1 2 #ifndef _BCACHE_UTIL_H 3 #define _BCACHE_UTIL_H 4 5 #include <linux/blkdev.h> 6 #include <linux/errno.h> 7 #include <linux/kernel.h> 8 #include <linux/llist.h> 9 #include <linux/ratelimit.h> 10 #include <linux/vmalloc.h> 11 #include <linux/workqueue.h> 12 13 #include "closure.h" 14 15 #define PAGE_SECTORS (PAGE_SIZE / 512) 16 17 struct closure; 18 19 #ifdef CONFIG_BCACHE_DEBUG 20 21 #define EBUG_ON(cond) BUG_ON(cond) 22 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) 23 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) 24 25 #else /* DEBUG */ 26 27 #define EBUG_ON(cond) do { if (cond); } while (0) 28 #define atomic_dec_bug(v) atomic_dec(v) 29 #define atomic_inc_bug(v, i) atomic_inc(v) 30 31 #endif 32 33 #define DECLARE_HEAP(type, name) \ 34 struct { \ 35 size_t size, used; \ 36 type *data; \ 37 } name 38 39 #define init_heap(heap, _size, gfp) \ 40 ({ \ 41 size_t _bytes; \ 42 (heap)->used = 0; \ 43 (heap)->size = (_size); \ 44 _bytes = (heap)->size * sizeof(*(heap)->data); \ 45 (heap)->data = NULL; \ 46 if (_bytes < KMALLOC_MAX_SIZE) \ 47 (heap)->data = kmalloc(_bytes, (gfp)); \ 48 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \ 49 (heap)->data = vmalloc(_bytes); \ 50 (heap)->data; \ 51 }) 52 53 #define free_heap(heap) \ 54 do { \ 55 kvfree((heap)->data); \ 56 (heap)->data = NULL; \ 57 } while (0) 58 59 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) 60 61 #define heap_sift(h, i, cmp) \ 62 do { \ 63 size_t _r, _j = i; \ 64 \ 65 for (; _j * 2 + 1 < (h)->used; _j = _r) { \ 66 _r = _j * 2 + 1; \ 67 if (_r + 1 < (h)->used && \ 68 cmp((h)->data[_r], (h)->data[_r + 1])) \ 69 _r++; \ 70 \ 71 if (cmp((h)->data[_r], (h)->data[_j])) \ 72 break; \ 73 heap_swap(h, _r, _j); \ 74 } \ 75 } while (0) 76 77 #define heap_sift_down(h, i, cmp) \ 78 do { \ 79 while (i) { \ 80 size_t p = (i - 1) / 2; \ 81 if (cmp((h)->data[i], (h)->data[p])) \ 82 break; \ 83 heap_swap(h, i, p); \ 84 i = p; \ 85 } \ 86 } while (0) 87 88 #define heap_add(h, d, cmp) \ 89 ({ \ 90 bool _r = !heap_full(h); \ 91 if (_r) { \ 92 size_t _i = (h)->used++; \ 93 (h)->data[_i] = d; \ 94 \ 95 heap_sift_down(h, _i, cmp); \ 96 heap_sift(h, _i, cmp); \ 97 } \ 98 _r; \ 99 }) 100 101 #define heap_pop(h, d, cmp) \ 102 ({ \ 103 bool _r = (h)->used; \ 104 if (_r) { \ 105 (d) = (h)->data[0]; \ 106 (h)->used--; \ 107 heap_swap(h, 0, (h)->used); \ 108 heap_sift(h, 0, cmp); \ 109 } \ 110 _r; \ 111 }) 112 113 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) 114 115 #define heap_full(h) ((h)->used == (h)->size) 116 117 #define DECLARE_FIFO(type, name) \ 118 struct { \ 119 size_t front, back, size, mask; \ 120 type *data; \ 121 } name 122 123 #define fifo_for_each(c, fifo, iter) \ 124 for (iter = (fifo)->front; \ 125 c = (fifo)->data[iter], iter != (fifo)->back; \ 126 iter = (iter + 1) & (fifo)->mask) 127 128 #define __init_fifo(fifo, gfp) \ 129 ({ \ 130 size_t _allocated_size, _bytes; \ 131 BUG_ON(!(fifo)->size); \ 132 \ 133 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ 134 _bytes = _allocated_size * sizeof(*(fifo)->data); \ 135 \ 136 (fifo)->mask = _allocated_size - 1; \ 137 (fifo)->front = (fifo)->back = 0; \ 138 (fifo)->data = NULL; \ 139 \ 140 if (_bytes < KMALLOC_MAX_SIZE) \ 141 (fifo)->data = kmalloc(_bytes, (gfp)); \ 142 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \ 143 (fifo)->data = vmalloc(_bytes); \ 144 (fifo)->data; \ 145 }) 146 147 #define init_fifo_exact(fifo, _size, gfp) \ 148 ({ \ 149 (fifo)->size = (_size); \ 150 __init_fifo(fifo, gfp); \ 151 }) 152 153 #define init_fifo(fifo, _size, gfp) \ 154 ({ \ 155 (fifo)->size = (_size); \ 156 if ((fifo)->size > 4) \ 157 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ 158 __init_fifo(fifo, gfp); \ 159 }) 160 161 #define free_fifo(fifo) \ 162 do { \ 163 kvfree((fifo)->data); \ 164 (fifo)->data = NULL; \ 165 } while (0) 166 167 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) 168 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) 169 170 #define fifo_empty(fifo) (!fifo_used(fifo)) 171 #define fifo_full(fifo) (!fifo_free(fifo)) 172 173 #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) 174 #define fifo_back(fifo) \ 175 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) 176 177 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) 178 179 #define fifo_push_back(fifo, i) \ 180 ({ \ 181 bool _r = !fifo_full((fifo)); \ 182 if (_r) { \ 183 (fifo)->data[(fifo)->back++] = (i); \ 184 (fifo)->back &= (fifo)->mask; \ 185 } \ 186 _r; \ 187 }) 188 189 #define fifo_pop_front(fifo, i) \ 190 ({ \ 191 bool _r = !fifo_empty((fifo)); \ 192 if (_r) { \ 193 (i) = (fifo)->data[(fifo)->front++]; \ 194 (fifo)->front &= (fifo)->mask; \ 195 } \ 196 _r; \ 197 }) 198 199 #define fifo_push_front(fifo, i) \ 200 ({ \ 201 bool _r = !fifo_full((fifo)); \ 202 if (_r) { \ 203 --(fifo)->front; \ 204 (fifo)->front &= (fifo)->mask; \ 205 (fifo)->data[(fifo)->front] = (i); \ 206 } \ 207 _r; \ 208 }) 209 210 #define fifo_pop_back(fifo, i) \ 211 ({ \ 212 bool _r = !fifo_empty((fifo)); \ 213 if (_r) { \ 214 --(fifo)->back; \ 215 (fifo)->back &= (fifo)->mask; \ 216 (i) = (fifo)->data[(fifo)->back] \ 217 } \ 218 _r; \ 219 }) 220 221 #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) 222 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) 223 224 #define fifo_swap(l, r) \ 225 do { \ 226 swap((l)->front, (r)->front); \ 227 swap((l)->back, (r)->back); \ 228 swap((l)->size, (r)->size); \ 229 swap((l)->mask, (r)->mask); \ 230 swap((l)->data, (r)->data); \ 231 } while (0) 232 233 #define fifo_move(dest, src) \ 234 do { \ 235 typeof(*((dest)->data)) _t; \ 236 while (!fifo_full(dest) && \ 237 fifo_pop(src, _t)) \ 238 fifo_push(dest, _t); \ 239 } while (0) 240 241 /* 242 * Simple array based allocator - preallocates a number of elements and you can 243 * never allocate more than that, also has no locking. 244 * 245 * Handy because if you know you only need a fixed number of elements you don't 246 * have to worry about memory allocation failure, and sometimes a mempool isn't 247 * what you want. 248 * 249 * We treat the free elements as entries in a singly linked list, and the 250 * freelist as a stack - allocating and freeing push and pop off the freelist. 251 */ 252 253 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ 254 struct { \ 255 type *freelist; \ 256 type data[size]; \ 257 } name 258 259 #define array_alloc(array) \ 260 ({ \ 261 typeof((array)->freelist) _ret = (array)->freelist; \ 262 \ 263 if (_ret) \ 264 (array)->freelist = *((typeof((array)->freelist) *) _ret);\ 265 \ 266 _ret; \ 267 }) 268 269 #define array_free(array, ptr) \ 270 do { \ 271 typeof((array)->freelist) _ptr = ptr; \ 272 \ 273 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ 274 (array)->freelist = _ptr; \ 275 } while (0) 276 277 #define array_allocator_init(array) \ 278 do { \ 279 typeof((array)->freelist) _i; \ 280 \ 281 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ 282 (array)->freelist = NULL; \ 283 \ 284 for (_i = (array)->data; \ 285 _i < (array)->data + ARRAY_SIZE((array)->data); \ 286 _i++) \ 287 array_free(array, _i); \ 288 } while (0) 289 290 #define array_freelist_empty(array) ((array)->freelist == NULL) 291 292 #define ANYSINT_MAX(t) \ 293 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 294 295 int bch_strtoint_h(const char *, int *); 296 int bch_strtouint_h(const char *, unsigned int *); 297 int bch_strtoll_h(const char *, long long *); 298 int bch_strtoull_h(const char *, unsigned long long *); 299 300 static inline int bch_strtol_h(const char *cp, long *res) 301 { 302 #if BITS_PER_LONG == 32 303 return bch_strtoint_h(cp, (int *) res); 304 #else 305 return bch_strtoll_h(cp, (long long *) res); 306 #endif 307 } 308 309 static inline int bch_strtoul_h(const char *cp, long *res) 310 { 311 #if BITS_PER_LONG == 32 312 return bch_strtouint_h(cp, (unsigned int *) res); 313 #else 314 return bch_strtoull_h(cp, (unsigned long long *) res); 315 #endif 316 } 317 318 #define strtoi_h(cp, res) \ 319 (__builtin_types_compatible_p(typeof(*res), int) \ 320 ? bch_strtoint_h(cp, (void *) res) \ 321 : __builtin_types_compatible_p(typeof(*res), long) \ 322 ? bch_strtol_h(cp, (void *) res) \ 323 : __builtin_types_compatible_p(typeof(*res), long long) \ 324 ? bch_strtoll_h(cp, (void *) res) \ 325 : __builtin_types_compatible_p(typeof(*res), unsigned int) \ 326 ? bch_strtouint_h(cp, (void *) res) \ 327 : __builtin_types_compatible_p(typeof(*res), unsigned long) \ 328 ? bch_strtoul_h(cp, (void *) res) \ 329 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ 330 ? bch_strtoull_h(cp, (void *) res) : -EINVAL) 331 332 #define strtoul_safe(cp, var) \ 333 ({ \ 334 unsigned long _v; \ 335 int _r = kstrtoul(cp, 10, &_v); \ 336 if (!_r) \ 337 var = _v; \ 338 _r; \ 339 }) 340 341 #define strtoul_safe_clamp(cp, var, min, max) \ 342 ({ \ 343 unsigned long _v; \ 344 int _r = kstrtoul(cp, 10, &_v); \ 345 if (!_r) \ 346 var = clamp_t(typeof(var), _v, min, max); \ 347 _r; \ 348 }) 349 350 #define snprint(buf, size, var) \ 351 snprintf(buf, size, \ 352 __builtin_types_compatible_p(typeof(var), int) \ 353 ? "%i\n" : \ 354 __builtin_types_compatible_p(typeof(var), unsigned) \ 355 ? "%u\n" : \ 356 __builtin_types_compatible_p(typeof(var), long) \ 357 ? "%li\n" : \ 358 __builtin_types_compatible_p(typeof(var), unsigned long)\ 359 ? "%lu\n" : \ 360 __builtin_types_compatible_p(typeof(var), int64_t) \ 361 ? "%lli\n" : \ 362 __builtin_types_compatible_p(typeof(var), uint64_t) \ 363 ? "%llu\n" : \ 364 __builtin_types_compatible_p(typeof(var), const char *) \ 365 ? "%s\n" : "%i\n", var) 366 367 ssize_t bch_hprint(char *buf, int64_t v); 368 369 bool bch_is_zero(const char *p, size_t n); 370 int bch_parse_uuid(const char *s, char *uuid); 371 372 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[], 373 size_t selected); 374 375 ssize_t bch_read_string_list(const char *buf, const char * const list[]); 376 377 struct time_stats { 378 spinlock_t lock; 379 /* 380 * all fields are in nanoseconds, averages are ewmas stored left shifted 381 * by 8 382 */ 383 uint64_t max_duration; 384 uint64_t average_duration; 385 uint64_t average_frequency; 386 uint64_t last; 387 }; 388 389 void bch_time_stats_update(struct time_stats *stats, uint64_t time); 390 391 static inline unsigned local_clock_us(void) 392 { 393 return local_clock() >> 10; 394 } 395 396 #define NSEC_PER_ns 1L 397 #define NSEC_PER_us NSEC_PER_USEC 398 #define NSEC_PER_ms NSEC_PER_MSEC 399 #define NSEC_PER_sec NSEC_PER_SEC 400 401 #define __print_time_stat(stats, name, stat, units) \ 402 sysfs_print(name ## _ ## stat ## _ ## units, \ 403 div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) 404 405 #define sysfs_print_time_stats(stats, name, \ 406 frequency_units, \ 407 duration_units) \ 408 do { \ 409 __print_time_stat(stats, name, \ 410 average_frequency, frequency_units); \ 411 __print_time_stat(stats, name, \ 412 average_duration, duration_units); \ 413 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ 414 div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\ 415 \ 416 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ 417 ? div_s64(local_clock() - (stats)->last, \ 418 NSEC_PER_ ## frequency_units) \ 419 : -1LL); \ 420 } while (0) 421 422 #define sysfs_time_stats_attribute(name, \ 423 frequency_units, \ 424 duration_units) \ 425 read_attribute(name ## _average_frequency_ ## frequency_units); \ 426 read_attribute(name ## _average_duration_ ## duration_units); \ 427 read_attribute(name ## _max_duration_ ## duration_units); \ 428 read_attribute(name ## _last_ ## frequency_units) 429 430 #define sysfs_time_stats_attribute_list(name, \ 431 frequency_units, \ 432 duration_units) \ 433 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ 434 &sysfs_ ## name ## _average_duration_ ## duration_units, \ 435 &sysfs_ ## name ## _max_duration_ ## duration_units, \ 436 &sysfs_ ## name ## _last_ ## frequency_units, 437 438 #define ewma_add(ewma, val, weight, factor) \ 439 ({ \ 440 (ewma) *= (weight) - 1; \ 441 (ewma) += (val) << factor; \ 442 (ewma) /= (weight); \ 443 (ewma) >> factor; \ 444 }) 445 446 struct bch_ratelimit { 447 /* Next time we want to do some work, in nanoseconds */ 448 uint64_t next; 449 450 /* 451 * Rate at which we want to do work, in units per nanosecond 452 * The units here correspond to the units passed to bch_next_delay() 453 */ 454 unsigned rate; 455 }; 456 457 static inline void bch_ratelimit_reset(struct bch_ratelimit *d) 458 { 459 d->next = local_clock(); 460 } 461 462 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); 463 464 #define __DIV_SAFE(n, d, zero) \ 465 ({ \ 466 typeof(n) _n = (n); \ 467 typeof(d) _d = (d); \ 468 _d ? _n / _d : zero; \ 469 }) 470 471 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) 472 473 #define container_of_or_null(ptr, type, member) \ 474 ({ \ 475 typeof(ptr) _ptr = ptr; \ 476 _ptr ? container_of(_ptr, type, member) : NULL; \ 477 }) 478 479 #define RB_INSERT(root, new, member, cmp) \ 480 ({ \ 481 __label__ dup; \ 482 struct rb_node **n = &(root)->rb_node, *parent = NULL; \ 483 typeof(new) this; \ 484 int res, ret = -1; \ 485 \ 486 while (*n) { \ 487 parent = *n; \ 488 this = container_of(*n, typeof(*(new)), member); \ 489 res = cmp(new, this); \ 490 if (!res) \ 491 goto dup; \ 492 n = res < 0 \ 493 ? &(*n)->rb_left \ 494 : &(*n)->rb_right; \ 495 } \ 496 \ 497 rb_link_node(&(new)->member, parent, n); \ 498 rb_insert_color(&(new)->member, root); \ 499 ret = 0; \ 500 dup: \ 501 ret; \ 502 }) 503 504 #define RB_SEARCH(root, search, member, cmp) \ 505 ({ \ 506 struct rb_node *n = (root)->rb_node; \ 507 typeof(&(search)) this, ret = NULL; \ 508 int res; \ 509 \ 510 while (n) { \ 511 this = container_of(n, typeof(search), member); \ 512 res = cmp(&(search), this); \ 513 if (!res) { \ 514 ret = this; \ 515 break; \ 516 } \ 517 n = res < 0 \ 518 ? n->rb_left \ 519 : n->rb_right; \ 520 } \ 521 ret; \ 522 }) 523 524 #define RB_GREATER(root, search, member, cmp) \ 525 ({ \ 526 struct rb_node *n = (root)->rb_node; \ 527 typeof(&(search)) this, ret = NULL; \ 528 int res; \ 529 \ 530 while (n) { \ 531 this = container_of(n, typeof(search), member); \ 532 res = cmp(&(search), this); \ 533 if (res < 0) { \ 534 ret = this; \ 535 n = n->rb_left; \ 536 } else \ 537 n = n->rb_right; \ 538 } \ 539 ret; \ 540 }) 541 542 #define RB_FIRST(root, type, member) \ 543 container_of_or_null(rb_first(root), type, member) 544 545 #define RB_LAST(root, type, member) \ 546 container_of_or_null(rb_last(root), type, member) 547 548 #define RB_NEXT(ptr, member) \ 549 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) 550 551 #define RB_PREV(ptr, member) \ 552 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) 553 554 /* Does linear interpolation between powers of two */ 555 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) 556 { 557 unsigned fract = x & ~(~0 << fract_bits); 558 559 x >>= fract_bits; 560 x = 1 << x; 561 x += (x * fract) >> fract_bits; 562 563 return x; 564 } 565 566 void bch_bio_map(struct bio *bio, void *base); 567 568 static inline sector_t bdev_sectors(struct block_device *bdev) 569 { 570 return bdev->bd_inode->i_size >> 9; 571 } 572 573 #define closure_bio_submit(bio, cl, dev) \ 574 do { \ 575 closure_get(cl); \ 576 bch_generic_make_request(bio, &(dev)->bio_split_hook); \ 577 } while (0) 578 579 uint64_t bch_crc64_update(uint64_t, const void *, size_t); 580 uint64_t bch_crc64(const void *, size_t); 581 582 #endif /* _BCACHE_UTIL_H */ 583