1 2 #ifndef _BCACHE_UTIL_H 3 #define _BCACHE_UTIL_H 4 5 #include <linux/errno.h> 6 #include <linux/kernel.h> 7 #include <linux/llist.h> 8 #include <linux/ratelimit.h> 9 #include <linux/vmalloc.h> 10 #include <linux/workqueue.h> 11 12 #include "closure.h" 13 14 #define PAGE_SECTORS (PAGE_SIZE / 512) 15 16 struct closure; 17 18 #include <trace/events/bcache.h> 19 20 #ifdef CONFIG_BCACHE_EDEBUG 21 22 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) 23 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) 24 25 #else /* EDEBUG */ 26 27 #define atomic_dec_bug(v) atomic_dec(v) 28 #define atomic_inc_bug(v, i) atomic_inc(v) 29 30 #endif 31 32 #define BITMASK(name, type, field, offset, size) \ 33 static inline uint64_t name(const type *k) \ 34 { return (k->field >> offset) & ~(((uint64_t) ~0) << size); } \ 35 \ 36 static inline void SET_##name(type *k, uint64_t v) \ 37 { \ 38 k->field &= ~(~((uint64_t) ~0 << size) << offset); \ 39 k->field |= v << offset; \ 40 } 41 42 #define DECLARE_HEAP(type, name) \ 43 struct { \ 44 size_t size, used; \ 45 type *data; \ 46 } name 47 48 #define init_heap(heap, _size, gfp) \ 49 ({ \ 50 size_t _bytes; \ 51 (heap)->used = 0; \ 52 (heap)->size = (_size); \ 53 _bytes = (heap)->size * sizeof(*(heap)->data); \ 54 (heap)->data = NULL; \ 55 if (_bytes < KMALLOC_MAX_SIZE) \ 56 (heap)->data = kmalloc(_bytes, (gfp)); \ 57 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \ 58 (heap)->data = vmalloc(_bytes); \ 59 (heap)->data; \ 60 }) 61 62 #define free_heap(heap) \ 63 do { \ 64 if (is_vmalloc_addr((heap)->data)) \ 65 vfree((heap)->data); \ 66 else \ 67 kfree((heap)->data); \ 68 (heap)->data = NULL; \ 69 } while (0) 70 71 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) 72 73 #define heap_sift(h, i, cmp) \ 74 do { \ 75 size_t _r, _j = i; \ 76 \ 77 for (; _j * 2 + 1 < (h)->used; _j = _r) { \ 78 _r = _j * 2 + 1; \ 79 if (_r + 1 < (h)->used && \ 80 cmp((h)->data[_r], (h)->data[_r + 1])) \ 81 _r++; \ 82 \ 83 if (cmp((h)->data[_r], (h)->data[_j])) \ 84 break; \ 85 heap_swap(h, _r, _j); \ 86 } \ 87 } while (0) 88 89 #define heap_sift_down(h, i, cmp) \ 90 do { \ 91 while (i) { \ 92 size_t p = (i - 1) / 2; \ 93 if (cmp((h)->data[i], (h)->data[p])) \ 94 break; \ 95 heap_swap(h, i, p); \ 96 i = p; \ 97 } \ 98 } while (0) 99 100 #define heap_add(h, d, cmp) \ 101 ({ \ 102 bool _r = !heap_full(h); \ 103 if (_r) { \ 104 size_t _i = (h)->used++; \ 105 (h)->data[_i] = d; \ 106 \ 107 heap_sift_down(h, _i, cmp); \ 108 heap_sift(h, _i, cmp); \ 109 } \ 110 _r; \ 111 }) 112 113 #define heap_pop(h, d, cmp) \ 114 ({ \ 115 bool _r = (h)->used; \ 116 if (_r) { \ 117 (d) = (h)->data[0]; \ 118 (h)->used--; \ 119 heap_swap(h, 0, (h)->used); \ 120 heap_sift(h, 0, cmp); \ 121 } \ 122 _r; \ 123 }) 124 125 #define heap_peek(h) ((h)->size ? (h)->data[0] : NULL) 126 127 #define heap_full(h) ((h)->used == (h)->size) 128 129 #define DECLARE_FIFO(type, name) \ 130 struct { \ 131 size_t front, back, size, mask; \ 132 type *data; \ 133 } name 134 135 #define fifo_for_each(c, fifo, iter) \ 136 for (iter = (fifo)->front; \ 137 c = (fifo)->data[iter], iter != (fifo)->back; \ 138 iter = (iter + 1) & (fifo)->mask) 139 140 #define __init_fifo(fifo, gfp) \ 141 ({ \ 142 size_t _allocated_size, _bytes; \ 143 BUG_ON(!(fifo)->size); \ 144 \ 145 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ 146 _bytes = _allocated_size * sizeof(*(fifo)->data); \ 147 \ 148 (fifo)->mask = _allocated_size - 1; \ 149 (fifo)->front = (fifo)->back = 0; \ 150 (fifo)->data = NULL; \ 151 \ 152 if (_bytes < KMALLOC_MAX_SIZE) \ 153 (fifo)->data = kmalloc(_bytes, (gfp)); \ 154 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \ 155 (fifo)->data = vmalloc(_bytes); \ 156 (fifo)->data; \ 157 }) 158 159 #define init_fifo_exact(fifo, _size, gfp) \ 160 ({ \ 161 (fifo)->size = (_size); \ 162 __init_fifo(fifo, gfp); \ 163 }) 164 165 #define init_fifo(fifo, _size, gfp) \ 166 ({ \ 167 (fifo)->size = (_size); \ 168 if ((fifo)->size > 4) \ 169 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ 170 __init_fifo(fifo, gfp); \ 171 }) 172 173 #define free_fifo(fifo) \ 174 do { \ 175 if (is_vmalloc_addr((fifo)->data)) \ 176 vfree((fifo)->data); \ 177 else \ 178 kfree((fifo)->data); \ 179 (fifo)->data = NULL; \ 180 } while (0) 181 182 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) 183 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) 184 185 #define fifo_empty(fifo) (!fifo_used(fifo)) 186 #define fifo_full(fifo) (!fifo_free(fifo)) 187 188 #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) 189 #define fifo_back(fifo) \ 190 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) 191 192 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) 193 194 #define fifo_push_back(fifo, i) \ 195 ({ \ 196 bool _r = !fifo_full((fifo)); \ 197 if (_r) { \ 198 (fifo)->data[(fifo)->back++] = (i); \ 199 (fifo)->back &= (fifo)->mask; \ 200 } \ 201 _r; \ 202 }) 203 204 #define fifo_pop_front(fifo, i) \ 205 ({ \ 206 bool _r = !fifo_empty((fifo)); \ 207 if (_r) { \ 208 (i) = (fifo)->data[(fifo)->front++]; \ 209 (fifo)->front &= (fifo)->mask; \ 210 } \ 211 _r; \ 212 }) 213 214 #define fifo_push_front(fifo, i) \ 215 ({ \ 216 bool _r = !fifo_full((fifo)); \ 217 if (_r) { \ 218 --(fifo)->front; \ 219 (fifo)->front &= (fifo)->mask; \ 220 (fifo)->data[(fifo)->front] = (i); \ 221 } \ 222 _r; \ 223 }) 224 225 #define fifo_pop_back(fifo, i) \ 226 ({ \ 227 bool _r = !fifo_empty((fifo)); \ 228 if (_r) { \ 229 --(fifo)->back; \ 230 (fifo)->back &= (fifo)->mask; \ 231 (i) = (fifo)->data[(fifo)->back] \ 232 } \ 233 _r; \ 234 }) 235 236 #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) 237 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) 238 239 #define fifo_swap(l, r) \ 240 do { \ 241 swap((l)->front, (r)->front); \ 242 swap((l)->back, (r)->back); \ 243 swap((l)->size, (r)->size); \ 244 swap((l)->mask, (r)->mask); \ 245 swap((l)->data, (r)->data); \ 246 } while (0) 247 248 #define fifo_move(dest, src) \ 249 do { \ 250 typeof(*((dest)->data)) _t; \ 251 while (!fifo_full(dest) && \ 252 fifo_pop(src, _t)) \ 253 fifo_push(dest, _t); \ 254 } while (0) 255 256 /* 257 * Simple array based allocator - preallocates a number of elements and you can 258 * never allocate more than that, also has no locking. 259 * 260 * Handy because if you know you only need a fixed number of elements you don't 261 * have to worry about memory allocation failure, and sometimes a mempool isn't 262 * what you want. 263 * 264 * We treat the free elements as entries in a singly linked list, and the 265 * freelist as a stack - allocating and freeing push and pop off the freelist. 266 */ 267 268 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ 269 struct { \ 270 type *freelist; \ 271 type data[size]; \ 272 } name 273 274 #define array_alloc(array) \ 275 ({ \ 276 typeof((array)->freelist) _ret = (array)->freelist; \ 277 \ 278 if (_ret) \ 279 (array)->freelist = *((typeof((array)->freelist) *) _ret);\ 280 \ 281 _ret; \ 282 }) 283 284 #define array_free(array, ptr) \ 285 do { \ 286 typeof((array)->freelist) _ptr = ptr; \ 287 \ 288 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ 289 (array)->freelist = _ptr; \ 290 } while (0) 291 292 #define array_allocator_init(array) \ 293 do { \ 294 typeof((array)->freelist) _i; \ 295 \ 296 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ 297 (array)->freelist = NULL; \ 298 \ 299 for (_i = (array)->data; \ 300 _i < (array)->data + ARRAY_SIZE((array)->data); \ 301 _i++) \ 302 array_free(array, _i); \ 303 } while (0) 304 305 #define array_freelist_empty(array) ((array)->freelist == NULL) 306 307 #define ANYSINT_MAX(t) \ 308 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 309 310 int bch_strtoint_h(const char *, int *); 311 int bch_strtouint_h(const char *, unsigned int *); 312 int bch_strtoll_h(const char *, long long *); 313 int bch_strtoull_h(const char *, unsigned long long *); 314 315 static inline int bch_strtol_h(const char *cp, long *res) 316 { 317 #if BITS_PER_LONG == 32 318 return bch_strtoint_h(cp, (int *) res); 319 #else 320 return bch_strtoll_h(cp, (long long *) res); 321 #endif 322 } 323 324 static inline int bch_strtoul_h(const char *cp, long *res) 325 { 326 #if BITS_PER_LONG == 32 327 return bch_strtouint_h(cp, (unsigned int *) res); 328 #else 329 return bch_strtoull_h(cp, (unsigned long long *) res); 330 #endif 331 } 332 333 #define strtoi_h(cp, res) \ 334 (__builtin_types_compatible_p(typeof(*res), int) \ 335 ? bch_strtoint_h(cp, (void *) res) \ 336 : __builtin_types_compatible_p(typeof(*res), long) \ 337 ? bch_strtol_h(cp, (void *) res) \ 338 : __builtin_types_compatible_p(typeof(*res), long long) \ 339 ? bch_strtoll_h(cp, (void *) res) \ 340 : __builtin_types_compatible_p(typeof(*res), unsigned int) \ 341 ? bch_strtouint_h(cp, (void *) res) \ 342 : __builtin_types_compatible_p(typeof(*res), unsigned long) \ 343 ? bch_strtoul_h(cp, (void *) res) \ 344 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ 345 ? bch_strtoull_h(cp, (void *) res) : -EINVAL) 346 347 #define strtoul_safe(cp, var) \ 348 ({ \ 349 unsigned long _v; \ 350 int _r = kstrtoul(cp, 10, &_v); \ 351 if (!_r) \ 352 var = _v; \ 353 _r; \ 354 }) 355 356 #define strtoul_safe_clamp(cp, var, min, max) \ 357 ({ \ 358 unsigned long _v; \ 359 int _r = kstrtoul(cp, 10, &_v); \ 360 if (!_r) \ 361 var = clamp_t(typeof(var), _v, min, max); \ 362 _r; \ 363 }) 364 365 #define snprint(buf, size, var) \ 366 snprintf(buf, size, \ 367 __builtin_types_compatible_p(typeof(var), int) \ 368 ? "%i\n" : \ 369 __builtin_types_compatible_p(typeof(var), unsigned) \ 370 ? "%u\n" : \ 371 __builtin_types_compatible_p(typeof(var), long) \ 372 ? "%li\n" : \ 373 __builtin_types_compatible_p(typeof(var), unsigned long)\ 374 ? "%lu\n" : \ 375 __builtin_types_compatible_p(typeof(var), int64_t) \ 376 ? "%lli\n" : \ 377 __builtin_types_compatible_p(typeof(var), uint64_t) \ 378 ? "%llu\n" : \ 379 __builtin_types_compatible_p(typeof(var), const char *) \ 380 ? "%s\n" : "%i\n", var) 381 382 ssize_t bch_hprint(char *buf, int64_t v); 383 384 bool bch_is_zero(const char *p, size_t n); 385 int bch_parse_uuid(const char *s, char *uuid); 386 387 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[], 388 size_t selected); 389 390 ssize_t bch_read_string_list(const char *buf, const char * const list[]); 391 392 struct time_stats { 393 /* 394 * all fields are in nanoseconds, averages are ewmas stored left shifted 395 * by 8 396 */ 397 uint64_t max_duration; 398 uint64_t average_duration; 399 uint64_t average_frequency; 400 uint64_t last; 401 }; 402 403 void bch_time_stats_update(struct time_stats *stats, uint64_t time); 404 405 #define NSEC_PER_ns 1L 406 #define NSEC_PER_us NSEC_PER_USEC 407 #define NSEC_PER_ms NSEC_PER_MSEC 408 #define NSEC_PER_sec NSEC_PER_SEC 409 410 #define __print_time_stat(stats, name, stat, units) \ 411 sysfs_print(name ## _ ## stat ## _ ## units, \ 412 div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) 413 414 #define sysfs_print_time_stats(stats, name, \ 415 frequency_units, \ 416 duration_units) \ 417 do { \ 418 __print_time_stat(stats, name, \ 419 average_frequency, frequency_units); \ 420 __print_time_stat(stats, name, \ 421 average_duration, duration_units); \ 422 __print_time_stat(stats, name, \ 423 max_duration, duration_units); \ 424 \ 425 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ 426 ? div_s64(local_clock() - (stats)->last, \ 427 NSEC_PER_ ## frequency_units) \ 428 : -1LL); \ 429 } while (0) 430 431 #define sysfs_time_stats_attribute(name, \ 432 frequency_units, \ 433 duration_units) \ 434 read_attribute(name ## _average_frequency_ ## frequency_units); \ 435 read_attribute(name ## _average_duration_ ## duration_units); \ 436 read_attribute(name ## _max_duration_ ## duration_units); \ 437 read_attribute(name ## _last_ ## frequency_units) 438 439 #define sysfs_time_stats_attribute_list(name, \ 440 frequency_units, \ 441 duration_units) \ 442 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ 443 &sysfs_ ## name ## _average_duration_ ## duration_units, \ 444 &sysfs_ ## name ## _max_duration_ ## duration_units, \ 445 &sysfs_ ## name ## _last_ ## frequency_units, 446 447 #define ewma_add(ewma, val, weight, factor) \ 448 ({ \ 449 (ewma) *= (weight) - 1; \ 450 (ewma) += (val) << factor; \ 451 (ewma) /= (weight); \ 452 (ewma) >> factor; \ 453 }) 454 455 struct ratelimit { 456 uint64_t next; 457 unsigned rate; 458 }; 459 460 static inline void ratelimit_reset(struct ratelimit *d) 461 { 462 d->next = local_clock(); 463 } 464 465 unsigned bch_next_delay(struct ratelimit *d, uint64_t done); 466 467 #define __DIV_SAFE(n, d, zero) \ 468 ({ \ 469 typeof(n) _n = (n); \ 470 typeof(d) _d = (d); \ 471 _d ? _n / _d : zero; \ 472 }) 473 474 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) 475 476 #define container_of_or_null(ptr, type, member) \ 477 ({ \ 478 typeof(ptr) _ptr = ptr; \ 479 _ptr ? container_of(_ptr, type, member) : NULL; \ 480 }) 481 482 #define RB_INSERT(root, new, member, cmp) \ 483 ({ \ 484 __label__ dup; \ 485 struct rb_node **n = &(root)->rb_node, *parent = NULL; \ 486 typeof(new) this; \ 487 int res, ret = -1; \ 488 \ 489 while (*n) { \ 490 parent = *n; \ 491 this = container_of(*n, typeof(*(new)), member); \ 492 res = cmp(new, this); \ 493 if (!res) \ 494 goto dup; \ 495 n = res < 0 \ 496 ? &(*n)->rb_left \ 497 : &(*n)->rb_right; \ 498 } \ 499 \ 500 rb_link_node(&(new)->member, parent, n); \ 501 rb_insert_color(&(new)->member, root); \ 502 ret = 0; \ 503 dup: \ 504 ret; \ 505 }) 506 507 #define RB_SEARCH(root, search, member, cmp) \ 508 ({ \ 509 struct rb_node *n = (root)->rb_node; \ 510 typeof(&(search)) this, ret = NULL; \ 511 int res; \ 512 \ 513 while (n) { \ 514 this = container_of(n, typeof(search), member); \ 515 res = cmp(&(search), this); \ 516 if (!res) { \ 517 ret = this; \ 518 break; \ 519 } \ 520 n = res < 0 \ 521 ? n->rb_left \ 522 : n->rb_right; \ 523 } \ 524 ret; \ 525 }) 526 527 #define RB_GREATER(root, search, member, cmp) \ 528 ({ \ 529 struct rb_node *n = (root)->rb_node; \ 530 typeof(&(search)) this, ret = NULL; \ 531 int res; \ 532 \ 533 while (n) { \ 534 this = container_of(n, typeof(search), member); \ 535 res = cmp(&(search), this); \ 536 if (res < 0) { \ 537 ret = this; \ 538 n = n->rb_left; \ 539 } else \ 540 n = n->rb_right; \ 541 } \ 542 ret; \ 543 }) 544 545 #define RB_FIRST(root, type, member) \ 546 container_of_or_null(rb_first(root), type, member) 547 548 #define RB_LAST(root, type, member) \ 549 container_of_or_null(rb_last(root), type, member) 550 551 #define RB_NEXT(ptr, member) \ 552 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) 553 554 #define RB_PREV(ptr, member) \ 555 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) 556 557 /* Does linear interpolation between powers of two */ 558 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) 559 { 560 unsigned fract = x & ~(~0 << fract_bits); 561 562 x >>= fract_bits; 563 x = 1 << x; 564 x += (x * fract) >> fract_bits; 565 566 return x; 567 } 568 569 #define bio_end(bio) ((bio)->bi_sector + bio_sectors(bio)) 570 571 void bch_bio_map(struct bio *bio, void *base); 572 573 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp); 574 575 static inline sector_t bdev_sectors(struct block_device *bdev) 576 { 577 return bdev->bd_inode->i_size >> 9; 578 } 579 580 #define closure_bio_submit(bio, cl, dev) \ 581 do { \ 582 closure_get(cl); \ 583 bch_generic_make_request(bio, &(dev)->bio_split_hook); \ 584 } while (0) 585 586 uint64_t bch_crc64_update(uint64_t, const void *, size_t); 587 uint64_t bch_crc64(const void *, size_t); 588 589 #endif /* _BCACHE_UTIL_H */ 590