1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 17 #include <linux/blkdev.h> 18 #include <linux/debugfs.h> 19 #include <linux/genhd.h> 20 #include <linux/idr.h> 21 #include <linux/kthread.h> 22 #include <linux/workqueue.h> 23 #include <linux/module.h> 24 #include <linux/random.h> 25 #include <linux/reboot.h> 26 #include <linux/sysfs.h> 27 28 unsigned int bch_cutoff_writeback; 29 unsigned int bch_cutoff_writeback_sync; 30 31 static const char bcache_magic[] = { 32 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 33 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 34 }; 35 36 static const char invalid_uuid[] = { 37 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 38 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 39 }; 40 41 static struct kobject *bcache_kobj; 42 struct mutex bch_register_lock; 43 bool bcache_is_reboot; 44 LIST_HEAD(bch_cache_sets); 45 static LIST_HEAD(uncached_devices); 46 47 static int bcache_major; 48 static DEFINE_IDA(bcache_device_idx); 49 static wait_queue_head_t unregister_wait; 50 struct workqueue_struct *bcache_wq; 51 struct workqueue_struct *bch_journal_wq; 52 53 54 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 55 /* limitation of partitions number on single bcache device */ 56 #define BCACHE_MINORS 128 57 /* limitation of bcache devices number on single system */ 58 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 59 60 /* Superblock */ 61 62 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 63 struct cache_sb_disk **res) 64 { 65 const char *err; 66 struct cache_sb_disk *s; 67 struct page *page; 68 unsigned int i; 69 70 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 71 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 72 if (IS_ERR(page)) 73 return "IO error"; 74 s = page_address(page) + offset_in_page(SB_OFFSET); 75 76 sb->offset = le64_to_cpu(s->offset); 77 sb->version = le64_to_cpu(s->version); 78 79 memcpy(sb->magic, s->magic, 16); 80 memcpy(sb->uuid, s->uuid, 16); 81 memcpy(sb->set_uuid, s->set_uuid, 16); 82 memcpy(sb->label, s->label, SB_LABEL_SIZE); 83 84 sb->flags = le64_to_cpu(s->flags); 85 sb->seq = le64_to_cpu(s->seq); 86 sb->last_mount = le32_to_cpu(s->last_mount); 87 sb->first_bucket = le16_to_cpu(s->first_bucket); 88 sb->keys = le16_to_cpu(s->keys); 89 90 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 91 sb->d[i] = le64_to_cpu(s->d[i]); 92 93 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 94 sb->version, sb->flags, sb->seq, sb->keys); 95 96 err = "Not a bcache superblock (bad offset)"; 97 if (sb->offset != SB_SECTOR) 98 goto err; 99 100 err = "Not a bcache superblock (bad magic)"; 101 if (memcmp(sb->magic, bcache_magic, 16)) 102 goto err; 103 104 err = "Too many journal buckets"; 105 if (sb->keys > SB_JOURNAL_BUCKETS) 106 goto err; 107 108 err = "Bad checksum"; 109 if (s->csum != csum_set(s)) 110 goto err; 111 112 err = "Bad UUID"; 113 if (bch_is_zero(sb->uuid, 16)) 114 goto err; 115 116 sb->block_size = le16_to_cpu(s->block_size); 117 118 err = "Superblock block size smaller than device block size"; 119 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 120 goto err; 121 122 switch (sb->version) { 123 case BCACHE_SB_VERSION_BDEV: 124 sb->data_offset = BDEV_DATA_START_DEFAULT; 125 break; 126 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 127 sb->data_offset = le64_to_cpu(s->data_offset); 128 129 err = "Bad data offset"; 130 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 131 goto err; 132 133 break; 134 case BCACHE_SB_VERSION_CDEV: 135 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 136 sb->nbuckets = le64_to_cpu(s->nbuckets); 137 sb->bucket_size = le16_to_cpu(s->bucket_size); 138 139 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 140 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 141 142 err = "Too many buckets"; 143 if (sb->nbuckets > LONG_MAX) 144 goto err; 145 146 err = "Not enough buckets"; 147 if (sb->nbuckets < 1 << 7) 148 goto err; 149 150 err = "Bad block/bucket size"; 151 if (!is_power_of_2(sb->block_size) || 152 sb->block_size > PAGE_SECTORS || 153 !is_power_of_2(sb->bucket_size) || 154 sb->bucket_size < PAGE_SECTORS) 155 goto err; 156 157 err = "Invalid superblock: device too small"; 158 if (get_capacity(bdev->bd_disk) < 159 sb->bucket_size * sb->nbuckets) 160 goto err; 161 162 err = "Bad UUID"; 163 if (bch_is_zero(sb->set_uuid, 16)) 164 goto err; 165 166 err = "Bad cache device number in set"; 167 if (!sb->nr_in_set || 168 sb->nr_in_set <= sb->nr_this_dev || 169 sb->nr_in_set > MAX_CACHES_PER_SET) 170 goto err; 171 172 err = "Journal buckets not sequential"; 173 for (i = 0; i < sb->keys; i++) 174 if (sb->d[i] != sb->first_bucket + i) 175 goto err; 176 177 err = "Too many journal buckets"; 178 if (sb->first_bucket + sb->keys > sb->nbuckets) 179 goto err; 180 181 err = "Invalid superblock: first bucket comes before end of super"; 182 if (sb->first_bucket * sb->bucket_size < 16) 183 goto err; 184 185 break; 186 default: 187 err = "Unsupported superblock version"; 188 goto err; 189 } 190 191 sb->last_mount = (u32)ktime_get_real_seconds(); 192 *res = s; 193 return NULL; 194 err: 195 put_page(page); 196 return err; 197 } 198 199 static void write_bdev_super_endio(struct bio *bio) 200 { 201 struct cached_dev *dc = bio->bi_private; 202 203 if (bio->bi_status) 204 bch_count_backing_io_errors(dc, bio); 205 206 closure_put(&dc->sb_write); 207 } 208 209 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 210 struct bio *bio) 211 { 212 unsigned int i; 213 214 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 215 bio->bi_iter.bi_sector = SB_SECTOR; 216 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 217 offset_in_page(out)); 218 219 out->offset = cpu_to_le64(sb->offset); 220 out->version = cpu_to_le64(sb->version); 221 222 memcpy(out->uuid, sb->uuid, 16); 223 memcpy(out->set_uuid, sb->set_uuid, 16); 224 memcpy(out->label, sb->label, SB_LABEL_SIZE); 225 226 out->flags = cpu_to_le64(sb->flags); 227 out->seq = cpu_to_le64(sb->seq); 228 229 out->last_mount = cpu_to_le32(sb->last_mount); 230 out->first_bucket = cpu_to_le16(sb->first_bucket); 231 out->keys = cpu_to_le16(sb->keys); 232 233 for (i = 0; i < sb->keys; i++) 234 out->d[i] = cpu_to_le64(sb->d[i]); 235 236 out->csum = csum_set(out); 237 238 pr_debug("ver %llu, flags %llu, seq %llu\n", 239 sb->version, sb->flags, sb->seq); 240 241 submit_bio(bio); 242 } 243 244 static void bch_write_bdev_super_unlock(struct closure *cl) 245 { 246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 247 248 up(&dc->sb_write_mutex); 249 } 250 251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 252 { 253 struct closure *cl = &dc->sb_write; 254 struct bio *bio = &dc->sb_bio; 255 256 down(&dc->sb_write_mutex); 257 closure_init(cl, parent); 258 259 bio_init(bio, dc->sb_bv, 1); 260 bio_set_dev(bio, dc->bdev); 261 bio->bi_end_io = write_bdev_super_endio; 262 bio->bi_private = dc; 263 264 closure_get(cl); 265 /* I/O request sent to backing device */ 266 __write_super(&dc->sb, dc->sb_disk, bio); 267 268 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 269 } 270 271 static void write_super_endio(struct bio *bio) 272 { 273 struct cache *ca = bio->bi_private; 274 275 /* is_read = 0 */ 276 bch_count_io_errors(ca, bio->bi_status, 0, 277 "writing superblock"); 278 closure_put(&ca->set->sb_write); 279 } 280 281 static void bcache_write_super_unlock(struct closure *cl) 282 { 283 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 284 285 up(&c->sb_write_mutex); 286 } 287 288 void bcache_write_super(struct cache_set *c) 289 { 290 struct closure *cl = &c->sb_write; 291 struct cache *ca; 292 unsigned int i; 293 294 down(&c->sb_write_mutex); 295 closure_init(cl, &c->cl); 296 297 c->sb.seq++; 298 299 for_each_cache(ca, c, i) { 300 struct bio *bio = &ca->sb_bio; 301 302 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 303 ca->sb.seq = c->sb.seq; 304 ca->sb.last_mount = c->sb.last_mount; 305 306 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); 307 308 bio_init(bio, ca->sb_bv, 1); 309 bio_set_dev(bio, ca->bdev); 310 bio->bi_end_io = write_super_endio; 311 bio->bi_private = ca; 312 313 closure_get(cl); 314 __write_super(&ca->sb, ca->sb_disk, bio); 315 } 316 317 closure_return_with_destructor(cl, bcache_write_super_unlock); 318 } 319 320 /* UUID io */ 321 322 static void uuid_endio(struct bio *bio) 323 { 324 struct closure *cl = bio->bi_private; 325 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 326 327 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 328 bch_bbio_free(bio, c); 329 closure_put(cl); 330 } 331 332 static void uuid_io_unlock(struct closure *cl) 333 { 334 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 335 336 up(&c->uuid_write_mutex); 337 } 338 339 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 340 struct bkey *k, struct closure *parent) 341 { 342 struct closure *cl = &c->uuid_write; 343 struct uuid_entry *u; 344 unsigned int i; 345 char buf[80]; 346 347 BUG_ON(!parent); 348 down(&c->uuid_write_mutex); 349 closure_init(cl, parent); 350 351 for (i = 0; i < KEY_PTRS(k); i++) { 352 struct bio *bio = bch_bbio_alloc(c); 353 354 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 355 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 356 357 bio->bi_end_io = uuid_endio; 358 bio->bi_private = cl; 359 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 360 bch_bio_map(bio, c->uuids); 361 362 bch_submit_bbio(bio, c, k, i); 363 364 if (op != REQ_OP_WRITE) 365 break; 366 } 367 368 bch_extent_to_text(buf, sizeof(buf), k); 369 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 370 371 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 372 if (!bch_is_zero(u->uuid, 16)) 373 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 374 u - c->uuids, u->uuid, u->label, 375 u->first_reg, u->last_reg, u->invalidated); 376 377 closure_return_with_destructor(cl, uuid_io_unlock); 378 } 379 380 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 381 { 382 struct bkey *k = &j->uuid_bucket; 383 384 if (__bch_btree_ptr_invalid(c, k)) 385 return "bad uuid pointer"; 386 387 bkey_copy(&c->uuid_bucket, k); 388 uuid_io(c, REQ_OP_READ, 0, k, cl); 389 390 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 391 struct uuid_entry_v0 *u0 = (void *) c->uuids; 392 struct uuid_entry *u1 = (void *) c->uuids; 393 int i; 394 395 closure_sync(cl); 396 397 /* 398 * Since the new uuid entry is bigger than the old, we have to 399 * convert starting at the highest memory address and work down 400 * in order to do it in place 401 */ 402 403 for (i = c->nr_uuids - 1; 404 i >= 0; 405 --i) { 406 memcpy(u1[i].uuid, u0[i].uuid, 16); 407 memcpy(u1[i].label, u0[i].label, 32); 408 409 u1[i].first_reg = u0[i].first_reg; 410 u1[i].last_reg = u0[i].last_reg; 411 u1[i].invalidated = u0[i].invalidated; 412 413 u1[i].flags = 0; 414 u1[i].sectors = 0; 415 } 416 } 417 418 return NULL; 419 } 420 421 static int __uuid_write(struct cache_set *c) 422 { 423 BKEY_PADDED(key) k; 424 struct closure cl; 425 struct cache *ca; 426 427 closure_init_stack(&cl); 428 lockdep_assert_held(&bch_register_lock); 429 430 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true)) 431 return 1; 432 433 SET_KEY_SIZE(&k.key, c->sb.bucket_size); 434 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 435 closure_sync(&cl); 436 437 /* Only one bucket used for uuid write */ 438 ca = PTR_CACHE(c, &k.key, 0); 439 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 440 441 bkey_copy(&c->uuid_bucket, &k.key); 442 bkey_put(c, &k.key); 443 return 0; 444 } 445 446 int bch_uuid_write(struct cache_set *c) 447 { 448 int ret = __uuid_write(c); 449 450 if (!ret) 451 bch_journal_meta(c, NULL); 452 453 return ret; 454 } 455 456 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 457 { 458 struct uuid_entry *u; 459 460 for (u = c->uuids; 461 u < c->uuids + c->nr_uuids; u++) 462 if (!memcmp(u->uuid, uuid, 16)) 463 return u; 464 465 return NULL; 466 } 467 468 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 469 { 470 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 471 472 return uuid_find(c, zero_uuid); 473 } 474 475 /* 476 * Bucket priorities/gens: 477 * 478 * For each bucket, we store on disk its 479 * 8 bit gen 480 * 16 bit priority 481 * 482 * See alloc.c for an explanation of the gen. The priority is used to implement 483 * lru (and in the future other) cache replacement policies; for most purposes 484 * it's just an opaque integer. 485 * 486 * The gens and the priorities don't have a whole lot to do with each other, and 487 * it's actually the gens that must be written out at specific times - it's no 488 * big deal if the priorities don't get written, if we lose them we just reuse 489 * buckets in suboptimal order. 490 * 491 * On disk they're stored in a packed array, and in as many buckets are required 492 * to fit them all. The buckets we use to store them form a list; the journal 493 * header points to the first bucket, the first bucket points to the second 494 * bucket, et cetera. 495 * 496 * This code is used by the allocation code; periodically (whenever it runs out 497 * of buckets to allocate from) the allocation code will invalidate some 498 * buckets, but it can't use those buckets until their new gens are safely on 499 * disk. 500 */ 501 502 static void prio_endio(struct bio *bio) 503 { 504 struct cache *ca = bio->bi_private; 505 506 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 507 bch_bbio_free(bio, ca->set); 508 closure_put(&ca->prio); 509 } 510 511 static void prio_io(struct cache *ca, uint64_t bucket, int op, 512 unsigned long op_flags) 513 { 514 struct closure *cl = &ca->prio; 515 struct bio *bio = bch_bbio_alloc(ca->set); 516 517 closure_init_stack(cl); 518 519 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 520 bio_set_dev(bio, ca->bdev); 521 bio->bi_iter.bi_size = bucket_bytes(ca); 522 523 bio->bi_end_io = prio_endio; 524 bio->bi_private = ca; 525 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 526 bch_bio_map(bio, ca->disk_buckets); 527 528 closure_bio_submit(ca->set, bio, &ca->prio); 529 closure_sync(cl); 530 } 531 532 int bch_prio_write(struct cache *ca, bool wait) 533 { 534 int i; 535 struct bucket *b; 536 struct closure cl; 537 538 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 539 fifo_used(&ca->free[RESERVE_PRIO]), 540 fifo_used(&ca->free[RESERVE_NONE]), 541 fifo_used(&ca->free_inc)); 542 543 /* 544 * Pre-check if there are enough free buckets. In the non-blocking 545 * scenario it's better to fail early rather than starting to allocate 546 * buckets and do a cleanup later in case of failure. 547 */ 548 if (!wait) { 549 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 550 fifo_used(&ca->free[RESERVE_NONE]); 551 if (prio_buckets(ca) > avail) 552 return -ENOMEM; 553 } 554 555 closure_init_stack(&cl); 556 557 lockdep_assert_held(&ca->set->bucket_lock); 558 559 ca->disk_buckets->seq++; 560 561 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 562 &ca->meta_sectors_written); 563 564 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 565 long bucket; 566 struct prio_set *p = ca->disk_buckets; 567 struct bucket_disk *d = p->data; 568 struct bucket_disk *end = d + prios_per_bucket(ca); 569 570 for (b = ca->buckets + i * prios_per_bucket(ca); 571 b < ca->buckets + ca->sb.nbuckets && d < end; 572 b++, d++) { 573 d->prio = cpu_to_le16(b->prio); 574 d->gen = b->gen; 575 } 576 577 p->next_bucket = ca->prio_buckets[i + 1]; 578 p->magic = pset_magic(&ca->sb); 579 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8); 580 581 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 582 BUG_ON(bucket == -1); 583 584 mutex_unlock(&ca->set->bucket_lock); 585 prio_io(ca, bucket, REQ_OP_WRITE, 0); 586 mutex_lock(&ca->set->bucket_lock); 587 588 ca->prio_buckets[i] = bucket; 589 atomic_dec_bug(&ca->buckets[bucket].pin); 590 } 591 592 mutex_unlock(&ca->set->bucket_lock); 593 594 bch_journal_meta(ca->set, &cl); 595 closure_sync(&cl); 596 597 mutex_lock(&ca->set->bucket_lock); 598 599 /* 600 * Don't want the old priorities to get garbage collected until after we 601 * finish writing the new ones, and they're journalled 602 */ 603 for (i = 0; i < prio_buckets(ca); i++) { 604 if (ca->prio_last_buckets[i]) 605 __bch_bucket_free(ca, 606 &ca->buckets[ca->prio_last_buckets[i]]); 607 608 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 609 } 610 return 0; 611 } 612 613 static int prio_read(struct cache *ca, uint64_t bucket) 614 { 615 struct prio_set *p = ca->disk_buckets; 616 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 617 struct bucket *b; 618 unsigned int bucket_nr = 0; 619 int ret = -EIO; 620 621 for (b = ca->buckets; 622 b < ca->buckets + ca->sb.nbuckets; 623 b++, d++) { 624 if (d == end) { 625 ca->prio_buckets[bucket_nr] = bucket; 626 ca->prio_last_buckets[bucket_nr] = bucket; 627 bucket_nr++; 628 629 prio_io(ca, bucket, REQ_OP_READ, 0); 630 631 if (p->csum != 632 bch_crc64(&p->magic, bucket_bytes(ca) - 8)) { 633 pr_warn("bad csum reading priorities\n"); 634 goto out; 635 } 636 637 if (p->magic != pset_magic(&ca->sb)) { 638 pr_warn("bad magic reading priorities\n"); 639 goto out; 640 } 641 642 bucket = p->next_bucket; 643 d = p->data; 644 } 645 646 b->prio = le16_to_cpu(d->prio); 647 b->gen = b->last_gc = d->gen; 648 } 649 650 ret = 0; 651 out: 652 return ret; 653 } 654 655 /* Bcache device */ 656 657 static int open_dev(struct block_device *b, fmode_t mode) 658 { 659 struct bcache_device *d = b->bd_disk->private_data; 660 661 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 662 return -ENXIO; 663 664 closure_get(&d->cl); 665 return 0; 666 } 667 668 static void release_dev(struct gendisk *b, fmode_t mode) 669 { 670 struct bcache_device *d = b->private_data; 671 672 closure_put(&d->cl); 673 } 674 675 static int ioctl_dev(struct block_device *b, fmode_t mode, 676 unsigned int cmd, unsigned long arg) 677 { 678 struct bcache_device *d = b->bd_disk->private_data; 679 680 return d->ioctl(d, mode, cmd, arg); 681 } 682 683 static const struct block_device_operations bcache_cached_ops = { 684 .submit_bio = cached_dev_submit_bio, 685 .open = open_dev, 686 .release = release_dev, 687 .ioctl = ioctl_dev, 688 .owner = THIS_MODULE, 689 }; 690 691 static const struct block_device_operations bcache_flash_ops = { 692 .submit_bio = flash_dev_submit_bio, 693 .open = open_dev, 694 .release = release_dev, 695 .ioctl = ioctl_dev, 696 .owner = THIS_MODULE, 697 }; 698 699 void bcache_device_stop(struct bcache_device *d) 700 { 701 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 702 /* 703 * closure_fn set to 704 * - cached device: cached_dev_flush() 705 * - flash dev: flash_dev_flush() 706 */ 707 closure_queue(&d->cl); 708 } 709 710 static void bcache_device_unlink(struct bcache_device *d) 711 { 712 lockdep_assert_held(&bch_register_lock); 713 714 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 715 unsigned int i; 716 struct cache *ca; 717 718 sysfs_remove_link(&d->c->kobj, d->name); 719 sysfs_remove_link(&d->kobj, "cache"); 720 721 for_each_cache(ca, d->c, i) 722 bd_unlink_disk_holder(ca->bdev, d->disk); 723 } 724 } 725 726 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 727 const char *name) 728 { 729 unsigned int i; 730 struct cache *ca; 731 int ret; 732 733 for_each_cache(ca, d->c, i) 734 bd_link_disk_holder(ca->bdev, d->disk); 735 736 snprintf(d->name, BCACHEDEVNAME_SIZE, 737 "%s%u", name, d->id); 738 739 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 740 if (ret < 0) 741 pr_err("Couldn't create device -> cache set symlink\n"); 742 743 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 744 if (ret < 0) 745 pr_err("Couldn't create cache set -> device symlink\n"); 746 747 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 748 } 749 750 static void bcache_device_detach(struct bcache_device *d) 751 { 752 lockdep_assert_held(&bch_register_lock); 753 754 atomic_dec(&d->c->attached_dev_nr); 755 756 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 757 struct uuid_entry *u = d->c->uuids + d->id; 758 759 SET_UUID_FLASH_ONLY(u, 0); 760 memcpy(u->uuid, invalid_uuid, 16); 761 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 762 bch_uuid_write(d->c); 763 } 764 765 bcache_device_unlink(d); 766 767 d->c->devices[d->id] = NULL; 768 closure_put(&d->c->caching); 769 d->c = NULL; 770 } 771 772 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 773 unsigned int id) 774 { 775 d->id = id; 776 d->c = c; 777 c->devices[id] = d; 778 779 if (id >= c->devices_max_used) 780 c->devices_max_used = id + 1; 781 782 closure_get(&c->caching); 783 } 784 785 static inline int first_minor_to_idx(int first_minor) 786 { 787 return (first_minor/BCACHE_MINORS); 788 } 789 790 static inline int idx_to_first_minor(int idx) 791 { 792 return (idx * BCACHE_MINORS); 793 } 794 795 static void bcache_device_free(struct bcache_device *d) 796 { 797 struct gendisk *disk = d->disk; 798 799 lockdep_assert_held(&bch_register_lock); 800 801 if (disk) 802 pr_info("%s stopped\n", disk->disk_name); 803 else 804 pr_err("bcache device (NULL gendisk) stopped\n"); 805 806 if (d->c) 807 bcache_device_detach(d); 808 809 if (disk) { 810 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 811 812 if (disk_added) 813 del_gendisk(disk); 814 815 if (disk->queue) 816 blk_cleanup_queue(disk->queue); 817 818 ida_simple_remove(&bcache_device_idx, 819 first_minor_to_idx(disk->first_minor)); 820 if (disk_added) 821 put_disk(disk); 822 } 823 824 bioset_exit(&d->bio_split); 825 kvfree(d->full_dirty_stripes); 826 kvfree(d->stripe_sectors_dirty); 827 828 closure_debug_destroy(&d->cl); 829 } 830 831 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 832 sector_t sectors, struct block_device *cached_bdev, 833 const struct block_device_operations *ops) 834 { 835 struct request_queue *q; 836 const size_t max_stripes = min_t(size_t, INT_MAX, 837 SIZE_MAX / sizeof(atomic_t)); 838 size_t n; 839 int idx; 840 841 if (!d->stripe_size) 842 d->stripe_size = 1 << 31; 843 844 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 845 846 if (!d->nr_stripes || d->nr_stripes > max_stripes) { 847 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)\n", 848 (unsigned int)d->nr_stripes); 849 return -ENOMEM; 850 } 851 852 n = d->nr_stripes * sizeof(atomic_t); 853 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 854 if (!d->stripe_sectors_dirty) 855 return -ENOMEM; 856 857 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 858 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 859 if (!d->full_dirty_stripes) 860 return -ENOMEM; 861 862 idx = ida_simple_get(&bcache_device_idx, 0, 863 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 864 if (idx < 0) 865 return idx; 866 867 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 868 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 869 goto err; 870 871 d->disk = alloc_disk(BCACHE_MINORS); 872 if (!d->disk) 873 goto err; 874 875 set_capacity(d->disk, sectors); 876 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 877 878 d->disk->major = bcache_major; 879 d->disk->first_minor = idx_to_first_minor(idx); 880 d->disk->fops = ops; 881 d->disk->private_data = d; 882 883 q = blk_alloc_queue(NUMA_NO_NODE); 884 if (!q) 885 return -ENOMEM; 886 887 d->disk->queue = q; 888 q->backing_dev_info->congested_data = d; 889 q->limits.max_hw_sectors = UINT_MAX; 890 q->limits.max_sectors = UINT_MAX; 891 q->limits.max_segment_size = UINT_MAX; 892 q->limits.max_segments = BIO_MAX_PAGES; 893 blk_queue_max_discard_sectors(q, UINT_MAX); 894 q->limits.discard_granularity = 512; 895 q->limits.io_min = block_size; 896 q->limits.logical_block_size = block_size; 897 q->limits.physical_block_size = block_size; 898 899 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 900 /* 901 * This should only happen with BCACHE_SB_VERSION_BDEV. 902 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 903 */ 904 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 905 d->disk->disk_name, q->limits.logical_block_size, 906 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 907 908 /* This also adjusts physical block size/min io size if needed */ 909 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 910 } 911 912 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 913 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 914 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 915 916 blk_queue_write_cache(q, true, true); 917 918 return 0; 919 920 err: 921 ida_simple_remove(&bcache_device_idx, idx); 922 return -ENOMEM; 923 924 } 925 926 /* Cached device */ 927 928 static void calc_cached_dev_sectors(struct cache_set *c) 929 { 930 uint64_t sectors = 0; 931 struct cached_dev *dc; 932 933 list_for_each_entry(dc, &c->cached_devs, list) 934 sectors += bdev_sectors(dc->bdev); 935 936 c->cached_dev_sectors = sectors; 937 } 938 939 #define BACKING_DEV_OFFLINE_TIMEOUT 5 940 static int cached_dev_status_update(void *arg) 941 { 942 struct cached_dev *dc = arg; 943 struct request_queue *q; 944 945 /* 946 * If this delayed worker is stopping outside, directly quit here. 947 * dc->io_disable might be set via sysfs interface, so check it 948 * here too. 949 */ 950 while (!kthread_should_stop() && !dc->io_disable) { 951 q = bdev_get_queue(dc->bdev); 952 if (blk_queue_dying(q)) 953 dc->offline_seconds++; 954 else 955 dc->offline_seconds = 0; 956 957 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 958 pr_err("%s: device offline for %d seconds\n", 959 dc->backing_dev_name, 960 BACKING_DEV_OFFLINE_TIMEOUT); 961 pr_err("%s: disable I/O request due to backing device offline\n", 962 dc->disk.name); 963 dc->io_disable = true; 964 /* let others know earlier that io_disable is true */ 965 smp_mb(); 966 bcache_device_stop(&dc->disk); 967 break; 968 } 969 schedule_timeout_interruptible(HZ); 970 } 971 972 wait_for_kthread_stop(); 973 return 0; 974 } 975 976 977 int bch_cached_dev_run(struct cached_dev *dc) 978 { 979 struct bcache_device *d = &dc->disk; 980 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 981 char *env[] = { 982 "DRIVER=bcache", 983 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 984 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 985 NULL, 986 }; 987 988 if (dc->io_disable) { 989 pr_err("I/O disabled on cached dev %s\n", 990 dc->backing_dev_name); 991 kfree(env[1]); 992 kfree(env[2]); 993 kfree(buf); 994 return -EIO; 995 } 996 997 if (atomic_xchg(&dc->running, 1)) { 998 kfree(env[1]); 999 kfree(env[2]); 1000 kfree(buf); 1001 pr_info("cached dev %s is running already\n", 1002 dc->backing_dev_name); 1003 return -EBUSY; 1004 } 1005 1006 if (!d->c && 1007 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1008 struct closure cl; 1009 1010 closure_init_stack(&cl); 1011 1012 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1013 bch_write_bdev_super(dc, &cl); 1014 closure_sync(&cl); 1015 } 1016 1017 add_disk(d->disk); 1018 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1019 /* 1020 * won't show up in the uevent file, use udevadm monitor -e instead 1021 * only class / kset properties are persistent 1022 */ 1023 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1024 kfree(env[1]); 1025 kfree(env[2]); 1026 kfree(buf); 1027 1028 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1029 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1030 &d->kobj, "bcache")) { 1031 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1032 return -ENOMEM; 1033 } 1034 1035 dc->status_update_thread = kthread_run(cached_dev_status_update, 1036 dc, "bcache_status_update"); 1037 if (IS_ERR(dc->status_update_thread)) { 1038 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1039 } 1040 1041 return 0; 1042 } 1043 1044 /* 1045 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1046 * work dc->writeback_rate_update is running. Wait until the routine 1047 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1048 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1049 * seconds, give up waiting here and continue to cancel it too. 1050 */ 1051 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1052 { 1053 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1054 1055 do { 1056 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1057 &dc->disk.flags)) 1058 break; 1059 time_out--; 1060 schedule_timeout_interruptible(1); 1061 } while (time_out > 0); 1062 1063 if (time_out == 0) 1064 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1065 1066 cancel_delayed_work_sync(&dc->writeback_rate_update); 1067 } 1068 1069 static void cached_dev_detach_finish(struct work_struct *w) 1070 { 1071 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1072 struct closure cl; 1073 1074 closure_init_stack(&cl); 1075 1076 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1077 BUG_ON(refcount_read(&dc->count)); 1078 1079 1080 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1081 cancel_writeback_rate_update_dwork(dc); 1082 1083 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1084 kthread_stop(dc->writeback_thread); 1085 dc->writeback_thread = NULL; 1086 } 1087 1088 memset(&dc->sb.set_uuid, 0, 16); 1089 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); 1090 1091 bch_write_bdev_super(dc, &cl); 1092 closure_sync(&cl); 1093 1094 mutex_lock(&bch_register_lock); 1095 1096 calc_cached_dev_sectors(dc->disk.c); 1097 bcache_device_detach(&dc->disk); 1098 list_move(&dc->list, &uncached_devices); 1099 1100 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1101 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1102 1103 mutex_unlock(&bch_register_lock); 1104 1105 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1106 1107 /* Drop ref we took in cached_dev_detach() */ 1108 closure_put(&dc->disk.cl); 1109 } 1110 1111 void bch_cached_dev_detach(struct cached_dev *dc) 1112 { 1113 lockdep_assert_held(&bch_register_lock); 1114 1115 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1116 return; 1117 1118 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1119 return; 1120 1121 /* 1122 * Block the device from being closed and freed until we're finished 1123 * detaching 1124 */ 1125 closure_get(&dc->disk.cl); 1126 1127 bch_writeback_queue(dc); 1128 1129 cached_dev_put(dc); 1130 } 1131 1132 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1133 uint8_t *set_uuid) 1134 { 1135 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1136 struct uuid_entry *u; 1137 struct cached_dev *exist_dc, *t; 1138 int ret = 0; 1139 1140 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) || 1141 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))) 1142 return -ENOENT; 1143 1144 if (dc->disk.c) { 1145 pr_err("Can't attach %s: already attached\n", 1146 dc->backing_dev_name); 1147 return -EINVAL; 1148 } 1149 1150 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1151 pr_err("Can't attach %s: shutting down\n", 1152 dc->backing_dev_name); 1153 return -EINVAL; 1154 } 1155 1156 if (dc->sb.block_size < c->sb.block_size) { 1157 /* Will die */ 1158 pr_err("Couldn't attach %s: block size less than set's block size\n", 1159 dc->backing_dev_name); 1160 return -EINVAL; 1161 } 1162 1163 /* Check whether already attached */ 1164 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1165 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1166 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1167 dc->backing_dev_name); 1168 1169 return -EINVAL; 1170 } 1171 } 1172 1173 u = uuid_find(c, dc->sb.uuid); 1174 1175 if (u && 1176 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1177 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1178 memcpy(u->uuid, invalid_uuid, 16); 1179 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1180 u = NULL; 1181 } 1182 1183 if (!u) { 1184 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1185 pr_err("Couldn't find uuid for %s in set\n", 1186 dc->backing_dev_name); 1187 return -ENOENT; 1188 } 1189 1190 u = uuid_find_empty(c); 1191 if (!u) { 1192 pr_err("Not caching %s, no room for UUID\n", 1193 dc->backing_dev_name); 1194 return -EINVAL; 1195 } 1196 } 1197 1198 /* 1199 * Deadlocks since we're called via sysfs... 1200 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1201 */ 1202 1203 if (bch_is_zero(u->uuid, 16)) { 1204 struct closure cl; 1205 1206 closure_init_stack(&cl); 1207 1208 memcpy(u->uuid, dc->sb.uuid, 16); 1209 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1210 u->first_reg = u->last_reg = rtime; 1211 bch_uuid_write(c); 1212 1213 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); 1214 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1215 1216 bch_write_bdev_super(dc, &cl); 1217 closure_sync(&cl); 1218 } else { 1219 u->last_reg = rtime; 1220 bch_uuid_write(c); 1221 } 1222 1223 bcache_device_attach(&dc->disk, c, u - c->uuids); 1224 list_move(&dc->list, &c->cached_devs); 1225 calc_cached_dev_sectors(c); 1226 1227 /* 1228 * dc->c must be set before dc->count != 0 - paired with the mb in 1229 * cached_dev_get() 1230 */ 1231 smp_wmb(); 1232 refcount_set(&dc->count, 1); 1233 1234 /* Block writeback thread, but spawn it */ 1235 down_write(&dc->writeback_lock); 1236 if (bch_cached_dev_writeback_start(dc)) { 1237 up_write(&dc->writeback_lock); 1238 pr_err("Couldn't start writeback facilities for %s\n", 1239 dc->disk.disk->disk_name); 1240 return -ENOMEM; 1241 } 1242 1243 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1244 atomic_set(&dc->has_dirty, 1); 1245 bch_writeback_queue(dc); 1246 } 1247 1248 bch_sectors_dirty_init(&dc->disk); 1249 1250 ret = bch_cached_dev_run(dc); 1251 if (ret && (ret != -EBUSY)) { 1252 up_write(&dc->writeback_lock); 1253 /* 1254 * bch_register_lock is held, bcache_device_stop() is not 1255 * able to be directly called. The kthread and kworker 1256 * created previously in bch_cached_dev_writeback_start() 1257 * have to be stopped manually here. 1258 */ 1259 kthread_stop(dc->writeback_thread); 1260 cancel_writeback_rate_update_dwork(dc); 1261 pr_err("Couldn't run cached device %s\n", 1262 dc->backing_dev_name); 1263 return ret; 1264 } 1265 1266 bcache_device_link(&dc->disk, c, "bdev"); 1267 atomic_inc(&c->attached_dev_nr); 1268 1269 /* Allow the writeback thread to proceed */ 1270 up_write(&dc->writeback_lock); 1271 1272 pr_info("Caching %s as %s on set %pU\n", 1273 dc->backing_dev_name, 1274 dc->disk.disk->disk_name, 1275 dc->disk.c->sb.set_uuid); 1276 return 0; 1277 } 1278 1279 /* when dc->disk.kobj released */ 1280 void bch_cached_dev_release(struct kobject *kobj) 1281 { 1282 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1283 disk.kobj); 1284 kfree(dc); 1285 module_put(THIS_MODULE); 1286 } 1287 1288 static void cached_dev_free(struct closure *cl) 1289 { 1290 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1291 1292 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1293 cancel_writeback_rate_update_dwork(dc); 1294 1295 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1296 kthread_stop(dc->writeback_thread); 1297 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1298 kthread_stop(dc->status_update_thread); 1299 1300 mutex_lock(&bch_register_lock); 1301 1302 if (atomic_read(&dc->running)) 1303 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1304 bcache_device_free(&dc->disk); 1305 list_del(&dc->list); 1306 1307 mutex_unlock(&bch_register_lock); 1308 1309 if (dc->sb_disk) 1310 put_page(virt_to_page(dc->sb_disk)); 1311 1312 if (!IS_ERR_OR_NULL(dc->bdev)) 1313 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1314 1315 wake_up(&unregister_wait); 1316 1317 kobject_put(&dc->disk.kobj); 1318 } 1319 1320 static void cached_dev_flush(struct closure *cl) 1321 { 1322 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1323 struct bcache_device *d = &dc->disk; 1324 1325 mutex_lock(&bch_register_lock); 1326 bcache_device_unlink(d); 1327 mutex_unlock(&bch_register_lock); 1328 1329 bch_cache_accounting_destroy(&dc->accounting); 1330 kobject_del(&d->kobj); 1331 1332 continue_at(cl, cached_dev_free, system_wq); 1333 } 1334 1335 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1336 { 1337 int ret; 1338 struct io *io; 1339 struct request_queue *q = bdev_get_queue(dc->bdev); 1340 1341 __module_get(THIS_MODULE); 1342 INIT_LIST_HEAD(&dc->list); 1343 closure_init(&dc->disk.cl, NULL); 1344 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1345 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1346 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1347 sema_init(&dc->sb_write_mutex, 1); 1348 INIT_LIST_HEAD(&dc->io_lru); 1349 spin_lock_init(&dc->io_lock); 1350 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1351 1352 dc->sequential_cutoff = 4 << 20; 1353 1354 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1355 list_add(&io->lru, &dc->io_lru); 1356 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1357 } 1358 1359 dc->disk.stripe_size = q->limits.io_opt >> 9; 1360 1361 if (dc->disk.stripe_size) 1362 dc->partial_stripes_expensive = 1363 q->limits.raid_partial_stripes_expensive; 1364 1365 ret = bcache_device_init(&dc->disk, block_size, 1366 dc->bdev->bd_part->nr_sects - dc->sb.data_offset, 1367 dc->bdev, &bcache_cached_ops); 1368 if (ret) 1369 return ret; 1370 1371 dc->disk.disk->queue->backing_dev_info->ra_pages = 1372 max(dc->disk.disk->queue->backing_dev_info->ra_pages, 1373 q->backing_dev_info->ra_pages); 1374 1375 atomic_set(&dc->io_errors, 0); 1376 dc->io_disable = false; 1377 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1378 /* default to auto */ 1379 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1380 1381 bch_cached_dev_request_init(dc); 1382 bch_cached_dev_writeback_init(dc); 1383 return 0; 1384 } 1385 1386 /* Cached device - bcache superblock */ 1387 1388 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1389 struct block_device *bdev, 1390 struct cached_dev *dc) 1391 { 1392 const char *err = "cannot allocate memory"; 1393 struct cache_set *c; 1394 int ret = -ENOMEM; 1395 1396 bdevname(bdev, dc->backing_dev_name); 1397 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1398 dc->bdev = bdev; 1399 dc->bdev->bd_holder = dc; 1400 dc->sb_disk = sb_disk; 1401 1402 if (cached_dev_init(dc, sb->block_size << 9)) 1403 goto err; 1404 1405 err = "error creating kobject"; 1406 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, 1407 "bcache")) 1408 goto err; 1409 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1410 goto err; 1411 1412 pr_info("registered backing device %s\n", dc->backing_dev_name); 1413 1414 list_add(&dc->list, &uncached_devices); 1415 /* attach to a matched cache set if it exists */ 1416 list_for_each_entry(c, &bch_cache_sets, list) 1417 bch_cached_dev_attach(dc, c, NULL); 1418 1419 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1420 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1421 err = "failed to run cached device"; 1422 ret = bch_cached_dev_run(dc); 1423 if (ret) 1424 goto err; 1425 } 1426 1427 return 0; 1428 err: 1429 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1430 bcache_device_stop(&dc->disk); 1431 return ret; 1432 } 1433 1434 /* Flash only volumes */ 1435 1436 /* When d->kobj released */ 1437 void bch_flash_dev_release(struct kobject *kobj) 1438 { 1439 struct bcache_device *d = container_of(kobj, struct bcache_device, 1440 kobj); 1441 kfree(d); 1442 } 1443 1444 static void flash_dev_free(struct closure *cl) 1445 { 1446 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1447 1448 mutex_lock(&bch_register_lock); 1449 atomic_long_sub(bcache_dev_sectors_dirty(d), 1450 &d->c->flash_dev_dirty_sectors); 1451 bcache_device_free(d); 1452 mutex_unlock(&bch_register_lock); 1453 kobject_put(&d->kobj); 1454 } 1455 1456 static void flash_dev_flush(struct closure *cl) 1457 { 1458 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1459 1460 mutex_lock(&bch_register_lock); 1461 bcache_device_unlink(d); 1462 mutex_unlock(&bch_register_lock); 1463 kobject_del(&d->kobj); 1464 continue_at(cl, flash_dev_free, system_wq); 1465 } 1466 1467 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1468 { 1469 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1470 GFP_KERNEL); 1471 if (!d) 1472 return -ENOMEM; 1473 1474 closure_init(&d->cl, NULL); 1475 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1476 1477 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1478 1479 if (bcache_device_init(d, block_bytes(c), u->sectors, 1480 NULL, &bcache_flash_ops)) 1481 goto err; 1482 1483 bcache_device_attach(d, c, u - c->uuids); 1484 bch_sectors_dirty_init(d); 1485 bch_flash_dev_request_init(d); 1486 add_disk(d->disk); 1487 1488 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1489 goto err; 1490 1491 bcache_device_link(d, c, "volume"); 1492 1493 return 0; 1494 err: 1495 kobject_put(&d->kobj); 1496 return -ENOMEM; 1497 } 1498 1499 static int flash_devs_run(struct cache_set *c) 1500 { 1501 int ret = 0; 1502 struct uuid_entry *u; 1503 1504 for (u = c->uuids; 1505 u < c->uuids + c->nr_uuids && !ret; 1506 u++) 1507 if (UUID_FLASH_ONLY(u)) 1508 ret = flash_dev_run(c, u); 1509 1510 return ret; 1511 } 1512 1513 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1514 { 1515 struct uuid_entry *u; 1516 1517 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1518 return -EINTR; 1519 1520 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1521 return -EPERM; 1522 1523 u = uuid_find_empty(c); 1524 if (!u) { 1525 pr_err("Can't create volume, no room for UUID\n"); 1526 return -EINVAL; 1527 } 1528 1529 get_random_bytes(u->uuid, 16); 1530 memset(u->label, 0, 32); 1531 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1532 1533 SET_UUID_FLASH_ONLY(u, 1); 1534 u->sectors = size >> 9; 1535 1536 bch_uuid_write(c); 1537 1538 return flash_dev_run(c, u); 1539 } 1540 1541 bool bch_cached_dev_error(struct cached_dev *dc) 1542 { 1543 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1544 return false; 1545 1546 dc->io_disable = true; 1547 /* make others know io_disable is true earlier */ 1548 smp_mb(); 1549 1550 pr_err("stop %s: too many IO errors on backing device %s\n", 1551 dc->disk.disk->disk_name, dc->backing_dev_name); 1552 1553 bcache_device_stop(&dc->disk); 1554 return true; 1555 } 1556 1557 /* Cache set */ 1558 1559 __printf(2, 3) 1560 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1561 { 1562 struct va_format vaf; 1563 va_list args; 1564 1565 if (c->on_error != ON_ERROR_PANIC && 1566 test_bit(CACHE_SET_STOPPING, &c->flags)) 1567 return false; 1568 1569 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1570 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1571 1572 /* 1573 * XXX: we can be called from atomic context 1574 * acquire_console_sem(); 1575 */ 1576 1577 va_start(args, fmt); 1578 1579 vaf.fmt = fmt; 1580 vaf.va = &args; 1581 1582 pr_err("error on %pU: %pV, disabling caching\n", 1583 c->sb.set_uuid, &vaf); 1584 1585 va_end(args); 1586 1587 if (c->on_error == ON_ERROR_PANIC) 1588 panic("panic forced after error\n"); 1589 1590 bch_cache_set_unregister(c); 1591 return true; 1592 } 1593 1594 /* When c->kobj released */ 1595 void bch_cache_set_release(struct kobject *kobj) 1596 { 1597 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1598 1599 kfree(c); 1600 module_put(THIS_MODULE); 1601 } 1602 1603 static void cache_set_free(struct closure *cl) 1604 { 1605 struct cache_set *c = container_of(cl, struct cache_set, cl); 1606 struct cache *ca; 1607 unsigned int i; 1608 1609 debugfs_remove(c->debug); 1610 1611 bch_open_buckets_free(c); 1612 bch_btree_cache_free(c); 1613 bch_journal_free(c); 1614 1615 mutex_lock(&bch_register_lock); 1616 for_each_cache(ca, c, i) 1617 if (ca) { 1618 ca->set = NULL; 1619 c->cache[ca->sb.nr_this_dev] = NULL; 1620 kobject_put(&ca->kobj); 1621 } 1622 1623 bch_bset_sort_state_free(&c->sort); 1624 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c))); 1625 1626 if (c->moving_gc_wq) 1627 destroy_workqueue(c->moving_gc_wq); 1628 bioset_exit(&c->bio_split); 1629 mempool_exit(&c->fill_iter); 1630 mempool_exit(&c->bio_meta); 1631 mempool_exit(&c->search); 1632 kfree(c->devices); 1633 1634 list_del(&c->list); 1635 mutex_unlock(&bch_register_lock); 1636 1637 pr_info("Cache set %pU unregistered\n", c->sb.set_uuid); 1638 wake_up(&unregister_wait); 1639 1640 closure_debug_destroy(&c->cl); 1641 kobject_put(&c->kobj); 1642 } 1643 1644 static void cache_set_flush(struct closure *cl) 1645 { 1646 struct cache_set *c = container_of(cl, struct cache_set, caching); 1647 struct cache *ca; 1648 struct btree *b; 1649 unsigned int i; 1650 1651 bch_cache_accounting_destroy(&c->accounting); 1652 1653 kobject_put(&c->internal); 1654 kobject_del(&c->kobj); 1655 1656 if (!IS_ERR_OR_NULL(c->gc_thread)) 1657 kthread_stop(c->gc_thread); 1658 1659 if (!IS_ERR_OR_NULL(c->root)) 1660 list_add(&c->root->list, &c->btree_cache); 1661 1662 /* 1663 * Avoid flushing cached nodes if cache set is retiring 1664 * due to too many I/O errors detected. 1665 */ 1666 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1667 list_for_each_entry(b, &c->btree_cache, list) { 1668 mutex_lock(&b->write_lock); 1669 if (btree_node_dirty(b)) 1670 __bch_btree_node_write(b, NULL); 1671 mutex_unlock(&b->write_lock); 1672 } 1673 1674 for_each_cache(ca, c, i) 1675 if (ca->alloc_thread) 1676 kthread_stop(ca->alloc_thread); 1677 1678 if (c->journal.cur) { 1679 cancel_delayed_work_sync(&c->journal.work); 1680 /* flush last journal entry if needed */ 1681 c->journal.work.work.func(&c->journal.work.work); 1682 } 1683 1684 closure_return(cl); 1685 } 1686 1687 /* 1688 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1689 * cache set is unregistering due to too many I/O errors. In this condition, 1690 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1691 * value and whether the broken cache has dirty data: 1692 * 1693 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1694 * BCH_CACHED_STOP_AUTO 0 NO 1695 * BCH_CACHED_STOP_AUTO 1 YES 1696 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1697 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1698 * 1699 * The expected behavior is, if stop_when_cache_set_failed is configured to 1700 * "auto" via sysfs interface, the bcache device will not be stopped if the 1701 * backing device is clean on the broken cache device. 1702 */ 1703 static void conditional_stop_bcache_device(struct cache_set *c, 1704 struct bcache_device *d, 1705 struct cached_dev *dc) 1706 { 1707 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1708 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1709 d->disk->disk_name, c->sb.set_uuid); 1710 bcache_device_stop(d); 1711 } else if (atomic_read(&dc->has_dirty)) { 1712 /* 1713 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1714 * and dc->has_dirty == 1 1715 */ 1716 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1717 d->disk->disk_name); 1718 /* 1719 * There might be a small time gap that cache set is 1720 * released but bcache device is not. Inside this time 1721 * gap, regular I/O requests will directly go into 1722 * backing device as no cache set attached to. This 1723 * behavior may also introduce potential inconsistence 1724 * data in writeback mode while cache is dirty. 1725 * Therefore before calling bcache_device_stop() due 1726 * to a broken cache device, dc->io_disable should be 1727 * explicitly set to true. 1728 */ 1729 dc->io_disable = true; 1730 /* make others know io_disable is true earlier */ 1731 smp_mb(); 1732 bcache_device_stop(d); 1733 } else { 1734 /* 1735 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1736 * and dc->has_dirty == 0 1737 */ 1738 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1739 d->disk->disk_name); 1740 } 1741 } 1742 1743 static void __cache_set_unregister(struct closure *cl) 1744 { 1745 struct cache_set *c = container_of(cl, struct cache_set, caching); 1746 struct cached_dev *dc; 1747 struct bcache_device *d; 1748 size_t i; 1749 1750 mutex_lock(&bch_register_lock); 1751 1752 for (i = 0; i < c->devices_max_used; i++) { 1753 d = c->devices[i]; 1754 if (!d) 1755 continue; 1756 1757 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1758 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1759 dc = container_of(d, struct cached_dev, disk); 1760 bch_cached_dev_detach(dc); 1761 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1762 conditional_stop_bcache_device(c, d, dc); 1763 } else { 1764 bcache_device_stop(d); 1765 } 1766 } 1767 1768 mutex_unlock(&bch_register_lock); 1769 1770 continue_at(cl, cache_set_flush, system_wq); 1771 } 1772 1773 void bch_cache_set_stop(struct cache_set *c) 1774 { 1775 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1776 /* closure_fn set to __cache_set_unregister() */ 1777 closure_queue(&c->caching); 1778 } 1779 1780 void bch_cache_set_unregister(struct cache_set *c) 1781 { 1782 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1783 bch_cache_set_stop(c); 1784 } 1785 1786 #define alloc_bucket_pages(gfp, c) \ 1787 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c)))) 1788 1789 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1790 { 1791 int iter_size; 1792 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1793 1794 if (!c) 1795 return NULL; 1796 1797 __module_get(THIS_MODULE); 1798 closure_init(&c->cl, NULL); 1799 set_closure_fn(&c->cl, cache_set_free, system_wq); 1800 1801 closure_init(&c->caching, &c->cl); 1802 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1803 1804 /* Maybe create continue_at_noreturn() and use it here? */ 1805 closure_set_stopped(&c->cl); 1806 closure_put(&c->cl); 1807 1808 kobject_init(&c->kobj, &bch_cache_set_ktype); 1809 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1810 1811 bch_cache_accounting_init(&c->accounting, &c->cl); 1812 1813 memcpy(c->sb.set_uuid, sb->set_uuid, 16); 1814 c->sb.block_size = sb->block_size; 1815 c->sb.bucket_size = sb->bucket_size; 1816 c->sb.nr_in_set = sb->nr_in_set; 1817 c->sb.last_mount = sb->last_mount; 1818 c->bucket_bits = ilog2(sb->bucket_size); 1819 c->block_bits = ilog2(sb->block_size); 1820 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry); 1821 c->devices_max_used = 0; 1822 atomic_set(&c->attached_dev_nr, 0); 1823 c->btree_pages = bucket_pages(c); 1824 if (c->btree_pages > BTREE_MAX_PAGES) 1825 c->btree_pages = max_t(int, c->btree_pages / 4, 1826 BTREE_MAX_PAGES); 1827 1828 sema_init(&c->sb_write_mutex, 1); 1829 mutex_init(&c->bucket_lock); 1830 init_waitqueue_head(&c->btree_cache_wait); 1831 spin_lock_init(&c->btree_cannibalize_lock); 1832 init_waitqueue_head(&c->bucket_wait); 1833 init_waitqueue_head(&c->gc_wait); 1834 sema_init(&c->uuid_write_mutex, 1); 1835 1836 spin_lock_init(&c->btree_gc_time.lock); 1837 spin_lock_init(&c->btree_split_time.lock); 1838 spin_lock_init(&c->btree_read_time.lock); 1839 1840 bch_moving_init_cache_set(c); 1841 1842 INIT_LIST_HEAD(&c->list); 1843 INIT_LIST_HEAD(&c->cached_devs); 1844 INIT_LIST_HEAD(&c->btree_cache); 1845 INIT_LIST_HEAD(&c->btree_cache_freeable); 1846 INIT_LIST_HEAD(&c->btree_cache_freed); 1847 INIT_LIST_HEAD(&c->data_buckets); 1848 1849 iter_size = (sb->bucket_size / sb->block_size + 1) * 1850 sizeof(struct btree_iter_set); 1851 1852 if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) || 1853 mempool_init_slab_pool(&c->search, 32, bch_search_cache) || 1854 mempool_init_kmalloc_pool(&c->bio_meta, 2, 1855 sizeof(struct bbio) + sizeof(struct bio_vec) * 1856 bucket_pages(c)) || 1857 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 1858 bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1859 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) || 1860 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) || 1861 !(c->moving_gc_wq = alloc_workqueue("bcache_gc", 1862 WQ_MEM_RECLAIM, 0)) || 1863 bch_journal_alloc(c) || 1864 bch_btree_cache_alloc(c) || 1865 bch_open_buckets_alloc(c) || 1866 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1867 goto err; 1868 1869 c->congested_read_threshold_us = 2000; 1870 c->congested_write_threshold_us = 20000; 1871 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1872 c->idle_max_writeback_rate_enabled = 1; 1873 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1874 1875 return c; 1876 err: 1877 bch_cache_set_unregister(c); 1878 return NULL; 1879 } 1880 1881 static int run_cache_set(struct cache_set *c) 1882 { 1883 const char *err = "cannot allocate memory"; 1884 struct cached_dev *dc, *t; 1885 struct cache *ca; 1886 struct closure cl; 1887 unsigned int i; 1888 LIST_HEAD(journal); 1889 struct journal_replay *l; 1890 1891 closure_init_stack(&cl); 1892 1893 for_each_cache(ca, c, i) 1894 c->nbuckets += ca->sb.nbuckets; 1895 set_gc_sectors(c); 1896 1897 if (CACHE_SYNC(&c->sb)) { 1898 struct bkey *k; 1899 struct jset *j; 1900 1901 err = "cannot allocate memory for journal"; 1902 if (bch_journal_read(c, &journal)) 1903 goto err; 1904 1905 pr_debug("btree_journal_read() done\n"); 1906 1907 err = "no journal entries found"; 1908 if (list_empty(&journal)) 1909 goto err; 1910 1911 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1912 1913 err = "IO error reading priorities"; 1914 for_each_cache(ca, c, i) { 1915 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 1916 goto err; 1917 } 1918 1919 /* 1920 * If prio_read() fails it'll call cache_set_error and we'll 1921 * tear everything down right away, but if we perhaps checked 1922 * sooner we could avoid journal replay. 1923 */ 1924 1925 k = &j->btree_root; 1926 1927 err = "bad btree root"; 1928 if (__bch_btree_ptr_invalid(c, k)) 1929 goto err; 1930 1931 err = "error reading btree root"; 1932 c->root = bch_btree_node_get(c, NULL, k, 1933 j->btree_level, 1934 true, NULL); 1935 if (IS_ERR_OR_NULL(c->root)) 1936 goto err; 1937 1938 list_del_init(&c->root->list); 1939 rw_unlock(true, c->root); 1940 1941 err = uuid_read(c, j, &cl); 1942 if (err) 1943 goto err; 1944 1945 err = "error in recovery"; 1946 if (bch_btree_check(c)) 1947 goto err; 1948 1949 bch_journal_mark(c, &journal); 1950 bch_initial_gc_finish(c); 1951 pr_debug("btree_check() done\n"); 1952 1953 /* 1954 * bcache_journal_next() can't happen sooner, or 1955 * btree_gc_finish() will give spurious errors about last_gc > 1956 * gc_gen - this is a hack but oh well. 1957 */ 1958 bch_journal_next(&c->journal); 1959 1960 err = "error starting allocator thread"; 1961 for_each_cache(ca, c, i) 1962 if (bch_cache_allocator_start(ca)) 1963 goto err; 1964 1965 /* 1966 * First place it's safe to allocate: btree_check() and 1967 * btree_gc_finish() have to run before we have buckets to 1968 * allocate, and bch_bucket_alloc_set() might cause a journal 1969 * entry to be written so bcache_journal_next() has to be called 1970 * first. 1971 * 1972 * If the uuids were in the old format we have to rewrite them 1973 * before the next journal entry is written: 1974 */ 1975 if (j->version < BCACHE_JSET_VERSION_UUID) 1976 __uuid_write(c); 1977 1978 err = "bcache: replay journal failed"; 1979 if (bch_journal_replay(c, &journal)) 1980 goto err; 1981 } else { 1982 pr_notice("invalidating existing data\n"); 1983 1984 for_each_cache(ca, c, i) { 1985 unsigned int j; 1986 1987 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 1988 2, SB_JOURNAL_BUCKETS); 1989 1990 for (j = 0; j < ca->sb.keys; j++) 1991 ca->sb.d[j] = ca->sb.first_bucket + j; 1992 } 1993 1994 bch_initial_gc_finish(c); 1995 1996 err = "error starting allocator thread"; 1997 for_each_cache(ca, c, i) 1998 if (bch_cache_allocator_start(ca)) 1999 goto err; 2000 2001 mutex_lock(&c->bucket_lock); 2002 for_each_cache(ca, c, i) 2003 bch_prio_write(ca, true); 2004 mutex_unlock(&c->bucket_lock); 2005 2006 err = "cannot allocate new UUID bucket"; 2007 if (__uuid_write(c)) 2008 goto err; 2009 2010 err = "cannot allocate new btree root"; 2011 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2012 if (IS_ERR_OR_NULL(c->root)) 2013 goto err; 2014 2015 mutex_lock(&c->root->write_lock); 2016 bkey_copy_key(&c->root->key, &MAX_KEY); 2017 bch_btree_node_write(c->root, &cl); 2018 mutex_unlock(&c->root->write_lock); 2019 2020 bch_btree_set_root(c->root); 2021 rw_unlock(true, c->root); 2022 2023 /* 2024 * We don't want to write the first journal entry until 2025 * everything is set up - fortunately journal entries won't be 2026 * written until the SET_CACHE_SYNC() here: 2027 */ 2028 SET_CACHE_SYNC(&c->sb, true); 2029 2030 bch_journal_next(&c->journal); 2031 bch_journal_meta(c, &cl); 2032 } 2033 2034 err = "error starting gc thread"; 2035 if (bch_gc_thread_start(c)) 2036 goto err; 2037 2038 closure_sync(&cl); 2039 c->sb.last_mount = (u32)ktime_get_real_seconds(); 2040 bcache_write_super(c); 2041 2042 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2043 bch_cached_dev_attach(dc, c, NULL); 2044 2045 flash_devs_run(c); 2046 2047 set_bit(CACHE_SET_RUNNING, &c->flags); 2048 return 0; 2049 err: 2050 while (!list_empty(&journal)) { 2051 l = list_first_entry(&journal, struct journal_replay, list); 2052 list_del(&l->list); 2053 kfree(l); 2054 } 2055 2056 closure_sync(&cl); 2057 2058 bch_cache_set_error(c, "%s", err); 2059 2060 return -EIO; 2061 } 2062 2063 static bool can_attach_cache(struct cache *ca, struct cache_set *c) 2064 { 2065 return ca->sb.block_size == c->sb.block_size && 2066 ca->sb.bucket_size == c->sb.bucket_size && 2067 ca->sb.nr_in_set == c->sb.nr_in_set; 2068 } 2069 2070 static const char *register_cache_set(struct cache *ca) 2071 { 2072 char buf[12]; 2073 const char *err = "cannot allocate memory"; 2074 struct cache_set *c; 2075 2076 list_for_each_entry(c, &bch_cache_sets, list) 2077 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { 2078 if (c->cache[ca->sb.nr_this_dev]) 2079 return "duplicate cache set member"; 2080 2081 if (!can_attach_cache(ca, c)) 2082 return "cache sb does not match set"; 2083 2084 if (!CACHE_SYNC(&ca->sb)) 2085 SET_CACHE_SYNC(&c->sb, false); 2086 2087 goto found; 2088 } 2089 2090 c = bch_cache_set_alloc(&ca->sb); 2091 if (!c) 2092 return err; 2093 2094 err = "error creating kobject"; 2095 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || 2096 kobject_add(&c->internal, &c->kobj, "internal")) 2097 goto err; 2098 2099 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2100 goto err; 2101 2102 bch_debug_init_cache_set(c); 2103 2104 list_add(&c->list, &bch_cache_sets); 2105 found: 2106 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2107 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2108 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2109 goto err; 2110 2111 if (ca->sb.seq > c->sb.seq) { 2112 c->sb.version = ca->sb.version; 2113 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); 2114 c->sb.flags = ca->sb.flags; 2115 c->sb.seq = ca->sb.seq; 2116 pr_debug("set version = %llu\n", c->sb.version); 2117 } 2118 2119 kobject_get(&ca->kobj); 2120 ca->set = c; 2121 ca->set->cache[ca->sb.nr_this_dev] = ca; 2122 c->cache_by_alloc[c->caches_loaded++] = ca; 2123 2124 if (c->caches_loaded == c->sb.nr_in_set) { 2125 err = "failed to run cache set"; 2126 if (run_cache_set(c) < 0) 2127 goto err; 2128 } 2129 2130 return NULL; 2131 err: 2132 bch_cache_set_unregister(c); 2133 return err; 2134 } 2135 2136 /* Cache device */ 2137 2138 /* When ca->kobj released */ 2139 void bch_cache_release(struct kobject *kobj) 2140 { 2141 struct cache *ca = container_of(kobj, struct cache, kobj); 2142 unsigned int i; 2143 2144 if (ca->set) { 2145 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca); 2146 ca->set->cache[ca->sb.nr_this_dev] = NULL; 2147 } 2148 2149 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca))); 2150 kfree(ca->prio_buckets); 2151 vfree(ca->buckets); 2152 2153 free_heap(&ca->heap); 2154 free_fifo(&ca->free_inc); 2155 2156 for (i = 0; i < RESERVE_NR; i++) 2157 free_fifo(&ca->free[i]); 2158 2159 if (ca->sb_disk) 2160 put_page(virt_to_page(ca->sb_disk)); 2161 2162 if (!IS_ERR_OR_NULL(ca->bdev)) 2163 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2164 2165 kfree(ca); 2166 module_put(THIS_MODULE); 2167 } 2168 2169 static int cache_alloc(struct cache *ca) 2170 { 2171 size_t free; 2172 size_t btree_buckets; 2173 struct bucket *b; 2174 int ret = -ENOMEM; 2175 const char *err = NULL; 2176 2177 __module_get(THIS_MODULE); 2178 kobject_init(&ca->kobj, &bch_cache_ktype); 2179 2180 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2181 2182 /* 2183 * when ca->sb.njournal_buckets is not zero, journal exists, 2184 * and in bch_journal_replay(), tree node may split, 2185 * so bucket of RESERVE_BTREE type is needed, 2186 * the worst situation is all journal buckets are valid journal, 2187 * and all the keys need to replay, 2188 * so the number of RESERVE_BTREE type buckets should be as much 2189 * as journal buckets 2190 */ 2191 btree_buckets = ca->sb.njournal_buckets ?: 8; 2192 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2193 if (!free) { 2194 ret = -EPERM; 2195 err = "ca->sb.nbuckets is too small"; 2196 goto err_free; 2197 } 2198 2199 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2200 GFP_KERNEL)) { 2201 err = "ca->free[RESERVE_BTREE] alloc failed"; 2202 goto err_btree_alloc; 2203 } 2204 2205 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2206 GFP_KERNEL)) { 2207 err = "ca->free[RESERVE_PRIO] alloc failed"; 2208 goto err_prio_alloc; 2209 } 2210 2211 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2212 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2213 goto err_movinggc_alloc; 2214 } 2215 2216 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2217 err = "ca->free[RESERVE_NONE] alloc failed"; 2218 goto err_none_alloc; 2219 } 2220 2221 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2222 err = "ca->free_inc alloc failed"; 2223 goto err_free_inc_alloc; 2224 } 2225 2226 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2227 err = "ca->heap alloc failed"; 2228 goto err_heap_alloc; 2229 } 2230 2231 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2232 ca->sb.nbuckets)); 2233 if (!ca->buckets) { 2234 err = "ca->buckets alloc failed"; 2235 goto err_buckets_alloc; 2236 } 2237 2238 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2239 prio_buckets(ca), 2), 2240 GFP_KERNEL); 2241 if (!ca->prio_buckets) { 2242 err = "ca->prio_buckets alloc failed"; 2243 goto err_prio_buckets_alloc; 2244 } 2245 2246 ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca); 2247 if (!ca->disk_buckets) { 2248 err = "ca->disk_buckets alloc failed"; 2249 goto err_disk_buckets_alloc; 2250 } 2251 2252 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2253 2254 for_each_bucket(b, ca) 2255 atomic_set(&b->pin, 0); 2256 return 0; 2257 2258 err_disk_buckets_alloc: 2259 kfree(ca->prio_buckets); 2260 err_prio_buckets_alloc: 2261 vfree(ca->buckets); 2262 err_buckets_alloc: 2263 free_heap(&ca->heap); 2264 err_heap_alloc: 2265 free_fifo(&ca->free_inc); 2266 err_free_inc_alloc: 2267 free_fifo(&ca->free[RESERVE_NONE]); 2268 err_none_alloc: 2269 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2270 err_movinggc_alloc: 2271 free_fifo(&ca->free[RESERVE_PRIO]); 2272 err_prio_alloc: 2273 free_fifo(&ca->free[RESERVE_BTREE]); 2274 err_btree_alloc: 2275 err_free: 2276 module_put(THIS_MODULE); 2277 if (err) 2278 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2279 return ret; 2280 } 2281 2282 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2283 struct block_device *bdev, struct cache *ca) 2284 { 2285 const char *err = NULL; /* must be set for any error case */ 2286 int ret = 0; 2287 2288 bdevname(bdev, ca->cache_dev_name); 2289 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2290 ca->bdev = bdev; 2291 ca->bdev->bd_holder = ca; 2292 ca->sb_disk = sb_disk; 2293 2294 if (blk_queue_discard(bdev_get_queue(bdev))) 2295 ca->discard = CACHE_DISCARD(&ca->sb); 2296 2297 ret = cache_alloc(ca); 2298 if (ret != 0) { 2299 /* 2300 * If we failed here, it means ca->kobj is not initialized yet, 2301 * kobject_put() won't be called and there is no chance to 2302 * call blkdev_put() to bdev in bch_cache_release(). So we 2303 * explicitly call blkdev_put() here. 2304 */ 2305 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2306 if (ret == -ENOMEM) 2307 err = "cache_alloc(): -ENOMEM"; 2308 else if (ret == -EPERM) 2309 err = "cache_alloc(): cache device is too small"; 2310 else 2311 err = "cache_alloc(): unknown error"; 2312 goto err; 2313 } 2314 2315 if (kobject_add(&ca->kobj, 2316 &part_to_dev(bdev->bd_part)->kobj, 2317 "bcache")) { 2318 err = "error calling kobject_add"; 2319 ret = -ENOMEM; 2320 goto out; 2321 } 2322 2323 mutex_lock(&bch_register_lock); 2324 err = register_cache_set(ca); 2325 mutex_unlock(&bch_register_lock); 2326 2327 if (err) { 2328 ret = -ENODEV; 2329 goto out; 2330 } 2331 2332 pr_info("registered cache device %s\n", ca->cache_dev_name); 2333 2334 out: 2335 kobject_put(&ca->kobj); 2336 2337 err: 2338 if (err) 2339 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2340 2341 return ret; 2342 } 2343 2344 /* Global interfaces/init */ 2345 2346 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2347 const char *buffer, size_t size); 2348 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2349 struct kobj_attribute *attr, 2350 const char *buffer, size_t size); 2351 2352 kobj_attribute_write(register, register_bcache); 2353 kobj_attribute_write(register_quiet, register_bcache); 2354 kobj_attribute_write(register_async, register_bcache); 2355 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2356 2357 static bool bch_is_open_backing(struct block_device *bdev) 2358 { 2359 struct cache_set *c, *tc; 2360 struct cached_dev *dc, *t; 2361 2362 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2363 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2364 if (dc->bdev == bdev) 2365 return true; 2366 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2367 if (dc->bdev == bdev) 2368 return true; 2369 return false; 2370 } 2371 2372 static bool bch_is_open_cache(struct block_device *bdev) 2373 { 2374 struct cache_set *c, *tc; 2375 struct cache *ca; 2376 unsigned int i; 2377 2378 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2379 for_each_cache(ca, c, i) 2380 if (ca->bdev == bdev) 2381 return true; 2382 return false; 2383 } 2384 2385 static bool bch_is_open(struct block_device *bdev) 2386 { 2387 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); 2388 } 2389 2390 struct async_reg_args { 2391 struct delayed_work reg_work; 2392 char *path; 2393 struct cache_sb *sb; 2394 struct cache_sb_disk *sb_disk; 2395 struct block_device *bdev; 2396 }; 2397 2398 static void register_bdev_worker(struct work_struct *work) 2399 { 2400 int fail = false; 2401 struct async_reg_args *args = 2402 container_of(work, struct async_reg_args, reg_work.work); 2403 struct cached_dev *dc; 2404 2405 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2406 if (!dc) { 2407 fail = true; 2408 put_page(virt_to_page(args->sb_disk)); 2409 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2410 goto out; 2411 } 2412 2413 mutex_lock(&bch_register_lock); 2414 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2415 fail = true; 2416 mutex_unlock(&bch_register_lock); 2417 2418 out: 2419 if (fail) 2420 pr_info("error %s: fail to register backing device\n", 2421 args->path); 2422 kfree(args->sb); 2423 kfree(args->path); 2424 kfree(args); 2425 module_put(THIS_MODULE); 2426 } 2427 2428 static void register_cache_worker(struct work_struct *work) 2429 { 2430 int fail = false; 2431 struct async_reg_args *args = 2432 container_of(work, struct async_reg_args, reg_work.work); 2433 struct cache *ca; 2434 2435 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2436 if (!ca) { 2437 fail = true; 2438 put_page(virt_to_page(args->sb_disk)); 2439 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2440 goto out; 2441 } 2442 2443 /* blkdev_put() will be called in bch_cache_release() */ 2444 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2445 fail = true; 2446 2447 out: 2448 if (fail) 2449 pr_info("error %s: fail to register cache device\n", 2450 args->path); 2451 kfree(args->sb); 2452 kfree(args->path); 2453 kfree(args); 2454 module_put(THIS_MODULE); 2455 } 2456 2457 static void register_device_aync(struct async_reg_args *args) 2458 { 2459 if (SB_IS_BDEV(args->sb)) 2460 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2461 else 2462 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2463 2464 /* 10 jiffies is enough for a delay */ 2465 queue_delayed_work(system_wq, &args->reg_work, 10); 2466 } 2467 2468 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2469 const char *buffer, size_t size) 2470 { 2471 const char *err; 2472 char *path = NULL; 2473 struct cache_sb *sb; 2474 struct cache_sb_disk *sb_disk; 2475 struct block_device *bdev; 2476 ssize_t ret; 2477 2478 ret = -EBUSY; 2479 err = "failed to reference bcache module"; 2480 if (!try_module_get(THIS_MODULE)) 2481 goto out; 2482 2483 /* For latest state of bcache_is_reboot */ 2484 smp_mb(); 2485 err = "bcache is in reboot"; 2486 if (bcache_is_reboot) 2487 goto out_module_put; 2488 2489 ret = -ENOMEM; 2490 err = "cannot allocate memory"; 2491 path = kstrndup(buffer, size, GFP_KERNEL); 2492 if (!path) 2493 goto out_module_put; 2494 2495 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2496 if (!sb) 2497 goto out_free_path; 2498 2499 ret = -EINVAL; 2500 err = "failed to open device"; 2501 bdev = blkdev_get_by_path(strim(path), 2502 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2503 sb); 2504 if (IS_ERR(bdev)) { 2505 if (bdev == ERR_PTR(-EBUSY)) { 2506 bdev = lookup_bdev(strim(path)); 2507 mutex_lock(&bch_register_lock); 2508 if (!IS_ERR(bdev) && bch_is_open(bdev)) 2509 err = "device already registered"; 2510 else 2511 err = "device busy"; 2512 mutex_unlock(&bch_register_lock); 2513 if (!IS_ERR(bdev)) 2514 bdput(bdev); 2515 if (attr == &ksysfs_register_quiet) 2516 goto done; 2517 } 2518 goto out_free_sb; 2519 } 2520 2521 err = "failed to set blocksize"; 2522 if (set_blocksize(bdev, 4096)) 2523 goto out_blkdev_put; 2524 2525 err = read_super(sb, bdev, &sb_disk); 2526 if (err) 2527 goto out_blkdev_put; 2528 2529 err = "failed to register device"; 2530 if (attr == &ksysfs_register_async) { 2531 /* register in asynchronous way */ 2532 struct async_reg_args *args = 2533 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2534 2535 if (!args) { 2536 ret = -ENOMEM; 2537 err = "cannot allocate memory"; 2538 goto out_put_sb_page; 2539 } 2540 2541 args->path = path; 2542 args->sb = sb; 2543 args->sb_disk = sb_disk; 2544 args->bdev = bdev; 2545 register_device_aync(args); 2546 /* No wait and returns to user space */ 2547 goto async_done; 2548 } 2549 2550 if (SB_IS_BDEV(sb)) { 2551 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2552 2553 if (!dc) 2554 goto out_put_sb_page; 2555 2556 mutex_lock(&bch_register_lock); 2557 ret = register_bdev(sb, sb_disk, bdev, dc); 2558 mutex_unlock(&bch_register_lock); 2559 /* blkdev_put() will be called in cached_dev_free() */ 2560 if (ret < 0) 2561 goto out_free_sb; 2562 } else { 2563 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2564 2565 if (!ca) 2566 goto out_put_sb_page; 2567 2568 /* blkdev_put() will be called in bch_cache_release() */ 2569 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2570 goto out_free_sb; 2571 } 2572 2573 done: 2574 kfree(sb); 2575 kfree(path); 2576 module_put(THIS_MODULE); 2577 async_done: 2578 return size; 2579 2580 out_put_sb_page: 2581 put_page(virt_to_page(sb_disk)); 2582 out_blkdev_put: 2583 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2584 out_free_sb: 2585 kfree(sb); 2586 out_free_path: 2587 kfree(path); 2588 path = NULL; 2589 out_module_put: 2590 module_put(THIS_MODULE); 2591 out: 2592 pr_info("error %s: %s\n", path?path:"", err); 2593 return ret; 2594 } 2595 2596 2597 struct pdev { 2598 struct list_head list; 2599 struct cached_dev *dc; 2600 }; 2601 2602 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2603 struct kobj_attribute *attr, 2604 const char *buffer, 2605 size_t size) 2606 { 2607 LIST_HEAD(pending_devs); 2608 ssize_t ret = size; 2609 struct cached_dev *dc, *tdc; 2610 struct pdev *pdev, *tpdev; 2611 struct cache_set *c, *tc; 2612 2613 mutex_lock(&bch_register_lock); 2614 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2615 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2616 if (!pdev) 2617 break; 2618 pdev->dc = dc; 2619 list_add(&pdev->list, &pending_devs); 2620 } 2621 2622 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2623 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2624 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2625 char *set_uuid = c->sb.uuid; 2626 2627 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2628 list_del(&pdev->list); 2629 kfree(pdev); 2630 break; 2631 } 2632 } 2633 } 2634 mutex_unlock(&bch_register_lock); 2635 2636 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2637 pr_info("delete pdev %p\n", pdev); 2638 list_del(&pdev->list); 2639 bcache_device_stop(&pdev->dc->disk); 2640 kfree(pdev); 2641 } 2642 2643 return ret; 2644 } 2645 2646 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2647 { 2648 if (bcache_is_reboot) 2649 return NOTIFY_DONE; 2650 2651 if (code == SYS_DOWN || 2652 code == SYS_HALT || 2653 code == SYS_POWER_OFF) { 2654 DEFINE_WAIT(wait); 2655 unsigned long start = jiffies; 2656 bool stopped = false; 2657 2658 struct cache_set *c, *tc; 2659 struct cached_dev *dc, *tdc; 2660 2661 mutex_lock(&bch_register_lock); 2662 2663 if (bcache_is_reboot) 2664 goto out; 2665 2666 /* New registration is rejected since now */ 2667 bcache_is_reboot = true; 2668 /* 2669 * Make registering caller (if there is) on other CPU 2670 * core know bcache_is_reboot set to true earlier 2671 */ 2672 smp_mb(); 2673 2674 if (list_empty(&bch_cache_sets) && 2675 list_empty(&uncached_devices)) 2676 goto out; 2677 2678 mutex_unlock(&bch_register_lock); 2679 2680 pr_info("Stopping all devices:\n"); 2681 2682 /* 2683 * The reason bch_register_lock is not held to call 2684 * bch_cache_set_stop() and bcache_device_stop() is to 2685 * avoid potential deadlock during reboot, because cache 2686 * set or bcache device stopping process will acqurie 2687 * bch_register_lock too. 2688 * 2689 * We are safe here because bcache_is_reboot sets to 2690 * true already, register_bcache() will reject new 2691 * registration now. bcache_is_reboot also makes sure 2692 * bcache_reboot() won't be re-entered on by other thread, 2693 * so there is no race in following list iteration by 2694 * list_for_each_entry_safe(). 2695 */ 2696 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2697 bch_cache_set_stop(c); 2698 2699 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2700 bcache_device_stop(&dc->disk); 2701 2702 2703 /* 2704 * Give an early chance for other kthreads and 2705 * kworkers to stop themselves 2706 */ 2707 schedule(); 2708 2709 /* What's a condition variable? */ 2710 while (1) { 2711 long timeout = start + 10 * HZ - jiffies; 2712 2713 mutex_lock(&bch_register_lock); 2714 stopped = list_empty(&bch_cache_sets) && 2715 list_empty(&uncached_devices); 2716 2717 if (timeout < 0 || stopped) 2718 break; 2719 2720 prepare_to_wait(&unregister_wait, &wait, 2721 TASK_UNINTERRUPTIBLE); 2722 2723 mutex_unlock(&bch_register_lock); 2724 schedule_timeout(timeout); 2725 } 2726 2727 finish_wait(&unregister_wait, &wait); 2728 2729 if (stopped) 2730 pr_info("All devices stopped\n"); 2731 else 2732 pr_notice("Timeout waiting for devices to be closed\n"); 2733 out: 2734 mutex_unlock(&bch_register_lock); 2735 } 2736 2737 return NOTIFY_DONE; 2738 } 2739 2740 static struct notifier_block reboot = { 2741 .notifier_call = bcache_reboot, 2742 .priority = INT_MAX, /* before any real devices */ 2743 }; 2744 2745 static void bcache_exit(void) 2746 { 2747 bch_debug_exit(); 2748 bch_request_exit(); 2749 if (bcache_kobj) 2750 kobject_put(bcache_kobj); 2751 if (bcache_wq) 2752 destroy_workqueue(bcache_wq); 2753 if (bch_journal_wq) 2754 destroy_workqueue(bch_journal_wq); 2755 2756 if (bcache_major) 2757 unregister_blkdev(bcache_major, "bcache"); 2758 unregister_reboot_notifier(&reboot); 2759 mutex_destroy(&bch_register_lock); 2760 } 2761 2762 /* Check and fixup module parameters */ 2763 static void check_module_parameters(void) 2764 { 2765 if (bch_cutoff_writeback_sync == 0) 2766 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2767 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2768 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2769 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2770 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2771 } 2772 2773 if (bch_cutoff_writeback == 0) 2774 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2775 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2776 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2777 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2778 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2779 } 2780 2781 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2782 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2783 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2784 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2785 } 2786 } 2787 2788 static int __init bcache_init(void) 2789 { 2790 static const struct attribute *files[] = { 2791 &ksysfs_register.attr, 2792 &ksysfs_register_quiet.attr, 2793 #ifdef CONFIG_BCACHE_ASYNC_REGISTRAION 2794 &ksysfs_register_async.attr, 2795 #endif 2796 &ksysfs_pendings_cleanup.attr, 2797 NULL 2798 }; 2799 2800 check_module_parameters(); 2801 2802 mutex_init(&bch_register_lock); 2803 init_waitqueue_head(&unregister_wait); 2804 register_reboot_notifier(&reboot); 2805 2806 bcache_major = register_blkdev(0, "bcache"); 2807 if (bcache_major < 0) { 2808 unregister_reboot_notifier(&reboot); 2809 mutex_destroy(&bch_register_lock); 2810 return bcache_major; 2811 } 2812 2813 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2814 if (!bcache_wq) 2815 goto err; 2816 2817 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2818 if (!bch_journal_wq) 2819 goto err; 2820 2821 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2822 if (!bcache_kobj) 2823 goto err; 2824 2825 if (bch_request_init() || 2826 sysfs_create_files(bcache_kobj, files)) 2827 goto err; 2828 2829 bch_debug_init(); 2830 closure_debug_init(); 2831 2832 bcache_is_reboot = false; 2833 2834 return 0; 2835 err: 2836 bcache_exit(); 2837 return -ENOMEM; 2838 } 2839 2840 /* 2841 * Module hooks 2842 */ 2843 module_exit(bcache_exit); 2844 module_init(bcache_init); 2845 2846 module_param(bch_cutoff_writeback, uint, 0); 2847 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2848 2849 module_param(bch_cutoff_writeback_sync, uint, 0); 2850 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2851 2852 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2853 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2854 MODULE_LICENSE("GPL"); 2855