1918 
1919 	if (dm_bufio_allocated_get_free_pages) {
1920 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1921 		       __func__, dm_bufio_allocated_get_free_pages);
1922 		bug = 1;
1923 	}
1924 
1925 	if (dm_bufio_allocated_vmalloc) {
1926 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1927 		       __func__, dm_bufio_allocated_vmalloc);
1928 		bug = 1;
1929 	}
1930 
1931 	BUG_ON(bug);
1932 }
1933 
1934 module_init(dm_bufio_init)
1935 module_exit(dm_bufio_exit)
1936 
1937 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1938 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1939 
1940 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1941 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1942 
1943 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1944 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1945 
1946 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1947 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1948 
1949 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1950 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1951 
1952 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1953 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1954 
1955 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1956 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1957 
1958 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1959 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1960 
1961 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1962 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1963 MODULE_LICENSE("GPL");
1964