xref: /linux/drivers/md/bcache/util.h (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/errno.h>
7 #include <linux/blkdev.h>
8 #include <linux/kernel.h>
9 #include <linux/llist.h>
10 #include <linux/ratelimit.h>
11 #include <linux/vmalloc.h>
12 #include <linux/workqueue.h>
13 
14 #include "closure.h"
15 
16 #define PAGE_SECTORS		(PAGE_SIZE / 512)
17 
18 struct closure;
19 
20 #ifdef CONFIG_BCACHE_DEBUG
21 
22 #define EBUG_ON(cond)			BUG_ON(cond)
23 #define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
24 #define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)
25 
26 #else /* DEBUG */
27 
28 #define EBUG_ON(cond)			do { if (cond); } while (0)
29 #define atomic_dec_bug(v)	atomic_dec(v)
30 #define atomic_inc_bug(v, i)	atomic_inc(v)
31 
32 #endif
33 
34 #define DECLARE_HEAP(type, name)					\
35 	struct {							\
36 		size_t size, used;					\
37 		type *data;						\
38 	} name
39 
40 #define init_heap(heap, _size, gfp)					\
41 ({									\
42 	size_t _bytes;							\
43 	(heap)->used = 0;						\
44 	(heap)->size = (_size);						\
45 	_bytes = (heap)->size * sizeof(*(heap)->data);			\
46 	(heap)->data = NULL;						\
47 	if (_bytes < KMALLOC_MAX_SIZE)					\
48 		(heap)->data = kmalloc(_bytes, (gfp));			\
49 	if ((!(heap)->data) && ((gfp) & GFP_KERNEL))			\
50 		(heap)->data = vmalloc(_bytes);				\
51 	(heap)->data;							\
52 })
53 
54 #define free_heap(heap)							\
55 do {									\
56 	kvfree((heap)->data);						\
57 	(heap)->data = NULL;						\
58 } while (0)
59 
60 #define heap_swap(h, i, j)	swap((h)->data[i], (h)->data[j])
61 
62 #define heap_sift(h, i, cmp)						\
63 do {									\
64 	size_t _r, _j = i;						\
65 									\
66 	for (; _j * 2 + 1 < (h)->used; _j = _r) {			\
67 		_r = _j * 2 + 1;					\
68 		if (_r + 1 < (h)->used &&				\
69 		    cmp((h)->data[_r], (h)->data[_r + 1]))		\
70 			_r++;						\
71 									\
72 		if (cmp((h)->data[_r], (h)->data[_j]))			\
73 			break;						\
74 		heap_swap(h, _r, _j);					\
75 	}								\
76 } while (0)
77 
78 #define heap_sift_down(h, i, cmp)					\
79 do {									\
80 	while (i) {							\
81 		size_t p = (i - 1) / 2;					\
82 		if (cmp((h)->data[i], (h)->data[p]))			\
83 			break;						\
84 		heap_swap(h, i, p);					\
85 		i = p;							\
86 	}								\
87 } while (0)
88 
89 #define heap_add(h, d, cmp)						\
90 ({									\
91 	bool _r = !heap_full(h);					\
92 	if (_r) {							\
93 		size_t _i = (h)->used++;				\
94 		(h)->data[_i] = d;					\
95 									\
96 		heap_sift_down(h, _i, cmp);				\
97 		heap_sift(h, _i, cmp);					\
98 	}								\
99 	_r;								\
100 })
101 
102 #define heap_pop(h, d, cmp)						\
103 ({									\
104 	bool _r = (h)->used;						\
105 	if (_r) {							\
106 		(d) = (h)->data[0];					\
107 		(h)->used--;						\
108 		heap_swap(h, 0, (h)->used);				\
109 		heap_sift(h, 0, cmp);					\
110 	}								\
111 	_r;								\
112 })
113 
114 #define heap_peek(h)	((h)->used ? (h)->data[0] : NULL)
115 
116 #define heap_full(h)	((h)->used == (h)->size)
117 
118 #define DECLARE_FIFO(type, name)					\
119 	struct {							\
120 		size_t front, back, size, mask;				\
121 		type *data;						\
122 	} name
123 
124 #define fifo_for_each(c, fifo, iter)					\
125 	for (iter = (fifo)->front;					\
126 	     c = (fifo)->data[iter], iter != (fifo)->back;		\
127 	     iter = (iter + 1) & (fifo)->mask)
128 
129 #define __init_fifo(fifo, gfp)						\
130 ({									\
131 	size_t _allocated_size, _bytes;					\
132 	BUG_ON(!(fifo)->size);						\
133 									\
134 	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
135 	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
136 									\
137 	(fifo)->mask = _allocated_size - 1;				\
138 	(fifo)->front = (fifo)->back = 0;				\
139 	(fifo)->data = NULL;						\
140 									\
141 	if (_bytes < KMALLOC_MAX_SIZE)					\
142 		(fifo)->data = kmalloc(_bytes, (gfp));			\
143 	if ((!(fifo)->data) && ((gfp) & GFP_KERNEL))			\
144 		(fifo)->data = vmalloc(_bytes);				\
145 	(fifo)->data;							\
146 })
147 
148 #define init_fifo_exact(fifo, _size, gfp)				\
149 ({									\
150 	(fifo)->size = (_size);						\
151 	__init_fifo(fifo, gfp);						\
152 })
153 
154 #define init_fifo(fifo, _size, gfp)					\
155 ({									\
156 	(fifo)->size = (_size);						\
157 	if ((fifo)->size > 4)						\
158 		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
159 	__init_fifo(fifo, gfp);						\
160 })
161 
162 #define free_fifo(fifo)							\
163 do {									\
164 	kvfree((fifo)->data);						\
165 	(fifo)->data = NULL;						\
166 } while (0)
167 
168 #define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
169 #define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))
170 
171 #define fifo_empty(fifo)	(!fifo_used(fifo))
172 #define fifo_full(fifo)		(!fifo_free(fifo))
173 
174 #define fifo_front(fifo)	((fifo)->data[(fifo)->front])
175 #define fifo_back(fifo)							\
176 	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
177 
178 #define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)
179 
180 #define fifo_push_back(fifo, i)						\
181 ({									\
182 	bool _r = !fifo_full((fifo));					\
183 	if (_r) {							\
184 		(fifo)->data[(fifo)->back++] = (i);			\
185 		(fifo)->back &= (fifo)->mask;				\
186 	}								\
187 	_r;								\
188 })
189 
190 #define fifo_pop_front(fifo, i)						\
191 ({									\
192 	bool _r = !fifo_empty((fifo));					\
193 	if (_r) {							\
194 		(i) = (fifo)->data[(fifo)->front++];			\
195 		(fifo)->front &= (fifo)->mask;				\
196 	}								\
197 	_r;								\
198 })
199 
200 #define fifo_push_front(fifo, i)					\
201 ({									\
202 	bool _r = !fifo_full((fifo));					\
203 	if (_r) {							\
204 		--(fifo)->front;					\
205 		(fifo)->front &= (fifo)->mask;				\
206 		(fifo)->data[(fifo)->front] = (i);			\
207 	}								\
208 	_r;								\
209 })
210 
211 #define fifo_pop_back(fifo, i)						\
212 ({									\
213 	bool _r = !fifo_empty((fifo));					\
214 	if (_r) {							\
215 		--(fifo)->back;						\
216 		(fifo)->back &= (fifo)->mask;				\
217 		(i) = (fifo)->data[(fifo)->back]			\
218 	}								\
219 	_r;								\
220 })
221 
222 #define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
223 #define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))
224 
225 #define fifo_swap(l, r)							\
226 do {									\
227 	swap((l)->front, (r)->front);					\
228 	swap((l)->back, (r)->back);					\
229 	swap((l)->size, (r)->size);					\
230 	swap((l)->mask, (r)->mask);					\
231 	swap((l)->data, (r)->data);					\
232 } while (0)
233 
234 #define fifo_move(dest, src)						\
235 do {									\
236 	typeof(*((dest)->data)) _t;					\
237 	while (!fifo_full(dest) &&					\
238 	       fifo_pop(src, _t))					\
239 		fifo_push(dest, _t);					\
240 } while (0)
241 
242 /*
243  * Simple array based allocator - preallocates a number of elements and you can
244  * never allocate more than that, also has no locking.
245  *
246  * Handy because if you know you only need a fixed number of elements you don't
247  * have to worry about memory allocation failure, and sometimes a mempool isn't
248  * what you want.
249  *
250  * We treat the free elements as entries in a singly linked list, and the
251  * freelist as a stack - allocating and freeing push and pop off the freelist.
252  */
253 
254 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
255 	struct {							\
256 		type	*freelist;					\
257 		type	data[size];					\
258 	} name
259 
260 #define array_alloc(array)						\
261 ({									\
262 	typeof((array)->freelist) _ret = (array)->freelist;		\
263 									\
264 	if (_ret)							\
265 		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
266 									\
267 	_ret;								\
268 })
269 
270 #define array_free(array, ptr)						\
271 do {									\
272 	typeof((array)->freelist) _ptr = ptr;				\
273 									\
274 	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
275 	(array)->freelist = _ptr;					\
276 } while (0)
277 
278 #define array_allocator_init(array)					\
279 do {									\
280 	typeof((array)->freelist) _i;					\
281 									\
282 	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
283 	(array)->freelist = NULL;					\
284 									\
285 	for (_i = (array)->data;					\
286 	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
287 	     _i++)							\
288 		array_free(array, _i);					\
289 } while (0)
290 
291 #define array_freelist_empty(array)	((array)->freelist == NULL)
292 
293 #define ANYSINT_MAX(t)							\
294 	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
295 
296 int bch_strtoint_h(const char *, int *);
297 int bch_strtouint_h(const char *, unsigned int *);
298 int bch_strtoll_h(const char *, long long *);
299 int bch_strtoull_h(const char *, unsigned long long *);
300 
301 static inline int bch_strtol_h(const char *cp, long *res)
302 {
303 #if BITS_PER_LONG == 32
304 	return bch_strtoint_h(cp, (int *) res);
305 #else
306 	return bch_strtoll_h(cp, (long long *) res);
307 #endif
308 }
309 
310 static inline int bch_strtoul_h(const char *cp, long *res)
311 {
312 #if BITS_PER_LONG == 32
313 	return bch_strtouint_h(cp, (unsigned int *) res);
314 #else
315 	return bch_strtoull_h(cp, (unsigned long long *) res);
316 #endif
317 }
318 
319 #define strtoi_h(cp, res)						\
320 	(__builtin_types_compatible_p(typeof(*res), int)		\
321 	? bch_strtoint_h(cp, (void *) res)				\
322 	: __builtin_types_compatible_p(typeof(*res), long)		\
323 	? bch_strtol_h(cp, (void *) res)				\
324 	: __builtin_types_compatible_p(typeof(*res), long long)		\
325 	? bch_strtoll_h(cp, (void *) res)				\
326 	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
327 	? bch_strtouint_h(cp, (void *) res)				\
328 	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
329 	? bch_strtoul_h(cp, (void *) res)				\
330 	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
331 	? bch_strtoull_h(cp, (void *) res) : -EINVAL)
332 
333 #define strtoul_safe(cp, var)						\
334 ({									\
335 	unsigned long _v;						\
336 	int _r = kstrtoul(cp, 10, &_v);					\
337 	if (!_r)							\
338 		var = _v;						\
339 	_r;								\
340 })
341 
342 #define strtoul_safe_clamp(cp, var, min, max)				\
343 ({									\
344 	unsigned long _v;						\
345 	int _r = kstrtoul(cp, 10, &_v);					\
346 	if (!_r)							\
347 		var = clamp_t(typeof(var), _v, min, max);		\
348 	_r;								\
349 })
350 
351 #define snprint(buf, size, var)						\
352 	snprintf(buf, size,						\
353 		__builtin_types_compatible_p(typeof(var), int)		\
354 		     ? "%i\n" :						\
355 		__builtin_types_compatible_p(typeof(var), unsigned)	\
356 		     ? "%u\n" :						\
357 		__builtin_types_compatible_p(typeof(var), long)		\
358 		     ? "%li\n" :					\
359 		__builtin_types_compatible_p(typeof(var), unsigned long)\
360 		     ? "%lu\n" :					\
361 		__builtin_types_compatible_p(typeof(var), int64_t)	\
362 		     ? "%lli\n" :					\
363 		__builtin_types_compatible_p(typeof(var), uint64_t)	\
364 		     ? "%llu\n" :					\
365 		__builtin_types_compatible_p(typeof(var), const char *)	\
366 		     ? "%s\n" : "%i\n", var)
367 
368 ssize_t bch_hprint(char *buf, int64_t v);
369 
370 bool bch_is_zero(const char *p, size_t n);
371 int bch_parse_uuid(const char *s, char *uuid);
372 
373 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
374 			    size_t selected);
375 
376 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
377 
378 struct time_stats {
379 	spinlock_t	lock;
380 	/*
381 	 * all fields are in nanoseconds, averages are ewmas stored left shifted
382 	 * by 8
383 	 */
384 	uint64_t	max_duration;
385 	uint64_t	average_duration;
386 	uint64_t	average_frequency;
387 	uint64_t	last;
388 };
389 
390 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
391 
392 static inline unsigned local_clock_us(void)
393 {
394 	return local_clock() >> 10;
395 }
396 
397 #define NSEC_PER_ns			1L
398 #define NSEC_PER_us			NSEC_PER_USEC
399 #define NSEC_PER_ms			NSEC_PER_MSEC
400 #define NSEC_PER_sec			NSEC_PER_SEC
401 
402 #define __print_time_stat(stats, name, stat, units)			\
403 	sysfs_print(name ## _ ## stat ## _ ## units,			\
404 		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
405 
406 #define sysfs_print_time_stats(stats, name,				\
407 			       frequency_units,				\
408 			       duration_units)				\
409 do {									\
410 	__print_time_stat(stats, name,					\
411 			  average_frequency,	frequency_units);	\
412 	__print_time_stat(stats, name,					\
413 			  average_duration,	duration_units);	\
414 	sysfs_print(name ## _ ##max_duration ## _ ## duration_units,	\
415 			div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\
416 									\
417 	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
418 		    ? div_s64(local_clock() - (stats)->last,		\
419 			      NSEC_PER_ ## frequency_units)		\
420 		    : -1LL);						\
421 } while (0)
422 
423 #define sysfs_time_stats_attribute(name,				\
424 				   frequency_units,			\
425 				   duration_units)			\
426 read_attribute(name ## _average_frequency_ ## frequency_units);		\
427 read_attribute(name ## _average_duration_ ## duration_units);		\
428 read_attribute(name ## _max_duration_ ## duration_units);		\
429 read_attribute(name ## _last_ ## frequency_units)
430 
431 #define sysfs_time_stats_attribute_list(name,				\
432 					frequency_units,		\
433 					duration_units)			\
434 &sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
435 &sysfs_ ## name ## _average_duration_ ## duration_units,		\
436 &sysfs_ ## name ## _max_duration_ ## duration_units,			\
437 &sysfs_ ## name ## _last_ ## frequency_units,
438 
439 #define ewma_add(ewma, val, weight, factor)				\
440 ({									\
441 	(ewma) *= (weight) - 1;						\
442 	(ewma) += (val) << factor;					\
443 	(ewma) /= (weight);						\
444 	(ewma) >> factor;						\
445 })
446 
447 struct bch_ratelimit {
448 	/* Next time we want to do some work, in nanoseconds */
449 	uint64_t		next;
450 
451 	/*
452 	 * Rate at which we want to do work, in units per nanosecond
453 	 * The units here correspond to the units passed to bch_next_delay()
454 	 */
455 	unsigned		rate;
456 };
457 
458 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
459 {
460 	d->next = local_clock();
461 }
462 
463 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
464 
465 #define __DIV_SAFE(n, d, zero)						\
466 ({									\
467 	typeof(n) _n = (n);						\
468 	typeof(d) _d = (d);						\
469 	_d ? _n / _d : zero;						\
470 })
471 
472 #define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)
473 
474 #define container_of_or_null(ptr, type, member)				\
475 ({									\
476 	typeof(ptr) _ptr = ptr;						\
477 	_ptr ? container_of(_ptr, type, member) : NULL;			\
478 })
479 
480 #define RB_INSERT(root, new, member, cmp)				\
481 ({									\
482 	__label__ dup;							\
483 	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
484 	typeof(new) this;						\
485 	int res, ret = -1;						\
486 									\
487 	while (*n) {							\
488 		parent = *n;						\
489 		this = container_of(*n, typeof(*(new)), member);	\
490 		res = cmp(new, this);					\
491 		if (!res)						\
492 			goto dup;					\
493 		n = res < 0						\
494 			? &(*n)->rb_left				\
495 			: &(*n)->rb_right;				\
496 	}								\
497 									\
498 	rb_link_node(&(new)->member, parent, n);			\
499 	rb_insert_color(&(new)->member, root);				\
500 	ret = 0;							\
501 dup:									\
502 	ret;								\
503 })
504 
505 #define RB_SEARCH(root, search, member, cmp)				\
506 ({									\
507 	struct rb_node *n = (root)->rb_node;				\
508 	typeof(&(search)) this, ret = NULL;				\
509 	int res;							\
510 									\
511 	while (n) {							\
512 		this = container_of(n, typeof(search), member);		\
513 		res = cmp(&(search), this);				\
514 		if (!res) {						\
515 			ret = this;					\
516 			break;						\
517 		}							\
518 		n = res < 0						\
519 			? n->rb_left					\
520 			: n->rb_right;					\
521 	}								\
522 	ret;								\
523 })
524 
525 #define RB_GREATER(root, search, member, cmp)				\
526 ({									\
527 	struct rb_node *n = (root)->rb_node;				\
528 	typeof(&(search)) this, ret = NULL;				\
529 	int res;							\
530 									\
531 	while (n) {							\
532 		this = container_of(n, typeof(search), member);		\
533 		res = cmp(&(search), this);				\
534 		if (res < 0) {						\
535 			ret = this;					\
536 			n = n->rb_left;					\
537 		} else							\
538 			n = n->rb_right;				\
539 	}								\
540 	ret;								\
541 })
542 
543 #define RB_FIRST(root, type, member)					\
544 	container_of_or_null(rb_first(root), type, member)
545 
546 #define RB_LAST(root, type, member)					\
547 	container_of_or_null(rb_last(root), type, member)
548 
549 #define RB_NEXT(ptr, member)						\
550 	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
551 
552 #define RB_PREV(ptr, member)						\
553 	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
554 
555 /* Does linear interpolation between powers of two */
556 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
557 {
558 	unsigned fract = x & ~(~0 << fract_bits);
559 
560 	x >>= fract_bits;
561 	x   = 1 << x;
562 	x  += (x * fract) >> fract_bits;
563 
564 	return x;
565 }
566 
567 void bch_bio_map(struct bio *bio, void *base);
568 
569 static inline sector_t bdev_sectors(struct block_device *bdev)
570 {
571 	return bdev->bd_inode->i_size >> 9;
572 }
573 
574 #define closure_bio_submit(bio, cl)					\
575 do {									\
576 	closure_get(cl);						\
577 	generic_make_request(bio);					\
578 } while (0)
579 
580 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
581 uint64_t bch_crc64(const void *, size_t);
582 
583 #endif /* _BCACHE_UTIL_H */
584