1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 #ifndef _BCACHE_UTIL_H 4 #define _BCACHE_UTIL_H 5 6 #include <linux/blkdev.h> 7 #include <linux/closure.h> 8 #include <linux/errno.h> 9 #include <linux/kernel.h> 10 #include <linux/sched/clock.h> 11 #include <linux/llist.h> 12 #include <linux/ratelimit.h> 13 #include <linux/vmalloc.h> 14 #include <linux/workqueue.h> 15 #include <linux/crc64.h> 16 17 struct closure; 18 19 #ifdef CONFIG_BCACHE_DEBUG 20 21 #define EBUG_ON(cond) BUG_ON(cond) 22 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) 23 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) 24 25 #else /* DEBUG */ 26 27 #define EBUG_ON(cond) do { if (cond) do {} while (0); } while (0) 28 #define atomic_dec_bug(v) atomic_dec(v) 29 #define atomic_inc_bug(v, i) atomic_inc(v) 30 31 #endif 32 33 #define DECLARE_HEAP(type, name) \ 34 struct { \ 35 size_t size, used; \ 36 type *data; \ 37 } name 38 39 #define init_heap(heap, _size, gfp) \ 40 ({ \ 41 size_t _bytes; \ 42 (heap)->used = 0; \ 43 (heap)->size = (_size); \ 44 _bytes = (heap)->size * sizeof(*(heap)->data); \ 45 (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ 46 (heap)->data; \ 47 }) 48 49 #define free_heap(heap) \ 50 do { \ 51 kvfree((heap)->data); \ 52 (heap)->data = NULL; \ 53 } while (0) 54 55 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) 56 57 #define heap_sift(h, i, cmp) \ 58 do { \ 59 size_t _r, _j = i; \ 60 \ 61 for (; _j * 2 + 1 < (h)->used; _j = _r) { \ 62 _r = _j * 2 + 1; \ 63 if (_r + 1 < (h)->used && \ 64 cmp((h)->data[_r], (h)->data[_r + 1])) \ 65 _r++; \ 66 \ 67 if (cmp((h)->data[_r], (h)->data[_j])) \ 68 break; \ 69 heap_swap(h, _r, _j); \ 70 } \ 71 } while (0) 72 73 #define heap_sift_down(h, i, cmp) \ 74 do { \ 75 while (i) { \ 76 size_t p = (i - 1) / 2; \ 77 if (cmp((h)->data[i], (h)->data[p])) \ 78 break; \ 79 heap_swap(h, i, p); \ 80 i = p; \ 81 } \ 82 } while (0) 83 84 #define heap_add(h, d, cmp) \ 85 ({ \ 86 bool _r = !heap_full(h); \ 87 if (_r) { \ 88 size_t _i = (h)->used++; \ 89 (h)->data[_i] = d; \ 90 \ 91 heap_sift_down(h, _i, cmp); \ 92 heap_sift(h, _i, cmp); \ 93 } \ 94 _r; \ 95 }) 96 97 #define heap_pop(h, d, cmp) \ 98 ({ \ 99 bool _r = (h)->used; \ 100 if (_r) { \ 101 (d) = (h)->data[0]; \ 102 (h)->used--; \ 103 heap_swap(h, 0, (h)->used); \ 104 heap_sift(h, 0, cmp); \ 105 } \ 106 _r; \ 107 }) 108 109 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) 110 111 #define heap_full(h) ((h)->used == (h)->size) 112 113 #define DECLARE_FIFO(type, name) \ 114 struct { \ 115 size_t front, back, size, mask; \ 116 type *data; \ 117 } name 118 119 #define fifo_for_each(c, fifo, iter) \ 120 for (iter = (fifo)->front; \ 121 c = (fifo)->data[iter], iter != (fifo)->back; \ 122 iter = (iter + 1) & (fifo)->mask) 123 124 #define __init_fifo(fifo, gfp) \ 125 ({ \ 126 size_t _allocated_size, _bytes; \ 127 BUG_ON(!(fifo)->size); \ 128 \ 129 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ 130 _bytes = _allocated_size * sizeof(*(fifo)->data); \ 131 \ 132 (fifo)->mask = _allocated_size - 1; \ 133 (fifo)->front = (fifo)->back = 0; \ 134 \ 135 (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ 136 (fifo)->data; \ 137 }) 138 139 #define init_fifo_exact(fifo, _size, gfp) \ 140 ({ \ 141 (fifo)->size = (_size); \ 142 __init_fifo(fifo, gfp); \ 143 }) 144 145 #define init_fifo(fifo, _size, gfp) \ 146 ({ \ 147 (fifo)->size = (_size); \ 148 if ((fifo)->size > 4) \ 149 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ 150 __init_fifo(fifo, gfp); \ 151 }) 152 153 #define free_fifo(fifo) \ 154 do { \ 155 kvfree((fifo)->data); \ 156 (fifo)->data = NULL; \ 157 } while (0) 158 159 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) 160 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) 161 162 #define fifo_empty(fifo) (!fifo_used(fifo)) 163 #define fifo_full(fifo) (!fifo_free(fifo)) 164 165 #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) 166 #define fifo_back(fifo) \ 167 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) 168 169 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) 170 171 #define fifo_push_back(fifo, i) \ 172 ({ \ 173 bool _r = !fifo_full((fifo)); \ 174 if (_r) { \ 175 (fifo)->data[(fifo)->back++] = (i); \ 176 (fifo)->back &= (fifo)->mask; \ 177 } \ 178 _r; \ 179 }) 180 181 #define fifo_pop_front(fifo, i) \ 182 ({ \ 183 bool _r = !fifo_empty((fifo)); \ 184 if (_r) { \ 185 (i) = (fifo)->data[(fifo)->front++]; \ 186 (fifo)->front &= (fifo)->mask; \ 187 } \ 188 _r; \ 189 }) 190 191 #define fifo_push_front(fifo, i) \ 192 ({ \ 193 bool _r = !fifo_full((fifo)); \ 194 if (_r) { \ 195 --(fifo)->front; \ 196 (fifo)->front &= (fifo)->mask; \ 197 (fifo)->data[(fifo)->front] = (i); \ 198 } \ 199 _r; \ 200 }) 201 202 #define fifo_pop_back(fifo, i) \ 203 ({ \ 204 bool _r = !fifo_empty((fifo)); \ 205 if (_r) { \ 206 --(fifo)->back; \ 207 (fifo)->back &= (fifo)->mask; \ 208 (i) = (fifo)->data[(fifo)->back] \ 209 } \ 210 _r; \ 211 }) 212 213 #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) 214 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) 215 216 #define fifo_swap(l, r) \ 217 do { \ 218 swap((l)->front, (r)->front); \ 219 swap((l)->back, (r)->back); \ 220 swap((l)->size, (r)->size); \ 221 swap((l)->mask, (r)->mask); \ 222 swap((l)->data, (r)->data); \ 223 } while (0) 224 225 #define fifo_move(dest, src) \ 226 do { \ 227 typeof(*((dest)->data)) _t; \ 228 while (!fifo_full(dest) && \ 229 fifo_pop(src, _t)) \ 230 fifo_push(dest, _t); \ 231 } while (0) 232 233 /* 234 * Simple array based allocator - preallocates a number of elements and you can 235 * never allocate more than that, also has no locking. 236 * 237 * Handy because if you know you only need a fixed number of elements you don't 238 * have to worry about memory allocation failure, and sometimes a mempool isn't 239 * what you want. 240 * 241 * We treat the free elements as entries in a singly linked list, and the 242 * freelist as a stack - allocating and freeing push and pop off the freelist. 243 */ 244 245 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ 246 struct { \ 247 type *freelist; \ 248 type data[size]; \ 249 } name 250 251 #define array_alloc(array) \ 252 ({ \ 253 typeof((array)->freelist) _ret = (array)->freelist; \ 254 \ 255 if (_ret) \ 256 (array)->freelist = *((typeof((array)->freelist) *) _ret);\ 257 \ 258 _ret; \ 259 }) 260 261 #define array_free(array, ptr) \ 262 do { \ 263 typeof((array)->freelist) _ptr = ptr; \ 264 \ 265 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ 266 (array)->freelist = _ptr; \ 267 } while (0) 268 269 #define array_allocator_init(array) \ 270 do { \ 271 typeof((array)->freelist) _i; \ 272 \ 273 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ 274 (array)->freelist = NULL; \ 275 \ 276 for (_i = (array)->data; \ 277 _i < (array)->data + ARRAY_SIZE((array)->data); \ 278 _i++) \ 279 array_free(array, _i); \ 280 } while (0) 281 282 #define array_freelist_empty(array) ((array)->freelist == NULL) 283 284 #define ANYSINT_MAX(t) \ 285 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 286 287 int bch_strtoint_h(const char *cp, int *res); 288 int bch_strtouint_h(const char *cp, unsigned int *res); 289 int bch_strtoll_h(const char *cp, long long *res); 290 int bch_strtoull_h(const char *cp, unsigned long long *res); 291 292 static inline int bch_strtol_h(const char *cp, long *res) 293 { 294 #if BITS_PER_LONG == 32 295 return bch_strtoint_h(cp, (int *) res); 296 #else 297 return bch_strtoll_h(cp, (long long *) res); 298 #endif 299 } 300 301 static inline int bch_strtoul_h(const char *cp, long *res) 302 { 303 #if BITS_PER_LONG == 32 304 return bch_strtouint_h(cp, (unsigned int *) res); 305 #else 306 return bch_strtoull_h(cp, (unsigned long long *) res); 307 #endif 308 } 309 310 #define strtoi_h(cp, res) \ 311 (__builtin_types_compatible_p(typeof(*res), int) \ 312 ? bch_strtoint_h(cp, (void *) res) \ 313 : __builtin_types_compatible_p(typeof(*res), long) \ 314 ? bch_strtol_h(cp, (void *) res) \ 315 : __builtin_types_compatible_p(typeof(*res), long long) \ 316 ? bch_strtoll_h(cp, (void *) res) \ 317 : __builtin_types_compatible_p(typeof(*res), unsigned int) \ 318 ? bch_strtouint_h(cp, (void *) res) \ 319 : __builtin_types_compatible_p(typeof(*res), unsigned long) \ 320 ? bch_strtoul_h(cp, (void *) res) \ 321 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ 322 ? bch_strtoull_h(cp, (void *) res) : -EINVAL) 323 324 #define strtoul_safe(cp, var) \ 325 ({ \ 326 unsigned long _v; \ 327 int _r = kstrtoul(cp, 10, &_v); \ 328 if (!_r) \ 329 var = _v; \ 330 _r; \ 331 }) 332 333 #define strtoul_safe_clamp(cp, var, min, max) \ 334 ({ \ 335 unsigned long _v; \ 336 int _r = kstrtoul(cp, 10, &_v); \ 337 if (!_r) \ 338 var = clamp_t(typeof(var), _v, min, max); \ 339 _r; \ 340 }) 341 342 ssize_t bch_hprint(char *buf, int64_t v); 343 344 bool bch_is_zero(const char *p, size_t n); 345 int bch_parse_uuid(const char *s, char *uuid); 346 347 struct time_stats { 348 spinlock_t lock; 349 /* 350 * all fields are in nanoseconds, averages are ewmas stored left shifted 351 * by 8 352 */ 353 uint64_t max_duration; 354 uint64_t average_duration; 355 uint64_t average_frequency; 356 uint64_t last; 357 }; 358 359 void bch_time_stats_update(struct time_stats *stats, uint64_t time); 360 361 static inline unsigned int local_clock_us(void) 362 { 363 return local_clock() >> 10; 364 } 365 366 #define NSEC_PER_ns 1L 367 #define NSEC_PER_us NSEC_PER_USEC 368 #define NSEC_PER_ms NSEC_PER_MSEC 369 #define NSEC_PER_sec NSEC_PER_SEC 370 371 #define __print_time_stat(stats, name, stat, units) \ 372 sysfs_print(name ## _ ## stat ## _ ## units, \ 373 div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) 374 375 #define sysfs_print_time_stats(stats, name, \ 376 frequency_units, \ 377 duration_units) \ 378 do { \ 379 __print_time_stat(stats, name, \ 380 average_frequency, frequency_units); \ 381 __print_time_stat(stats, name, \ 382 average_duration, duration_units); \ 383 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ 384 div_u64((stats)->max_duration, \ 385 NSEC_PER_ ## duration_units)); \ 386 \ 387 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ 388 ? div_s64(local_clock() - (stats)->last, \ 389 NSEC_PER_ ## frequency_units) \ 390 : -1LL); \ 391 } while (0) 392 393 #define sysfs_time_stats_attribute(name, \ 394 frequency_units, \ 395 duration_units) \ 396 read_attribute(name ## _average_frequency_ ## frequency_units); \ 397 read_attribute(name ## _average_duration_ ## duration_units); \ 398 read_attribute(name ## _max_duration_ ## duration_units); \ 399 read_attribute(name ## _last_ ## frequency_units) 400 401 #define sysfs_time_stats_attribute_list(name, \ 402 frequency_units, \ 403 duration_units) \ 404 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ 405 &sysfs_ ## name ## _average_duration_ ## duration_units, \ 406 &sysfs_ ## name ## _max_duration_ ## duration_units, \ 407 &sysfs_ ## name ## _last_ ## frequency_units, 408 409 #define ewma_add(ewma, val, weight, factor) \ 410 ({ \ 411 (ewma) *= (weight) - 1; \ 412 (ewma) += (val) << factor; \ 413 (ewma) /= (weight); \ 414 (ewma) >> factor; \ 415 }) 416 417 struct bch_ratelimit { 418 /* Next time we want to do some work, in nanoseconds */ 419 uint64_t next; 420 421 /* 422 * Rate at which we want to do work, in units per second 423 * The units here correspond to the units passed to bch_next_delay() 424 */ 425 atomic_long_t rate; 426 }; 427 428 static inline void bch_ratelimit_reset(struct bch_ratelimit *d) 429 { 430 d->next = local_clock(); 431 } 432 433 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); 434 435 #define __DIV_SAFE(n, d, zero) \ 436 ({ \ 437 typeof(n) _n = (n); \ 438 typeof(d) _d = (d); \ 439 _d ? _n / _d : zero; \ 440 }) 441 442 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) 443 444 #define container_of_or_null(ptr, type, member) \ 445 ({ \ 446 typeof(ptr) _ptr = ptr; \ 447 _ptr ? container_of(_ptr, type, member) : NULL; \ 448 }) 449 450 #define RB_INSERT(root, new, member, cmp) \ 451 ({ \ 452 __label__ dup; \ 453 struct rb_node **n = &(root)->rb_node, *parent = NULL; \ 454 typeof(new) this; \ 455 int res, ret = -1; \ 456 \ 457 while (*n) { \ 458 parent = *n; \ 459 this = container_of(*n, typeof(*(new)), member); \ 460 res = cmp(new, this); \ 461 if (!res) \ 462 goto dup; \ 463 n = res < 0 \ 464 ? &(*n)->rb_left \ 465 : &(*n)->rb_right; \ 466 } \ 467 \ 468 rb_link_node(&(new)->member, parent, n); \ 469 rb_insert_color(&(new)->member, root); \ 470 ret = 0; \ 471 dup: \ 472 ret; \ 473 }) 474 475 #define RB_SEARCH(root, search, member, cmp) \ 476 ({ \ 477 struct rb_node *n = (root)->rb_node; \ 478 typeof(&(search)) this, ret = NULL; \ 479 int res; \ 480 \ 481 while (n) { \ 482 this = container_of(n, typeof(search), member); \ 483 res = cmp(&(search), this); \ 484 if (!res) { \ 485 ret = this; \ 486 break; \ 487 } \ 488 n = res < 0 \ 489 ? n->rb_left \ 490 : n->rb_right; \ 491 } \ 492 ret; \ 493 }) 494 495 #define RB_GREATER(root, search, member, cmp) \ 496 ({ \ 497 struct rb_node *n = (root)->rb_node; \ 498 typeof(&(search)) this, ret = NULL; \ 499 int res; \ 500 \ 501 while (n) { \ 502 this = container_of(n, typeof(search), member); \ 503 res = cmp(&(search), this); \ 504 if (res < 0) { \ 505 ret = this; \ 506 n = n->rb_left; \ 507 } else \ 508 n = n->rb_right; \ 509 } \ 510 ret; \ 511 }) 512 513 #define RB_FIRST(root, type, member) \ 514 container_of_or_null(rb_first(root), type, member) 515 516 #define RB_LAST(root, type, member) \ 517 container_of_or_null(rb_last(root), type, member) 518 519 #define RB_NEXT(ptr, member) \ 520 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) 521 522 #define RB_PREV(ptr, member) \ 523 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) 524 525 static inline uint64_t bch_crc64(const void *p, size_t len) 526 { 527 uint64_t crc = 0xffffffffffffffffULL; 528 529 crc = crc64_be(crc, p, len); 530 return crc ^ 0xffffffffffffffffULL; 531 } 532 533 /* 534 * A stepwise-linear pseudo-exponential. This returns 1 << (x >> 535 * frac_bits), with the less-significant bits filled in by linear 536 * interpolation. 537 * 538 * This can also be interpreted as a floating-point number format, 539 * where the low frac_bits are the mantissa (with implicit leading 540 * 1 bit), and the more significant bits are the exponent. 541 * The return value is 1.mantissa * 2^exponent. 542 * 543 * The way this is used, fract_bits is 6 and the largest possible 544 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc), 545 * so the maximum output is 0x1fc00. 546 */ 547 static inline unsigned int fract_exp_two(unsigned int x, 548 unsigned int fract_bits) 549 { 550 unsigned int mantissa = 1 << fract_bits; /* Implicit bit */ 551 552 mantissa += x & (mantissa - 1); 553 x >>= fract_bits; /* The exponent */ 554 /* Largest intermediate value 0x7f0000 */ 555 return mantissa << x >> fract_bits; 556 } 557 558 void bch_bio_map(struct bio *bio, void *base); 559 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask); 560 561 #endif /* _BCACHE_UTIL_H */ 562