1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 #ifndef _BCACHE_UTIL_H 4 #define _BCACHE_UTIL_H 5 6 #include <linux/blkdev.h> 7 #include <linux/errno.h> 8 #include <linux/kernel.h> 9 #include <linux/sched/clock.h> 10 #include <linux/llist.h> 11 #include <linux/ratelimit.h> 12 #include <linux/vmalloc.h> 13 #include <linux/workqueue.h> 14 #include <linux/crc64.h> 15 16 #include "closure.h" 17 18 #define PAGE_SECTORS (PAGE_SIZE / 512) 19 20 struct closure; 21 22 #ifdef CONFIG_BCACHE_DEBUG 23 24 #define EBUG_ON(cond) BUG_ON(cond) 25 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) 26 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) 27 28 #else /* DEBUG */ 29 30 #define EBUG_ON(cond) do { if (cond); } while (0) 31 #define atomic_dec_bug(v) atomic_dec(v) 32 #define atomic_inc_bug(v, i) atomic_inc(v) 33 34 #endif 35 36 #define DECLARE_HEAP(type, name) \ 37 struct { \ 38 size_t size, used; \ 39 type *data; \ 40 } name 41 42 #define init_heap(heap, _size, gfp) \ 43 ({ \ 44 size_t _bytes; \ 45 (heap)->used = 0; \ 46 (heap)->size = (_size); \ 47 _bytes = (heap)->size * sizeof(*(heap)->data); \ 48 (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ 49 (heap)->data; \ 50 }) 51 52 #define free_heap(heap) \ 53 do { \ 54 kvfree((heap)->data); \ 55 (heap)->data = NULL; \ 56 } while (0) 57 58 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) 59 60 #define heap_sift(h, i, cmp) \ 61 do { \ 62 size_t _r, _j = i; \ 63 \ 64 for (; _j * 2 + 1 < (h)->used; _j = _r) { \ 65 _r = _j * 2 + 1; \ 66 if (_r + 1 < (h)->used && \ 67 cmp((h)->data[_r], (h)->data[_r + 1])) \ 68 _r++; \ 69 \ 70 if (cmp((h)->data[_r], (h)->data[_j])) \ 71 break; \ 72 heap_swap(h, _r, _j); \ 73 } \ 74 } while (0) 75 76 #define heap_sift_down(h, i, cmp) \ 77 do { \ 78 while (i) { \ 79 size_t p = (i - 1) / 2; \ 80 if (cmp((h)->data[i], (h)->data[p])) \ 81 break; \ 82 heap_swap(h, i, p); \ 83 i = p; \ 84 } \ 85 } while (0) 86 87 #define heap_add(h, d, cmp) \ 88 ({ \ 89 bool _r = !heap_full(h); \ 90 if (_r) { \ 91 size_t _i = (h)->used++; \ 92 (h)->data[_i] = d; \ 93 \ 94 heap_sift_down(h, _i, cmp); \ 95 heap_sift(h, _i, cmp); \ 96 } \ 97 _r; \ 98 }) 99 100 #define heap_pop(h, d, cmp) \ 101 ({ \ 102 bool _r = (h)->used; \ 103 if (_r) { \ 104 (d) = (h)->data[0]; \ 105 (h)->used--; \ 106 heap_swap(h, 0, (h)->used); \ 107 heap_sift(h, 0, cmp); \ 108 } \ 109 _r; \ 110 }) 111 112 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) 113 114 #define heap_full(h) ((h)->used == (h)->size) 115 116 #define DECLARE_FIFO(type, name) \ 117 struct { \ 118 size_t front, back, size, mask; \ 119 type *data; \ 120 } name 121 122 #define fifo_for_each(c, fifo, iter) \ 123 for (iter = (fifo)->front; \ 124 c = (fifo)->data[iter], iter != (fifo)->back; \ 125 iter = (iter + 1) & (fifo)->mask) 126 127 #define __init_fifo(fifo, gfp) \ 128 ({ \ 129 size_t _allocated_size, _bytes; \ 130 BUG_ON(!(fifo)->size); \ 131 \ 132 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ 133 _bytes = _allocated_size * sizeof(*(fifo)->data); \ 134 \ 135 (fifo)->mask = _allocated_size - 1; \ 136 (fifo)->front = (fifo)->back = 0; \ 137 \ 138 (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ 139 (fifo)->data; \ 140 }) 141 142 #define init_fifo_exact(fifo, _size, gfp) \ 143 ({ \ 144 (fifo)->size = (_size); \ 145 __init_fifo(fifo, gfp); \ 146 }) 147 148 #define init_fifo(fifo, _size, gfp) \ 149 ({ \ 150 (fifo)->size = (_size); \ 151 if ((fifo)->size > 4) \ 152 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ 153 __init_fifo(fifo, gfp); \ 154 }) 155 156 #define free_fifo(fifo) \ 157 do { \ 158 kvfree((fifo)->data); \ 159 (fifo)->data = NULL; \ 160 } while (0) 161 162 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) 163 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) 164 165 #define fifo_empty(fifo) (!fifo_used(fifo)) 166 #define fifo_full(fifo) (!fifo_free(fifo)) 167 168 #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) 169 #define fifo_back(fifo) \ 170 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) 171 172 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) 173 174 #define fifo_push_back(fifo, i) \ 175 ({ \ 176 bool _r = !fifo_full((fifo)); \ 177 if (_r) { \ 178 (fifo)->data[(fifo)->back++] = (i); \ 179 (fifo)->back &= (fifo)->mask; \ 180 } \ 181 _r; \ 182 }) 183 184 #define fifo_pop_front(fifo, i) \ 185 ({ \ 186 bool _r = !fifo_empty((fifo)); \ 187 if (_r) { \ 188 (i) = (fifo)->data[(fifo)->front++]; \ 189 (fifo)->front &= (fifo)->mask; \ 190 } \ 191 _r; \ 192 }) 193 194 #define fifo_push_front(fifo, i) \ 195 ({ \ 196 bool _r = !fifo_full((fifo)); \ 197 if (_r) { \ 198 --(fifo)->front; \ 199 (fifo)->front &= (fifo)->mask; \ 200 (fifo)->data[(fifo)->front] = (i); \ 201 } \ 202 _r; \ 203 }) 204 205 #define fifo_pop_back(fifo, i) \ 206 ({ \ 207 bool _r = !fifo_empty((fifo)); \ 208 if (_r) { \ 209 --(fifo)->back; \ 210 (fifo)->back &= (fifo)->mask; \ 211 (i) = (fifo)->data[(fifo)->back] \ 212 } \ 213 _r; \ 214 }) 215 216 #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) 217 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) 218 219 #define fifo_swap(l, r) \ 220 do { \ 221 swap((l)->front, (r)->front); \ 222 swap((l)->back, (r)->back); \ 223 swap((l)->size, (r)->size); \ 224 swap((l)->mask, (r)->mask); \ 225 swap((l)->data, (r)->data); \ 226 } while (0) 227 228 #define fifo_move(dest, src) \ 229 do { \ 230 typeof(*((dest)->data)) _t; \ 231 while (!fifo_full(dest) && \ 232 fifo_pop(src, _t)) \ 233 fifo_push(dest, _t); \ 234 } while (0) 235 236 /* 237 * Simple array based allocator - preallocates a number of elements and you can 238 * never allocate more than that, also has no locking. 239 * 240 * Handy because if you know you only need a fixed number of elements you don't 241 * have to worry about memory allocation failure, and sometimes a mempool isn't 242 * what you want. 243 * 244 * We treat the free elements as entries in a singly linked list, and the 245 * freelist as a stack - allocating and freeing push and pop off the freelist. 246 */ 247 248 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ 249 struct { \ 250 type *freelist; \ 251 type data[size]; \ 252 } name 253 254 #define array_alloc(array) \ 255 ({ \ 256 typeof((array)->freelist) _ret = (array)->freelist; \ 257 \ 258 if (_ret) \ 259 (array)->freelist = *((typeof((array)->freelist) *) _ret);\ 260 \ 261 _ret; \ 262 }) 263 264 #define array_free(array, ptr) \ 265 do { \ 266 typeof((array)->freelist) _ptr = ptr; \ 267 \ 268 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ 269 (array)->freelist = _ptr; \ 270 } while (0) 271 272 #define array_allocator_init(array) \ 273 do { \ 274 typeof((array)->freelist) _i; \ 275 \ 276 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ 277 (array)->freelist = NULL; \ 278 \ 279 for (_i = (array)->data; \ 280 _i < (array)->data + ARRAY_SIZE((array)->data); \ 281 _i++) \ 282 array_free(array, _i); \ 283 } while (0) 284 285 #define array_freelist_empty(array) ((array)->freelist == NULL) 286 287 #define ANYSINT_MAX(t) \ 288 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 289 290 int bch_strtoint_h(const char *cp, int *res); 291 int bch_strtouint_h(const char *cp, unsigned int *res); 292 int bch_strtoll_h(const char *cp, long long *res); 293 int bch_strtoull_h(const char *cp, unsigned long long *res); 294 295 static inline int bch_strtol_h(const char *cp, long *res) 296 { 297 #if BITS_PER_LONG == 32 298 return bch_strtoint_h(cp, (int *) res); 299 #else 300 return bch_strtoll_h(cp, (long long *) res); 301 #endif 302 } 303 304 static inline int bch_strtoul_h(const char *cp, long *res) 305 { 306 #if BITS_PER_LONG == 32 307 return bch_strtouint_h(cp, (unsigned int *) res); 308 #else 309 return bch_strtoull_h(cp, (unsigned long long *) res); 310 #endif 311 } 312 313 #define strtoi_h(cp, res) \ 314 (__builtin_types_compatible_p(typeof(*res), int) \ 315 ? bch_strtoint_h(cp, (void *) res) \ 316 : __builtin_types_compatible_p(typeof(*res), long) \ 317 ? bch_strtol_h(cp, (void *) res) \ 318 : __builtin_types_compatible_p(typeof(*res), long long) \ 319 ? bch_strtoll_h(cp, (void *) res) \ 320 : __builtin_types_compatible_p(typeof(*res), unsigned int) \ 321 ? bch_strtouint_h(cp, (void *) res) \ 322 : __builtin_types_compatible_p(typeof(*res), unsigned long) \ 323 ? bch_strtoul_h(cp, (void *) res) \ 324 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ 325 ? bch_strtoull_h(cp, (void *) res) : -EINVAL) 326 327 #define strtoul_safe(cp, var) \ 328 ({ \ 329 unsigned long _v; \ 330 int _r = kstrtoul(cp, 10, &_v); \ 331 if (!_r) \ 332 var = _v; \ 333 _r; \ 334 }) 335 336 #define strtoul_safe_clamp(cp, var, min, max) \ 337 ({ \ 338 unsigned long _v; \ 339 int _r = kstrtoul(cp, 10, &_v); \ 340 if (!_r) \ 341 var = clamp_t(typeof(var), _v, min, max); \ 342 _r; \ 343 }) 344 345 #define snprint(buf, size, var) \ 346 snprintf(buf, size, \ 347 __builtin_types_compatible_p(typeof(var), int) \ 348 ? "%i\n" : \ 349 __builtin_types_compatible_p(typeof(var), unsigned int) \ 350 ? "%u\n" : \ 351 __builtin_types_compatible_p(typeof(var), long) \ 352 ? "%li\n" : \ 353 __builtin_types_compatible_p(typeof(var), unsigned long)\ 354 ? "%lu\n" : \ 355 __builtin_types_compatible_p(typeof(var), int64_t) \ 356 ? "%lli\n" : \ 357 __builtin_types_compatible_p(typeof(var), uint64_t) \ 358 ? "%llu\n" : \ 359 __builtin_types_compatible_p(typeof(var), const char *) \ 360 ? "%s\n" : "%i\n", var) 361 362 ssize_t bch_hprint(char *buf, int64_t v); 363 364 bool bch_is_zero(const char *p, size_t n); 365 int bch_parse_uuid(const char *s, char *uuid); 366 367 struct time_stats { 368 spinlock_t lock; 369 /* 370 * all fields are in nanoseconds, averages are ewmas stored left shifted 371 * by 8 372 */ 373 uint64_t max_duration; 374 uint64_t average_duration; 375 uint64_t average_frequency; 376 uint64_t last; 377 }; 378 379 void bch_time_stats_update(struct time_stats *stats, uint64_t time); 380 381 static inline unsigned int local_clock_us(void) 382 { 383 return local_clock() >> 10; 384 } 385 386 #define NSEC_PER_ns 1L 387 #define NSEC_PER_us NSEC_PER_USEC 388 #define NSEC_PER_ms NSEC_PER_MSEC 389 #define NSEC_PER_sec NSEC_PER_SEC 390 391 #define __print_time_stat(stats, name, stat, units) \ 392 sysfs_print(name ## _ ## stat ## _ ## units, \ 393 div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) 394 395 #define sysfs_print_time_stats(stats, name, \ 396 frequency_units, \ 397 duration_units) \ 398 do { \ 399 __print_time_stat(stats, name, \ 400 average_frequency, frequency_units); \ 401 __print_time_stat(stats, name, \ 402 average_duration, duration_units); \ 403 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ 404 div_u64((stats)->max_duration, \ 405 NSEC_PER_ ## duration_units)); \ 406 \ 407 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ 408 ? div_s64(local_clock() - (stats)->last, \ 409 NSEC_PER_ ## frequency_units) \ 410 : -1LL); \ 411 } while (0) 412 413 #define sysfs_time_stats_attribute(name, \ 414 frequency_units, \ 415 duration_units) \ 416 read_attribute(name ## _average_frequency_ ## frequency_units); \ 417 read_attribute(name ## _average_duration_ ## duration_units); \ 418 read_attribute(name ## _max_duration_ ## duration_units); \ 419 read_attribute(name ## _last_ ## frequency_units) 420 421 #define sysfs_time_stats_attribute_list(name, \ 422 frequency_units, \ 423 duration_units) \ 424 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ 425 &sysfs_ ## name ## _average_duration_ ## duration_units, \ 426 &sysfs_ ## name ## _max_duration_ ## duration_units, \ 427 &sysfs_ ## name ## _last_ ## frequency_units, 428 429 #define ewma_add(ewma, val, weight, factor) \ 430 ({ \ 431 (ewma) *= (weight) - 1; \ 432 (ewma) += (val) << factor; \ 433 (ewma) /= (weight); \ 434 (ewma) >> factor; \ 435 }) 436 437 struct bch_ratelimit { 438 /* Next time we want to do some work, in nanoseconds */ 439 uint64_t next; 440 441 /* 442 * Rate at which we want to do work, in units per second 443 * The units here correspond to the units passed to bch_next_delay() 444 */ 445 atomic_long_t rate; 446 }; 447 448 static inline void bch_ratelimit_reset(struct bch_ratelimit *d) 449 { 450 d->next = local_clock(); 451 } 452 453 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); 454 455 #define __DIV_SAFE(n, d, zero) \ 456 ({ \ 457 typeof(n) _n = (n); \ 458 typeof(d) _d = (d); \ 459 _d ? _n / _d : zero; \ 460 }) 461 462 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) 463 464 #define container_of_or_null(ptr, type, member) \ 465 ({ \ 466 typeof(ptr) _ptr = ptr; \ 467 _ptr ? container_of(_ptr, type, member) : NULL; \ 468 }) 469 470 #define RB_INSERT(root, new, member, cmp) \ 471 ({ \ 472 __label__ dup; \ 473 struct rb_node **n = &(root)->rb_node, *parent = NULL; \ 474 typeof(new) this; \ 475 int res, ret = -1; \ 476 \ 477 while (*n) { \ 478 parent = *n; \ 479 this = container_of(*n, typeof(*(new)), member); \ 480 res = cmp(new, this); \ 481 if (!res) \ 482 goto dup; \ 483 n = res < 0 \ 484 ? &(*n)->rb_left \ 485 : &(*n)->rb_right; \ 486 } \ 487 \ 488 rb_link_node(&(new)->member, parent, n); \ 489 rb_insert_color(&(new)->member, root); \ 490 ret = 0; \ 491 dup: \ 492 ret; \ 493 }) 494 495 #define RB_SEARCH(root, search, member, cmp) \ 496 ({ \ 497 struct rb_node *n = (root)->rb_node; \ 498 typeof(&(search)) this, ret = NULL; \ 499 int res; \ 500 \ 501 while (n) { \ 502 this = container_of(n, typeof(search), member); \ 503 res = cmp(&(search), this); \ 504 if (!res) { \ 505 ret = this; \ 506 break; \ 507 } \ 508 n = res < 0 \ 509 ? n->rb_left \ 510 : n->rb_right; \ 511 } \ 512 ret; \ 513 }) 514 515 #define RB_GREATER(root, search, member, cmp) \ 516 ({ \ 517 struct rb_node *n = (root)->rb_node; \ 518 typeof(&(search)) this, ret = NULL; \ 519 int res; \ 520 \ 521 while (n) { \ 522 this = container_of(n, typeof(search), member); \ 523 res = cmp(&(search), this); \ 524 if (res < 0) { \ 525 ret = this; \ 526 n = n->rb_left; \ 527 } else \ 528 n = n->rb_right; \ 529 } \ 530 ret; \ 531 }) 532 533 #define RB_FIRST(root, type, member) \ 534 container_of_or_null(rb_first(root), type, member) 535 536 #define RB_LAST(root, type, member) \ 537 container_of_or_null(rb_last(root), type, member) 538 539 #define RB_NEXT(ptr, member) \ 540 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) 541 542 #define RB_PREV(ptr, member) \ 543 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) 544 545 static inline uint64_t bch_crc64(const void *p, size_t len) 546 { 547 uint64_t crc = 0xffffffffffffffffULL; 548 549 crc = crc64_be(crc, p, len); 550 return crc ^ 0xffffffffffffffffULL; 551 } 552 553 static inline uint64_t bch_crc64_update(uint64_t crc, 554 const void *p, 555 size_t len) 556 { 557 crc = crc64_be(crc, p, len); 558 return crc; 559 } 560 561 /* 562 * A stepwise-linear pseudo-exponential. This returns 1 << (x >> 563 * frac_bits), with the less-significant bits filled in by linear 564 * interpolation. 565 * 566 * This can also be interpreted as a floating-point number format, 567 * where the low frac_bits are the mantissa (with implicit leading 568 * 1 bit), and the more significant bits are the exponent. 569 * The return value is 1.mantissa * 2^exponent. 570 * 571 * The way this is used, fract_bits is 6 and the largest possible 572 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc), 573 * so the maximum output is 0x1fc00. 574 */ 575 static inline unsigned int fract_exp_two(unsigned int x, 576 unsigned int fract_bits) 577 { 578 unsigned int mantissa = 1 << fract_bits; /* Implicit bit */ 579 580 mantissa += x & (mantissa - 1); 581 x >>= fract_bits; /* The exponent */ 582 /* Largest intermediate value 0x7f0000 */ 583 return mantissa << x >> fract_bits; 584 } 585 586 void bch_bio_map(struct bio *bio, void *base); 587 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask); 588 589 static inline sector_t bdev_sectors(struct block_device *bdev) 590 { 591 return bdev->bd_inode->i_size >> 9; 592 } 593 #endif /* _BCACHE_UTIL_H */ 594