1 2 #ifndef _BCACHE_UTIL_H 3 #define _BCACHE_UTIL_H 4 5 #include <linux/blkdev.h> 6 #include <linux/errno.h> 7 #include <linux/kernel.h> 8 #include <linux/llist.h> 9 #include <linux/ratelimit.h> 10 #include <linux/vmalloc.h> 11 #include <linux/workqueue.h> 12 13 #include "closure.h" 14 15 #define PAGE_SECTORS (PAGE_SIZE / 512) 16 17 struct closure; 18 19 #ifdef CONFIG_BCACHE_DEBUG 20 21 #define EBUG_ON(cond) BUG_ON(cond) 22 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) 23 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) 24 25 #else /* DEBUG */ 26 27 #define EBUG_ON(cond) do { if (cond); } while (0) 28 #define atomic_dec_bug(v) atomic_dec(v) 29 #define atomic_inc_bug(v, i) atomic_inc(v) 30 31 #endif 32 33 #define DECLARE_HEAP(type, name) \ 34 struct { \ 35 size_t size, used; \ 36 type *data; \ 37 } name 38 39 #define init_heap(heap, _size, gfp) \ 40 ({ \ 41 size_t _bytes; \ 42 (heap)->used = 0; \ 43 (heap)->size = (_size); \ 44 _bytes = (heap)->size * sizeof(*(heap)->data); \ 45 (heap)->data = NULL; \ 46 if (_bytes < KMALLOC_MAX_SIZE) \ 47 (heap)->data = kmalloc(_bytes, (gfp)); \ 48 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \ 49 (heap)->data = vmalloc(_bytes); \ 50 (heap)->data; \ 51 }) 52 53 #define free_heap(heap) \ 54 do { \ 55 if (is_vmalloc_addr((heap)->data)) \ 56 vfree((heap)->data); \ 57 else \ 58 kfree((heap)->data); \ 59 (heap)->data = NULL; \ 60 } while (0) 61 62 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) 63 64 #define heap_sift(h, i, cmp) \ 65 do { \ 66 size_t _r, _j = i; \ 67 \ 68 for (; _j * 2 + 1 < (h)->used; _j = _r) { \ 69 _r = _j * 2 + 1; \ 70 if (_r + 1 < (h)->used && \ 71 cmp((h)->data[_r], (h)->data[_r + 1])) \ 72 _r++; \ 73 \ 74 if (cmp((h)->data[_r], (h)->data[_j])) \ 75 break; \ 76 heap_swap(h, _r, _j); \ 77 } \ 78 } while (0) 79 80 #define heap_sift_down(h, i, cmp) \ 81 do { \ 82 while (i) { \ 83 size_t p = (i - 1) / 2; \ 84 if (cmp((h)->data[i], (h)->data[p])) \ 85 break; \ 86 heap_swap(h, i, p); \ 87 i = p; \ 88 } \ 89 } while (0) 90 91 #define heap_add(h, d, cmp) \ 92 ({ \ 93 bool _r = !heap_full(h); \ 94 if (_r) { \ 95 size_t _i = (h)->used++; \ 96 (h)->data[_i] = d; \ 97 \ 98 heap_sift_down(h, _i, cmp); \ 99 heap_sift(h, _i, cmp); \ 100 } \ 101 _r; \ 102 }) 103 104 #define heap_pop(h, d, cmp) \ 105 ({ \ 106 bool _r = (h)->used; \ 107 if (_r) { \ 108 (d) = (h)->data[0]; \ 109 (h)->used--; \ 110 heap_swap(h, 0, (h)->used); \ 111 heap_sift(h, 0, cmp); \ 112 } \ 113 _r; \ 114 }) 115 116 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) 117 118 #define heap_full(h) ((h)->used == (h)->size) 119 120 #define DECLARE_FIFO(type, name) \ 121 struct { \ 122 size_t front, back, size, mask; \ 123 type *data; \ 124 } name 125 126 #define fifo_for_each(c, fifo, iter) \ 127 for (iter = (fifo)->front; \ 128 c = (fifo)->data[iter], iter != (fifo)->back; \ 129 iter = (iter + 1) & (fifo)->mask) 130 131 #define __init_fifo(fifo, gfp) \ 132 ({ \ 133 size_t _allocated_size, _bytes; \ 134 BUG_ON(!(fifo)->size); \ 135 \ 136 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ 137 _bytes = _allocated_size * sizeof(*(fifo)->data); \ 138 \ 139 (fifo)->mask = _allocated_size - 1; \ 140 (fifo)->front = (fifo)->back = 0; \ 141 (fifo)->data = NULL; \ 142 \ 143 if (_bytes < KMALLOC_MAX_SIZE) \ 144 (fifo)->data = kmalloc(_bytes, (gfp)); \ 145 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \ 146 (fifo)->data = vmalloc(_bytes); \ 147 (fifo)->data; \ 148 }) 149 150 #define init_fifo_exact(fifo, _size, gfp) \ 151 ({ \ 152 (fifo)->size = (_size); \ 153 __init_fifo(fifo, gfp); \ 154 }) 155 156 #define init_fifo(fifo, _size, gfp) \ 157 ({ \ 158 (fifo)->size = (_size); \ 159 if ((fifo)->size > 4) \ 160 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ 161 __init_fifo(fifo, gfp); \ 162 }) 163 164 #define free_fifo(fifo) \ 165 do { \ 166 if (is_vmalloc_addr((fifo)->data)) \ 167 vfree((fifo)->data); \ 168 else \ 169 kfree((fifo)->data); \ 170 (fifo)->data = NULL; \ 171 } while (0) 172 173 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) 174 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) 175 176 #define fifo_empty(fifo) (!fifo_used(fifo)) 177 #define fifo_full(fifo) (!fifo_free(fifo)) 178 179 #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) 180 #define fifo_back(fifo) \ 181 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) 182 183 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) 184 185 #define fifo_push_back(fifo, i) \ 186 ({ \ 187 bool _r = !fifo_full((fifo)); \ 188 if (_r) { \ 189 (fifo)->data[(fifo)->back++] = (i); \ 190 (fifo)->back &= (fifo)->mask; \ 191 } \ 192 _r; \ 193 }) 194 195 #define fifo_pop_front(fifo, i) \ 196 ({ \ 197 bool _r = !fifo_empty((fifo)); \ 198 if (_r) { \ 199 (i) = (fifo)->data[(fifo)->front++]; \ 200 (fifo)->front &= (fifo)->mask; \ 201 } \ 202 _r; \ 203 }) 204 205 #define fifo_push_front(fifo, i) \ 206 ({ \ 207 bool _r = !fifo_full((fifo)); \ 208 if (_r) { \ 209 --(fifo)->front; \ 210 (fifo)->front &= (fifo)->mask; \ 211 (fifo)->data[(fifo)->front] = (i); \ 212 } \ 213 _r; \ 214 }) 215 216 #define fifo_pop_back(fifo, i) \ 217 ({ \ 218 bool _r = !fifo_empty((fifo)); \ 219 if (_r) { \ 220 --(fifo)->back; \ 221 (fifo)->back &= (fifo)->mask; \ 222 (i) = (fifo)->data[(fifo)->back] \ 223 } \ 224 _r; \ 225 }) 226 227 #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) 228 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) 229 230 #define fifo_swap(l, r) \ 231 do { \ 232 swap((l)->front, (r)->front); \ 233 swap((l)->back, (r)->back); \ 234 swap((l)->size, (r)->size); \ 235 swap((l)->mask, (r)->mask); \ 236 swap((l)->data, (r)->data); \ 237 } while (0) 238 239 #define fifo_move(dest, src) \ 240 do { \ 241 typeof(*((dest)->data)) _t; \ 242 while (!fifo_full(dest) && \ 243 fifo_pop(src, _t)) \ 244 fifo_push(dest, _t); \ 245 } while (0) 246 247 /* 248 * Simple array based allocator - preallocates a number of elements and you can 249 * never allocate more than that, also has no locking. 250 * 251 * Handy because if you know you only need a fixed number of elements you don't 252 * have to worry about memory allocation failure, and sometimes a mempool isn't 253 * what you want. 254 * 255 * We treat the free elements as entries in a singly linked list, and the 256 * freelist as a stack - allocating and freeing push and pop off the freelist. 257 */ 258 259 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ 260 struct { \ 261 type *freelist; \ 262 type data[size]; \ 263 } name 264 265 #define array_alloc(array) \ 266 ({ \ 267 typeof((array)->freelist) _ret = (array)->freelist; \ 268 \ 269 if (_ret) \ 270 (array)->freelist = *((typeof((array)->freelist) *) _ret);\ 271 \ 272 _ret; \ 273 }) 274 275 #define array_free(array, ptr) \ 276 do { \ 277 typeof((array)->freelist) _ptr = ptr; \ 278 \ 279 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ 280 (array)->freelist = _ptr; \ 281 } while (0) 282 283 #define array_allocator_init(array) \ 284 do { \ 285 typeof((array)->freelist) _i; \ 286 \ 287 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ 288 (array)->freelist = NULL; \ 289 \ 290 for (_i = (array)->data; \ 291 _i < (array)->data + ARRAY_SIZE((array)->data); \ 292 _i++) \ 293 array_free(array, _i); \ 294 } while (0) 295 296 #define array_freelist_empty(array) ((array)->freelist == NULL) 297 298 #define ANYSINT_MAX(t) \ 299 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 300 301 int bch_strtoint_h(const char *, int *); 302 int bch_strtouint_h(const char *, unsigned int *); 303 int bch_strtoll_h(const char *, long long *); 304 int bch_strtoull_h(const char *, unsigned long long *); 305 306 static inline int bch_strtol_h(const char *cp, long *res) 307 { 308 #if BITS_PER_LONG == 32 309 return bch_strtoint_h(cp, (int *) res); 310 #else 311 return bch_strtoll_h(cp, (long long *) res); 312 #endif 313 } 314 315 static inline int bch_strtoul_h(const char *cp, long *res) 316 { 317 #if BITS_PER_LONG == 32 318 return bch_strtouint_h(cp, (unsigned int *) res); 319 #else 320 return bch_strtoull_h(cp, (unsigned long long *) res); 321 #endif 322 } 323 324 #define strtoi_h(cp, res) \ 325 (__builtin_types_compatible_p(typeof(*res), int) \ 326 ? bch_strtoint_h(cp, (void *) res) \ 327 : __builtin_types_compatible_p(typeof(*res), long) \ 328 ? bch_strtol_h(cp, (void *) res) \ 329 : __builtin_types_compatible_p(typeof(*res), long long) \ 330 ? bch_strtoll_h(cp, (void *) res) \ 331 : __builtin_types_compatible_p(typeof(*res), unsigned int) \ 332 ? bch_strtouint_h(cp, (void *) res) \ 333 : __builtin_types_compatible_p(typeof(*res), unsigned long) \ 334 ? bch_strtoul_h(cp, (void *) res) \ 335 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ 336 ? bch_strtoull_h(cp, (void *) res) : -EINVAL) 337 338 #define strtoul_safe(cp, var) \ 339 ({ \ 340 unsigned long _v; \ 341 int _r = kstrtoul(cp, 10, &_v); \ 342 if (!_r) \ 343 var = _v; \ 344 _r; \ 345 }) 346 347 #define strtoul_safe_clamp(cp, var, min, max) \ 348 ({ \ 349 unsigned long _v; \ 350 int _r = kstrtoul(cp, 10, &_v); \ 351 if (!_r) \ 352 var = clamp_t(typeof(var), _v, min, max); \ 353 _r; \ 354 }) 355 356 #define snprint(buf, size, var) \ 357 snprintf(buf, size, \ 358 __builtin_types_compatible_p(typeof(var), int) \ 359 ? "%i\n" : \ 360 __builtin_types_compatible_p(typeof(var), unsigned) \ 361 ? "%u\n" : \ 362 __builtin_types_compatible_p(typeof(var), long) \ 363 ? "%li\n" : \ 364 __builtin_types_compatible_p(typeof(var), unsigned long)\ 365 ? "%lu\n" : \ 366 __builtin_types_compatible_p(typeof(var), int64_t) \ 367 ? "%lli\n" : \ 368 __builtin_types_compatible_p(typeof(var), uint64_t) \ 369 ? "%llu\n" : \ 370 __builtin_types_compatible_p(typeof(var), const char *) \ 371 ? "%s\n" : "%i\n", var) 372 373 ssize_t bch_hprint(char *buf, int64_t v); 374 375 bool bch_is_zero(const char *p, size_t n); 376 int bch_parse_uuid(const char *s, char *uuid); 377 378 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[], 379 size_t selected); 380 381 ssize_t bch_read_string_list(const char *buf, const char * const list[]); 382 383 struct time_stats { 384 spinlock_t lock; 385 /* 386 * all fields are in nanoseconds, averages are ewmas stored left shifted 387 * by 8 388 */ 389 uint64_t max_duration; 390 uint64_t average_duration; 391 uint64_t average_frequency; 392 uint64_t last; 393 }; 394 395 void bch_time_stats_update(struct time_stats *stats, uint64_t time); 396 397 static inline unsigned local_clock_us(void) 398 { 399 return local_clock() >> 10; 400 } 401 402 #define NSEC_PER_ns 1L 403 #define NSEC_PER_us NSEC_PER_USEC 404 #define NSEC_PER_ms NSEC_PER_MSEC 405 #define NSEC_PER_sec NSEC_PER_SEC 406 407 #define __print_time_stat(stats, name, stat, units) \ 408 sysfs_print(name ## _ ## stat ## _ ## units, \ 409 div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) 410 411 #define sysfs_print_time_stats(stats, name, \ 412 frequency_units, \ 413 duration_units) \ 414 do { \ 415 __print_time_stat(stats, name, \ 416 average_frequency, frequency_units); \ 417 __print_time_stat(stats, name, \ 418 average_duration, duration_units); \ 419 __print_time_stat(stats, name, \ 420 max_duration, duration_units); \ 421 \ 422 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ 423 ? div_s64(local_clock() - (stats)->last, \ 424 NSEC_PER_ ## frequency_units) \ 425 : -1LL); \ 426 } while (0) 427 428 #define sysfs_time_stats_attribute(name, \ 429 frequency_units, \ 430 duration_units) \ 431 read_attribute(name ## _average_frequency_ ## frequency_units); \ 432 read_attribute(name ## _average_duration_ ## duration_units); \ 433 read_attribute(name ## _max_duration_ ## duration_units); \ 434 read_attribute(name ## _last_ ## frequency_units) 435 436 #define sysfs_time_stats_attribute_list(name, \ 437 frequency_units, \ 438 duration_units) \ 439 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ 440 &sysfs_ ## name ## _average_duration_ ## duration_units, \ 441 &sysfs_ ## name ## _max_duration_ ## duration_units, \ 442 &sysfs_ ## name ## _last_ ## frequency_units, 443 444 #define ewma_add(ewma, val, weight, factor) \ 445 ({ \ 446 (ewma) *= (weight) - 1; \ 447 (ewma) += (val) << factor; \ 448 (ewma) /= (weight); \ 449 (ewma) >> factor; \ 450 }) 451 452 struct bch_ratelimit { 453 /* Next time we want to do some work, in nanoseconds */ 454 uint64_t next; 455 456 /* 457 * Rate at which we want to do work, in units per nanosecond 458 * The units here correspond to the units passed to bch_next_delay() 459 */ 460 unsigned rate; 461 }; 462 463 static inline void bch_ratelimit_reset(struct bch_ratelimit *d) 464 { 465 d->next = local_clock(); 466 } 467 468 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); 469 470 #define __DIV_SAFE(n, d, zero) \ 471 ({ \ 472 typeof(n) _n = (n); \ 473 typeof(d) _d = (d); \ 474 _d ? _n / _d : zero; \ 475 }) 476 477 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) 478 479 #define container_of_or_null(ptr, type, member) \ 480 ({ \ 481 typeof(ptr) _ptr = ptr; \ 482 _ptr ? container_of(_ptr, type, member) : NULL; \ 483 }) 484 485 #define RB_INSERT(root, new, member, cmp) \ 486 ({ \ 487 __label__ dup; \ 488 struct rb_node **n = &(root)->rb_node, *parent = NULL; \ 489 typeof(new) this; \ 490 int res, ret = -1; \ 491 \ 492 while (*n) { \ 493 parent = *n; \ 494 this = container_of(*n, typeof(*(new)), member); \ 495 res = cmp(new, this); \ 496 if (!res) \ 497 goto dup; \ 498 n = res < 0 \ 499 ? &(*n)->rb_left \ 500 : &(*n)->rb_right; \ 501 } \ 502 \ 503 rb_link_node(&(new)->member, parent, n); \ 504 rb_insert_color(&(new)->member, root); \ 505 ret = 0; \ 506 dup: \ 507 ret; \ 508 }) 509 510 #define RB_SEARCH(root, search, member, cmp) \ 511 ({ \ 512 struct rb_node *n = (root)->rb_node; \ 513 typeof(&(search)) this, ret = NULL; \ 514 int res; \ 515 \ 516 while (n) { \ 517 this = container_of(n, typeof(search), member); \ 518 res = cmp(&(search), this); \ 519 if (!res) { \ 520 ret = this; \ 521 break; \ 522 } \ 523 n = res < 0 \ 524 ? n->rb_left \ 525 : n->rb_right; \ 526 } \ 527 ret; \ 528 }) 529 530 #define RB_GREATER(root, search, member, cmp) \ 531 ({ \ 532 struct rb_node *n = (root)->rb_node; \ 533 typeof(&(search)) this, ret = NULL; \ 534 int res; \ 535 \ 536 while (n) { \ 537 this = container_of(n, typeof(search), member); \ 538 res = cmp(&(search), this); \ 539 if (res < 0) { \ 540 ret = this; \ 541 n = n->rb_left; \ 542 } else \ 543 n = n->rb_right; \ 544 } \ 545 ret; \ 546 }) 547 548 #define RB_FIRST(root, type, member) \ 549 container_of_or_null(rb_first(root), type, member) 550 551 #define RB_LAST(root, type, member) \ 552 container_of_or_null(rb_last(root), type, member) 553 554 #define RB_NEXT(ptr, member) \ 555 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) 556 557 #define RB_PREV(ptr, member) \ 558 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) 559 560 /* Does linear interpolation between powers of two */ 561 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) 562 { 563 unsigned fract = x & ~(~0 << fract_bits); 564 565 x >>= fract_bits; 566 x = 1 << x; 567 x += (x * fract) >> fract_bits; 568 569 return x; 570 } 571 572 void bch_bio_map(struct bio *bio, void *base); 573 574 static inline sector_t bdev_sectors(struct block_device *bdev) 575 { 576 return bdev->bd_inode->i_size >> 9; 577 } 578 579 #define closure_bio_submit(bio, cl, dev) \ 580 do { \ 581 closure_get(cl); \ 582 bch_generic_make_request(bio, &(dev)->bio_split_hook); \ 583 } while (0) 584 585 uint64_t bch_crc64_update(uint64_t, const void *, size_t); 586 uint64_t bch_crc64(const void *, size_t); 587 588 #endif /* _BCACHE_UTIL_H */ 589