xref: /linux/drivers/md/bcache/writeback.c (revision 31a1b26f16e822577def5402ffc79cfe4aed2db9)
1 /*
2  * background writeback - scan btree for dirty data and write it to the backing
3  * device
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13 
14 #include <trace/events/bcache.h>
15 
16 static struct workqueue_struct *dirty_wq;
17 
18 static void read_dirty(struct closure *);
19 
20 struct dirty_io {
21 	struct closure		cl;
22 	struct cached_dev	*dc;
23 	struct bio		bio;
24 };
25 
26 /* Rate limiting */
27 
28 static void __update_writeback_rate(struct cached_dev *dc)
29 {
30 	struct cache_set *c = dc->disk.c;
31 	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
32 	uint64_t cache_dirty_target =
33 		div_u64(cache_sectors * dc->writeback_percent, 100);
34 
35 	int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
36 				   c->cached_dev_sectors);
37 
38 	/* PD controller */
39 
40 	int change = 0;
41 	int64_t error;
42 	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
43 	int64_t derivative = dirty - dc->disk.sectors_dirty_last;
44 
45 	dc->disk.sectors_dirty_last = dirty;
46 
47 	derivative *= dc->writeback_rate_d_term;
48 	derivative = clamp(derivative, -dirty, dirty);
49 
50 	derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
51 			      dc->writeback_rate_d_smooth, 0);
52 
53 	/* Avoid divide by zero */
54 	if (!target)
55 		goto out;
56 
57 	error = div64_s64((dirty + derivative - target) << 8, target);
58 
59 	change = div_s64((dc->writeback_rate.rate * error) >> 8,
60 			 dc->writeback_rate_p_term_inverse);
61 
62 	/* Don't increase writeback rate if the device isn't keeping up */
63 	if (change > 0 &&
64 	    time_after64(local_clock(),
65 			 dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
66 		change = 0;
67 
68 	dc->writeback_rate.rate =
69 		clamp_t(int64_t, dc->writeback_rate.rate + change,
70 			1, NSEC_PER_MSEC);
71 out:
72 	dc->writeback_rate_derivative = derivative;
73 	dc->writeback_rate_change = change;
74 	dc->writeback_rate_target = target;
75 
76 	schedule_delayed_work(&dc->writeback_rate_update,
77 			      dc->writeback_rate_update_seconds * HZ);
78 }
79 
80 static void update_writeback_rate(struct work_struct *work)
81 {
82 	struct cached_dev *dc = container_of(to_delayed_work(work),
83 					     struct cached_dev,
84 					     writeback_rate_update);
85 
86 	down_read(&dc->writeback_lock);
87 
88 	if (atomic_read(&dc->has_dirty) &&
89 	    dc->writeback_percent)
90 		__update_writeback_rate(dc);
91 
92 	up_read(&dc->writeback_lock);
93 }
94 
95 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
96 {
97 	if (atomic_read(&dc->disk.detaching) ||
98 	    !dc->writeback_percent)
99 		return 0;
100 
101 	return bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
102 }
103 
104 /* Background writeback */
105 
106 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
107 {
108 	return KEY_DIRTY(k);
109 }
110 
111 static bool dirty_full_stripe_pred(struct keybuf *buf, struct bkey *k)
112 {
113 	uint64_t stripe;
114 	unsigned nr_sectors = KEY_SIZE(k);
115 	struct cached_dev *dc = container_of(buf, struct cached_dev,
116 					     writeback_keys);
117 	unsigned stripe_size = 1 << dc->disk.stripe_size_bits;
118 
119 	if (!KEY_DIRTY(k))
120 		return false;
121 
122 	stripe = KEY_START(k) >> dc->disk.stripe_size_bits;
123 	while (1) {
124 		if (atomic_read(dc->disk.stripe_sectors_dirty + stripe) !=
125 		    stripe_size)
126 			return false;
127 
128 		if (nr_sectors <= stripe_size)
129 			return true;
130 
131 		nr_sectors -= stripe_size;
132 		stripe++;
133 	}
134 }
135 
136 static void dirty_init(struct keybuf_key *w)
137 {
138 	struct dirty_io *io = w->private;
139 	struct bio *bio = &io->bio;
140 
141 	bio_init(bio);
142 	if (!io->dc->writeback_percent)
143 		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
144 
145 	bio->bi_size		= KEY_SIZE(&w->key) << 9;
146 	bio->bi_max_vecs	= DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
147 	bio->bi_private		= w;
148 	bio->bi_io_vec		= bio->bi_inline_vecs;
149 	bch_bio_map(bio, NULL);
150 }
151 
152 static void refill_dirty(struct closure *cl)
153 {
154 	struct cached_dev *dc = container_of(cl, struct cached_dev,
155 					     writeback.cl);
156 	struct keybuf *buf = &dc->writeback_keys;
157 	bool searched_from_start = false;
158 	struct bkey end = MAX_KEY;
159 	SET_KEY_INODE(&end, dc->disk.id);
160 
161 	if (!atomic_read(&dc->disk.detaching) &&
162 	    !dc->writeback_running)
163 		closure_return(cl);
164 
165 	down_write(&dc->writeback_lock);
166 
167 	if (!atomic_read(&dc->has_dirty)) {
168 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
169 		bch_write_bdev_super(dc, NULL);
170 
171 		up_write(&dc->writeback_lock);
172 		closure_return(cl);
173 	}
174 
175 	if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
176 		buf->last_scanned = KEY(dc->disk.id, 0, 0);
177 		searched_from_start = true;
178 	}
179 
180 	if (dc->partial_stripes_expensive) {
181 		uint64_t i;
182 
183 		for (i = 0; i < dc->disk.nr_stripes; i++)
184 			if (atomic_read(dc->disk.stripe_sectors_dirty + i) ==
185 			    1 << dc->disk.stripe_size_bits)
186 				goto full_stripes;
187 
188 		goto normal_refill;
189 full_stripes:
190 		bch_refill_keybuf(dc->disk.c, buf, &end,
191 				  dirty_full_stripe_pred);
192 	} else {
193 normal_refill:
194 		bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
195 	}
196 
197 	if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
198 		/* Searched the entire btree  - delay awhile */
199 
200 		if (RB_EMPTY_ROOT(&buf->keys)) {
201 			atomic_set(&dc->has_dirty, 0);
202 			cached_dev_put(dc);
203 		}
204 
205 		if (!atomic_read(&dc->disk.detaching))
206 			closure_delay(&dc->writeback, dc->writeback_delay * HZ);
207 	}
208 
209 	up_write(&dc->writeback_lock);
210 
211 	ratelimit_reset(&dc->writeback_rate);
212 
213 	/* Punt to workqueue only so we don't recurse and blow the stack */
214 	continue_at(cl, read_dirty, dirty_wq);
215 }
216 
217 void bch_writeback_queue(struct cached_dev *dc)
218 {
219 	if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
220 		if (!atomic_read(&dc->disk.detaching))
221 			closure_delay(&dc->writeback, dc->writeback_delay * HZ);
222 
223 		continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
224 	}
225 }
226 
227 void bch_writeback_add(struct cached_dev *dc)
228 {
229 	if (!atomic_read(&dc->has_dirty) &&
230 	    !atomic_xchg(&dc->has_dirty, 1)) {
231 		atomic_inc(&dc->count);
232 
233 		if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
234 			SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
235 			/* XXX: should do this synchronously */
236 			bch_write_bdev_super(dc, NULL);
237 		}
238 
239 		bch_writeback_queue(dc);
240 
241 		if (dc->writeback_percent)
242 			schedule_delayed_work(&dc->writeback_rate_update,
243 				      dc->writeback_rate_update_seconds * HZ);
244 	}
245 }
246 
247 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
248 				  uint64_t offset, int nr_sectors)
249 {
250 	struct bcache_device *d = c->devices[inode];
251 	unsigned stripe_size, stripe_offset;
252 	uint64_t stripe;
253 
254 	if (!d)
255 		return;
256 
257 	stripe_size = 1 << d->stripe_size_bits;
258 	stripe = offset >> d->stripe_size_bits;
259 	stripe_offset = offset & (stripe_size - 1);
260 
261 	while (nr_sectors) {
262 		int s = min_t(unsigned, abs(nr_sectors),
263 			      stripe_size - stripe_offset);
264 
265 		if (nr_sectors < 0)
266 			s = -s;
267 
268 		atomic_add(s, d->stripe_sectors_dirty + stripe);
269 		nr_sectors -= s;
270 		stripe_offset = 0;
271 		stripe++;
272 	}
273 }
274 
275 /* Background writeback - IO loop */
276 
277 static void dirty_io_destructor(struct closure *cl)
278 {
279 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
280 	kfree(io);
281 }
282 
283 static void write_dirty_finish(struct closure *cl)
284 {
285 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
286 	struct keybuf_key *w = io->bio.bi_private;
287 	struct cached_dev *dc = io->dc;
288 	struct bio_vec *bv;
289 	int i;
290 
291 	bio_for_each_segment_all(bv, &io->bio, i)
292 		__free_page(bv->bv_page);
293 
294 	/* This is kind of a dumb way of signalling errors. */
295 	if (KEY_DIRTY(&w->key)) {
296 		unsigned i;
297 		struct btree_op op;
298 		bch_btree_op_init_stack(&op);
299 
300 		op.type = BTREE_REPLACE;
301 		bkey_copy(&op.replace, &w->key);
302 
303 		SET_KEY_DIRTY(&w->key, false);
304 		bch_keylist_add(&op.keys, &w->key);
305 
306 		for (i = 0; i < KEY_PTRS(&w->key); i++)
307 			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
308 
309 		bch_btree_insert(&op, dc->disk.c);
310 		closure_sync(&op.cl);
311 
312 		if (op.insert_collision)
313 			trace_bcache_writeback_collision(&w->key);
314 
315 		atomic_long_inc(op.insert_collision
316 				? &dc->disk.c->writeback_keys_failed
317 				: &dc->disk.c->writeback_keys_done);
318 	}
319 
320 	bch_keybuf_del(&dc->writeback_keys, w);
321 	atomic_dec_bug(&dc->in_flight);
322 
323 	closure_wake_up(&dc->writeback_wait);
324 
325 	closure_return_with_destructor(cl, dirty_io_destructor);
326 }
327 
328 static void dirty_endio(struct bio *bio, int error)
329 {
330 	struct keybuf_key *w = bio->bi_private;
331 	struct dirty_io *io = w->private;
332 
333 	if (error)
334 		SET_KEY_DIRTY(&w->key, false);
335 
336 	closure_put(&io->cl);
337 }
338 
339 static void write_dirty(struct closure *cl)
340 {
341 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
342 	struct keybuf_key *w = io->bio.bi_private;
343 
344 	dirty_init(w);
345 	io->bio.bi_rw		= WRITE;
346 	io->bio.bi_sector	= KEY_START(&w->key);
347 	io->bio.bi_bdev		= io->dc->bdev;
348 	io->bio.bi_end_io	= dirty_endio;
349 
350 	closure_bio_submit(&io->bio, cl, &io->dc->disk);
351 
352 	continue_at(cl, write_dirty_finish, dirty_wq);
353 }
354 
355 static void read_dirty_endio(struct bio *bio, int error)
356 {
357 	struct keybuf_key *w = bio->bi_private;
358 	struct dirty_io *io = w->private;
359 
360 	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
361 			    error, "reading dirty data from cache");
362 
363 	dirty_endio(bio, error);
364 }
365 
366 static void read_dirty_submit(struct closure *cl)
367 {
368 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
369 
370 	closure_bio_submit(&io->bio, cl, &io->dc->disk);
371 
372 	continue_at(cl, write_dirty, dirty_wq);
373 }
374 
375 static void read_dirty(struct closure *cl)
376 {
377 	struct cached_dev *dc = container_of(cl, struct cached_dev,
378 					     writeback.cl);
379 	unsigned delay = writeback_delay(dc, 0);
380 	struct keybuf_key *w;
381 	struct dirty_io *io;
382 
383 	/*
384 	 * XXX: if we error, background writeback just spins. Should use some
385 	 * mempools.
386 	 */
387 
388 	while (1) {
389 		w = bch_keybuf_next(&dc->writeback_keys);
390 		if (!w)
391 			break;
392 
393 		BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
394 
395 		if (delay > 0 &&
396 		    (KEY_START(&w->key) != dc->last_read ||
397 		     jiffies_to_msecs(delay) > 50)) {
398 			w->private = NULL;
399 
400 			closure_delay(&dc->writeback, delay);
401 			continue_at(cl, read_dirty, dirty_wq);
402 		}
403 
404 		dc->last_read	= KEY_OFFSET(&w->key);
405 
406 		io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
407 			     * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
408 			     GFP_KERNEL);
409 		if (!io)
410 			goto err;
411 
412 		w->private	= io;
413 		io->dc		= dc;
414 
415 		dirty_init(w);
416 		io->bio.bi_sector	= PTR_OFFSET(&w->key, 0);
417 		io->bio.bi_bdev		= PTR_CACHE(dc->disk.c,
418 						    &w->key, 0)->bdev;
419 		io->bio.bi_rw		= READ;
420 		io->bio.bi_end_io	= read_dirty_endio;
421 
422 		if (bio_alloc_pages(&io->bio, GFP_KERNEL))
423 			goto err_free;
424 
425 		trace_bcache_writeback(&w->key);
426 
427 		closure_call(&io->cl, read_dirty_submit, NULL, &dc->disk.cl);
428 
429 		delay = writeback_delay(dc, KEY_SIZE(&w->key));
430 
431 		atomic_inc(&dc->in_flight);
432 
433 		if (!closure_wait_event(&dc->writeback_wait, cl,
434 					atomic_read(&dc->in_flight) < 64))
435 			continue_at(cl, read_dirty, dirty_wq);
436 	}
437 
438 	if (0) {
439 err_free:
440 		kfree(w->private);
441 err:
442 		bch_keybuf_del(&dc->writeback_keys, w);
443 	}
444 
445 	refill_dirty(cl);
446 }
447 
448 /* Init */
449 
450 static int bch_btree_sectors_dirty_init(struct btree *b, struct btree_op *op,
451 					struct cached_dev *dc)
452 {
453 	struct bkey *k;
454 	struct btree_iter iter;
455 
456 	bch_btree_iter_init(b, &iter, &KEY(dc->disk.id, 0, 0));
457 	while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad)))
458 		if (!b->level) {
459 			if (KEY_INODE(k) > dc->disk.id)
460 				break;
461 
462 			if (KEY_DIRTY(k))
463 				bcache_dev_sectors_dirty_add(b->c, dc->disk.id,
464 							     KEY_START(k),
465 							     KEY_SIZE(k));
466 		} else {
467 			btree(sectors_dirty_init, k, b, op, dc);
468 			if (KEY_INODE(k) > dc->disk.id)
469 				break;
470 
471 			cond_resched();
472 		}
473 
474 	return 0;
475 }
476 
477 void bch_sectors_dirty_init(struct cached_dev *dc)
478 {
479 	struct btree_op op;
480 
481 	bch_btree_op_init_stack(&op);
482 	btree_root(sectors_dirty_init, dc->disk.c, &op, dc);
483 }
484 
485 void bch_cached_dev_writeback_init(struct cached_dev *dc)
486 {
487 	closure_init_unlocked(&dc->writeback);
488 	init_rwsem(&dc->writeback_lock);
489 
490 	bch_keybuf_init(&dc->writeback_keys);
491 
492 	dc->writeback_metadata		= true;
493 	dc->writeback_running		= true;
494 	dc->writeback_percent		= 10;
495 	dc->writeback_delay		= 30;
496 	dc->writeback_rate.rate		= 1024;
497 
498 	dc->writeback_rate_update_seconds = 30;
499 	dc->writeback_rate_d_term	= 16;
500 	dc->writeback_rate_p_term_inverse = 64;
501 	dc->writeback_rate_d_smooth	= 8;
502 
503 	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
504 	schedule_delayed_work(&dc->writeback_rate_update,
505 			      dc->writeback_rate_update_seconds * HZ);
506 }
507 
508 void bch_writeback_exit(void)
509 {
510 	if (dirty_wq)
511 		destroy_workqueue(dirty_wq);
512 }
513 
514 int __init bch_writeback_init(void)
515 {
516 	dirty_wq = create_singlethread_workqueue("bcache_writeback");
517 	if (!dirty_wq)
518 		return -ENOMEM;
519 
520 	return 0;
521 }
522