1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 #ifndef _BCACHE_UTIL_H 4 #define _BCACHE_UTIL_H 5 6 #include <linux/blkdev.h> 7 #include <linux/closure.h> 8 #include <linux/errno.h> 9 #include <linux/kernel.h> 10 #include <linux/sched/clock.h> 11 #include <linux/llist.h> 12 #include <linux/min_heap.h> 13 #include <linux/ratelimit.h> 14 #include <linux/vmalloc.h> 15 #include <linux/workqueue.h> 16 #include <linux/crc64.h> 17 18 struct closure; 19 20 #ifdef CONFIG_BCACHE_DEBUG 21 22 #define EBUG_ON(cond) BUG_ON(cond) 23 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) 24 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) 25 26 #else /* DEBUG */ 27 28 #define EBUG_ON(cond) do { if (cond) do {} while (0); } while (0) 29 #define atomic_dec_bug(v) atomic_dec(v) 30 #define atomic_inc_bug(v, i) atomic_inc(v) 31 32 #endif 33 34 #define init_heap(heap, _size, gfp) \ 35 ({ \ 36 size_t _bytes; \ 37 (heap)->nr = 0; \ 38 (heap)->size = (_size); \ 39 _bytes = (heap)->size * sizeof(*(heap)->data); \ 40 (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ 41 (heap)->data; \ 42 }) 43 44 #define free_heap(heap) \ 45 do { \ 46 kvfree((heap)->data); \ 47 (heap)->data = NULL; \ 48 } while (0) 49 50 #define DECLARE_FIFO(type, name) \ 51 struct { \ 52 size_t front, back, size, mask; \ 53 type *data; \ 54 } name 55 56 #define fifo_for_each(c, fifo, iter) \ 57 for (iter = (fifo)->front; \ 58 c = (fifo)->data[iter], iter != (fifo)->back; \ 59 iter = (iter + 1) & (fifo)->mask) 60 61 #define __init_fifo(fifo, gfp) \ 62 ({ \ 63 size_t _allocated_size, _bytes; \ 64 BUG_ON(!(fifo)->size); \ 65 \ 66 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ 67 _bytes = _allocated_size * sizeof(*(fifo)->data); \ 68 \ 69 (fifo)->mask = _allocated_size - 1; \ 70 (fifo)->front = (fifo)->back = 0; \ 71 \ 72 (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ 73 (fifo)->data; \ 74 }) 75 76 #define init_fifo_exact(fifo, _size, gfp) \ 77 ({ \ 78 (fifo)->size = (_size); \ 79 __init_fifo(fifo, gfp); \ 80 }) 81 82 #define init_fifo(fifo, _size, gfp) \ 83 ({ \ 84 (fifo)->size = (_size); \ 85 if ((fifo)->size > 4) \ 86 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ 87 __init_fifo(fifo, gfp); \ 88 }) 89 90 #define free_fifo(fifo) \ 91 do { \ 92 kvfree((fifo)->data); \ 93 (fifo)->data = NULL; \ 94 } while (0) 95 96 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) 97 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) 98 99 #define fifo_empty(fifo) (!fifo_used(fifo)) 100 #define fifo_full(fifo) (!fifo_free(fifo)) 101 102 #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) 103 #define fifo_back(fifo) \ 104 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) 105 106 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) 107 108 #define fifo_push_back(fifo, i) \ 109 ({ \ 110 bool _r = !fifo_full((fifo)); \ 111 if (_r) { \ 112 (fifo)->data[(fifo)->back++] = (i); \ 113 (fifo)->back &= (fifo)->mask; \ 114 } \ 115 _r; \ 116 }) 117 118 #define fifo_pop_front(fifo, i) \ 119 ({ \ 120 bool _r = !fifo_empty((fifo)); \ 121 if (_r) { \ 122 (i) = (fifo)->data[(fifo)->front++]; \ 123 (fifo)->front &= (fifo)->mask; \ 124 } \ 125 _r; \ 126 }) 127 128 #define fifo_push_front(fifo, i) \ 129 ({ \ 130 bool _r = !fifo_full((fifo)); \ 131 if (_r) { \ 132 --(fifo)->front; \ 133 (fifo)->front &= (fifo)->mask; \ 134 (fifo)->data[(fifo)->front] = (i); \ 135 } \ 136 _r; \ 137 }) 138 139 #define fifo_pop_back(fifo, i) \ 140 ({ \ 141 bool _r = !fifo_empty((fifo)); \ 142 if (_r) { \ 143 --(fifo)->back; \ 144 (fifo)->back &= (fifo)->mask; \ 145 (i) = (fifo)->data[(fifo)->back] \ 146 } \ 147 _r; \ 148 }) 149 150 #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) 151 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) 152 153 #define fifo_swap(l, r) \ 154 do { \ 155 swap((l)->front, (r)->front); \ 156 swap((l)->back, (r)->back); \ 157 swap((l)->size, (r)->size); \ 158 swap((l)->mask, (r)->mask); \ 159 swap((l)->data, (r)->data); \ 160 } while (0) 161 162 #define fifo_move(dest, src) \ 163 do { \ 164 typeof(*((dest)->data)) _t; \ 165 while (!fifo_full(dest) && \ 166 fifo_pop(src, _t)) \ 167 fifo_push(dest, _t); \ 168 } while (0) 169 170 /* 171 * Simple array based allocator - preallocates a number of elements and you can 172 * never allocate more than that, also has no locking. 173 * 174 * Handy because if you know you only need a fixed number of elements you don't 175 * have to worry about memory allocation failure, and sometimes a mempool isn't 176 * what you want. 177 * 178 * We treat the free elements as entries in a singly linked list, and the 179 * freelist as a stack - allocating and freeing push and pop off the freelist. 180 */ 181 182 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ 183 struct { \ 184 type *freelist; \ 185 type data[size]; \ 186 } name 187 188 #define array_alloc(array) \ 189 ({ \ 190 typeof((array)->freelist) _ret = (array)->freelist; \ 191 \ 192 if (_ret) \ 193 (array)->freelist = *((typeof((array)->freelist) *) _ret);\ 194 \ 195 _ret; \ 196 }) 197 198 #define array_free(array, ptr) \ 199 do { \ 200 typeof((array)->freelist) _ptr = ptr; \ 201 \ 202 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ 203 (array)->freelist = _ptr; \ 204 } while (0) 205 206 #define array_allocator_init(array) \ 207 do { \ 208 typeof((array)->freelist) _i; \ 209 \ 210 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ 211 (array)->freelist = NULL; \ 212 \ 213 for (_i = (array)->data; \ 214 _i < (array)->data + ARRAY_SIZE((array)->data); \ 215 _i++) \ 216 array_free(array, _i); \ 217 } while (0) 218 219 #define array_freelist_empty(array) ((array)->freelist == NULL) 220 221 #define ANYSINT_MAX(t) \ 222 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 223 224 int bch_strtoint_h(const char *cp, int *res); 225 int bch_strtouint_h(const char *cp, unsigned int *res); 226 int bch_strtoll_h(const char *cp, long long *res); 227 int bch_strtoull_h(const char *cp, unsigned long long *res); 228 229 static inline int bch_strtol_h(const char *cp, long *res) 230 { 231 #if BITS_PER_LONG == 32 232 return bch_strtoint_h(cp, (int *) res); 233 #else 234 return bch_strtoll_h(cp, (long long *) res); 235 #endif 236 } 237 238 static inline int bch_strtoul_h(const char *cp, long *res) 239 { 240 #if BITS_PER_LONG == 32 241 return bch_strtouint_h(cp, (unsigned int *) res); 242 #else 243 return bch_strtoull_h(cp, (unsigned long long *) res); 244 #endif 245 } 246 247 #define strtoi_h(cp, res) \ 248 (__builtin_types_compatible_p(typeof(*res), int) \ 249 ? bch_strtoint_h(cp, (void *) res) \ 250 : __builtin_types_compatible_p(typeof(*res), long) \ 251 ? bch_strtol_h(cp, (void *) res) \ 252 : __builtin_types_compatible_p(typeof(*res), long long) \ 253 ? bch_strtoll_h(cp, (void *) res) \ 254 : __builtin_types_compatible_p(typeof(*res), unsigned int) \ 255 ? bch_strtouint_h(cp, (void *) res) \ 256 : __builtin_types_compatible_p(typeof(*res), unsigned long) \ 257 ? bch_strtoul_h(cp, (void *) res) \ 258 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ 259 ? bch_strtoull_h(cp, (void *) res) : -EINVAL) 260 261 #define strtoul_safe(cp, var) \ 262 ({ \ 263 unsigned long _v; \ 264 int _r = kstrtoul(cp, 10, &_v); \ 265 if (!_r) \ 266 var = _v; \ 267 _r; \ 268 }) 269 270 #define strtoul_safe_clamp(cp, var, min, max) \ 271 ({ \ 272 unsigned long _v; \ 273 int _r = kstrtoul(cp, 10, &_v); \ 274 if (!_r) \ 275 var = clamp_t(typeof(var), _v, min, max); \ 276 _r; \ 277 }) 278 279 ssize_t bch_hprint(char *buf, int64_t v); 280 281 bool bch_is_zero(const char *p, size_t n); 282 int bch_parse_uuid(const char *s, char *uuid); 283 284 struct time_stats { 285 spinlock_t lock; 286 /* 287 * all fields are in nanoseconds, averages are ewmas stored left shifted 288 * by 8 289 */ 290 uint64_t max_duration; 291 uint64_t average_duration; 292 uint64_t average_frequency; 293 uint64_t last; 294 }; 295 296 void bch_time_stats_update(struct time_stats *stats, uint64_t time); 297 298 static inline unsigned int local_clock_us(void) 299 { 300 return local_clock() >> 10; 301 } 302 303 #define NSEC_PER_ns 1L 304 #define NSEC_PER_us NSEC_PER_USEC 305 #define NSEC_PER_ms NSEC_PER_MSEC 306 #define NSEC_PER_sec NSEC_PER_SEC 307 308 #define __print_time_stat(stats, name, stat, units) \ 309 sysfs_print(name ## _ ## stat ## _ ## units, \ 310 div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) 311 312 #define sysfs_print_time_stats(stats, name, \ 313 frequency_units, \ 314 duration_units) \ 315 do { \ 316 __print_time_stat(stats, name, \ 317 average_frequency, frequency_units); \ 318 __print_time_stat(stats, name, \ 319 average_duration, duration_units); \ 320 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ 321 div_u64((stats)->max_duration, \ 322 NSEC_PER_ ## duration_units)); \ 323 \ 324 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ 325 ? div_s64(local_clock() - (stats)->last, \ 326 NSEC_PER_ ## frequency_units) \ 327 : -1LL); \ 328 } while (0) 329 330 #define sysfs_time_stats_attribute(name, \ 331 frequency_units, \ 332 duration_units) \ 333 read_attribute(name ## _average_frequency_ ## frequency_units); \ 334 read_attribute(name ## _average_duration_ ## duration_units); \ 335 read_attribute(name ## _max_duration_ ## duration_units); \ 336 read_attribute(name ## _last_ ## frequency_units) 337 338 #define sysfs_time_stats_attribute_list(name, \ 339 frequency_units, \ 340 duration_units) \ 341 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ 342 &sysfs_ ## name ## _average_duration_ ## duration_units, \ 343 &sysfs_ ## name ## _max_duration_ ## duration_units, \ 344 &sysfs_ ## name ## _last_ ## frequency_units, 345 346 #define ewma_add(ewma, val, weight, factor) \ 347 ({ \ 348 (ewma) *= (weight) - 1; \ 349 (ewma) += (val) << factor; \ 350 (ewma) /= (weight); \ 351 (ewma) >> factor; \ 352 }) 353 354 struct bch_ratelimit { 355 /* Next time we want to do some work, in nanoseconds */ 356 uint64_t next; 357 358 /* 359 * Rate at which we want to do work, in units per second 360 * The units here correspond to the units passed to bch_next_delay() 361 */ 362 atomic_long_t rate; 363 }; 364 365 static inline void bch_ratelimit_reset(struct bch_ratelimit *d) 366 { 367 d->next = local_clock(); 368 } 369 370 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); 371 372 #define __DIV_SAFE(n, d, zero) \ 373 ({ \ 374 typeof(n) _n = (n); \ 375 typeof(d) _d = (d); \ 376 _d ? _n / _d : zero; \ 377 }) 378 379 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) 380 381 #define container_of_or_null(ptr, type, member) \ 382 ({ \ 383 typeof(ptr) _ptr = ptr; \ 384 _ptr ? container_of(_ptr, type, member) : NULL; \ 385 }) 386 387 #define RB_INSERT(root, new, member, cmp) \ 388 ({ \ 389 __label__ dup; \ 390 struct rb_node **n = &(root)->rb_node, *parent = NULL; \ 391 typeof(new) this; \ 392 int res, ret = -1; \ 393 \ 394 while (*n) { \ 395 parent = *n; \ 396 this = container_of(*n, typeof(*(new)), member); \ 397 res = cmp(new, this); \ 398 if (!res) \ 399 goto dup; \ 400 n = res < 0 \ 401 ? &(*n)->rb_left \ 402 : &(*n)->rb_right; \ 403 } \ 404 \ 405 rb_link_node(&(new)->member, parent, n); \ 406 rb_insert_color(&(new)->member, root); \ 407 ret = 0; \ 408 dup: \ 409 ret; \ 410 }) 411 412 #define RB_SEARCH(root, search, member, cmp) \ 413 ({ \ 414 struct rb_node *n = (root)->rb_node; \ 415 typeof(&(search)) this, ret = NULL; \ 416 int res; \ 417 \ 418 while (n) { \ 419 this = container_of(n, typeof(search), member); \ 420 res = cmp(&(search), this); \ 421 if (!res) { \ 422 ret = this; \ 423 break; \ 424 } \ 425 n = res < 0 \ 426 ? n->rb_left \ 427 : n->rb_right; \ 428 } \ 429 ret; \ 430 }) 431 432 #define RB_GREATER(root, search, member, cmp) \ 433 ({ \ 434 struct rb_node *n = (root)->rb_node; \ 435 typeof(&(search)) this, ret = NULL; \ 436 int res; \ 437 \ 438 while (n) { \ 439 this = container_of(n, typeof(search), member); \ 440 res = cmp(&(search), this); \ 441 if (res < 0) { \ 442 ret = this; \ 443 n = n->rb_left; \ 444 } else \ 445 n = n->rb_right; \ 446 } \ 447 ret; \ 448 }) 449 450 #define RB_FIRST(root, type, member) \ 451 container_of_or_null(rb_first(root), type, member) 452 453 #define RB_LAST(root, type, member) \ 454 container_of_or_null(rb_last(root), type, member) 455 456 #define RB_NEXT(ptr, member) \ 457 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) 458 459 #define RB_PREV(ptr, member) \ 460 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) 461 462 static inline uint64_t bch_crc64(const void *p, size_t len) 463 { 464 uint64_t crc = 0xffffffffffffffffULL; 465 466 crc = crc64_be(crc, p, len); 467 return crc ^ 0xffffffffffffffffULL; 468 } 469 470 /* 471 * A stepwise-linear pseudo-exponential. This returns 1 << (x >> 472 * frac_bits), with the less-significant bits filled in by linear 473 * interpolation. 474 * 475 * This can also be interpreted as a floating-point number format, 476 * where the low frac_bits are the mantissa (with implicit leading 477 * 1 bit), and the more significant bits are the exponent. 478 * The return value is 1.mantissa * 2^exponent. 479 * 480 * The way this is used, fract_bits is 6 and the largest possible 481 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc), 482 * so the maximum output is 0x1fc00. 483 */ 484 static inline unsigned int fract_exp_two(unsigned int x, 485 unsigned int fract_bits) 486 { 487 unsigned int mantissa = 1 << fract_bits; /* Implicit bit */ 488 489 mantissa += x & (mantissa - 1); 490 x >>= fract_bits; /* The exponent */ 491 /* Largest intermediate value 0x7f0000 */ 492 return mantissa << x >> fract_bits; 493 } 494 495 void bch_bio_map(struct bio *bio, void *base); 496 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask); 497 498 #endif /* _BCACHE_UTIL_H */ 499