xref: /linux/drivers/md/dm-bufio.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 
20 #define DM_MSG_PREFIX "bufio"
21 
22 /*
23  * Memory management policy:
24  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
25  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
26  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
27  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
28  *	dirty buffers.
29  */
30 #define DM_BUFIO_MIN_BUFFERS		8
31 
32 #define DM_BUFIO_MEMORY_PERCENT		2
33 #define DM_BUFIO_VMALLOC_PERCENT	25
34 #define DM_BUFIO_WRITEBACK_PERCENT	75
35 
36 /*
37  * Check buffer ages in this interval (seconds)
38  */
39 #define DM_BUFIO_WORK_TIMER_SECS	30
40 
41 /*
42  * Free buffers when they are older than this (seconds)
43  */
44 #define DM_BUFIO_DEFAULT_AGE_SECS	300
45 
46 /*
47  * The nr of bytes of cached data to keep around.
48  */
49 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
50 
51 /*
52  * The number of bvec entries that are embedded directly in the buffer.
53  * If the chunk size is larger, dm-io is used to do the io.
54  */
55 #define DM_BUFIO_INLINE_VECS		16
56 
57 /*
58  * Don't try to use kmem_cache_alloc for blocks larger than this.
59  * For explanation, see alloc_buffer_data below.
60  */
61 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
62 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
63 
64 /*
65  * dm_buffer->list_mode
66  */
67 #define LIST_CLEAN	0
68 #define LIST_DIRTY	1
69 #define LIST_SIZE	2
70 
71 /*
72  * Linking of buffers:
73  *	All buffers are linked to cache_hash with their hash_list field.
74  *
75  *	Clean buffers that are not being written (B_WRITING not set)
76  *	are linked to lru[LIST_CLEAN] with their lru_list field.
77  *
78  *	Dirty and clean buffers that are being written are linked to
79  *	lru[LIST_DIRTY] with their lru_list field. When the write
80  *	finishes, the buffer cannot be relinked immediately (because we
81  *	are in an interrupt context and relinking requires process
82  *	context), so some clean-not-writing buffers can be held on
83  *	dirty_lru too.  They are later added to lru in the process
84  *	context.
85  */
86 struct dm_bufio_client {
87 	struct mutex lock;
88 
89 	struct list_head lru[LIST_SIZE];
90 	unsigned long n_buffers[LIST_SIZE];
91 
92 	struct block_device *bdev;
93 	unsigned block_size;
94 	unsigned char sectors_per_block_bits;
95 	unsigned char pages_per_block_bits;
96 	unsigned char blocks_per_page_bits;
97 	unsigned aux_size;
98 	void (*alloc_callback)(struct dm_buffer *);
99 	void (*write_callback)(struct dm_buffer *);
100 
101 	struct dm_io_client *dm_io;
102 
103 	struct list_head reserved_buffers;
104 	unsigned need_reserved_buffers;
105 
106 	unsigned minimum_buffers;
107 
108 	struct rb_root buffer_tree;
109 	wait_queue_head_t free_buffer_wait;
110 
111 	int async_write_error;
112 
113 	struct list_head client_list;
114 	struct shrinker shrinker;
115 };
116 
117 /*
118  * Buffer state bits.
119  */
120 #define B_READING	0
121 #define B_WRITING	1
122 #define B_DIRTY		2
123 
124 /*
125  * Describes how the block was allocated:
126  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127  * See the comment at alloc_buffer_data.
128  */
129 enum data_mode {
130 	DATA_MODE_SLAB = 0,
131 	DATA_MODE_GET_FREE_PAGES = 1,
132 	DATA_MODE_VMALLOC = 2,
133 	DATA_MODE_LIMIT = 3
134 };
135 
136 struct dm_buffer {
137 	struct rb_node node;
138 	struct list_head lru_list;
139 	sector_t block;
140 	void *data;
141 	enum data_mode data_mode;
142 	unsigned char list_mode;		/* LIST_* */
143 	unsigned hold_count;
144 	int read_error;
145 	int write_error;
146 	unsigned long state;
147 	unsigned long last_accessed;
148 	struct dm_bufio_client *c;
149 	struct list_head write_list;
150 	struct bio bio;
151 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
152 };
153 
154 /*----------------------------------------------------------------*/
155 
156 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
157 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
158 
159 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
160 {
161 	unsigned ret = c->blocks_per_page_bits - 1;
162 
163 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
164 
165 	return ret;
166 }
167 
168 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
169 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
170 
171 #define dm_bufio_in_request()	(!!current->bio_list)
172 
173 static void dm_bufio_lock(struct dm_bufio_client *c)
174 {
175 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
176 }
177 
178 static int dm_bufio_trylock(struct dm_bufio_client *c)
179 {
180 	return mutex_trylock(&c->lock);
181 }
182 
183 static void dm_bufio_unlock(struct dm_bufio_client *c)
184 {
185 	mutex_unlock(&c->lock);
186 }
187 
188 /*
189  * FIXME Move to sched.h?
190  */
191 #ifdef CONFIG_PREEMPT_VOLUNTARY
192 #  define dm_bufio_cond_resched()		\
193 do {						\
194 	if (unlikely(need_resched()))		\
195 		_cond_resched();		\
196 } while (0)
197 #else
198 #  define dm_bufio_cond_resched()                do { } while (0)
199 #endif
200 
201 /*----------------------------------------------------------------*/
202 
203 /*
204  * Default cache size: available memory divided by the ratio.
205  */
206 static unsigned long dm_bufio_default_cache_size;
207 
208 /*
209  * Total cache size set by the user.
210  */
211 static unsigned long dm_bufio_cache_size;
212 
213 /*
214  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
215  * at any time.  If it disagrees, the user has changed cache size.
216  */
217 static unsigned long dm_bufio_cache_size_latch;
218 
219 static DEFINE_SPINLOCK(param_spinlock);
220 
221 /*
222  * Buffers are freed after this timeout
223  */
224 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
225 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
226 
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
232 
233 /*----------------------------------------------------------------*/
234 
235 /*
236  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237  */
238 static unsigned long dm_bufio_cache_size_per_client;
239 
240 /*
241  * The current number of clients.
242  */
243 static int dm_bufio_client_count;
244 
245 /*
246  * The list of all clients.
247  */
248 static LIST_HEAD(dm_bufio_all_clients);
249 
250 /*
251  * This mutex protects dm_bufio_cache_size_latch,
252  * dm_bufio_cache_size_per_client and dm_bufio_client_count
253  */
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
255 
256 /*----------------------------------------------------------------
257  * A red/black tree acts as an index for all the buffers.
258  *--------------------------------------------------------------*/
259 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
260 {
261 	struct rb_node *n = c->buffer_tree.rb_node;
262 	struct dm_buffer *b;
263 
264 	while (n) {
265 		b = container_of(n, struct dm_buffer, node);
266 
267 		if (b->block == block)
268 			return b;
269 
270 		n = (b->block < block) ? n->rb_left : n->rb_right;
271 	}
272 
273 	return NULL;
274 }
275 
276 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
277 {
278 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
279 	struct dm_buffer *found;
280 
281 	while (*new) {
282 		found = container_of(*new, struct dm_buffer, node);
283 
284 		if (found->block == b->block) {
285 			BUG_ON(found != b);
286 			return;
287 		}
288 
289 		parent = *new;
290 		new = (found->block < b->block) ?
291 			&((*new)->rb_left) : &((*new)->rb_right);
292 	}
293 
294 	rb_link_node(&b->node, parent, new);
295 	rb_insert_color(&b->node, &c->buffer_tree);
296 }
297 
298 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
299 {
300 	rb_erase(&b->node, &c->buffer_tree);
301 }
302 
303 /*----------------------------------------------------------------*/
304 
305 static void adjust_total_allocated(enum data_mode data_mode, long diff)
306 {
307 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
308 		&dm_bufio_allocated_kmem_cache,
309 		&dm_bufio_allocated_get_free_pages,
310 		&dm_bufio_allocated_vmalloc,
311 	};
312 
313 	spin_lock(&param_spinlock);
314 
315 	*class_ptr[data_mode] += diff;
316 
317 	dm_bufio_current_allocated += diff;
318 
319 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
320 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
321 
322 	spin_unlock(&param_spinlock);
323 }
324 
325 /*
326  * Change the number of clients and recalculate per-client limit.
327  */
328 static void __cache_size_refresh(void)
329 {
330 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
331 	BUG_ON(dm_bufio_client_count < 0);
332 
333 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
334 
335 	/*
336 	 * Use default if set to 0 and report the actual cache size used.
337 	 */
338 	if (!dm_bufio_cache_size_latch) {
339 		(void)cmpxchg(&dm_bufio_cache_size, 0,
340 			      dm_bufio_default_cache_size);
341 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
342 	}
343 
344 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
345 					 (dm_bufio_client_count ? : 1);
346 }
347 
348 /*
349  * Allocating buffer data.
350  *
351  * Small buffers are allocated with kmem_cache, to use space optimally.
352  *
353  * For large buffers, we choose between get_free_pages and vmalloc.
354  * Each has advantages and disadvantages.
355  *
356  * __get_free_pages can randomly fail if the memory is fragmented.
357  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
358  * as low as 128M) so using it for caching is not appropriate.
359  *
360  * If the allocation may fail we use __get_free_pages. Memory fragmentation
361  * won't have a fatal effect here, but it just causes flushes of some other
362  * buffers and more I/O will be performed. Don't use __get_free_pages if it
363  * always fails (i.e. order >= MAX_ORDER).
364  *
365  * If the allocation shouldn't fail we use __vmalloc. This is only for the
366  * initial reserve allocation, so there's no risk of wasting all vmalloc
367  * space.
368  */
369 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
370 			       enum data_mode *data_mode)
371 {
372 	unsigned noio_flag;
373 	void *ptr;
374 
375 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
376 		*data_mode = DATA_MODE_SLAB;
377 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
378 	}
379 
380 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
381 	    gfp_mask & __GFP_NORETRY) {
382 		*data_mode = DATA_MODE_GET_FREE_PAGES;
383 		return (void *)__get_free_pages(gfp_mask,
384 						c->pages_per_block_bits);
385 	}
386 
387 	*data_mode = DATA_MODE_VMALLOC;
388 
389 	/*
390 	 * __vmalloc allocates the data pages and auxiliary structures with
391 	 * gfp_flags that were specified, but pagetables are always allocated
392 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
393 	 *
394 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
395 	 * all allocations done by this process (including pagetables) are done
396 	 * as if GFP_NOIO was specified.
397 	 */
398 
399 	if (gfp_mask & __GFP_NORETRY)
400 		noio_flag = memalloc_noio_save();
401 
402 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
403 
404 	if (gfp_mask & __GFP_NORETRY)
405 		memalloc_noio_restore(noio_flag);
406 
407 	return ptr;
408 }
409 
410 /*
411  * Free buffer's data.
412  */
413 static void free_buffer_data(struct dm_bufio_client *c,
414 			     void *data, enum data_mode data_mode)
415 {
416 	switch (data_mode) {
417 	case DATA_MODE_SLAB:
418 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
419 		break;
420 
421 	case DATA_MODE_GET_FREE_PAGES:
422 		free_pages((unsigned long)data, c->pages_per_block_bits);
423 		break;
424 
425 	case DATA_MODE_VMALLOC:
426 		vfree(data);
427 		break;
428 
429 	default:
430 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
431 		       data_mode);
432 		BUG();
433 	}
434 }
435 
436 /*
437  * Allocate buffer and its data.
438  */
439 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
440 {
441 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
442 				      gfp_mask);
443 
444 	if (!b)
445 		return NULL;
446 
447 	b->c = c;
448 
449 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
450 	if (!b->data) {
451 		kfree(b);
452 		return NULL;
453 	}
454 
455 	adjust_total_allocated(b->data_mode, (long)c->block_size);
456 
457 	return b;
458 }
459 
460 /*
461  * Free buffer and its data.
462  */
463 static void free_buffer(struct dm_buffer *b)
464 {
465 	struct dm_bufio_client *c = b->c;
466 
467 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
468 
469 	free_buffer_data(c, b->data, b->data_mode);
470 	kfree(b);
471 }
472 
473 /*
474  * Link buffer to the hash list and clean or dirty queue.
475  */
476 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
477 {
478 	struct dm_bufio_client *c = b->c;
479 
480 	c->n_buffers[dirty]++;
481 	b->block = block;
482 	b->list_mode = dirty;
483 	list_add(&b->lru_list, &c->lru[dirty]);
484 	__insert(b->c, b);
485 	b->last_accessed = jiffies;
486 }
487 
488 /*
489  * Unlink buffer from the hash list and dirty or clean queue.
490  */
491 static void __unlink_buffer(struct dm_buffer *b)
492 {
493 	struct dm_bufio_client *c = b->c;
494 
495 	BUG_ON(!c->n_buffers[b->list_mode]);
496 
497 	c->n_buffers[b->list_mode]--;
498 	__remove(b->c, b);
499 	list_del(&b->lru_list);
500 }
501 
502 /*
503  * Place the buffer to the head of dirty or clean LRU queue.
504  */
505 static void __relink_lru(struct dm_buffer *b, int dirty)
506 {
507 	struct dm_bufio_client *c = b->c;
508 
509 	BUG_ON(!c->n_buffers[b->list_mode]);
510 
511 	c->n_buffers[b->list_mode]--;
512 	c->n_buffers[dirty]++;
513 	b->list_mode = dirty;
514 	list_move(&b->lru_list, &c->lru[dirty]);
515 	b->last_accessed = jiffies;
516 }
517 
518 /*----------------------------------------------------------------
519  * Submit I/O on the buffer.
520  *
521  * Bio interface is faster but it has some problems:
522  *	the vector list is limited (increasing this limit increases
523  *	memory-consumption per buffer, so it is not viable);
524  *
525  *	the memory must be direct-mapped, not vmalloced;
526  *
527  *	the I/O driver can reject requests spuriously if it thinks that
528  *	the requests are too big for the device or if they cross a
529  *	controller-defined memory boundary.
530  *
531  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
532  * it is not vmalloced, try using the bio interface.
533  *
534  * If the buffer is big, if it is vmalloced or if the underlying device
535  * rejects the bio because it is too large, use dm-io layer to do the I/O.
536  * The dm-io layer splits the I/O into multiple requests, avoiding the above
537  * shortcomings.
538  *--------------------------------------------------------------*/
539 
540 /*
541  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
542  * that the request was handled directly with bio interface.
543  */
544 static void dmio_complete(unsigned long error, void *context)
545 {
546 	struct dm_buffer *b = context;
547 
548 	b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
549 }
550 
551 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
552 		     bio_end_io_t *end_io)
553 {
554 	int r;
555 	struct dm_io_request io_req = {
556 		.bi_rw = rw,
557 		.notify.fn = dmio_complete,
558 		.notify.context = b,
559 		.client = b->c->dm_io,
560 	};
561 	struct dm_io_region region = {
562 		.bdev = b->c->bdev,
563 		.sector = block << b->c->sectors_per_block_bits,
564 		.count = b->c->block_size >> SECTOR_SHIFT,
565 	};
566 
567 	if (b->data_mode != DATA_MODE_VMALLOC) {
568 		io_req.mem.type = DM_IO_KMEM;
569 		io_req.mem.ptr.addr = b->data;
570 	} else {
571 		io_req.mem.type = DM_IO_VMA;
572 		io_req.mem.ptr.vma = b->data;
573 	}
574 
575 	b->bio.bi_end_io = end_io;
576 
577 	r = dm_io(&io_req, 1, &region, NULL);
578 	if (r)
579 		end_io(&b->bio, r);
580 }
581 
582 static void inline_endio(struct bio *bio, int error)
583 {
584 	bio_end_io_t *end_fn = bio->bi_private;
585 
586 	/*
587 	 * Reset the bio to free any attached resources
588 	 * (e.g. bio integrity profiles).
589 	 */
590 	bio_reset(bio);
591 
592 	end_fn(bio, error);
593 }
594 
595 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
596 			   bio_end_io_t *end_io)
597 {
598 	char *ptr;
599 	int len;
600 
601 	bio_init(&b->bio);
602 	b->bio.bi_io_vec = b->bio_vec;
603 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
604 	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
605 	b->bio.bi_bdev = b->c->bdev;
606 	b->bio.bi_end_io = inline_endio;
607 	/*
608 	 * Use of .bi_private isn't a problem here because
609 	 * the dm_buffer's inline bio is local to bufio.
610 	 */
611 	b->bio.bi_private = end_io;
612 
613 	/*
614 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
615 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
616 	 */
617 	ptr = b->data;
618 	len = b->c->block_size;
619 
620 	if (len >= PAGE_SIZE)
621 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
622 	else
623 		BUG_ON((unsigned long)ptr & (len - 1));
624 
625 	do {
626 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
627 				  len < PAGE_SIZE ? len : PAGE_SIZE,
628 				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
629 			BUG_ON(b->c->block_size <= PAGE_SIZE);
630 			use_dmio(b, rw, block, end_io);
631 			return;
632 		}
633 
634 		len -= PAGE_SIZE;
635 		ptr += PAGE_SIZE;
636 	} while (len > 0);
637 
638 	submit_bio(rw, &b->bio);
639 }
640 
641 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
642 		      bio_end_io_t *end_io)
643 {
644 	if (rw == WRITE && b->c->write_callback)
645 		b->c->write_callback(b);
646 
647 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
648 	    b->data_mode != DATA_MODE_VMALLOC)
649 		use_inline_bio(b, rw, block, end_io);
650 	else
651 		use_dmio(b, rw, block, end_io);
652 }
653 
654 /*----------------------------------------------------------------
655  * Writing dirty buffers
656  *--------------------------------------------------------------*/
657 
658 /*
659  * The endio routine for write.
660  *
661  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
662  * it.
663  */
664 static void write_endio(struct bio *bio, int error)
665 {
666 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
667 
668 	b->write_error = error;
669 	if (unlikely(error)) {
670 		struct dm_bufio_client *c = b->c;
671 		(void)cmpxchg(&c->async_write_error, 0, error);
672 	}
673 
674 	BUG_ON(!test_bit(B_WRITING, &b->state));
675 
676 	smp_mb__before_atomic();
677 	clear_bit(B_WRITING, &b->state);
678 	smp_mb__after_atomic();
679 
680 	wake_up_bit(&b->state, B_WRITING);
681 }
682 
683 /*
684  * Initiate a write on a dirty buffer, but don't wait for it.
685  *
686  * - If the buffer is not dirty, exit.
687  * - If there some previous write going on, wait for it to finish (we can't
688  *   have two writes on the same buffer simultaneously).
689  * - Submit our write and don't wait on it. We set B_WRITING indicating
690  *   that there is a write in progress.
691  */
692 static void __write_dirty_buffer(struct dm_buffer *b,
693 				 struct list_head *write_list)
694 {
695 	if (!test_bit(B_DIRTY, &b->state))
696 		return;
697 
698 	clear_bit(B_DIRTY, &b->state);
699 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
700 
701 	if (!write_list)
702 		submit_io(b, WRITE, b->block, write_endio);
703 	else
704 		list_add_tail(&b->write_list, write_list);
705 }
706 
707 static void __flush_write_list(struct list_head *write_list)
708 {
709 	struct blk_plug plug;
710 	blk_start_plug(&plug);
711 	while (!list_empty(write_list)) {
712 		struct dm_buffer *b =
713 			list_entry(write_list->next, struct dm_buffer, write_list);
714 		list_del(&b->write_list);
715 		submit_io(b, WRITE, b->block, write_endio);
716 		dm_bufio_cond_resched();
717 	}
718 	blk_finish_plug(&plug);
719 }
720 
721 /*
722  * Wait until any activity on the buffer finishes.  Possibly write the
723  * buffer if it is dirty.  When this function finishes, there is no I/O
724  * running on the buffer and the buffer is not dirty.
725  */
726 static void __make_buffer_clean(struct dm_buffer *b)
727 {
728 	BUG_ON(b->hold_count);
729 
730 	if (!b->state)	/* fast case */
731 		return;
732 
733 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
734 	__write_dirty_buffer(b, NULL);
735 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
736 }
737 
738 /*
739  * Find some buffer that is not held by anybody, clean it, unlink it and
740  * return it.
741  */
742 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
743 {
744 	struct dm_buffer *b;
745 
746 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
747 		BUG_ON(test_bit(B_WRITING, &b->state));
748 		BUG_ON(test_bit(B_DIRTY, &b->state));
749 
750 		if (!b->hold_count) {
751 			__make_buffer_clean(b);
752 			__unlink_buffer(b);
753 			return b;
754 		}
755 		dm_bufio_cond_resched();
756 	}
757 
758 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
759 		BUG_ON(test_bit(B_READING, &b->state));
760 
761 		if (!b->hold_count) {
762 			__make_buffer_clean(b);
763 			__unlink_buffer(b);
764 			return b;
765 		}
766 		dm_bufio_cond_resched();
767 	}
768 
769 	return NULL;
770 }
771 
772 /*
773  * Wait until some other threads free some buffer or release hold count on
774  * some buffer.
775  *
776  * This function is entered with c->lock held, drops it and regains it
777  * before exiting.
778  */
779 static void __wait_for_free_buffer(struct dm_bufio_client *c)
780 {
781 	DECLARE_WAITQUEUE(wait, current);
782 
783 	add_wait_queue(&c->free_buffer_wait, &wait);
784 	set_task_state(current, TASK_UNINTERRUPTIBLE);
785 	dm_bufio_unlock(c);
786 
787 	io_schedule();
788 
789 	remove_wait_queue(&c->free_buffer_wait, &wait);
790 
791 	dm_bufio_lock(c);
792 }
793 
794 enum new_flag {
795 	NF_FRESH = 0,
796 	NF_READ = 1,
797 	NF_GET = 2,
798 	NF_PREFETCH = 3
799 };
800 
801 /*
802  * Allocate a new buffer. If the allocation is not possible, wait until
803  * some other thread frees a buffer.
804  *
805  * May drop the lock and regain it.
806  */
807 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
808 {
809 	struct dm_buffer *b;
810 
811 	/*
812 	 * dm-bufio is resistant to allocation failures (it just keeps
813 	 * one buffer reserved in cases all the allocations fail).
814 	 * So set flags to not try too hard:
815 	 *	GFP_NOIO: don't recurse into the I/O layer
816 	 *	__GFP_NORETRY: don't retry and rather return failure
817 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
818 	 *	__GFP_NOWARN: don't print a warning in case of failure
819 	 *
820 	 * For debugging, if we set the cache size to 1, no new buffers will
821 	 * be allocated.
822 	 */
823 	while (1) {
824 		if (dm_bufio_cache_size_latch != 1) {
825 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
826 			if (b)
827 				return b;
828 		}
829 
830 		if (nf == NF_PREFETCH)
831 			return NULL;
832 
833 		if (!list_empty(&c->reserved_buffers)) {
834 			b = list_entry(c->reserved_buffers.next,
835 				       struct dm_buffer, lru_list);
836 			list_del(&b->lru_list);
837 			c->need_reserved_buffers++;
838 
839 			return b;
840 		}
841 
842 		b = __get_unclaimed_buffer(c);
843 		if (b)
844 			return b;
845 
846 		__wait_for_free_buffer(c);
847 	}
848 }
849 
850 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
851 {
852 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
853 
854 	if (!b)
855 		return NULL;
856 
857 	if (c->alloc_callback)
858 		c->alloc_callback(b);
859 
860 	return b;
861 }
862 
863 /*
864  * Free a buffer and wake other threads waiting for free buffers.
865  */
866 static void __free_buffer_wake(struct dm_buffer *b)
867 {
868 	struct dm_bufio_client *c = b->c;
869 
870 	if (!c->need_reserved_buffers)
871 		free_buffer(b);
872 	else {
873 		list_add(&b->lru_list, &c->reserved_buffers);
874 		c->need_reserved_buffers--;
875 	}
876 
877 	wake_up(&c->free_buffer_wait);
878 }
879 
880 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
881 					struct list_head *write_list)
882 {
883 	struct dm_buffer *b, *tmp;
884 
885 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
886 		BUG_ON(test_bit(B_READING, &b->state));
887 
888 		if (!test_bit(B_DIRTY, &b->state) &&
889 		    !test_bit(B_WRITING, &b->state)) {
890 			__relink_lru(b, LIST_CLEAN);
891 			continue;
892 		}
893 
894 		if (no_wait && test_bit(B_WRITING, &b->state))
895 			return;
896 
897 		__write_dirty_buffer(b, write_list);
898 		dm_bufio_cond_resched();
899 	}
900 }
901 
902 /*
903  * Get writeback threshold and buffer limit for a given client.
904  */
905 static void __get_memory_limit(struct dm_bufio_client *c,
906 			       unsigned long *threshold_buffers,
907 			       unsigned long *limit_buffers)
908 {
909 	unsigned long buffers;
910 
911 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
912 		mutex_lock(&dm_bufio_clients_lock);
913 		__cache_size_refresh();
914 		mutex_unlock(&dm_bufio_clients_lock);
915 	}
916 
917 	buffers = dm_bufio_cache_size_per_client >>
918 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
919 
920 	if (buffers < c->minimum_buffers)
921 		buffers = c->minimum_buffers;
922 
923 	*limit_buffers = buffers;
924 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
925 }
926 
927 /*
928  * Check if we're over watermark.
929  * If we are over threshold_buffers, start freeing buffers.
930  * If we're over "limit_buffers", block until we get under the limit.
931  */
932 static void __check_watermark(struct dm_bufio_client *c,
933 			      struct list_head *write_list)
934 {
935 	unsigned long threshold_buffers, limit_buffers;
936 
937 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
938 
939 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
940 	       limit_buffers) {
941 
942 		struct dm_buffer *b = __get_unclaimed_buffer(c);
943 
944 		if (!b)
945 			return;
946 
947 		__free_buffer_wake(b);
948 		dm_bufio_cond_resched();
949 	}
950 
951 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
952 		__write_dirty_buffers_async(c, 1, write_list);
953 }
954 
955 /*----------------------------------------------------------------
956  * Getting a buffer
957  *--------------------------------------------------------------*/
958 
959 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
960 				     enum new_flag nf, int *need_submit,
961 				     struct list_head *write_list)
962 {
963 	struct dm_buffer *b, *new_b = NULL;
964 
965 	*need_submit = 0;
966 
967 	b = __find(c, block);
968 	if (b)
969 		goto found_buffer;
970 
971 	if (nf == NF_GET)
972 		return NULL;
973 
974 	new_b = __alloc_buffer_wait(c, nf);
975 	if (!new_b)
976 		return NULL;
977 
978 	/*
979 	 * We've had a period where the mutex was unlocked, so need to
980 	 * recheck the hash table.
981 	 */
982 	b = __find(c, block);
983 	if (b) {
984 		__free_buffer_wake(new_b);
985 		goto found_buffer;
986 	}
987 
988 	__check_watermark(c, write_list);
989 
990 	b = new_b;
991 	b->hold_count = 1;
992 	b->read_error = 0;
993 	b->write_error = 0;
994 	__link_buffer(b, block, LIST_CLEAN);
995 
996 	if (nf == NF_FRESH) {
997 		b->state = 0;
998 		return b;
999 	}
1000 
1001 	b->state = 1 << B_READING;
1002 	*need_submit = 1;
1003 
1004 	return b;
1005 
1006 found_buffer:
1007 	if (nf == NF_PREFETCH)
1008 		return NULL;
1009 	/*
1010 	 * Note: it is essential that we don't wait for the buffer to be
1011 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1012 	 * dm_bufio_prefetch can be used in the driver request routine.
1013 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1014 	 * the same buffer, it would deadlock if we waited.
1015 	 */
1016 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1017 		return NULL;
1018 
1019 	b->hold_count++;
1020 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1021 		     test_bit(B_WRITING, &b->state));
1022 	return b;
1023 }
1024 
1025 /*
1026  * The endio routine for reading: set the error, clear the bit and wake up
1027  * anyone waiting on the buffer.
1028  */
1029 static void read_endio(struct bio *bio, int error)
1030 {
1031 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1032 
1033 	b->read_error = error;
1034 
1035 	BUG_ON(!test_bit(B_READING, &b->state));
1036 
1037 	smp_mb__before_atomic();
1038 	clear_bit(B_READING, &b->state);
1039 	smp_mb__after_atomic();
1040 
1041 	wake_up_bit(&b->state, B_READING);
1042 }
1043 
1044 /*
1045  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1046  * functions is similar except that dm_bufio_new doesn't read the
1047  * buffer from the disk (assuming that the caller overwrites all the data
1048  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1049  */
1050 static void *new_read(struct dm_bufio_client *c, sector_t block,
1051 		      enum new_flag nf, struct dm_buffer **bp)
1052 {
1053 	int need_submit;
1054 	struct dm_buffer *b;
1055 
1056 	LIST_HEAD(write_list);
1057 
1058 	dm_bufio_lock(c);
1059 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1060 	dm_bufio_unlock(c);
1061 
1062 	__flush_write_list(&write_list);
1063 
1064 	if (!b)
1065 		return b;
1066 
1067 	if (need_submit)
1068 		submit_io(b, READ, b->block, read_endio);
1069 
1070 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1071 
1072 	if (b->read_error) {
1073 		int error = b->read_error;
1074 
1075 		dm_bufio_release(b);
1076 
1077 		return ERR_PTR(error);
1078 	}
1079 
1080 	*bp = b;
1081 
1082 	return b->data;
1083 }
1084 
1085 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1086 		   struct dm_buffer **bp)
1087 {
1088 	return new_read(c, block, NF_GET, bp);
1089 }
1090 EXPORT_SYMBOL_GPL(dm_bufio_get);
1091 
1092 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1093 		    struct dm_buffer **bp)
1094 {
1095 	BUG_ON(dm_bufio_in_request());
1096 
1097 	return new_read(c, block, NF_READ, bp);
1098 }
1099 EXPORT_SYMBOL_GPL(dm_bufio_read);
1100 
1101 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1102 		   struct dm_buffer **bp)
1103 {
1104 	BUG_ON(dm_bufio_in_request());
1105 
1106 	return new_read(c, block, NF_FRESH, bp);
1107 }
1108 EXPORT_SYMBOL_GPL(dm_bufio_new);
1109 
1110 void dm_bufio_prefetch(struct dm_bufio_client *c,
1111 		       sector_t block, unsigned n_blocks)
1112 {
1113 	struct blk_plug plug;
1114 
1115 	LIST_HEAD(write_list);
1116 
1117 	BUG_ON(dm_bufio_in_request());
1118 
1119 	blk_start_plug(&plug);
1120 	dm_bufio_lock(c);
1121 
1122 	for (; n_blocks--; block++) {
1123 		int need_submit;
1124 		struct dm_buffer *b;
1125 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1126 				&write_list);
1127 		if (unlikely(!list_empty(&write_list))) {
1128 			dm_bufio_unlock(c);
1129 			blk_finish_plug(&plug);
1130 			__flush_write_list(&write_list);
1131 			blk_start_plug(&plug);
1132 			dm_bufio_lock(c);
1133 		}
1134 		if (unlikely(b != NULL)) {
1135 			dm_bufio_unlock(c);
1136 
1137 			if (need_submit)
1138 				submit_io(b, READ, b->block, read_endio);
1139 			dm_bufio_release(b);
1140 
1141 			dm_bufio_cond_resched();
1142 
1143 			if (!n_blocks)
1144 				goto flush_plug;
1145 			dm_bufio_lock(c);
1146 		}
1147 	}
1148 
1149 	dm_bufio_unlock(c);
1150 
1151 flush_plug:
1152 	blk_finish_plug(&plug);
1153 }
1154 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1155 
1156 void dm_bufio_release(struct dm_buffer *b)
1157 {
1158 	struct dm_bufio_client *c = b->c;
1159 
1160 	dm_bufio_lock(c);
1161 
1162 	BUG_ON(!b->hold_count);
1163 
1164 	b->hold_count--;
1165 	if (!b->hold_count) {
1166 		wake_up(&c->free_buffer_wait);
1167 
1168 		/*
1169 		 * If there were errors on the buffer, and the buffer is not
1170 		 * to be written, free the buffer. There is no point in caching
1171 		 * invalid buffer.
1172 		 */
1173 		if ((b->read_error || b->write_error) &&
1174 		    !test_bit(B_READING, &b->state) &&
1175 		    !test_bit(B_WRITING, &b->state) &&
1176 		    !test_bit(B_DIRTY, &b->state)) {
1177 			__unlink_buffer(b);
1178 			__free_buffer_wake(b);
1179 		}
1180 	}
1181 
1182 	dm_bufio_unlock(c);
1183 }
1184 EXPORT_SYMBOL_GPL(dm_bufio_release);
1185 
1186 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1187 {
1188 	struct dm_bufio_client *c = b->c;
1189 
1190 	dm_bufio_lock(c);
1191 
1192 	BUG_ON(test_bit(B_READING, &b->state));
1193 
1194 	if (!test_and_set_bit(B_DIRTY, &b->state))
1195 		__relink_lru(b, LIST_DIRTY);
1196 
1197 	dm_bufio_unlock(c);
1198 }
1199 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1200 
1201 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1202 {
1203 	LIST_HEAD(write_list);
1204 
1205 	BUG_ON(dm_bufio_in_request());
1206 
1207 	dm_bufio_lock(c);
1208 	__write_dirty_buffers_async(c, 0, &write_list);
1209 	dm_bufio_unlock(c);
1210 	__flush_write_list(&write_list);
1211 }
1212 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1213 
1214 /*
1215  * For performance, it is essential that the buffers are written asynchronously
1216  * and simultaneously (so that the block layer can merge the writes) and then
1217  * waited upon.
1218  *
1219  * Finally, we flush hardware disk cache.
1220  */
1221 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1222 {
1223 	int a, f;
1224 	unsigned long buffers_processed = 0;
1225 	struct dm_buffer *b, *tmp;
1226 
1227 	LIST_HEAD(write_list);
1228 
1229 	dm_bufio_lock(c);
1230 	__write_dirty_buffers_async(c, 0, &write_list);
1231 	dm_bufio_unlock(c);
1232 	__flush_write_list(&write_list);
1233 	dm_bufio_lock(c);
1234 
1235 again:
1236 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1237 		int dropped_lock = 0;
1238 
1239 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1240 			buffers_processed++;
1241 
1242 		BUG_ON(test_bit(B_READING, &b->state));
1243 
1244 		if (test_bit(B_WRITING, &b->state)) {
1245 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1246 				dropped_lock = 1;
1247 				b->hold_count++;
1248 				dm_bufio_unlock(c);
1249 				wait_on_bit_io(&b->state, B_WRITING,
1250 					       TASK_UNINTERRUPTIBLE);
1251 				dm_bufio_lock(c);
1252 				b->hold_count--;
1253 			} else
1254 				wait_on_bit_io(&b->state, B_WRITING,
1255 					       TASK_UNINTERRUPTIBLE);
1256 		}
1257 
1258 		if (!test_bit(B_DIRTY, &b->state) &&
1259 		    !test_bit(B_WRITING, &b->state))
1260 			__relink_lru(b, LIST_CLEAN);
1261 
1262 		dm_bufio_cond_resched();
1263 
1264 		/*
1265 		 * If we dropped the lock, the list is no longer consistent,
1266 		 * so we must restart the search.
1267 		 *
1268 		 * In the most common case, the buffer just processed is
1269 		 * relinked to the clean list, so we won't loop scanning the
1270 		 * same buffer again and again.
1271 		 *
1272 		 * This may livelock if there is another thread simultaneously
1273 		 * dirtying buffers, so we count the number of buffers walked
1274 		 * and if it exceeds the total number of buffers, it means that
1275 		 * someone is doing some writes simultaneously with us.  In
1276 		 * this case, stop, dropping the lock.
1277 		 */
1278 		if (dropped_lock)
1279 			goto again;
1280 	}
1281 	wake_up(&c->free_buffer_wait);
1282 	dm_bufio_unlock(c);
1283 
1284 	a = xchg(&c->async_write_error, 0);
1285 	f = dm_bufio_issue_flush(c);
1286 	if (a)
1287 		return a;
1288 
1289 	return f;
1290 }
1291 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1292 
1293 /*
1294  * Use dm-io to send and empty barrier flush the device.
1295  */
1296 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1297 {
1298 	struct dm_io_request io_req = {
1299 		.bi_rw = WRITE_FLUSH,
1300 		.mem.type = DM_IO_KMEM,
1301 		.mem.ptr.addr = NULL,
1302 		.client = c->dm_io,
1303 	};
1304 	struct dm_io_region io_reg = {
1305 		.bdev = c->bdev,
1306 		.sector = 0,
1307 		.count = 0,
1308 	};
1309 
1310 	BUG_ON(dm_bufio_in_request());
1311 
1312 	return dm_io(&io_req, 1, &io_reg, NULL);
1313 }
1314 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1315 
1316 /*
1317  * We first delete any other buffer that may be at that new location.
1318  *
1319  * Then, we write the buffer to the original location if it was dirty.
1320  *
1321  * Then, if we are the only one who is holding the buffer, relink the buffer
1322  * in the hash queue for the new location.
1323  *
1324  * If there was someone else holding the buffer, we write it to the new
1325  * location but not relink it, because that other user needs to have the buffer
1326  * at the same place.
1327  */
1328 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1329 {
1330 	struct dm_bufio_client *c = b->c;
1331 	struct dm_buffer *new;
1332 
1333 	BUG_ON(dm_bufio_in_request());
1334 
1335 	dm_bufio_lock(c);
1336 
1337 retry:
1338 	new = __find(c, new_block);
1339 	if (new) {
1340 		if (new->hold_count) {
1341 			__wait_for_free_buffer(c);
1342 			goto retry;
1343 		}
1344 
1345 		/*
1346 		 * FIXME: Is there any point waiting for a write that's going
1347 		 * to be overwritten in a bit?
1348 		 */
1349 		__make_buffer_clean(new);
1350 		__unlink_buffer(new);
1351 		__free_buffer_wake(new);
1352 	}
1353 
1354 	BUG_ON(!b->hold_count);
1355 	BUG_ON(test_bit(B_READING, &b->state));
1356 
1357 	__write_dirty_buffer(b, NULL);
1358 	if (b->hold_count == 1) {
1359 		wait_on_bit_io(&b->state, B_WRITING,
1360 			       TASK_UNINTERRUPTIBLE);
1361 		set_bit(B_DIRTY, &b->state);
1362 		__unlink_buffer(b);
1363 		__link_buffer(b, new_block, LIST_DIRTY);
1364 	} else {
1365 		sector_t old_block;
1366 		wait_on_bit_lock_io(&b->state, B_WRITING,
1367 				    TASK_UNINTERRUPTIBLE);
1368 		/*
1369 		 * Relink buffer to "new_block" so that write_callback
1370 		 * sees "new_block" as a block number.
1371 		 * After the write, link the buffer back to old_block.
1372 		 * All this must be done in bufio lock, so that block number
1373 		 * change isn't visible to other threads.
1374 		 */
1375 		old_block = b->block;
1376 		__unlink_buffer(b);
1377 		__link_buffer(b, new_block, b->list_mode);
1378 		submit_io(b, WRITE, new_block, write_endio);
1379 		wait_on_bit_io(&b->state, B_WRITING,
1380 			       TASK_UNINTERRUPTIBLE);
1381 		__unlink_buffer(b);
1382 		__link_buffer(b, old_block, b->list_mode);
1383 	}
1384 
1385 	dm_bufio_unlock(c);
1386 	dm_bufio_release(b);
1387 }
1388 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1389 
1390 /*
1391  * Free the given buffer.
1392  *
1393  * This is just a hint, if the buffer is in use or dirty, this function
1394  * does nothing.
1395  */
1396 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1397 {
1398 	struct dm_buffer *b;
1399 
1400 	dm_bufio_lock(c);
1401 
1402 	b = __find(c, block);
1403 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1404 		__unlink_buffer(b);
1405 		__free_buffer_wake(b);
1406 	}
1407 
1408 	dm_bufio_unlock(c);
1409 }
1410 EXPORT_SYMBOL(dm_bufio_forget);
1411 
1412 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1413 {
1414 	c->minimum_buffers = n;
1415 }
1416 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1417 
1418 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1419 {
1420 	return c->block_size;
1421 }
1422 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1423 
1424 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1425 {
1426 	return i_size_read(c->bdev->bd_inode) >>
1427 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1428 }
1429 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1430 
1431 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1432 {
1433 	return b->block;
1434 }
1435 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1436 
1437 void *dm_bufio_get_block_data(struct dm_buffer *b)
1438 {
1439 	return b->data;
1440 }
1441 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1442 
1443 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1444 {
1445 	return b + 1;
1446 }
1447 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1448 
1449 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1450 {
1451 	return b->c;
1452 }
1453 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1454 
1455 static void drop_buffers(struct dm_bufio_client *c)
1456 {
1457 	struct dm_buffer *b;
1458 	int i;
1459 
1460 	BUG_ON(dm_bufio_in_request());
1461 
1462 	/*
1463 	 * An optimization so that the buffers are not written one-by-one.
1464 	 */
1465 	dm_bufio_write_dirty_buffers_async(c);
1466 
1467 	dm_bufio_lock(c);
1468 
1469 	while ((b = __get_unclaimed_buffer(c)))
1470 		__free_buffer_wake(b);
1471 
1472 	for (i = 0; i < LIST_SIZE; i++)
1473 		list_for_each_entry(b, &c->lru[i], lru_list)
1474 			DMERR("leaked buffer %llx, hold count %u, list %d",
1475 			      (unsigned long long)b->block, b->hold_count, i);
1476 
1477 	for (i = 0; i < LIST_SIZE; i++)
1478 		BUG_ON(!list_empty(&c->lru[i]));
1479 
1480 	dm_bufio_unlock(c);
1481 }
1482 
1483 /*
1484  * We may not be able to evict this buffer if IO pending or the client
1485  * is still using it.  Caller is expected to know buffer is too old.
1486  *
1487  * And if GFP_NOFS is used, we must not do any I/O because we hold
1488  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1489  * rerouted to different bufio client.
1490  */
1491 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1492 {
1493 	if (!(gfp & __GFP_FS)) {
1494 		if (test_bit(B_READING, &b->state) ||
1495 		    test_bit(B_WRITING, &b->state) ||
1496 		    test_bit(B_DIRTY, &b->state))
1497 			return false;
1498 	}
1499 
1500 	if (b->hold_count)
1501 		return false;
1502 
1503 	__make_buffer_clean(b);
1504 	__unlink_buffer(b);
1505 	__free_buffer_wake(b);
1506 
1507 	return true;
1508 }
1509 
1510 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1511 {
1512         unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1513         return retain_bytes / c->block_size;
1514 }
1515 
1516 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1517 			    gfp_t gfp_mask)
1518 {
1519 	int l;
1520 	struct dm_buffer *b, *tmp;
1521 	unsigned long freed = 0;
1522 	unsigned long count = nr_to_scan;
1523 	unsigned retain_target = get_retain_buffers(c);
1524 
1525 	for (l = 0; l < LIST_SIZE; l++) {
1526 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1527 			if (__try_evict_buffer(b, gfp_mask))
1528 				freed++;
1529 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1530 				return freed;
1531 			dm_bufio_cond_resched();
1532 		}
1533 	}
1534 	return freed;
1535 }
1536 
1537 static unsigned long
1538 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1539 {
1540 	struct dm_bufio_client *c;
1541 	unsigned long freed;
1542 
1543 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1544 	if (sc->gfp_mask & __GFP_FS)
1545 		dm_bufio_lock(c);
1546 	else if (!dm_bufio_trylock(c))
1547 		return SHRINK_STOP;
1548 
1549 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1550 	dm_bufio_unlock(c);
1551 	return freed;
1552 }
1553 
1554 static unsigned long
1555 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1556 {
1557 	struct dm_bufio_client *c;
1558 	unsigned long count;
1559 
1560 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1561 	if (sc->gfp_mask & __GFP_FS)
1562 		dm_bufio_lock(c);
1563 	else if (!dm_bufio_trylock(c))
1564 		return 0;
1565 
1566 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1567 	dm_bufio_unlock(c);
1568 	return count;
1569 }
1570 
1571 /*
1572  * Create the buffering interface
1573  */
1574 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1575 					       unsigned reserved_buffers, unsigned aux_size,
1576 					       void (*alloc_callback)(struct dm_buffer *),
1577 					       void (*write_callback)(struct dm_buffer *))
1578 {
1579 	int r;
1580 	struct dm_bufio_client *c;
1581 	unsigned i;
1582 
1583 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1584 	       (block_size & (block_size - 1)));
1585 
1586 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1587 	if (!c) {
1588 		r = -ENOMEM;
1589 		goto bad_client;
1590 	}
1591 	c->buffer_tree = RB_ROOT;
1592 
1593 	c->bdev = bdev;
1594 	c->block_size = block_size;
1595 	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1596 	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1597 				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
1598 	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1599 				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1600 
1601 	c->aux_size = aux_size;
1602 	c->alloc_callback = alloc_callback;
1603 	c->write_callback = write_callback;
1604 
1605 	for (i = 0; i < LIST_SIZE; i++) {
1606 		INIT_LIST_HEAD(&c->lru[i]);
1607 		c->n_buffers[i] = 0;
1608 	}
1609 
1610 	mutex_init(&c->lock);
1611 	INIT_LIST_HEAD(&c->reserved_buffers);
1612 	c->need_reserved_buffers = reserved_buffers;
1613 
1614 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1615 
1616 	init_waitqueue_head(&c->free_buffer_wait);
1617 	c->async_write_error = 0;
1618 
1619 	c->dm_io = dm_io_client_create();
1620 	if (IS_ERR(c->dm_io)) {
1621 		r = PTR_ERR(c->dm_io);
1622 		goto bad_dm_io;
1623 	}
1624 
1625 	mutex_lock(&dm_bufio_clients_lock);
1626 	if (c->blocks_per_page_bits) {
1627 		if (!DM_BUFIO_CACHE_NAME(c)) {
1628 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1629 			if (!DM_BUFIO_CACHE_NAME(c)) {
1630 				r = -ENOMEM;
1631 				mutex_unlock(&dm_bufio_clients_lock);
1632 				goto bad_cache;
1633 			}
1634 		}
1635 
1636 		if (!DM_BUFIO_CACHE(c)) {
1637 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1638 							      c->block_size,
1639 							      c->block_size, 0, NULL);
1640 			if (!DM_BUFIO_CACHE(c)) {
1641 				r = -ENOMEM;
1642 				mutex_unlock(&dm_bufio_clients_lock);
1643 				goto bad_cache;
1644 			}
1645 		}
1646 	}
1647 	mutex_unlock(&dm_bufio_clients_lock);
1648 
1649 	while (c->need_reserved_buffers) {
1650 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1651 
1652 		if (!b) {
1653 			r = -ENOMEM;
1654 			goto bad_buffer;
1655 		}
1656 		__free_buffer_wake(b);
1657 	}
1658 
1659 	mutex_lock(&dm_bufio_clients_lock);
1660 	dm_bufio_client_count++;
1661 	list_add(&c->client_list, &dm_bufio_all_clients);
1662 	__cache_size_refresh();
1663 	mutex_unlock(&dm_bufio_clients_lock);
1664 
1665 	c->shrinker.count_objects = dm_bufio_shrink_count;
1666 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1667 	c->shrinker.seeks = 1;
1668 	c->shrinker.batch = 0;
1669 	register_shrinker(&c->shrinker);
1670 
1671 	return c;
1672 
1673 bad_buffer:
1674 bad_cache:
1675 	while (!list_empty(&c->reserved_buffers)) {
1676 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1677 						 struct dm_buffer, lru_list);
1678 		list_del(&b->lru_list);
1679 		free_buffer(b);
1680 	}
1681 	dm_io_client_destroy(c->dm_io);
1682 bad_dm_io:
1683 	kfree(c);
1684 bad_client:
1685 	return ERR_PTR(r);
1686 }
1687 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1688 
1689 /*
1690  * Free the buffering interface.
1691  * It is required that there are no references on any buffers.
1692  */
1693 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1694 {
1695 	unsigned i;
1696 
1697 	drop_buffers(c);
1698 
1699 	unregister_shrinker(&c->shrinker);
1700 
1701 	mutex_lock(&dm_bufio_clients_lock);
1702 
1703 	list_del(&c->client_list);
1704 	dm_bufio_client_count--;
1705 	__cache_size_refresh();
1706 
1707 	mutex_unlock(&dm_bufio_clients_lock);
1708 
1709 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1710 	BUG_ON(c->need_reserved_buffers);
1711 
1712 	while (!list_empty(&c->reserved_buffers)) {
1713 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1714 						 struct dm_buffer, lru_list);
1715 		list_del(&b->lru_list);
1716 		free_buffer(b);
1717 	}
1718 
1719 	for (i = 0; i < LIST_SIZE; i++)
1720 		if (c->n_buffers[i])
1721 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1722 
1723 	for (i = 0; i < LIST_SIZE; i++)
1724 		BUG_ON(c->n_buffers[i]);
1725 
1726 	dm_io_client_destroy(c->dm_io);
1727 	kfree(c);
1728 }
1729 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1730 
1731 static unsigned get_max_age_hz(void)
1732 {
1733 	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1734 
1735 	if (max_age > UINT_MAX / HZ)
1736 		max_age = UINT_MAX / HZ;
1737 
1738 	return max_age * HZ;
1739 }
1740 
1741 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1742 {
1743 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1744 }
1745 
1746 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1747 {
1748 	struct dm_buffer *b, *tmp;
1749 	unsigned retain_target = get_retain_buffers(c);
1750 	unsigned count;
1751 
1752 	dm_bufio_lock(c);
1753 
1754 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1755 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1756 		if (count <= retain_target)
1757 			break;
1758 
1759 		if (!older_than(b, age_hz))
1760 			break;
1761 
1762 		if (__try_evict_buffer(b, 0))
1763 			count--;
1764 
1765 		dm_bufio_cond_resched();
1766 	}
1767 
1768 	dm_bufio_unlock(c);
1769 }
1770 
1771 static void cleanup_old_buffers(void)
1772 {
1773 	unsigned long max_age_hz = get_max_age_hz();
1774 	struct dm_bufio_client *c;
1775 
1776 	mutex_lock(&dm_bufio_clients_lock);
1777 
1778 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1779 		__evict_old_buffers(c, max_age_hz);
1780 
1781 	mutex_unlock(&dm_bufio_clients_lock);
1782 }
1783 
1784 static struct workqueue_struct *dm_bufio_wq;
1785 static struct delayed_work dm_bufio_work;
1786 
1787 static void work_fn(struct work_struct *w)
1788 {
1789 	cleanup_old_buffers();
1790 
1791 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1792 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1793 }
1794 
1795 /*----------------------------------------------------------------
1796  * Module setup
1797  *--------------------------------------------------------------*/
1798 
1799 /*
1800  * This is called only once for the whole dm_bufio module.
1801  * It initializes memory limit.
1802  */
1803 static int __init dm_bufio_init(void)
1804 {
1805 	__u64 mem;
1806 
1807 	dm_bufio_allocated_kmem_cache = 0;
1808 	dm_bufio_allocated_get_free_pages = 0;
1809 	dm_bufio_allocated_vmalloc = 0;
1810 	dm_bufio_current_allocated = 0;
1811 
1812 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1813 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1814 
1815 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1816 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1817 
1818 	if (mem > ULONG_MAX)
1819 		mem = ULONG_MAX;
1820 
1821 #ifdef CONFIG_MMU
1822 	/*
1823 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1824 	 * in fs/proc/internal.h
1825 	 */
1826 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1827 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1828 #endif
1829 
1830 	dm_bufio_default_cache_size = mem;
1831 
1832 	mutex_lock(&dm_bufio_clients_lock);
1833 	__cache_size_refresh();
1834 	mutex_unlock(&dm_bufio_clients_lock);
1835 
1836 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1837 	if (!dm_bufio_wq)
1838 		return -ENOMEM;
1839 
1840 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1841 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1842 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1843 
1844 	return 0;
1845 }
1846 
1847 /*
1848  * This is called once when unloading the dm_bufio module.
1849  */
1850 static void __exit dm_bufio_exit(void)
1851 {
1852 	int bug = 0;
1853 	int i;
1854 
1855 	cancel_delayed_work_sync(&dm_bufio_work);
1856 	destroy_workqueue(dm_bufio_wq);
1857 
1858 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1859 		struct kmem_cache *kc = dm_bufio_caches[i];
1860 
1861 		if (kc)
1862 			kmem_cache_destroy(kc);
1863 	}
1864 
1865 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1866 		kfree(dm_bufio_cache_names[i]);
1867 
1868 	if (dm_bufio_client_count) {
1869 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1870 			__func__, dm_bufio_client_count);
1871 		bug = 1;
1872 	}
1873 
1874 	if (dm_bufio_current_allocated) {
1875 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1876 			__func__, dm_bufio_current_allocated);
1877 		bug = 1;
1878 	}
1879 
1880 	if (dm_bufio_allocated_get_free_pages) {
1881 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1882 		       __func__, dm_bufio_allocated_get_free_pages);
1883 		bug = 1;
1884 	}
1885 
1886 	if (dm_bufio_allocated_vmalloc) {
1887 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1888 		       __func__, dm_bufio_allocated_vmalloc);
1889 		bug = 1;
1890 	}
1891 
1892 	if (bug)
1893 		BUG();
1894 }
1895 
1896 module_init(dm_bufio_init)
1897 module_exit(dm_bufio_exit)
1898 
1899 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1900 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1901 
1902 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1903 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1904 
1905 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1906 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1907 
1908 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1909 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1910 
1911 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1912 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1913 
1914 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1915 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1916 
1917 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1918 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1919 
1920 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1921 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1922 
1923 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1924 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1925 MODULE_LICENSE("GPL");
1926