xref: /linux/drivers/md/bcache/super.c (revision e136a4062174a9a8d1c1447ca040ea81accfa6a8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17 
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28 
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31 
32 static const char bcache_magic[] = {
33 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36 
37 static const char invalid_uuid[] = {
38 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41 
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47 
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54 
55 
56 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS		128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
61 
62 /* Superblock */
63 
64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66 	unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67 
68 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69 		if (bch_has_feature_large_bucket(sb)) {
70 			unsigned int max, order;
71 
72 			max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73 			order = le16_to_cpu(s->bucket_size);
74 			/*
75 			 * bcache tool will make sure the overflow won't
76 			 * happen, an error message here is enough.
77 			 */
78 			if (order > max)
79 				pr_err("Bucket size (1 << %u) overflows\n",
80 					order);
81 			bucket_size = 1 << order;
82 		} else if (bch_has_feature_obso_large_bucket(sb)) {
83 			bucket_size +=
84 				le16_to_cpu(s->obso_bucket_size_hi) << 16;
85 		}
86 	}
87 
88 	return bucket_size;
89 }
90 
91 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
92 				     struct cache_sb_disk *s)
93 {
94 	const char *err;
95 	unsigned int i;
96 
97 	sb->first_bucket= le16_to_cpu(s->first_bucket);
98 	sb->nbuckets	= le64_to_cpu(s->nbuckets);
99 	sb->bucket_size	= get_bucket_size(sb, s);
100 
101 	sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
102 	sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
103 
104 	err = "Too many journal buckets";
105 	if (sb->keys > SB_JOURNAL_BUCKETS)
106 		goto err;
107 
108 	err = "Too many buckets";
109 	if (sb->nbuckets > LONG_MAX)
110 		goto err;
111 
112 	err = "Not enough buckets";
113 	if (sb->nbuckets < 1 << 7)
114 		goto err;
115 
116 	err = "Bad block size (not power of 2)";
117 	if (!is_power_of_2(sb->block_size))
118 		goto err;
119 
120 	err = "Bad block size (larger than page size)";
121 	if (sb->block_size > PAGE_SECTORS)
122 		goto err;
123 
124 	err = "Bad bucket size (not power of 2)";
125 	if (!is_power_of_2(sb->bucket_size))
126 		goto err;
127 
128 	err = "Bad bucket size (smaller than page size)";
129 	if (sb->bucket_size < PAGE_SECTORS)
130 		goto err;
131 
132 	err = "Invalid superblock: device too small";
133 	if (get_capacity(bdev->bd_disk) <
134 	    sb->bucket_size * sb->nbuckets)
135 		goto err;
136 
137 	err = "Bad UUID";
138 	if (bch_is_zero(sb->set_uuid, 16))
139 		goto err;
140 
141 	err = "Bad cache device number in set";
142 	if (!sb->nr_in_set ||
143 	    sb->nr_in_set <= sb->nr_this_dev ||
144 	    sb->nr_in_set > MAX_CACHES_PER_SET)
145 		goto err;
146 
147 	err = "Journal buckets not sequential";
148 	for (i = 0; i < sb->keys; i++)
149 		if (sb->d[i] != sb->first_bucket + i)
150 			goto err;
151 
152 	err = "Too many journal buckets";
153 	if (sb->first_bucket + sb->keys > sb->nbuckets)
154 		goto err;
155 
156 	err = "Invalid superblock: first bucket comes before end of super";
157 	if (sb->first_bucket * sb->bucket_size < 16)
158 		goto err;
159 
160 	err = NULL;
161 err:
162 	return err;
163 }
164 
165 
166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167 			      struct cache_sb_disk **res)
168 {
169 	const char *err;
170 	struct cache_sb_disk *s;
171 	struct page *page;
172 	unsigned int i;
173 
174 	page = read_cache_page_gfp(bdev->bd_mapping,
175 				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176 	if (IS_ERR(page))
177 		return "IO error";
178 	s = page_address(page) + offset_in_page(SB_OFFSET);
179 
180 	sb->offset		= le64_to_cpu(s->offset);
181 	sb->version		= le64_to_cpu(s->version);
182 
183 	memcpy(sb->magic,	s->magic, 16);
184 	memcpy(sb->uuid,	s->uuid, 16);
185 	memcpy(sb->set_uuid,	s->set_uuid, 16);
186 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
187 
188 	sb->flags		= le64_to_cpu(s->flags);
189 	sb->seq			= le64_to_cpu(s->seq);
190 	sb->last_mount		= le32_to_cpu(s->last_mount);
191 	sb->keys		= le16_to_cpu(s->keys);
192 
193 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194 		sb->d[i] = le64_to_cpu(s->d[i]);
195 
196 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197 		 sb->version, sb->flags, sb->seq, sb->keys);
198 
199 	err = "Not a bcache superblock (bad offset)";
200 	if (sb->offset != SB_SECTOR)
201 		goto err;
202 
203 	err = "Not a bcache superblock (bad magic)";
204 	if (memcmp(sb->magic, bcache_magic, 16))
205 		goto err;
206 
207 	err = "Bad checksum";
208 	if (s->csum != csum_set(s))
209 		goto err;
210 
211 	err = "Bad UUID";
212 	if (bch_is_zero(sb->uuid, 16))
213 		goto err;
214 
215 	sb->block_size	= le16_to_cpu(s->block_size);
216 
217 	err = "Superblock block size smaller than device block size";
218 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219 		goto err;
220 
221 	switch (sb->version) {
222 	case BCACHE_SB_VERSION_BDEV:
223 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
224 		break;
225 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226 	case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227 		sb->data_offset	= le64_to_cpu(s->data_offset);
228 
229 		err = "Bad data offset";
230 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231 			goto err;
232 
233 		break;
234 	case BCACHE_SB_VERSION_CDEV:
235 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236 		err = read_super_common(sb, bdev, s);
237 		if (err)
238 			goto err;
239 		break;
240 	case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241 		/*
242 		 * Feature bits are needed in read_super_common(),
243 		 * convert them firstly.
244 		 */
245 		sb->feature_compat = le64_to_cpu(s->feature_compat);
246 		sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247 		sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248 
249 		/* Check incompatible features */
250 		err = "Unsupported compatible feature found";
251 		if (bch_has_unknown_compat_features(sb))
252 			goto err;
253 
254 		err = "Unsupported read-only compatible feature found";
255 		if (bch_has_unknown_ro_compat_features(sb))
256 			goto err;
257 
258 		err = "Unsupported incompatible feature found";
259 		if (bch_has_unknown_incompat_features(sb))
260 			goto err;
261 
262 		err = read_super_common(sb, bdev, s);
263 		if (err)
264 			goto err;
265 		break;
266 	default:
267 		err = "Unsupported superblock version";
268 		goto err;
269 	}
270 
271 	sb->last_mount = (u32)ktime_get_real_seconds();
272 	*res = s;
273 	return NULL;
274 err:
275 	put_page(page);
276 	return err;
277 }
278 
279 static void write_bdev_super_endio(struct bio *bio)
280 {
281 	struct cached_dev *dc = bio->bi_private;
282 
283 	if (bio->bi_status)
284 		bch_count_backing_io_errors(dc, bio);
285 
286 	closure_put(&dc->sb_write);
287 }
288 
289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290 		struct bio *bio)
291 {
292 	unsigned int i;
293 
294 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295 	bio->bi_iter.bi_sector	= SB_SECTOR;
296 	__bio_add_page(bio, virt_to_page(out), SB_SIZE,
297 			offset_in_page(out));
298 
299 	out->offset		= cpu_to_le64(sb->offset);
300 
301 	memcpy(out->uuid,	sb->uuid, 16);
302 	memcpy(out->set_uuid,	sb->set_uuid, 16);
303 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
304 
305 	out->flags		= cpu_to_le64(sb->flags);
306 	out->seq		= cpu_to_le64(sb->seq);
307 
308 	out->last_mount		= cpu_to_le32(sb->last_mount);
309 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
310 	out->keys		= cpu_to_le16(sb->keys);
311 
312 	for (i = 0; i < sb->keys; i++)
313 		out->d[i] = cpu_to_le64(sb->d[i]);
314 
315 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316 		out->feature_compat    = cpu_to_le64(sb->feature_compat);
317 		out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
318 		out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319 	}
320 
321 	out->version		= cpu_to_le64(sb->version);
322 	out->csum = csum_set(out);
323 
324 	pr_debug("ver %llu, flags %llu, seq %llu\n",
325 		 sb->version, sb->flags, sb->seq);
326 
327 	submit_bio(bio);
328 }
329 
330 static CLOSURE_CALLBACK(bch_write_bdev_super_unlock)
331 {
332 	closure_type(dc, struct cached_dev, sb_write);
333 
334 	up(&dc->sb_write_mutex);
335 }
336 
337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338 {
339 	struct closure *cl = &dc->sb_write;
340 	struct bio *bio = &dc->sb_bio;
341 
342 	down(&dc->sb_write_mutex);
343 	closure_init(cl, parent);
344 
345 	bio_init(bio, dc->bdev, dc->sb_bv, 1, 0);
346 	bio->bi_end_io	= write_bdev_super_endio;
347 	bio->bi_private = dc;
348 
349 	closure_get(cl);
350 	/* I/O request sent to backing device */
351 	__write_super(&dc->sb, dc->sb_disk, bio);
352 
353 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
354 }
355 
356 static void write_super_endio(struct bio *bio)
357 {
358 	struct cache *ca = bio->bi_private;
359 
360 	/* is_read = 0 */
361 	bch_count_io_errors(ca, bio->bi_status, 0,
362 			    "writing superblock");
363 	closure_put(&ca->set->sb_write);
364 }
365 
366 static CLOSURE_CALLBACK(bcache_write_super_unlock)
367 {
368 	closure_type(c, struct cache_set, sb_write);
369 
370 	up(&c->sb_write_mutex);
371 }
372 
373 void bcache_write_super(struct cache_set *c)
374 {
375 	struct closure *cl = &c->sb_write;
376 	struct cache *ca = c->cache;
377 	struct bio *bio = &ca->sb_bio;
378 	unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
379 
380 	down(&c->sb_write_mutex);
381 	closure_init(cl, &c->cl);
382 
383 	ca->sb.seq++;
384 
385 	if (ca->sb.version < version)
386 		ca->sb.version = version;
387 
388 	bio_init(bio, ca->bdev, ca->sb_bv, 1, 0);
389 	bio->bi_end_io	= write_super_endio;
390 	bio->bi_private = ca;
391 
392 	closure_get(cl);
393 	__write_super(&ca->sb, ca->sb_disk, bio);
394 
395 	closure_return_with_destructor(cl, bcache_write_super_unlock);
396 }
397 
398 /* UUID io */
399 
400 static void uuid_endio(struct bio *bio)
401 {
402 	struct closure *cl = bio->bi_private;
403 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
404 
405 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
406 	bch_bbio_free(bio, c);
407 	closure_put(cl);
408 }
409 
410 static CLOSURE_CALLBACK(uuid_io_unlock)
411 {
412 	closure_type(c, struct cache_set, uuid_write);
413 
414 	up(&c->uuid_write_mutex);
415 }
416 
417 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k,
418 		    struct closure *parent)
419 {
420 	struct closure *cl = &c->uuid_write;
421 	struct uuid_entry *u;
422 	unsigned int i;
423 	char buf[80];
424 
425 	BUG_ON(!parent);
426 	down(&c->uuid_write_mutex);
427 	closure_init(cl, parent);
428 
429 	for (i = 0; i < KEY_PTRS(k); i++) {
430 		struct bio *bio = bch_bbio_alloc(c);
431 
432 		bio->bi_opf = opf | REQ_SYNC | REQ_META;
433 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
434 
435 		bio->bi_end_io	= uuid_endio;
436 		bio->bi_private = cl;
437 		bch_bio_map(bio, c->uuids);
438 
439 		bch_submit_bbio(bio, c, k, i);
440 
441 		if ((opf & REQ_OP_MASK) != REQ_OP_WRITE)
442 			break;
443 	}
444 
445 	bch_extent_to_text(buf, sizeof(buf), k);
446 	pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ?
447 		 "wrote" : "read", buf);
448 
449 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
450 		if (!bch_is_zero(u->uuid, 16))
451 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
452 				 u - c->uuids, u->uuid, u->label,
453 				 u->first_reg, u->last_reg, u->invalidated);
454 
455 	closure_return_with_destructor(cl, uuid_io_unlock);
456 }
457 
458 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
459 {
460 	struct bkey *k = &j->uuid_bucket;
461 
462 	if (__bch_btree_ptr_invalid(c, k))
463 		return "bad uuid pointer";
464 
465 	bkey_copy(&c->uuid_bucket, k);
466 	uuid_io(c, REQ_OP_READ, k, cl);
467 
468 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
469 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
470 		struct uuid_entry	*u1 = (void *) c->uuids;
471 		int i;
472 
473 		closure_sync(cl);
474 
475 		/*
476 		 * Since the new uuid entry is bigger than the old, we have to
477 		 * convert starting at the highest memory address and work down
478 		 * in order to do it in place
479 		 */
480 
481 		for (i = c->nr_uuids - 1;
482 		     i >= 0;
483 		     --i) {
484 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
485 			memcpy(u1[i].label,	u0[i].label, 32);
486 
487 			u1[i].first_reg		= u0[i].first_reg;
488 			u1[i].last_reg		= u0[i].last_reg;
489 			u1[i].invalidated	= u0[i].invalidated;
490 
491 			u1[i].flags	= 0;
492 			u1[i].sectors	= 0;
493 		}
494 	}
495 
496 	return NULL;
497 }
498 
499 static int __uuid_write(struct cache_set *c)
500 {
501 	BKEY_PADDED(key) k;
502 	struct closure cl;
503 	struct cache *ca = c->cache;
504 	unsigned int size;
505 
506 	closure_init_stack(&cl);
507 	lockdep_assert_held(&bch_register_lock);
508 
509 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
510 		return 1;
511 
512 	size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
513 	SET_KEY_SIZE(&k.key, size);
514 	uuid_io(c, REQ_OP_WRITE, &k.key, &cl);
515 	closure_sync(&cl);
516 
517 	/* Only one bucket used for uuid write */
518 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
519 
520 	bkey_copy(&c->uuid_bucket, &k.key);
521 	bkey_put(c, &k.key);
522 	return 0;
523 }
524 
525 int bch_uuid_write(struct cache_set *c)
526 {
527 	int ret = __uuid_write(c);
528 
529 	if (!ret)
530 		bch_journal_meta(c, NULL);
531 
532 	return ret;
533 }
534 
535 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
536 {
537 	struct uuid_entry *u;
538 
539 	for (u = c->uuids;
540 	     u < c->uuids + c->nr_uuids; u++)
541 		if (!memcmp(u->uuid, uuid, 16))
542 			return u;
543 
544 	return NULL;
545 }
546 
547 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
548 {
549 	static const char zero_uuid[16] __nonstring =
550 		{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
551 
552 	return uuid_find(c, zero_uuid);
553 }
554 
555 /*
556  * Bucket priorities/gens:
557  *
558  * For each bucket, we store on disk its
559  *   8 bit gen
560  *  16 bit priority
561  *
562  * See alloc.c for an explanation of the gen. The priority is used to implement
563  * lru (and in the future other) cache replacement policies; for most purposes
564  * it's just an opaque integer.
565  *
566  * The gens and the priorities don't have a whole lot to do with each other, and
567  * it's actually the gens that must be written out at specific times - it's no
568  * big deal if the priorities don't get written, if we lose them we just reuse
569  * buckets in suboptimal order.
570  *
571  * On disk they're stored in a packed array, and in as many buckets are required
572  * to fit them all. The buckets we use to store them form a list; the journal
573  * header points to the first bucket, the first bucket points to the second
574  * bucket, et cetera.
575  *
576  * This code is used by the allocation code; periodically (whenever it runs out
577  * of buckets to allocate from) the allocation code will invalidate some
578  * buckets, but it can't use those buckets until their new gens are safely on
579  * disk.
580  */
581 
582 static void prio_endio(struct bio *bio)
583 {
584 	struct cache *ca = bio->bi_private;
585 
586 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
587 	bch_bbio_free(bio, ca->set);
588 	closure_put(&ca->prio);
589 }
590 
591 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf)
592 {
593 	struct closure *cl = &ca->prio;
594 	struct bio *bio = bch_bbio_alloc(ca->set);
595 
596 	closure_init_stack(cl);
597 
598 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
599 	bio_set_dev(bio, ca->bdev);
600 	bio->bi_iter.bi_size	= meta_bucket_bytes(&ca->sb);
601 
602 	bio->bi_end_io	= prio_endio;
603 	bio->bi_private = ca;
604 	bio->bi_opf = opf | REQ_SYNC | REQ_META;
605 	bch_bio_map(bio, ca->disk_buckets);
606 
607 	closure_bio_submit(ca->set, bio, &ca->prio);
608 	closure_sync(cl);
609 }
610 
611 int bch_prio_write(struct cache *ca, bool wait)
612 {
613 	int i;
614 	struct bucket *b;
615 	struct closure cl;
616 
617 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
618 		 fifo_used(&ca->free[RESERVE_PRIO]),
619 		 fifo_used(&ca->free[RESERVE_NONE]),
620 		 fifo_used(&ca->free_inc));
621 
622 	/*
623 	 * Pre-check if there are enough free buckets. In the non-blocking
624 	 * scenario it's better to fail early rather than starting to allocate
625 	 * buckets and do a cleanup later in case of failure.
626 	 */
627 	if (!wait) {
628 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
629 			       fifo_used(&ca->free[RESERVE_NONE]);
630 		if (prio_buckets(ca) > avail)
631 			return -ENOMEM;
632 	}
633 
634 	closure_init_stack(&cl);
635 
636 	lockdep_assert_held(&ca->set->bucket_lock);
637 
638 	ca->disk_buckets->seq++;
639 
640 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
641 			&ca->meta_sectors_written);
642 
643 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
644 		long bucket;
645 		struct prio_set *p = ca->disk_buckets;
646 		struct bucket_disk *d = p->data;
647 		struct bucket_disk *end = d + prios_per_bucket(ca);
648 
649 		for (b = ca->buckets + i * prios_per_bucket(ca);
650 		     b < ca->buckets + ca->sb.nbuckets && d < end;
651 		     b++, d++) {
652 			d->prio = cpu_to_le16(b->prio);
653 			d->gen = b->gen;
654 		}
655 
656 		p->next_bucket	= ca->prio_buckets[i + 1];
657 		p->magic	= pset_magic(&ca->sb);
658 		p->csum		= bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
659 
660 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
661 		BUG_ON(bucket == -1);
662 
663 		mutex_unlock(&ca->set->bucket_lock);
664 		prio_io(ca, bucket, REQ_OP_WRITE);
665 		mutex_lock(&ca->set->bucket_lock);
666 
667 		ca->prio_buckets[i] = bucket;
668 		atomic_dec_bug(&ca->buckets[bucket].pin);
669 	}
670 
671 	mutex_unlock(&ca->set->bucket_lock);
672 
673 	bch_journal_meta(ca->set, &cl);
674 	closure_sync(&cl);
675 
676 	mutex_lock(&ca->set->bucket_lock);
677 
678 	/*
679 	 * Don't want the old priorities to get garbage collected until after we
680 	 * finish writing the new ones, and they're journalled
681 	 */
682 	for (i = 0; i < prio_buckets(ca); i++) {
683 		if (ca->prio_last_buckets[i])
684 			__bch_bucket_free(ca,
685 				&ca->buckets[ca->prio_last_buckets[i]]);
686 
687 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
688 	}
689 	return 0;
690 }
691 
692 static int prio_read(struct cache *ca, uint64_t bucket)
693 {
694 	struct prio_set *p = ca->disk_buckets;
695 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
696 	struct bucket *b;
697 	unsigned int bucket_nr = 0;
698 	int ret = -EIO;
699 
700 	for (b = ca->buckets;
701 	     b < ca->buckets + ca->sb.nbuckets;
702 	     b++, d++) {
703 		if (d == end) {
704 			ca->prio_buckets[bucket_nr] = bucket;
705 			ca->prio_last_buckets[bucket_nr] = bucket;
706 			bucket_nr++;
707 
708 			prio_io(ca, bucket, REQ_OP_READ);
709 
710 			if (p->csum !=
711 			    bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
712 				pr_warn("bad csum reading priorities\n");
713 				goto out;
714 			}
715 
716 			if (p->magic != pset_magic(&ca->sb)) {
717 				pr_warn("bad magic reading priorities\n");
718 				goto out;
719 			}
720 
721 			bucket = p->next_bucket;
722 			d = p->data;
723 		}
724 
725 		b->prio = le16_to_cpu(d->prio);
726 		b->gen = b->last_gc = d->gen;
727 	}
728 
729 	ret = 0;
730 out:
731 	return ret;
732 }
733 
734 /* Bcache device */
735 
736 static int open_dev(struct gendisk *disk, blk_mode_t mode)
737 {
738 	struct bcache_device *d = disk->private_data;
739 
740 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
741 		return -ENXIO;
742 
743 	closure_get(&d->cl);
744 	return 0;
745 }
746 
747 static void release_dev(struct gendisk *b)
748 {
749 	struct bcache_device *d = b->private_data;
750 
751 	closure_put(&d->cl);
752 }
753 
754 static int ioctl_dev(struct block_device *b, blk_mode_t mode,
755 		     unsigned int cmd, unsigned long arg)
756 {
757 	struct bcache_device *d = b->bd_disk->private_data;
758 
759 	return d->ioctl(d, mode, cmd, arg);
760 }
761 
762 static const struct block_device_operations bcache_cached_ops = {
763 	.submit_bio	= cached_dev_submit_bio,
764 	.open		= open_dev,
765 	.release	= release_dev,
766 	.ioctl		= ioctl_dev,
767 	.owner		= THIS_MODULE,
768 };
769 
770 static const struct block_device_operations bcache_flash_ops = {
771 	.submit_bio	= flash_dev_submit_bio,
772 	.open		= open_dev,
773 	.release	= release_dev,
774 	.ioctl		= ioctl_dev,
775 	.owner		= THIS_MODULE,
776 };
777 
778 void bcache_device_stop(struct bcache_device *d)
779 {
780 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
781 		/*
782 		 * closure_fn set to
783 		 * - cached device: cached_dev_flush()
784 		 * - flash dev: flash_dev_flush()
785 		 */
786 		closure_queue(&d->cl);
787 }
788 
789 static void bcache_device_unlink(struct bcache_device *d)
790 {
791 	lockdep_assert_held(&bch_register_lock);
792 
793 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
794 		struct cache *ca = d->c->cache;
795 
796 		sysfs_remove_link(&d->c->kobj, d->name);
797 		sysfs_remove_link(&d->kobj, "cache");
798 
799 		bd_unlink_disk_holder(ca->bdev, d->disk);
800 	}
801 }
802 
803 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
804 			       const char *name)
805 {
806 	struct cache *ca = c->cache;
807 	int ret;
808 
809 	bd_link_disk_holder(ca->bdev, d->disk);
810 
811 	snprintf(d->name, BCACHEDEVNAME_SIZE,
812 		 "%s%u", name, d->id);
813 
814 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
815 	if (ret < 0)
816 		pr_err("Couldn't create device -> cache set symlink\n");
817 
818 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
819 	if (ret < 0)
820 		pr_err("Couldn't create cache set -> device symlink\n");
821 
822 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
823 }
824 
825 static void bcache_device_detach(struct bcache_device *d)
826 {
827 	lockdep_assert_held(&bch_register_lock);
828 
829 	atomic_dec(&d->c->attached_dev_nr);
830 
831 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
832 		struct uuid_entry *u = d->c->uuids + d->id;
833 
834 		SET_UUID_FLASH_ONLY(u, 0);
835 		memcpy(u->uuid, invalid_uuid, 16);
836 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
837 		bch_uuid_write(d->c);
838 	}
839 
840 	bcache_device_unlink(d);
841 
842 	d->c->devices[d->id] = NULL;
843 	closure_put(&d->c->caching);
844 	d->c = NULL;
845 }
846 
847 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
848 				 unsigned int id)
849 {
850 	d->id = id;
851 	d->c = c;
852 	c->devices[id] = d;
853 
854 	if (id >= c->devices_max_used)
855 		c->devices_max_used = id + 1;
856 
857 	closure_get(&c->caching);
858 }
859 
860 static inline int first_minor_to_idx(int first_minor)
861 {
862 	return (first_minor/BCACHE_MINORS);
863 }
864 
865 static inline int idx_to_first_minor(int idx)
866 {
867 	return (idx * BCACHE_MINORS);
868 }
869 
870 static void bcache_device_free(struct bcache_device *d)
871 {
872 	struct gendisk *disk = d->disk;
873 
874 	lockdep_assert_held(&bch_register_lock);
875 
876 	if (disk)
877 		pr_info("%s stopped\n", disk->disk_name);
878 	else
879 		pr_err("bcache device (NULL gendisk) stopped\n");
880 
881 	if (d->c)
882 		bcache_device_detach(d);
883 
884 	if (disk) {
885 		ida_free(&bcache_device_idx,
886 			 first_minor_to_idx(disk->first_minor));
887 		put_disk(disk);
888 	}
889 
890 	bioset_exit(&d->bio_split);
891 	kvfree(d->full_dirty_stripes);
892 	kvfree(d->stripe_sectors_dirty);
893 
894 	closure_debug_destroy(&d->cl);
895 }
896 
897 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
898 		sector_t sectors, struct block_device *cached_bdev,
899 		const struct block_device_operations *ops)
900 {
901 	const size_t max_stripes = min_t(size_t, INT_MAX,
902 					 SIZE_MAX / sizeof(atomic_t));
903 	struct queue_limits lim = {
904 		.max_hw_sectors		= UINT_MAX,
905 		.max_sectors		= UINT_MAX,
906 		.max_segment_size	= UINT_MAX,
907 		.max_segments		= BIO_MAX_VECS,
908 		.max_hw_discard_sectors	= UINT_MAX,
909 		.io_min			= block_size,
910 		.logical_block_size	= block_size,
911 		.physical_block_size	= block_size,
912 		.features		= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA,
913 	};
914 	uint64_t n;
915 	int idx;
916 
917 	if (cached_bdev) {
918 		d->stripe_size = bdev_io_opt(cached_bdev) >> SECTOR_SHIFT;
919 		lim.io_opt = umax(block_size, bdev_io_opt(cached_bdev));
920 	}
921 	if (!d->stripe_size)
922 		d->stripe_size = 1 << 31;
923 	else if (d->stripe_size < BCH_MIN_STRIPE_SZ)
924 		d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size);
925 
926 	n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
927 	if (!n || n > max_stripes) {
928 		pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
929 			n);
930 		return -ENOMEM;
931 	}
932 	d->nr_stripes = n;
933 
934 	n = d->nr_stripes * sizeof(atomic_t);
935 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
936 	if (!d->stripe_sectors_dirty)
937 		return -ENOMEM;
938 
939 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
940 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
941 	if (!d->full_dirty_stripes)
942 		goto out_free_stripe_sectors_dirty;
943 
944 	idx = ida_alloc_max(&bcache_device_idx, BCACHE_DEVICE_IDX_MAX - 1,
945 			    GFP_KERNEL);
946 	if (idx < 0)
947 		goto out_free_full_dirty_stripes;
948 
949 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
950 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
951 		goto out_ida_remove;
952 
953 	if (lim.logical_block_size > PAGE_SIZE && cached_bdev) {
954 		/*
955 		 * This should only happen with BCACHE_SB_VERSION_BDEV.
956 		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
957 		 */
958 		pr_info("bcache%i: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
959 			idx, lim.logical_block_size,
960 			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
961 
962 		/* This also adjusts physical block size/min io size if needed */
963 		lim.logical_block_size = bdev_logical_block_size(cached_bdev);
964 	}
965 
966 	d->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
967 	if (IS_ERR(d->disk))
968 		goto out_bioset_exit;
969 
970 	set_capacity(d->disk, sectors);
971 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
972 
973 	d->disk->major		= bcache_major;
974 	d->disk->first_minor	= idx_to_first_minor(idx);
975 	d->disk->minors		= BCACHE_MINORS;
976 	d->disk->fops		= ops;
977 	d->disk->private_data	= d;
978 	return 0;
979 
980 out_bioset_exit:
981 	bioset_exit(&d->bio_split);
982 out_ida_remove:
983 	ida_free(&bcache_device_idx, idx);
984 out_free_full_dirty_stripes:
985 	kvfree(d->full_dirty_stripes);
986 out_free_stripe_sectors_dirty:
987 	kvfree(d->stripe_sectors_dirty);
988 	return -ENOMEM;
989 
990 }
991 
992 /* Cached device */
993 
994 static void calc_cached_dev_sectors(struct cache_set *c)
995 {
996 	uint64_t sectors = 0;
997 	struct cached_dev *dc;
998 
999 	list_for_each_entry(dc, &c->cached_devs, list)
1000 		sectors += bdev_nr_sectors(dc->bdev);
1001 
1002 	c->cached_dev_sectors = sectors;
1003 }
1004 
1005 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1006 static int cached_dev_status_update(void *arg)
1007 {
1008 	struct cached_dev *dc = arg;
1009 	struct request_queue *q;
1010 
1011 	/*
1012 	 * If this delayed worker is stopping outside, directly quit here.
1013 	 * dc->io_disable might be set via sysfs interface, so check it
1014 	 * here too.
1015 	 */
1016 	while (!kthread_should_stop() && !dc->io_disable) {
1017 		q = bdev_get_queue(dc->bdev);
1018 		if (blk_queue_dying(q))
1019 			dc->offline_seconds++;
1020 		else
1021 			dc->offline_seconds = 0;
1022 
1023 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1024 			pr_err("%pg: device offline for %d seconds\n",
1025 			       dc->bdev,
1026 			       BACKING_DEV_OFFLINE_TIMEOUT);
1027 			pr_err("%s: disable I/O request due to backing device offline\n",
1028 			       dc->disk.name);
1029 			dc->io_disable = true;
1030 			/* let others know earlier that io_disable is true */
1031 			smp_mb();
1032 			bcache_device_stop(&dc->disk);
1033 			break;
1034 		}
1035 		schedule_timeout_interruptible(HZ);
1036 	}
1037 
1038 	wait_for_kthread_stop();
1039 	return 0;
1040 }
1041 
1042 
1043 int bch_cached_dev_run(struct cached_dev *dc)
1044 {
1045 	int ret = 0;
1046 	struct bcache_device *d = &dc->disk;
1047 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1048 	char *env[] = {
1049 		"DRIVER=bcache",
1050 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1051 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1052 		NULL,
1053 	};
1054 
1055 	if (dc->io_disable) {
1056 		pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
1057 		ret = -EIO;
1058 		goto out;
1059 	}
1060 
1061 	if (atomic_xchg(&dc->running, 1)) {
1062 		pr_info("cached dev %pg is running already\n", dc->bdev);
1063 		ret = -EBUSY;
1064 		goto out;
1065 	}
1066 
1067 	if (!d->c &&
1068 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1069 		struct closure cl;
1070 
1071 		closure_init_stack(&cl);
1072 
1073 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1074 		bch_write_bdev_super(dc, &cl);
1075 		closure_sync(&cl);
1076 	}
1077 
1078 	ret = add_disk(d->disk);
1079 	if (ret)
1080 		goto out;
1081 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1082 	/*
1083 	 * won't show up in the uevent file, use udevadm monitor -e instead
1084 	 * only class / kset properties are persistent
1085 	 */
1086 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1087 
1088 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1089 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1090 			      &d->kobj, "bcache")) {
1091 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1092 		ret = -ENOMEM;
1093 		goto out;
1094 	}
1095 
1096 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1097 					       dc, "bcache_status_update");
1098 	if (IS_ERR(dc->status_update_thread)) {
1099 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1100 	}
1101 
1102 out:
1103 	kfree(env[1]);
1104 	kfree(env[2]);
1105 	kfree(buf);
1106 	return ret;
1107 }
1108 
1109 /*
1110  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1111  * work dc->writeback_rate_update is running. Wait until the routine
1112  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1113  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1114  * seconds, give up waiting here and continue to cancel it too.
1115  */
1116 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1117 {
1118 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1119 
1120 	do {
1121 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1122 			      &dc->disk.flags))
1123 			break;
1124 		time_out--;
1125 		schedule_timeout_interruptible(1);
1126 	} while (time_out > 0);
1127 
1128 	if (time_out == 0)
1129 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1130 
1131 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1132 }
1133 
1134 static void cached_dev_detach_finish(struct work_struct *w)
1135 {
1136 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1137 	struct cache_set *c = dc->disk.c;
1138 
1139 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1140 	BUG_ON(refcount_read(&dc->count));
1141 
1142 
1143 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1144 		cancel_writeback_rate_update_dwork(dc);
1145 
1146 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1147 		kthread_stop(dc->writeback_thread);
1148 		dc->writeback_thread = NULL;
1149 	}
1150 
1151 	mutex_lock(&bch_register_lock);
1152 
1153 	bcache_device_detach(&dc->disk);
1154 	list_move(&dc->list, &uncached_devices);
1155 	calc_cached_dev_sectors(c);
1156 
1157 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1158 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1159 
1160 	mutex_unlock(&bch_register_lock);
1161 
1162 	pr_info("Caching disabled for %pg\n", dc->bdev);
1163 
1164 	/* Drop ref we took in cached_dev_detach() */
1165 	closure_put(&dc->disk.cl);
1166 }
1167 
1168 void bch_cached_dev_detach(struct cached_dev *dc)
1169 {
1170 	lockdep_assert_held(&bch_register_lock);
1171 
1172 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1173 		return;
1174 
1175 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1176 		return;
1177 
1178 	/*
1179 	 * Block the device from being closed and freed until we're finished
1180 	 * detaching
1181 	 */
1182 	closure_get(&dc->disk.cl);
1183 
1184 	bch_writeback_queue(dc);
1185 
1186 	cached_dev_put(dc);
1187 }
1188 
1189 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1190 			  uint8_t *set_uuid)
1191 {
1192 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1193 	struct uuid_entry *u;
1194 	struct cached_dev *exist_dc, *t;
1195 	int ret = 0;
1196 
1197 	if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1198 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1199 		return -ENOENT;
1200 
1201 	if (dc->disk.c) {
1202 		pr_err("Can't attach %pg: already attached\n", dc->bdev);
1203 		return -EINVAL;
1204 	}
1205 
1206 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1207 		pr_err("Can't attach %pg: shutting down\n", dc->bdev);
1208 		return -EINVAL;
1209 	}
1210 
1211 	if (dc->sb.block_size < c->cache->sb.block_size) {
1212 		/* Will die */
1213 		pr_err("Couldn't attach %pg: block size less than set's block size\n",
1214 		       dc->bdev);
1215 		return -EINVAL;
1216 	}
1217 
1218 	/* Check whether already attached */
1219 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1220 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1221 			pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1222 				dc->bdev);
1223 
1224 			return -EINVAL;
1225 		}
1226 	}
1227 
1228 	u = uuid_find(c, dc->sb.uuid);
1229 
1230 	if (u &&
1231 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1232 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1233 		memcpy(u->uuid, invalid_uuid, 16);
1234 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1235 		u = NULL;
1236 	}
1237 
1238 	if (!u) {
1239 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1240 			pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
1241 			return -ENOENT;
1242 		}
1243 
1244 		u = uuid_find_empty(c);
1245 		if (!u) {
1246 			pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
1247 			return -EINVAL;
1248 		}
1249 	}
1250 
1251 	/*
1252 	 * Deadlocks since we're called via sysfs...
1253 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1254 	 */
1255 
1256 	if (bch_is_zero(u->uuid, 16)) {
1257 		struct closure cl;
1258 
1259 		closure_init_stack(&cl);
1260 
1261 		memcpy(u->uuid, dc->sb.uuid, 16);
1262 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1263 		u->first_reg = u->last_reg = rtime;
1264 		bch_uuid_write(c);
1265 
1266 		memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1267 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1268 
1269 		bch_write_bdev_super(dc, &cl);
1270 		closure_sync(&cl);
1271 	} else {
1272 		u->last_reg = rtime;
1273 		bch_uuid_write(c);
1274 	}
1275 
1276 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1277 	list_move(&dc->list, &c->cached_devs);
1278 	calc_cached_dev_sectors(c);
1279 
1280 	/*
1281 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1282 	 * cached_dev_get()
1283 	 */
1284 	smp_wmb();
1285 	refcount_set(&dc->count, 1);
1286 
1287 	/* Block writeback thread, but spawn it */
1288 	down_write(&dc->writeback_lock);
1289 	if (bch_cached_dev_writeback_start(dc)) {
1290 		up_write(&dc->writeback_lock);
1291 		pr_err("Couldn't start writeback facilities for %s\n",
1292 		       dc->disk.disk->disk_name);
1293 		return -ENOMEM;
1294 	}
1295 
1296 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1297 		atomic_set(&dc->has_dirty, 1);
1298 		bch_writeback_queue(dc);
1299 	}
1300 
1301 	bch_sectors_dirty_init(&dc->disk);
1302 
1303 	ret = bch_cached_dev_run(dc);
1304 	if (ret && (ret != -EBUSY)) {
1305 		up_write(&dc->writeback_lock);
1306 		/*
1307 		 * bch_register_lock is held, bcache_device_stop() is not
1308 		 * able to be directly called. The kthread and kworker
1309 		 * created previously in bch_cached_dev_writeback_start()
1310 		 * have to be stopped manually here.
1311 		 */
1312 		kthread_stop(dc->writeback_thread);
1313 		cancel_writeback_rate_update_dwork(dc);
1314 		pr_err("Couldn't run cached device %pg\n", dc->bdev);
1315 		return ret;
1316 	}
1317 
1318 	bcache_device_link(&dc->disk, c, "bdev");
1319 	atomic_inc(&c->attached_dev_nr);
1320 
1321 	if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1322 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1323 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1324 		set_disk_ro(dc->disk.disk, 1);
1325 	}
1326 
1327 	/* Allow the writeback thread to proceed */
1328 	up_write(&dc->writeback_lock);
1329 
1330 	pr_info("Caching %pg as %s on set %pU\n",
1331 		dc->bdev,
1332 		dc->disk.disk->disk_name,
1333 		dc->disk.c->set_uuid);
1334 	return 0;
1335 }
1336 
1337 /* when dc->disk.kobj released */
1338 void bch_cached_dev_release(struct kobject *kobj)
1339 {
1340 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1341 					     disk.kobj);
1342 	kfree(dc);
1343 	module_put(THIS_MODULE);
1344 }
1345 
1346 static CLOSURE_CALLBACK(cached_dev_free)
1347 {
1348 	closure_type(dc, struct cached_dev, disk.cl);
1349 
1350 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1351 		cancel_writeback_rate_update_dwork(dc);
1352 
1353 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1354 		kthread_stop(dc->writeback_thread);
1355 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1356 		kthread_stop(dc->status_update_thread);
1357 
1358 	mutex_lock(&bch_register_lock);
1359 
1360 	if (atomic_read(&dc->running)) {
1361 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1362 		del_gendisk(dc->disk.disk);
1363 	}
1364 	bcache_device_free(&dc->disk);
1365 	list_del(&dc->list);
1366 
1367 	mutex_unlock(&bch_register_lock);
1368 
1369 	if (dc->sb_disk)
1370 		put_page(virt_to_page(dc->sb_disk));
1371 
1372 	if (dc->bdev_file)
1373 		fput(dc->bdev_file);
1374 
1375 	wake_up(&unregister_wait);
1376 
1377 	kobject_put(&dc->disk.kobj);
1378 }
1379 
1380 static CLOSURE_CALLBACK(cached_dev_flush)
1381 {
1382 	closure_type(dc, struct cached_dev, disk.cl);
1383 	struct bcache_device *d = &dc->disk;
1384 
1385 	mutex_lock(&bch_register_lock);
1386 	bcache_device_unlink(d);
1387 	mutex_unlock(&bch_register_lock);
1388 
1389 	bch_cache_accounting_destroy(&dc->accounting);
1390 	kobject_del(&d->kobj);
1391 
1392 	continue_at(cl, cached_dev_free, system_wq);
1393 }
1394 
1395 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1396 {
1397 	int ret;
1398 	struct io *io;
1399 	struct request_queue *q = bdev_get_queue(dc->bdev);
1400 
1401 	__module_get(THIS_MODULE);
1402 	INIT_LIST_HEAD(&dc->list);
1403 	closure_init(&dc->disk.cl, NULL);
1404 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1405 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1406 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1407 	sema_init(&dc->sb_write_mutex, 1);
1408 	INIT_LIST_HEAD(&dc->io_lru);
1409 	spin_lock_init(&dc->io_lock);
1410 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1411 
1412 	dc->sequential_cutoff		= 4 << 20;
1413 
1414 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1415 		list_add(&io->lru, &dc->io_lru);
1416 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1417 	}
1418 
1419 	if (bdev_io_opt(dc->bdev))
1420 		dc->partial_stripes_expensive = !!(q->limits.features &
1421 			BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE);
1422 
1423 	ret = bcache_device_init(&dc->disk, block_size,
1424 			 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1425 			 dc->bdev, &bcache_cached_ops);
1426 	if (ret)
1427 		return ret;
1428 
1429 	atomic_set(&dc->io_errors, 0);
1430 	dc->io_disable = false;
1431 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1432 	/* default to auto */
1433 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1434 
1435 	bch_cached_dev_request_init(dc);
1436 	bch_cached_dev_writeback_init(dc);
1437 	return 0;
1438 }
1439 
1440 /* Cached device - bcache superblock */
1441 
1442 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1443 				 struct file *bdev_file,
1444 				 struct cached_dev *dc)
1445 {
1446 	const char *err = "cannot allocate memory";
1447 	struct cache_set *c;
1448 	int ret = -ENOMEM;
1449 
1450 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1451 	dc->bdev_file = bdev_file;
1452 	dc->bdev = file_bdev(bdev_file);
1453 	dc->sb_disk = sb_disk;
1454 
1455 	if (cached_dev_init(dc, sb->block_size << 9))
1456 		goto err;
1457 
1458 	err = "error creating kobject";
1459 	if (kobject_add(&dc->disk.kobj, bdev_kobj(dc->bdev), "bcache"))
1460 		goto err;
1461 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1462 		goto err;
1463 
1464 	pr_info("registered backing device %pg\n", dc->bdev);
1465 
1466 	list_add(&dc->list, &uncached_devices);
1467 	/* attach to a matched cache set if it exists */
1468 	list_for_each_entry(c, &bch_cache_sets, list)
1469 		bch_cached_dev_attach(dc, c, NULL);
1470 
1471 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1472 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1473 		err = "failed to run cached device";
1474 		ret = bch_cached_dev_run(dc);
1475 		if (ret)
1476 			goto err;
1477 	}
1478 
1479 	return 0;
1480 err:
1481 	pr_notice("error %pg: %s\n", dc->bdev, err);
1482 	bcache_device_stop(&dc->disk);
1483 	return ret;
1484 }
1485 
1486 /* Flash only volumes */
1487 
1488 /* When d->kobj released */
1489 void bch_flash_dev_release(struct kobject *kobj)
1490 {
1491 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1492 					       kobj);
1493 	kfree(d);
1494 }
1495 
1496 static CLOSURE_CALLBACK(flash_dev_free)
1497 {
1498 	closure_type(d, struct bcache_device, cl);
1499 
1500 	mutex_lock(&bch_register_lock);
1501 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1502 			&d->c->flash_dev_dirty_sectors);
1503 	del_gendisk(d->disk);
1504 	bcache_device_free(d);
1505 	mutex_unlock(&bch_register_lock);
1506 	kobject_put(&d->kobj);
1507 }
1508 
1509 static CLOSURE_CALLBACK(flash_dev_flush)
1510 {
1511 	closure_type(d, struct bcache_device, cl);
1512 
1513 	mutex_lock(&bch_register_lock);
1514 	bcache_device_unlink(d);
1515 	mutex_unlock(&bch_register_lock);
1516 	kobject_del(&d->kobj);
1517 	continue_at(cl, flash_dev_free, system_wq);
1518 }
1519 
1520 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1521 {
1522 	int err = -ENOMEM;
1523 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1524 					  GFP_KERNEL);
1525 	if (!d)
1526 		goto err_ret;
1527 
1528 	closure_init(&d->cl, NULL);
1529 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1530 
1531 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1532 
1533 	if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1534 			NULL, &bcache_flash_ops))
1535 		goto err;
1536 
1537 	bcache_device_attach(d, c, u - c->uuids);
1538 	bch_sectors_dirty_init(d);
1539 	bch_flash_dev_request_init(d);
1540 	err = add_disk(d->disk);
1541 	if (err)
1542 		goto err;
1543 
1544 	err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache");
1545 	if (err)
1546 		goto err;
1547 
1548 	bcache_device_link(d, c, "volume");
1549 
1550 	if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1551 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1552 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1553 		set_disk_ro(d->disk, 1);
1554 	}
1555 
1556 	return 0;
1557 err:
1558 	kobject_put(&d->kobj);
1559 err_ret:
1560 	return err;
1561 }
1562 
1563 static int flash_devs_run(struct cache_set *c)
1564 {
1565 	int ret = 0;
1566 	struct uuid_entry *u;
1567 
1568 	for (u = c->uuids;
1569 	     u < c->uuids + c->nr_uuids && !ret;
1570 	     u++)
1571 		if (UUID_FLASH_ONLY(u))
1572 			ret = flash_dev_run(c, u);
1573 
1574 	return ret;
1575 }
1576 
1577 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1578 {
1579 	struct uuid_entry *u;
1580 
1581 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1582 		return -EINTR;
1583 
1584 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1585 		return -EPERM;
1586 
1587 	u = uuid_find_empty(c);
1588 	if (!u) {
1589 		pr_err("Can't create volume, no room for UUID\n");
1590 		return -EINVAL;
1591 	}
1592 
1593 	get_random_bytes(u->uuid, 16);
1594 	memset(u->label, 0, 32);
1595 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1596 
1597 	SET_UUID_FLASH_ONLY(u, 1);
1598 	u->sectors = size >> 9;
1599 
1600 	bch_uuid_write(c);
1601 
1602 	return flash_dev_run(c, u);
1603 }
1604 
1605 bool bch_cached_dev_error(struct cached_dev *dc)
1606 {
1607 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1608 		return false;
1609 
1610 	dc->io_disable = true;
1611 	/* make others know io_disable is true earlier */
1612 	smp_mb();
1613 
1614 	pr_err("stop %s: too many IO errors on backing device %pg\n",
1615 	       dc->disk.disk->disk_name, dc->bdev);
1616 
1617 	bcache_device_stop(&dc->disk);
1618 	return true;
1619 }
1620 
1621 /* Cache set */
1622 
1623 __printf(2, 3)
1624 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1625 {
1626 	struct va_format vaf;
1627 	va_list args;
1628 
1629 	if (c->on_error != ON_ERROR_PANIC &&
1630 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1631 		return false;
1632 
1633 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1634 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1635 
1636 	/*
1637 	 * XXX: we can be called from atomic context
1638 	 * acquire_console_sem();
1639 	 */
1640 
1641 	va_start(args, fmt);
1642 
1643 	vaf.fmt = fmt;
1644 	vaf.va = &args;
1645 
1646 	pr_err("error on %pU: %pV, disabling caching\n",
1647 	       c->set_uuid, &vaf);
1648 
1649 	va_end(args);
1650 
1651 	if (c->on_error == ON_ERROR_PANIC)
1652 		panic("panic forced after error\n");
1653 
1654 	bch_cache_set_unregister(c);
1655 	return true;
1656 }
1657 
1658 /* When c->kobj released */
1659 void bch_cache_set_release(struct kobject *kobj)
1660 {
1661 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1662 
1663 	kfree(c);
1664 	module_put(THIS_MODULE);
1665 }
1666 
1667 static CLOSURE_CALLBACK(cache_set_free)
1668 {
1669 	closure_type(c, struct cache_set, cl);
1670 	struct cache *ca;
1671 
1672 	debugfs_remove(c->debug);
1673 
1674 	bch_open_buckets_free(c);
1675 	bch_btree_cache_free(c);
1676 	bch_journal_free(c);
1677 
1678 	mutex_lock(&bch_register_lock);
1679 	bch_bset_sort_state_free(&c->sort);
1680 	free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1681 
1682 	ca = c->cache;
1683 	if (ca) {
1684 		ca->set = NULL;
1685 		c->cache = NULL;
1686 		kobject_put(&ca->kobj);
1687 	}
1688 
1689 
1690 	if (c->moving_gc_wq)
1691 		destroy_workqueue(c->moving_gc_wq);
1692 	bioset_exit(&c->bio_split);
1693 	mempool_exit(&c->fill_iter);
1694 	mempool_exit(&c->bio_meta);
1695 	mempool_exit(&c->search);
1696 	kfree(c->devices);
1697 
1698 	list_del(&c->list);
1699 	mutex_unlock(&bch_register_lock);
1700 
1701 	pr_info("Cache set %pU unregistered\n", c->set_uuid);
1702 	wake_up(&unregister_wait);
1703 
1704 	closure_debug_destroy(&c->cl);
1705 	kobject_put(&c->kobj);
1706 }
1707 
1708 static CLOSURE_CALLBACK(cache_set_flush)
1709 {
1710 	closure_type(c, struct cache_set, caching);
1711 	struct cache *ca = c->cache;
1712 	struct btree *b;
1713 
1714 	bch_cache_accounting_destroy(&c->accounting);
1715 
1716 	kobject_put(&c->internal);
1717 	kobject_del(&c->kobj);
1718 
1719 	if (!IS_ERR_OR_NULL(c->gc_thread))
1720 		kthread_stop(c->gc_thread);
1721 
1722 	if (!IS_ERR_OR_NULL(c->root))
1723 		list_add(&c->root->list, &c->btree_cache);
1724 
1725 	/*
1726 	 * Avoid flushing cached nodes if cache set is retiring
1727 	 * due to too many I/O errors detected.
1728 	 */
1729 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1730 		list_for_each_entry(b, &c->btree_cache, list) {
1731 			mutex_lock(&b->write_lock);
1732 			if (btree_node_dirty(b))
1733 				__bch_btree_node_write(b, NULL);
1734 			mutex_unlock(&b->write_lock);
1735 		}
1736 
1737 	if (ca->alloc_thread)
1738 		kthread_stop(ca->alloc_thread);
1739 
1740 	if (c->journal.cur) {
1741 		cancel_delayed_work_sync(&c->journal.work);
1742 		/* flush last journal entry if needed */
1743 		c->journal.work.work.func(&c->journal.work.work);
1744 	}
1745 
1746 	closure_return(cl);
1747 }
1748 
1749 /*
1750  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1751  * cache set is unregistering due to too many I/O errors. In this condition,
1752  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1753  * value and whether the broken cache has dirty data:
1754  *
1755  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1756  *  BCH_CACHED_STOP_AUTO               0               NO
1757  *  BCH_CACHED_STOP_AUTO               1               YES
1758  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1759  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1760  *
1761  * The expected behavior is, if stop_when_cache_set_failed is configured to
1762  * "auto" via sysfs interface, the bcache device will not be stopped if the
1763  * backing device is clean on the broken cache device.
1764  */
1765 static void conditional_stop_bcache_device(struct cache_set *c,
1766 					   struct bcache_device *d,
1767 					   struct cached_dev *dc)
1768 {
1769 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1770 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1771 			d->disk->disk_name, c->set_uuid);
1772 		bcache_device_stop(d);
1773 	} else if (atomic_read(&dc->has_dirty)) {
1774 		/*
1775 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1776 		 * and dc->has_dirty == 1
1777 		 */
1778 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1779 			d->disk->disk_name);
1780 		/*
1781 		 * There might be a small time gap that cache set is
1782 		 * released but bcache device is not. Inside this time
1783 		 * gap, regular I/O requests will directly go into
1784 		 * backing device as no cache set attached to. This
1785 		 * behavior may also introduce potential inconsistence
1786 		 * data in writeback mode while cache is dirty.
1787 		 * Therefore before calling bcache_device_stop() due
1788 		 * to a broken cache device, dc->io_disable should be
1789 		 * explicitly set to true.
1790 		 */
1791 		dc->io_disable = true;
1792 		/* make others know io_disable is true earlier */
1793 		smp_mb();
1794 		bcache_device_stop(d);
1795 	} else {
1796 		/*
1797 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1798 		 * and dc->has_dirty == 0
1799 		 */
1800 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1801 			d->disk->disk_name);
1802 	}
1803 }
1804 
1805 static CLOSURE_CALLBACK(__cache_set_unregister)
1806 {
1807 	closure_type(c, struct cache_set, caching);
1808 	struct cached_dev *dc;
1809 	struct bcache_device *d;
1810 	size_t i;
1811 
1812 	mutex_lock(&bch_register_lock);
1813 
1814 	for (i = 0; i < c->devices_max_used; i++) {
1815 		d = c->devices[i];
1816 		if (!d)
1817 			continue;
1818 
1819 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1820 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1821 			dc = container_of(d, struct cached_dev, disk);
1822 			bch_cached_dev_detach(dc);
1823 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1824 				conditional_stop_bcache_device(c, d, dc);
1825 		} else {
1826 			bcache_device_stop(d);
1827 		}
1828 	}
1829 
1830 	mutex_unlock(&bch_register_lock);
1831 
1832 	continue_at(cl, cache_set_flush, system_wq);
1833 }
1834 
1835 void bch_cache_set_stop(struct cache_set *c)
1836 {
1837 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1838 		/* closure_fn set to __cache_set_unregister() */
1839 		closure_queue(&c->caching);
1840 }
1841 
1842 void bch_cache_set_unregister(struct cache_set *c)
1843 {
1844 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1845 	bch_cache_set_stop(c);
1846 }
1847 
1848 #define alloc_meta_bucket_pages(gfp, sb)		\
1849 	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1850 
1851 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1852 {
1853 	int iter_size;
1854 	struct cache *ca = container_of(sb, struct cache, sb);
1855 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1856 
1857 	if (!c)
1858 		return NULL;
1859 
1860 	__module_get(THIS_MODULE);
1861 	closure_init(&c->cl, NULL);
1862 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1863 
1864 	closure_init(&c->caching, &c->cl);
1865 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1866 
1867 	/* Maybe create continue_at_noreturn() and use it here? */
1868 	closure_set_stopped(&c->cl);
1869 	closure_put(&c->cl);
1870 
1871 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1872 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1873 
1874 	bch_cache_accounting_init(&c->accounting, &c->cl);
1875 
1876 	memcpy(c->set_uuid, sb->set_uuid, 16);
1877 
1878 	c->cache		= ca;
1879 	c->cache->set		= c;
1880 	c->bucket_bits		= ilog2(sb->bucket_size);
1881 	c->block_bits		= ilog2(sb->block_size);
1882 	c->nr_uuids		= meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1883 	c->devices_max_used	= 0;
1884 	atomic_set(&c->attached_dev_nr, 0);
1885 	c->btree_pages		= meta_bucket_pages(sb);
1886 	if (c->btree_pages > BTREE_MAX_PAGES)
1887 		c->btree_pages = max_t(int, c->btree_pages / 4,
1888 				       BTREE_MAX_PAGES);
1889 
1890 	sema_init(&c->sb_write_mutex, 1);
1891 	mutex_init(&c->bucket_lock);
1892 	init_waitqueue_head(&c->btree_cache_wait);
1893 	spin_lock_init(&c->btree_cannibalize_lock);
1894 	init_waitqueue_head(&c->bucket_wait);
1895 	init_waitqueue_head(&c->gc_wait);
1896 	sema_init(&c->uuid_write_mutex, 1);
1897 
1898 	spin_lock_init(&c->btree_gc_time.lock);
1899 	spin_lock_init(&c->btree_split_time.lock);
1900 	spin_lock_init(&c->btree_read_time.lock);
1901 
1902 	bch_moving_init_cache_set(c);
1903 
1904 	INIT_LIST_HEAD(&c->list);
1905 	INIT_LIST_HEAD(&c->cached_devs);
1906 	INIT_LIST_HEAD(&c->btree_cache);
1907 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1908 	INIT_LIST_HEAD(&c->btree_cache_freed);
1909 	INIT_LIST_HEAD(&c->data_buckets);
1910 
1911 	iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size) *
1912 			    sizeof(struct btree_iter_set);
1913 
1914 	c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1915 	if (!c->devices)
1916 		goto err;
1917 
1918 	if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1919 		goto err;
1920 
1921 	if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1922 			sizeof(struct bbio) +
1923 			sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1924 		goto err;
1925 
1926 	if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1927 		goto err;
1928 
1929 	if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1930 			BIOSET_NEED_RESCUER))
1931 		goto err;
1932 
1933 	c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1934 	if (!c->uuids)
1935 		goto err;
1936 
1937 	c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1938 	if (!c->moving_gc_wq)
1939 		goto err;
1940 
1941 	if (bch_journal_alloc(c))
1942 		goto err;
1943 
1944 	if (bch_btree_cache_alloc(c))
1945 		goto err;
1946 
1947 	if (bch_open_buckets_alloc(c))
1948 		goto err;
1949 
1950 	if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1951 		goto err;
1952 
1953 	c->congested_read_threshold_us	= 2000;
1954 	c->congested_write_threshold_us	= 20000;
1955 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1956 	c->idle_max_writeback_rate_enabled = 1;
1957 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1958 
1959 	return c;
1960 err:
1961 	bch_cache_set_unregister(c);
1962 	return NULL;
1963 }
1964 
1965 static int run_cache_set(struct cache_set *c)
1966 {
1967 	const char *err = "cannot allocate memory";
1968 	struct cached_dev *dc, *t;
1969 	struct cache *ca = c->cache;
1970 	struct closure cl;
1971 	LIST_HEAD(journal);
1972 	struct journal_replay *l;
1973 
1974 	closure_init_stack(&cl);
1975 
1976 	c->nbuckets = ca->sb.nbuckets;
1977 	set_gc_sectors(c);
1978 
1979 	if (CACHE_SYNC(&c->cache->sb)) {
1980 		struct bkey *k;
1981 		struct jset *j;
1982 
1983 		err = "cannot allocate memory for journal";
1984 		if (bch_journal_read(c, &journal))
1985 			goto err;
1986 
1987 		pr_debug("btree_journal_read() done\n");
1988 
1989 		err = "no journal entries found";
1990 		if (list_empty(&journal))
1991 			goto err;
1992 
1993 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1994 
1995 		err = "IO error reading priorities";
1996 		if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1997 			goto err;
1998 
1999 		/*
2000 		 * If prio_read() fails it'll call cache_set_error and we'll
2001 		 * tear everything down right away, but if we perhaps checked
2002 		 * sooner we could avoid journal replay.
2003 		 */
2004 
2005 		k = &j->btree_root;
2006 
2007 		err = "bad btree root";
2008 		if (__bch_btree_ptr_invalid(c, k))
2009 			goto err;
2010 
2011 		err = "error reading btree root";
2012 		c->root = bch_btree_node_get(c, NULL, k,
2013 					     j->btree_level,
2014 					     true, NULL);
2015 		if (IS_ERR(c->root))
2016 			goto err;
2017 
2018 		list_del_init(&c->root->list);
2019 		rw_unlock(true, c->root);
2020 
2021 		err = uuid_read(c, j, &cl);
2022 		if (err)
2023 			goto err;
2024 
2025 		err = "error in recovery";
2026 		if (bch_btree_check(c))
2027 			goto err;
2028 
2029 		bch_journal_mark(c, &journal);
2030 		bch_initial_gc_finish(c);
2031 		pr_debug("btree_check() done\n");
2032 
2033 		/*
2034 		 * bcache_journal_next() can't happen sooner, or
2035 		 * btree_gc_finish() will give spurious errors about last_gc >
2036 		 * gc_gen - this is a hack but oh well.
2037 		 */
2038 		bch_journal_next(&c->journal);
2039 
2040 		err = "error starting allocator thread";
2041 		if (bch_cache_allocator_start(ca))
2042 			goto err;
2043 
2044 		/*
2045 		 * First place it's safe to allocate: btree_check() and
2046 		 * btree_gc_finish() have to run before we have buckets to
2047 		 * allocate, and bch_bucket_alloc_set() might cause a journal
2048 		 * entry to be written so bcache_journal_next() has to be called
2049 		 * first.
2050 		 *
2051 		 * If the uuids were in the old format we have to rewrite them
2052 		 * before the next journal entry is written:
2053 		 */
2054 		if (j->version < BCACHE_JSET_VERSION_UUID)
2055 			__uuid_write(c);
2056 
2057 		err = "bcache: replay journal failed";
2058 		if (bch_journal_replay(c, &journal))
2059 			goto err;
2060 	} else {
2061 		unsigned int j;
2062 
2063 		pr_notice("invalidating existing data\n");
2064 		ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2065 					2, SB_JOURNAL_BUCKETS);
2066 
2067 		for (j = 0; j < ca->sb.keys; j++)
2068 			ca->sb.d[j] = ca->sb.first_bucket + j;
2069 
2070 		bch_initial_gc_finish(c);
2071 
2072 		err = "error starting allocator thread";
2073 		if (bch_cache_allocator_start(ca))
2074 			goto err;
2075 
2076 		mutex_lock(&c->bucket_lock);
2077 		bch_prio_write(ca, true);
2078 		mutex_unlock(&c->bucket_lock);
2079 
2080 		err = "cannot allocate new UUID bucket";
2081 		if (__uuid_write(c))
2082 			goto err;
2083 
2084 		err = "cannot allocate new btree root";
2085 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2086 		if (IS_ERR(c->root))
2087 			goto err;
2088 
2089 		mutex_lock(&c->root->write_lock);
2090 		bkey_copy_key(&c->root->key, &MAX_KEY);
2091 		bch_btree_node_write(c->root, &cl);
2092 		mutex_unlock(&c->root->write_lock);
2093 
2094 		bch_btree_set_root(c->root);
2095 		rw_unlock(true, c->root);
2096 
2097 		/*
2098 		 * We don't want to write the first journal entry until
2099 		 * everything is set up - fortunately journal entries won't be
2100 		 * written until the SET_CACHE_SYNC() here:
2101 		 */
2102 		SET_CACHE_SYNC(&c->cache->sb, true);
2103 
2104 		bch_journal_next(&c->journal);
2105 		bch_journal_meta(c, &cl);
2106 	}
2107 
2108 	err = "error starting gc thread";
2109 	if (bch_gc_thread_start(c))
2110 		goto err;
2111 
2112 	closure_sync(&cl);
2113 	c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2114 	bcache_write_super(c);
2115 
2116 	if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2117 		pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2118 
2119 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2120 		bch_cached_dev_attach(dc, c, NULL);
2121 
2122 	flash_devs_run(c);
2123 
2124 	bch_journal_space_reserve(&c->journal);
2125 	set_bit(CACHE_SET_RUNNING, &c->flags);
2126 	return 0;
2127 err:
2128 	while (!list_empty(&journal)) {
2129 		l = list_first_entry(&journal, struct journal_replay, list);
2130 		list_del(&l->list);
2131 		kfree(l);
2132 	}
2133 
2134 	closure_sync(&cl);
2135 
2136 	bch_cache_set_error(c, "%s", err);
2137 
2138 	return -EIO;
2139 }
2140 
2141 static const char *register_cache_set(struct cache *ca)
2142 {
2143 	char buf[12];
2144 	const char *err = "cannot allocate memory";
2145 	struct cache_set *c;
2146 
2147 	list_for_each_entry(c, &bch_cache_sets, list)
2148 		if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2149 			if (c->cache)
2150 				return "duplicate cache set member";
2151 
2152 			goto found;
2153 		}
2154 
2155 	c = bch_cache_set_alloc(&ca->sb);
2156 	if (!c)
2157 		return err;
2158 
2159 	err = "error creating kobject";
2160 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2161 	    kobject_add(&c->internal, &c->kobj, "internal"))
2162 		goto err;
2163 
2164 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2165 		goto err;
2166 
2167 	bch_debug_init_cache_set(c);
2168 
2169 	list_add(&c->list, &bch_cache_sets);
2170 found:
2171 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2172 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2173 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2174 		goto err;
2175 
2176 	kobject_get(&ca->kobj);
2177 	ca->set = c;
2178 	ca->set->cache = ca;
2179 
2180 	err = "failed to run cache set";
2181 	if (run_cache_set(c) < 0)
2182 		goto err;
2183 
2184 	return NULL;
2185 err:
2186 	bch_cache_set_unregister(c);
2187 	return err;
2188 }
2189 
2190 /* Cache device */
2191 
2192 /* When ca->kobj released */
2193 void bch_cache_release(struct kobject *kobj)
2194 {
2195 	struct cache *ca = container_of(kobj, struct cache, kobj);
2196 	unsigned int i;
2197 
2198 	if (ca->set) {
2199 		BUG_ON(ca->set->cache != ca);
2200 		ca->set->cache = NULL;
2201 	}
2202 
2203 	free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2204 	kfree(ca->prio_buckets);
2205 	vfree(ca->buckets);
2206 
2207 	free_heap(&ca->heap);
2208 	free_fifo(&ca->free_inc);
2209 
2210 	for (i = 0; i < RESERVE_NR; i++)
2211 		free_fifo(&ca->free[i]);
2212 
2213 	if (ca->sb_disk)
2214 		put_page(virt_to_page(ca->sb_disk));
2215 
2216 	if (ca->bdev_file)
2217 		fput(ca->bdev_file);
2218 
2219 	kfree(ca);
2220 	module_put(THIS_MODULE);
2221 }
2222 
2223 static int cache_alloc(struct cache *ca)
2224 {
2225 	size_t free;
2226 	size_t btree_buckets;
2227 	struct bucket *b;
2228 	int ret = -ENOMEM;
2229 	const char *err = NULL;
2230 
2231 	__module_get(THIS_MODULE);
2232 	kobject_init(&ca->kobj, &bch_cache_ktype);
2233 
2234 	bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0);
2235 
2236 	/*
2237 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2238 	 * and in bch_journal_replay(), tree node may split,
2239 	 * so bucket of RESERVE_BTREE type is needed,
2240 	 * the worst situation is all journal buckets are valid journal,
2241 	 * and all the keys need to replay,
2242 	 * so the number of  RESERVE_BTREE type buckets should be as much
2243 	 * as journal buckets
2244 	 */
2245 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2246 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2247 	if (!free) {
2248 		ret = -EPERM;
2249 		err = "ca->sb.nbuckets is too small";
2250 		goto err_free;
2251 	}
2252 
2253 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2254 						GFP_KERNEL)) {
2255 		err = "ca->free[RESERVE_BTREE] alloc failed";
2256 		goto err_btree_alloc;
2257 	}
2258 
2259 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2260 							GFP_KERNEL)) {
2261 		err = "ca->free[RESERVE_PRIO] alloc failed";
2262 		goto err_prio_alloc;
2263 	}
2264 
2265 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2266 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2267 		goto err_movinggc_alloc;
2268 	}
2269 
2270 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2271 		err = "ca->free[RESERVE_NONE] alloc failed";
2272 		goto err_none_alloc;
2273 	}
2274 
2275 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2276 		err = "ca->free_inc alloc failed";
2277 		goto err_free_inc_alloc;
2278 	}
2279 
2280 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2281 		err = "ca->heap alloc failed";
2282 		goto err_heap_alloc;
2283 	}
2284 
2285 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2286 			      ca->sb.nbuckets));
2287 	if (!ca->buckets) {
2288 		err = "ca->buckets alloc failed";
2289 		goto err_buckets_alloc;
2290 	}
2291 
2292 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2293 				   prio_buckets(ca), 2),
2294 				   GFP_KERNEL);
2295 	if (!ca->prio_buckets) {
2296 		err = "ca->prio_buckets alloc failed";
2297 		goto err_prio_buckets_alloc;
2298 	}
2299 
2300 	ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2301 	if (!ca->disk_buckets) {
2302 		err = "ca->disk_buckets alloc failed";
2303 		goto err_disk_buckets_alloc;
2304 	}
2305 
2306 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2307 
2308 	for_each_bucket(b, ca)
2309 		atomic_set(&b->pin, 0);
2310 	return 0;
2311 
2312 err_disk_buckets_alloc:
2313 	kfree(ca->prio_buckets);
2314 err_prio_buckets_alloc:
2315 	vfree(ca->buckets);
2316 err_buckets_alloc:
2317 	free_heap(&ca->heap);
2318 err_heap_alloc:
2319 	free_fifo(&ca->free_inc);
2320 err_free_inc_alloc:
2321 	free_fifo(&ca->free[RESERVE_NONE]);
2322 err_none_alloc:
2323 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2324 err_movinggc_alloc:
2325 	free_fifo(&ca->free[RESERVE_PRIO]);
2326 err_prio_alloc:
2327 	free_fifo(&ca->free[RESERVE_BTREE]);
2328 err_btree_alloc:
2329 err_free:
2330 	module_put(THIS_MODULE);
2331 	if (err)
2332 		pr_notice("error %pg: %s\n", ca->bdev, err);
2333 	return ret;
2334 }
2335 
2336 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2337 				struct file *bdev_file,
2338 				struct cache *ca)
2339 {
2340 	const char *err = NULL; /* must be set for any error case */
2341 	int ret = 0;
2342 
2343 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2344 	ca->bdev_file = bdev_file;
2345 	ca->bdev = file_bdev(bdev_file);
2346 	ca->sb_disk = sb_disk;
2347 
2348 	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
2349 		ca->discard = CACHE_DISCARD(&ca->sb);
2350 
2351 	ret = cache_alloc(ca);
2352 	if (ret != 0) {
2353 		if (ret == -ENOMEM)
2354 			err = "cache_alloc(): -ENOMEM";
2355 		else if (ret == -EPERM)
2356 			err = "cache_alloc(): cache device is too small";
2357 		else
2358 			err = "cache_alloc(): unknown error";
2359 		pr_notice("error %pg: %s\n", file_bdev(bdev_file), err);
2360 		/*
2361 		 * If we failed here, it means ca->kobj is not initialized yet,
2362 		 * kobject_put() won't be called and there is no chance to
2363 		 * call fput() to bdev in bch_cache_release(). So
2364 		 * we explicitly call fput() on the block device here.
2365 		 */
2366 		fput(bdev_file);
2367 		return ret;
2368 	}
2369 
2370 	if (kobject_add(&ca->kobj, bdev_kobj(file_bdev(bdev_file)), "bcache")) {
2371 		pr_notice("error %pg: error calling kobject_add\n",
2372 			  file_bdev(bdev_file));
2373 		ret = -ENOMEM;
2374 		goto out;
2375 	}
2376 
2377 	mutex_lock(&bch_register_lock);
2378 	err = register_cache_set(ca);
2379 	mutex_unlock(&bch_register_lock);
2380 
2381 	if (err) {
2382 		ret = -ENODEV;
2383 		goto out;
2384 	}
2385 
2386 	pr_info("registered cache device %pg\n", file_bdev(ca->bdev_file));
2387 
2388 out:
2389 	kobject_put(&ca->kobj);
2390 	return ret;
2391 }
2392 
2393 /* Global interfaces/init */
2394 
2395 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2396 			       const char *buffer, size_t size);
2397 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2398 					 struct kobj_attribute *attr,
2399 					 const char *buffer, size_t size);
2400 
2401 kobj_attribute_write(register,		register_bcache);
2402 kobj_attribute_write(register_quiet,	register_bcache);
2403 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2404 
2405 static bool bch_is_open_backing(dev_t dev)
2406 {
2407 	struct cache_set *c, *tc;
2408 	struct cached_dev *dc, *t;
2409 
2410 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2411 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2412 			if (dc->bdev->bd_dev == dev)
2413 				return true;
2414 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2415 		if (dc->bdev->bd_dev == dev)
2416 			return true;
2417 	return false;
2418 }
2419 
2420 static bool bch_is_open_cache(dev_t dev)
2421 {
2422 	struct cache_set *c, *tc;
2423 
2424 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2425 		struct cache *ca = c->cache;
2426 
2427 		if (ca->bdev->bd_dev == dev)
2428 			return true;
2429 	}
2430 
2431 	return false;
2432 }
2433 
2434 static bool bch_is_open(dev_t dev)
2435 {
2436 	return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2437 }
2438 
2439 struct async_reg_args {
2440 	struct delayed_work reg_work;
2441 	char *path;
2442 	struct cache_sb *sb;
2443 	struct cache_sb_disk *sb_disk;
2444 	struct file *bdev_file;
2445 	void *holder;
2446 };
2447 
2448 static void register_bdev_worker(struct work_struct *work)
2449 {
2450 	int fail = false;
2451 	struct async_reg_args *args =
2452 		container_of(work, struct async_reg_args, reg_work.work);
2453 
2454 	mutex_lock(&bch_register_lock);
2455 	if (register_bdev(args->sb, args->sb_disk, args->bdev_file,
2456 			  args->holder) < 0)
2457 		fail = true;
2458 	mutex_unlock(&bch_register_lock);
2459 
2460 	if (fail)
2461 		pr_info("error %s: fail to register backing device\n",
2462 			args->path);
2463 	kfree(args->sb);
2464 	kfree(args->path);
2465 	kfree(args);
2466 	module_put(THIS_MODULE);
2467 }
2468 
2469 static void register_cache_worker(struct work_struct *work)
2470 {
2471 	int fail = false;
2472 	struct async_reg_args *args =
2473 		container_of(work, struct async_reg_args, reg_work.work);
2474 
2475 	/* blkdev_put() will be called in bch_cache_release() */
2476 	if (register_cache(args->sb, args->sb_disk, args->bdev_file,
2477 			   args->holder))
2478 		fail = true;
2479 
2480 	if (fail)
2481 		pr_info("error %s: fail to register cache device\n",
2482 			args->path);
2483 	kfree(args->sb);
2484 	kfree(args->path);
2485 	kfree(args);
2486 	module_put(THIS_MODULE);
2487 }
2488 
2489 static void register_device_async(struct async_reg_args *args)
2490 {
2491 	if (SB_IS_BDEV(args->sb))
2492 		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2493 	else
2494 		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2495 
2496 	/* 10 jiffies is enough for a delay */
2497 	queue_delayed_work(system_wq, &args->reg_work, 10);
2498 }
2499 
2500 static void *alloc_holder_object(struct cache_sb *sb)
2501 {
2502 	if (SB_IS_BDEV(sb))
2503 		return kzalloc(sizeof(struct cached_dev), GFP_KERNEL);
2504 	return kzalloc(sizeof(struct cache), GFP_KERNEL);
2505 }
2506 
2507 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2508 			       const char *buffer, size_t size)
2509 {
2510 	const char *err;
2511 	char *path = NULL;
2512 	struct cache_sb *sb;
2513 	struct cache_sb_disk *sb_disk;
2514 	struct file *bdev_file, *bdev_file2;
2515 	void *holder = NULL;
2516 	ssize_t ret;
2517 	bool async_registration = false;
2518 	bool quiet = false;
2519 
2520 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2521 	async_registration = true;
2522 #endif
2523 
2524 	ret = -EBUSY;
2525 	err = "failed to reference bcache module";
2526 	if (!try_module_get(THIS_MODULE))
2527 		goto out;
2528 
2529 	/* For latest state of bcache_is_reboot */
2530 	smp_mb();
2531 	err = "bcache is in reboot";
2532 	if (bcache_is_reboot)
2533 		goto out_module_put;
2534 
2535 	ret = -ENOMEM;
2536 	err = "cannot allocate memory";
2537 	path = kstrndup(buffer, size, GFP_KERNEL);
2538 	if (!path)
2539 		goto out_module_put;
2540 
2541 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2542 	if (!sb)
2543 		goto out_free_path;
2544 
2545 	ret = -EINVAL;
2546 	err = "failed to open device";
2547 	bdev_file = bdev_file_open_by_path(strim(path), BLK_OPEN_READ, NULL, NULL);
2548 	if (IS_ERR(bdev_file))
2549 		goto out_free_sb;
2550 
2551 	err = read_super(sb, file_bdev(bdev_file), &sb_disk);
2552 	if (err)
2553 		goto out_blkdev_put;
2554 
2555 	holder = alloc_holder_object(sb);
2556 	if (!holder) {
2557 		ret = -ENOMEM;
2558 		err = "cannot allocate memory";
2559 		goto out_put_sb_page;
2560 	}
2561 
2562 	/* Now reopen in exclusive mode with proper holder */
2563 	bdev_file2 = bdev_file_open_by_dev(file_bdev(bdev_file)->bd_dev,
2564 			BLK_OPEN_READ | BLK_OPEN_WRITE, holder, NULL);
2565 	fput(bdev_file);
2566 	bdev_file = bdev_file2;
2567 	if (IS_ERR(bdev_file)) {
2568 		ret = PTR_ERR(bdev_file);
2569 		bdev_file = NULL;
2570 		if (ret == -EBUSY) {
2571 			dev_t dev;
2572 
2573 			mutex_lock(&bch_register_lock);
2574 			if (lookup_bdev(strim(path), &dev) == 0 &&
2575 			    bch_is_open(dev))
2576 				err = "device already registered";
2577 			else
2578 				err = "device busy";
2579 			mutex_unlock(&bch_register_lock);
2580 			if (attr == &ksysfs_register_quiet) {
2581 				quiet = true;
2582 				ret = size;
2583 			}
2584 		}
2585 		goto out_free_holder;
2586 	}
2587 
2588 	err = "failed to register device";
2589 
2590 	if (async_registration) {
2591 		/* register in asynchronous way */
2592 		struct async_reg_args *args =
2593 			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2594 
2595 		if (!args) {
2596 			ret = -ENOMEM;
2597 			err = "cannot allocate memory";
2598 			goto out_free_holder;
2599 		}
2600 
2601 		args->path	= path;
2602 		args->sb	= sb;
2603 		args->sb_disk	= sb_disk;
2604 		args->bdev_file	= bdev_file;
2605 		args->holder	= holder;
2606 		register_device_async(args);
2607 		/* No wait and returns to user space */
2608 		goto async_done;
2609 	}
2610 
2611 	if (SB_IS_BDEV(sb)) {
2612 		mutex_lock(&bch_register_lock);
2613 		ret = register_bdev(sb, sb_disk, bdev_file, holder);
2614 		mutex_unlock(&bch_register_lock);
2615 		/* blkdev_put() will be called in cached_dev_free() */
2616 		if (ret < 0)
2617 			goto out_free_sb;
2618 	} else {
2619 		/* blkdev_put() will be called in bch_cache_release() */
2620 		ret = register_cache(sb, sb_disk, bdev_file, holder);
2621 		if (ret)
2622 			goto out_free_sb;
2623 	}
2624 
2625 	kfree(sb);
2626 	kfree(path);
2627 	module_put(THIS_MODULE);
2628 async_done:
2629 	return size;
2630 
2631 out_free_holder:
2632 	kfree(holder);
2633 out_put_sb_page:
2634 	put_page(virt_to_page(sb_disk));
2635 out_blkdev_put:
2636 	if (bdev_file)
2637 		fput(bdev_file);
2638 out_free_sb:
2639 	kfree(sb);
2640 out_free_path:
2641 	kfree(path);
2642 	path = NULL;
2643 out_module_put:
2644 	module_put(THIS_MODULE);
2645 out:
2646 	if (!quiet)
2647 		pr_info("error %s: %s\n", path?path:"", err);
2648 	return ret;
2649 }
2650 
2651 
2652 struct pdev {
2653 	struct list_head list;
2654 	struct cached_dev *dc;
2655 };
2656 
2657 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2658 					 struct kobj_attribute *attr,
2659 					 const char *buffer,
2660 					 size_t size)
2661 {
2662 	LIST_HEAD(pending_devs);
2663 	ssize_t ret = size;
2664 	struct cached_dev *dc, *tdc;
2665 	struct pdev *pdev, *tpdev;
2666 	struct cache_set *c, *tc;
2667 
2668 	mutex_lock(&bch_register_lock);
2669 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2670 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2671 		if (!pdev)
2672 			break;
2673 		pdev->dc = dc;
2674 		list_add(&pdev->list, &pending_devs);
2675 	}
2676 
2677 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2678 		char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2679 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2680 			char *set_uuid = c->set_uuid;
2681 
2682 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2683 				list_del(&pdev->list);
2684 				kfree(pdev);
2685 				break;
2686 			}
2687 		}
2688 	}
2689 	mutex_unlock(&bch_register_lock);
2690 
2691 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2692 		pr_info("delete pdev %p\n", pdev);
2693 		list_del(&pdev->list);
2694 		bcache_device_stop(&pdev->dc->disk);
2695 		kfree(pdev);
2696 	}
2697 
2698 	return ret;
2699 }
2700 
2701 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2702 {
2703 	if (bcache_is_reboot)
2704 		return NOTIFY_DONE;
2705 
2706 	if (code == SYS_DOWN ||
2707 	    code == SYS_HALT ||
2708 	    code == SYS_POWER_OFF) {
2709 		DEFINE_WAIT(wait);
2710 		unsigned long start = jiffies;
2711 		bool stopped = false;
2712 
2713 		struct cache_set *c, *tc;
2714 		struct cached_dev *dc, *tdc;
2715 
2716 		mutex_lock(&bch_register_lock);
2717 
2718 		if (bcache_is_reboot)
2719 			goto out;
2720 
2721 		/* New registration is rejected since now */
2722 		bcache_is_reboot = true;
2723 		/*
2724 		 * Make registering caller (if there is) on other CPU
2725 		 * core know bcache_is_reboot set to true earlier
2726 		 */
2727 		smp_mb();
2728 
2729 		if (list_empty(&bch_cache_sets) &&
2730 		    list_empty(&uncached_devices))
2731 			goto out;
2732 
2733 		mutex_unlock(&bch_register_lock);
2734 
2735 		pr_info("Stopping all devices:\n");
2736 
2737 		/*
2738 		 * The reason bch_register_lock is not held to call
2739 		 * bch_cache_set_stop() and bcache_device_stop() is to
2740 		 * avoid potential deadlock during reboot, because cache
2741 		 * set or bcache device stopping process will acquire
2742 		 * bch_register_lock too.
2743 		 *
2744 		 * We are safe here because bcache_is_reboot sets to
2745 		 * true already, register_bcache() will reject new
2746 		 * registration now. bcache_is_reboot also makes sure
2747 		 * bcache_reboot() won't be re-entered on by other thread,
2748 		 * so there is no race in following list iteration by
2749 		 * list_for_each_entry_safe().
2750 		 */
2751 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2752 			bch_cache_set_stop(c);
2753 
2754 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2755 			bcache_device_stop(&dc->disk);
2756 
2757 
2758 		/*
2759 		 * Give an early chance for other kthreads and
2760 		 * kworkers to stop themselves
2761 		 */
2762 		schedule();
2763 
2764 		/* What's a condition variable? */
2765 		while (1) {
2766 			long timeout = start + 10 * HZ - jiffies;
2767 
2768 			mutex_lock(&bch_register_lock);
2769 			stopped = list_empty(&bch_cache_sets) &&
2770 				list_empty(&uncached_devices);
2771 
2772 			if (timeout < 0 || stopped)
2773 				break;
2774 
2775 			prepare_to_wait(&unregister_wait, &wait,
2776 					TASK_UNINTERRUPTIBLE);
2777 
2778 			mutex_unlock(&bch_register_lock);
2779 			schedule_timeout(timeout);
2780 		}
2781 
2782 		finish_wait(&unregister_wait, &wait);
2783 
2784 		if (stopped)
2785 			pr_info("All devices stopped\n");
2786 		else
2787 			pr_notice("Timeout waiting for devices to be closed\n");
2788 out:
2789 		mutex_unlock(&bch_register_lock);
2790 	}
2791 
2792 	return NOTIFY_DONE;
2793 }
2794 
2795 static struct notifier_block reboot = {
2796 	.notifier_call	= bcache_reboot,
2797 	.priority	= INT_MAX, /* before any real devices */
2798 };
2799 
2800 static void bcache_exit(void)
2801 {
2802 	bch_debug_exit();
2803 	bch_request_exit();
2804 	if (bcache_kobj)
2805 		kobject_put(bcache_kobj);
2806 	if (bcache_wq)
2807 		destroy_workqueue(bcache_wq);
2808 	if (bch_journal_wq)
2809 		destroy_workqueue(bch_journal_wq);
2810 	if (bch_flush_wq)
2811 		destroy_workqueue(bch_flush_wq);
2812 	bch_btree_exit();
2813 
2814 	if (bcache_major)
2815 		unregister_blkdev(bcache_major, "bcache");
2816 	unregister_reboot_notifier(&reboot);
2817 	mutex_destroy(&bch_register_lock);
2818 }
2819 
2820 /* Check and fixup module parameters */
2821 static void check_module_parameters(void)
2822 {
2823 	if (bch_cutoff_writeback_sync == 0)
2824 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2825 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2826 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2827 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2828 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2829 	}
2830 
2831 	if (bch_cutoff_writeback == 0)
2832 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2833 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2834 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2835 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2836 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2837 	}
2838 
2839 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2840 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2841 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2842 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2843 	}
2844 }
2845 
2846 static int __init bcache_init(void)
2847 {
2848 	static const struct attribute *files[] = {
2849 		&ksysfs_register.attr,
2850 		&ksysfs_register_quiet.attr,
2851 		&ksysfs_pendings_cleanup.attr,
2852 		NULL
2853 	};
2854 
2855 	check_module_parameters();
2856 
2857 	mutex_init(&bch_register_lock);
2858 	init_waitqueue_head(&unregister_wait);
2859 	register_reboot_notifier(&reboot);
2860 
2861 	bcache_major = register_blkdev(0, "bcache");
2862 	if (bcache_major < 0) {
2863 		unregister_reboot_notifier(&reboot);
2864 		mutex_destroy(&bch_register_lock);
2865 		return bcache_major;
2866 	}
2867 
2868 	if (bch_btree_init())
2869 		goto err;
2870 
2871 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2872 	if (!bcache_wq)
2873 		goto err;
2874 
2875 	/*
2876 	 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2877 	 *
2878 	 * 1. It used `system_wq` before which also does no memory reclaim.
2879 	 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2880 	 *    reduced throughput can be observed.
2881 	 *
2882 	 * We still want to user our own queue to not congest the `system_wq`.
2883 	 */
2884 	bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2885 	if (!bch_flush_wq)
2886 		goto err;
2887 
2888 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2889 	if (!bch_journal_wq)
2890 		goto err;
2891 
2892 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2893 	if (!bcache_kobj)
2894 		goto err;
2895 
2896 	if (bch_request_init() ||
2897 	    sysfs_create_files(bcache_kobj, files))
2898 		goto err;
2899 
2900 	bch_debug_init();
2901 
2902 	bcache_is_reboot = false;
2903 
2904 	return 0;
2905 err:
2906 	bcache_exit();
2907 	return -ENOMEM;
2908 }
2909 
2910 /*
2911  * Module hooks
2912  */
2913 module_exit(bcache_exit);
2914 module_init(bcache_init);
2915 
2916 module_param(bch_cutoff_writeback, uint, 0);
2917 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2918 
2919 module_param(bch_cutoff_writeback_sync, uint, 0);
2920 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2921 
2922 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2923 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2924 MODULE_LICENSE("GPL");
2925