1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/pagemap.h> 20 #include <linux/debugfs.h> 21 #include <linux/genhd.h> 22 #include <linux/idr.h> 23 #include <linux/kthread.h> 24 #include <linux/workqueue.h> 25 #include <linux/module.h> 26 #include <linux/random.h> 27 #include <linux/reboot.h> 28 #include <linux/sysfs.h> 29 30 unsigned int bch_cutoff_writeback; 31 unsigned int bch_cutoff_writeback_sync; 32 33 static const char bcache_magic[] = { 34 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 35 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 36 }; 37 38 static const char invalid_uuid[] = { 39 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 40 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 41 }; 42 43 static struct kobject *bcache_kobj; 44 struct mutex bch_register_lock; 45 bool bcache_is_reboot; 46 LIST_HEAD(bch_cache_sets); 47 static LIST_HEAD(uncached_devices); 48 49 static int bcache_major; 50 static DEFINE_IDA(bcache_device_idx); 51 static wait_queue_head_t unregister_wait; 52 struct workqueue_struct *bcache_wq; 53 struct workqueue_struct *bch_flush_wq; 54 struct workqueue_struct *bch_journal_wq; 55 56 57 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 58 /* limitation of partitions number on single bcache device */ 59 #define BCACHE_MINORS 128 60 /* limitation of bcache devices number on single system */ 61 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 62 63 /* Superblock */ 64 65 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 66 { 67 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 68 69 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 70 if (bch_has_feature_large_bucket(sb)) { 71 unsigned int max, order; 72 73 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 74 order = le16_to_cpu(s->bucket_size); 75 /* 76 * bcache tool will make sure the overflow won't 77 * happen, an error message here is enough. 78 */ 79 if (order > max) 80 pr_err("Bucket size (1 << %u) overflows\n", 81 order); 82 bucket_size = 1 << order; 83 } else if (bch_has_feature_obso_large_bucket(sb)) { 84 bucket_size += 85 le16_to_cpu(s->obso_bucket_size_hi) << 16; 86 } 87 } 88 89 return bucket_size; 90 } 91 92 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 93 struct cache_sb_disk *s) 94 { 95 const char *err; 96 unsigned int i; 97 98 sb->first_bucket= le16_to_cpu(s->first_bucket); 99 sb->nbuckets = le64_to_cpu(s->nbuckets); 100 sb->bucket_size = get_bucket_size(sb, s); 101 102 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 103 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 104 105 err = "Too many journal buckets"; 106 if (sb->keys > SB_JOURNAL_BUCKETS) 107 goto err; 108 109 err = "Too many buckets"; 110 if (sb->nbuckets > LONG_MAX) 111 goto err; 112 113 err = "Not enough buckets"; 114 if (sb->nbuckets < 1 << 7) 115 goto err; 116 117 err = "Bad block size (not power of 2)"; 118 if (!is_power_of_2(sb->block_size)) 119 goto err; 120 121 err = "Bad block size (larger than page size)"; 122 if (sb->block_size > PAGE_SECTORS) 123 goto err; 124 125 err = "Bad bucket size (not power of 2)"; 126 if (!is_power_of_2(sb->bucket_size)) 127 goto err; 128 129 err = "Bad bucket size (smaller than page size)"; 130 if (sb->bucket_size < PAGE_SECTORS) 131 goto err; 132 133 err = "Invalid superblock: device too small"; 134 if (get_capacity(bdev->bd_disk) < 135 sb->bucket_size * sb->nbuckets) 136 goto err; 137 138 err = "Bad UUID"; 139 if (bch_is_zero(sb->set_uuid, 16)) 140 goto err; 141 142 err = "Bad cache device number in set"; 143 if (!sb->nr_in_set || 144 sb->nr_in_set <= sb->nr_this_dev || 145 sb->nr_in_set > MAX_CACHES_PER_SET) 146 goto err; 147 148 err = "Journal buckets not sequential"; 149 for (i = 0; i < sb->keys; i++) 150 if (sb->d[i] != sb->first_bucket + i) 151 goto err; 152 153 err = "Too many journal buckets"; 154 if (sb->first_bucket + sb->keys > sb->nbuckets) 155 goto err; 156 157 err = "Invalid superblock: first bucket comes before end of super"; 158 if (sb->first_bucket * sb->bucket_size < 16) 159 goto err; 160 161 err = NULL; 162 err: 163 return err; 164 } 165 166 167 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 168 struct cache_sb_disk **res) 169 { 170 const char *err; 171 struct cache_sb_disk *s; 172 struct page *page; 173 unsigned int i; 174 175 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 176 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 177 if (IS_ERR(page)) 178 return "IO error"; 179 s = page_address(page) + offset_in_page(SB_OFFSET); 180 181 sb->offset = le64_to_cpu(s->offset); 182 sb->version = le64_to_cpu(s->version); 183 184 memcpy(sb->magic, s->magic, 16); 185 memcpy(sb->uuid, s->uuid, 16); 186 memcpy(sb->set_uuid, s->set_uuid, 16); 187 memcpy(sb->label, s->label, SB_LABEL_SIZE); 188 189 sb->flags = le64_to_cpu(s->flags); 190 sb->seq = le64_to_cpu(s->seq); 191 sb->last_mount = le32_to_cpu(s->last_mount); 192 sb->keys = le16_to_cpu(s->keys); 193 194 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 195 sb->d[i] = le64_to_cpu(s->d[i]); 196 197 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 198 sb->version, sb->flags, sb->seq, sb->keys); 199 200 err = "Not a bcache superblock (bad offset)"; 201 if (sb->offset != SB_SECTOR) 202 goto err; 203 204 err = "Not a bcache superblock (bad magic)"; 205 if (memcmp(sb->magic, bcache_magic, 16)) 206 goto err; 207 208 err = "Bad checksum"; 209 if (s->csum != csum_set(s)) 210 goto err; 211 212 err = "Bad UUID"; 213 if (bch_is_zero(sb->uuid, 16)) 214 goto err; 215 216 sb->block_size = le16_to_cpu(s->block_size); 217 218 err = "Superblock block size smaller than device block size"; 219 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 220 goto err; 221 222 switch (sb->version) { 223 case BCACHE_SB_VERSION_BDEV: 224 sb->data_offset = BDEV_DATA_START_DEFAULT; 225 break; 226 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 227 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 228 sb->data_offset = le64_to_cpu(s->data_offset); 229 230 err = "Bad data offset"; 231 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 232 goto err; 233 234 break; 235 case BCACHE_SB_VERSION_CDEV: 236 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 237 err = read_super_common(sb, bdev, s); 238 if (err) 239 goto err; 240 break; 241 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 242 /* 243 * Feature bits are needed in read_super_common(), 244 * convert them firstly. 245 */ 246 sb->feature_compat = le64_to_cpu(s->feature_compat); 247 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 248 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 249 250 /* Check incompatible features */ 251 err = "Unsupported compatible feature found"; 252 if (bch_has_unknown_compat_features(sb)) 253 goto err; 254 255 err = "Unsupported read-only compatible feature found"; 256 if (bch_has_unknown_ro_compat_features(sb)) 257 goto err; 258 259 err = "Unsupported incompatible feature found"; 260 if (bch_has_unknown_incompat_features(sb)) 261 goto err; 262 263 err = read_super_common(sb, bdev, s); 264 if (err) 265 goto err; 266 break; 267 default: 268 err = "Unsupported superblock version"; 269 goto err; 270 } 271 272 sb->last_mount = (u32)ktime_get_real_seconds(); 273 *res = s; 274 return NULL; 275 err: 276 put_page(page); 277 return err; 278 } 279 280 static void write_bdev_super_endio(struct bio *bio) 281 { 282 struct cached_dev *dc = bio->bi_private; 283 284 if (bio->bi_status) 285 bch_count_backing_io_errors(dc, bio); 286 287 closure_put(&dc->sb_write); 288 } 289 290 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 291 struct bio *bio) 292 { 293 unsigned int i; 294 295 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 296 bio->bi_iter.bi_sector = SB_SECTOR; 297 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 298 offset_in_page(out)); 299 300 out->offset = cpu_to_le64(sb->offset); 301 302 memcpy(out->uuid, sb->uuid, 16); 303 memcpy(out->set_uuid, sb->set_uuid, 16); 304 memcpy(out->label, sb->label, SB_LABEL_SIZE); 305 306 out->flags = cpu_to_le64(sb->flags); 307 out->seq = cpu_to_le64(sb->seq); 308 309 out->last_mount = cpu_to_le32(sb->last_mount); 310 out->first_bucket = cpu_to_le16(sb->first_bucket); 311 out->keys = cpu_to_le16(sb->keys); 312 313 for (i = 0; i < sb->keys; i++) 314 out->d[i] = cpu_to_le64(sb->d[i]); 315 316 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 317 out->feature_compat = cpu_to_le64(sb->feature_compat); 318 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 319 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 320 } 321 322 out->version = cpu_to_le64(sb->version); 323 out->csum = csum_set(out); 324 325 pr_debug("ver %llu, flags %llu, seq %llu\n", 326 sb->version, sb->flags, sb->seq); 327 328 submit_bio(bio); 329 } 330 331 static void bch_write_bdev_super_unlock(struct closure *cl) 332 { 333 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 334 335 up(&dc->sb_write_mutex); 336 } 337 338 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 339 { 340 struct closure *cl = &dc->sb_write; 341 struct bio *bio = &dc->sb_bio; 342 343 down(&dc->sb_write_mutex); 344 closure_init(cl, parent); 345 346 bio_init(bio, dc->sb_bv, 1); 347 bio_set_dev(bio, dc->bdev); 348 bio->bi_end_io = write_bdev_super_endio; 349 bio->bi_private = dc; 350 351 closure_get(cl); 352 /* I/O request sent to backing device */ 353 __write_super(&dc->sb, dc->sb_disk, bio); 354 355 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 356 } 357 358 static void write_super_endio(struct bio *bio) 359 { 360 struct cache *ca = bio->bi_private; 361 362 /* is_read = 0 */ 363 bch_count_io_errors(ca, bio->bi_status, 0, 364 "writing superblock"); 365 closure_put(&ca->set->sb_write); 366 } 367 368 static void bcache_write_super_unlock(struct closure *cl) 369 { 370 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 371 372 up(&c->sb_write_mutex); 373 } 374 375 void bcache_write_super(struct cache_set *c) 376 { 377 struct closure *cl = &c->sb_write; 378 struct cache *ca = c->cache; 379 struct bio *bio = &ca->sb_bio; 380 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 381 382 down(&c->sb_write_mutex); 383 closure_init(cl, &c->cl); 384 385 ca->sb.seq++; 386 387 if (ca->sb.version < version) 388 ca->sb.version = version; 389 390 bio_init(bio, ca->sb_bv, 1); 391 bio_set_dev(bio, ca->bdev); 392 bio->bi_end_io = write_super_endio; 393 bio->bi_private = ca; 394 395 closure_get(cl); 396 __write_super(&ca->sb, ca->sb_disk, bio); 397 398 closure_return_with_destructor(cl, bcache_write_super_unlock); 399 } 400 401 /* UUID io */ 402 403 static void uuid_endio(struct bio *bio) 404 { 405 struct closure *cl = bio->bi_private; 406 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 407 408 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 409 bch_bbio_free(bio, c); 410 closure_put(cl); 411 } 412 413 static void uuid_io_unlock(struct closure *cl) 414 { 415 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 416 417 up(&c->uuid_write_mutex); 418 } 419 420 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 421 struct bkey *k, struct closure *parent) 422 { 423 struct closure *cl = &c->uuid_write; 424 struct uuid_entry *u; 425 unsigned int i; 426 char buf[80]; 427 428 BUG_ON(!parent); 429 down(&c->uuid_write_mutex); 430 closure_init(cl, parent); 431 432 for (i = 0; i < KEY_PTRS(k); i++) { 433 struct bio *bio = bch_bbio_alloc(c); 434 435 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 436 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 437 438 bio->bi_end_io = uuid_endio; 439 bio->bi_private = cl; 440 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 441 bch_bio_map(bio, c->uuids); 442 443 bch_submit_bbio(bio, c, k, i); 444 445 if (op != REQ_OP_WRITE) 446 break; 447 } 448 449 bch_extent_to_text(buf, sizeof(buf), k); 450 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 451 452 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 453 if (!bch_is_zero(u->uuid, 16)) 454 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 455 u - c->uuids, u->uuid, u->label, 456 u->first_reg, u->last_reg, u->invalidated); 457 458 closure_return_with_destructor(cl, uuid_io_unlock); 459 } 460 461 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 462 { 463 struct bkey *k = &j->uuid_bucket; 464 465 if (__bch_btree_ptr_invalid(c, k)) 466 return "bad uuid pointer"; 467 468 bkey_copy(&c->uuid_bucket, k); 469 uuid_io(c, REQ_OP_READ, 0, k, cl); 470 471 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 472 struct uuid_entry_v0 *u0 = (void *) c->uuids; 473 struct uuid_entry *u1 = (void *) c->uuids; 474 int i; 475 476 closure_sync(cl); 477 478 /* 479 * Since the new uuid entry is bigger than the old, we have to 480 * convert starting at the highest memory address and work down 481 * in order to do it in place 482 */ 483 484 for (i = c->nr_uuids - 1; 485 i >= 0; 486 --i) { 487 memcpy(u1[i].uuid, u0[i].uuid, 16); 488 memcpy(u1[i].label, u0[i].label, 32); 489 490 u1[i].first_reg = u0[i].first_reg; 491 u1[i].last_reg = u0[i].last_reg; 492 u1[i].invalidated = u0[i].invalidated; 493 494 u1[i].flags = 0; 495 u1[i].sectors = 0; 496 } 497 } 498 499 return NULL; 500 } 501 502 static int __uuid_write(struct cache_set *c) 503 { 504 BKEY_PADDED(key) k; 505 struct closure cl; 506 struct cache *ca = c->cache; 507 unsigned int size; 508 509 closure_init_stack(&cl); 510 lockdep_assert_held(&bch_register_lock); 511 512 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 513 return 1; 514 515 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 516 SET_KEY_SIZE(&k.key, size); 517 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 518 closure_sync(&cl); 519 520 /* Only one bucket used for uuid write */ 521 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 522 523 bkey_copy(&c->uuid_bucket, &k.key); 524 bkey_put(c, &k.key); 525 return 0; 526 } 527 528 int bch_uuid_write(struct cache_set *c) 529 { 530 int ret = __uuid_write(c); 531 532 if (!ret) 533 bch_journal_meta(c, NULL); 534 535 return ret; 536 } 537 538 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 539 { 540 struct uuid_entry *u; 541 542 for (u = c->uuids; 543 u < c->uuids + c->nr_uuids; u++) 544 if (!memcmp(u->uuid, uuid, 16)) 545 return u; 546 547 return NULL; 548 } 549 550 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 551 { 552 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 553 554 return uuid_find(c, zero_uuid); 555 } 556 557 /* 558 * Bucket priorities/gens: 559 * 560 * For each bucket, we store on disk its 561 * 8 bit gen 562 * 16 bit priority 563 * 564 * See alloc.c for an explanation of the gen. The priority is used to implement 565 * lru (and in the future other) cache replacement policies; for most purposes 566 * it's just an opaque integer. 567 * 568 * The gens and the priorities don't have a whole lot to do with each other, and 569 * it's actually the gens that must be written out at specific times - it's no 570 * big deal if the priorities don't get written, if we lose them we just reuse 571 * buckets in suboptimal order. 572 * 573 * On disk they're stored in a packed array, and in as many buckets are required 574 * to fit them all. The buckets we use to store them form a list; the journal 575 * header points to the first bucket, the first bucket points to the second 576 * bucket, et cetera. 577 * 578 * This code is used by the allocation code; periodically (whenever it runs out 579 * of buckets to allocate from) the allocation code will invalidate some 580 * buckets, but it can't use those buckets until their new gens are safely on 581 * disk. 582 */ 583 584 static void prio_endio(struct bio *bio) 585 { 586 struct cache *ca = bio->bi_private; 587 588 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 589 bch_bbio_free(bio, ca->set); 590 closure_put(&ca->prio); 591 } 592 593 static void prio_io(struct cache *ca, uint64_t bucket, int op, 594 unsigned long op_flags) 595 { 596 struct closure *cl = &ca->prio; 597 struct bio *bio = bch_bbio_alloc(ca->set); 598 599 closure_init_stack(cl); 600 601 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 602 bio_set_dev(bio, ca->bdev); 603 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 604 605 bio->bi_end_io = prio_endio; 606 bio->bi_private = ca; 607 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 608 bch_bio_map(bio, ca->disk_buckets); 609 610 closure_bio_submit(ca->set, bio, &ca->prio); 611 closure_sync(cl); 612 } 613 614 int bch_prio_write(struct cache *ca, bool wait) 615 { 616 int i; 617 struct bucket *b; 618 struct closure cl; 619 620 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 621 fifo_used(&ca->free[RESERVE_PRIO]), 622 fifo_used(&ca->free[RESERVE_NONE]), 623 fifo_used(&ca->free_inc)); 624 625 /* 626 * Pre-check if there are enough free buckets. In the non-blocking 627 * scenario it's better to fail early rather than starting to allocate 628 * buckets and do a cleanup later in case of failure. 629 */ 630 if (!wait) { 631 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 632 fifo_used(&ca->free[RESERVE_NONE]); 633 if (prio_buckets(ca) > avail) 634 return -ENOMEM; 635 } 636 637 closure_init_stack(&cl); 638 639 lockdep_assert_held(&ca->set->bucket_lock); 640 641 ca->disk_buckets->seq++; 642 643 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 644 &ca->meta_sectors_written); 645 646 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 647 long bucket; 648 struct prio_set *p = ca->disk_buckets; 649 struct bucket_disk *d = p->data; 650 struct bucket_disk *end = d + prios_per_bucket(ca); 651 652 for (b = ca->buckets + i * prios_per_bucket(ca); 653 b < ca->buckets + ca->sb.nbuckets && d < end; 654 b++, d++) { 655 d->prio = cpu_to_le16(b->prio); 656 d->gen = b->gen; 657 } 658 659 p->next_bucket = ca->prio_buckets[i + 1]; 660 p->magic = pset_magic(&ca->sb); 661 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 662 663 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 664 BUG_ON(bucket == -1); 665 666 mutex_unlock(&ca->set->bucket_lock); 667 prio_io(ca, bucket, REQ_OP_WRITE, 0); 668 mutex_lock(&ca->set->bucket_lock); 669 670 ca->prio_buckets[i] = bucket; 671 atomic_dec_bug(&ca->buckets[bucket].pin); 672 } 673 674 mutex_unlock(&ca->set->bucket_lock); 675 676 bch_journal_meta(ca->set, &cl); 677 closure_sync(&cl); 678 679 mutex_lock(&ca->set->bucket_lock); 680 681 /* 682 * Don't want the old priorities to get garbage collected until after we 683 * finish writing the new ones, and they're journalled 684 */ 685 for (i = 0; i < prio_buckets(ca); i++) { 686 if (ca->prio_last_buckets[i]) 687 __bch_bucket_free(ca, 688 &ca->buckets[ca->prio_last_buckets[i]]); 689 690 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 691 } 692 return 0; 693 } 694 695 static int prio_read(struct cache *ca, uint64_t bucket) 696 { 697 struct prio_set *p = ca->disk_buckets; 698 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 699 struct bucket *b; 700 unsigned int bucket_nr = 0; 701 int ret = -EIO; 702 703 for (b = ca->buckets; 704 b < ca->buckets + ca->sb.nbuckets; 705 b++, d++) { 706 if (d == end) { 707 ca->prio_buckets[bucket_nr] = bucket; 708 ca->prio_last_buckets[bucket_nr] = bucket; 709 bucket_nr++; 710 711 prio_io(ca, bucket, REQ_OP_READ, 0); 712 713 if (p->csum != 714 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 715 pr_warn("bad csum reading priorities\n"); 716 goto out; 717 } 718 719 if (p->magic != pset_magic(&ca->sb)) { 720 pr_warn("bad magic reading priorities\n"); 721 goto out; 722 } 723 724 bucket = p->next_bucket; 725 d = p->data; 726 } 727 728 b->prio = le16_to_cpu(d->prio); 729 b->gen = b->last_gc = d->gen; 730 } 731 732 ret = 0; 733 out: 734 return ret; 735 } 736 737 /* Bcache device */ 738 739 static int open_dev(struct block_device *b, fmode_t mode) 740 { 741 struct bcache_device *d = b->bd_disk->private_data; 742 743 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 744 return -ENXIO; 745 746 closure_get(&d->cl); 747 return 0; 748 } 749 750 static void release_dev(struct gendisk *b, fmode_t mode) 751 { 752 struct bcache_device *d = b->private_data; 753 754 closure_put(&d->cl); 755 } 756 757 static int ioctl_dev(struct block_device *b, fmode_t mode, 758 unsigned int cmd, unsigned long arg) 759 { 760 struct bcache_device *d = b->bd_disk->private_data; 761 762 return d->ioctl(d, mode, cmd, arg); 763 } 764 765 static const struct block_device_operations bcache_cached_ops = { 766 .submit_bio = cached_dev_submit_bio, 767 .open = open_dev, 768 .release = release_dev, 769 .ioctl = ioctl_dev, 770 .owner = THIS_MODULE, 771 }; 772 773 static const struct block_device_operations bcache_flash_ops = { 774 .submit_bio = flash_dev_submit_bio, 775 .open = open_dev, 776 .release = release_dev, 777 .ioctl = ioctl_dev, 778 .owner = THIS_MODULE, 779 }; 780 781 void bcache_device_stop(struct bcache_device *d) 782 { 783 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 784 /* 785 * closure_fn set to 786 * - cached device: cached_dev_flush() 787 * - flash dev: flash_dev_flush() 788 */ 789 closure_queue(&d->cl); 790 } 791 792 static void bcache_device_unlink(struct bcache_device *d) 793 { 794 lockdep_assert_held(&bch_register_lock); 795 796 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 797 struct cache *ca = d->c->cache; 798 799 sysfs_remove_link(&d->c->kobj, d->name); 800 sysfs_remove_link(&d->kobj, "cache"); 801 802 bd_unlink_disk_holder(ca->bdev, d->disk); 803 } 804 } 805 806 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 807 const char *name) 808 { 809 struct cache *ca = c->cache; 810 int ret; 811 812 bd_link_disk_holder(ca->bdev, d->disk); 813 814 snprintf(d->name, BCACHEDEVNAME_SIZE, 815 "%s%u", name, d->id); 816 817 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 818 if (ret < 0) 819 pr_err("Couldn't create device -> cache set symlink\n"); 820 821 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 822 if (ret < 0) 823 pr_err("Couldn't create cache set -> device symlink\n"); 824 825 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 826 } 827 828 static void bcache_device_detach(struct bcache_device *d) 829 { 830 lockdep_assert_held(&bch_register_lock); 831 832 atomic_dec(&d->c->attached_dev_nr); 833 834 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 835 struct uuid_entry *u = d->c->uuids + d->id; 836 837 SET_UUID_FLASH_ONLY(u, 0); 838 memcpy(u->uuid, invalid_uuid, 16); 839 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 840 bch_uuid_write(d->c); 841 } 842 843 bcache_device_unlink(d); 844 845 d->c->devices[d->id] = NULL; 846 closure_put(&d->c->caching); 847 d->c = NULL; 848 } 849 850 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 851 unsigned int id) 852 { 853 d->id = id; 854 d->c = c; 855 c->devices[id] = d; 856 857 if (id >= c->devices_max_used) 858 c->devices_max_used = id + 1; 859 860 closure_get(&c->caching); 861 } 862 863 static inline int first_minor_to_idx(int first_minor) 864 { 865 return (first_minor/BCACHE_MINORS); 866 } 867 868 static inline int idx_to_first_minor(int idx) 869 { 870 return (idx * BCACHE_MINORS); 871 } 872 873 static void bcache_device_free(struct bcache_device *d) 874 { 875 struct gendisk *disk = d->disk; 876 877 lockdep_assert_held(&bch_register_lock); 878 879 if (disk) 880 pr_info("%s stopped\n", disk->disk_name); 881 else 882 pr_err("bcache device (NULL gendisk) stopped\n"); 883 884 if (d->c) 885 bcache_device_detach(d); 886 887 if (disk) { 888 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 889 890 if (disk_added) 891 del_gendisk(disk); 892 893 blk_cleanup_disk(disk); 894 ida_simple_remove(&bcache_device_idx, 895 first_minor_to_idx(disk->first_minor)); 896 } 897 898 bioset_exit(&d->bio_split); 899 kvfree(d->full_dirty_stripes); 900 kvfree(d->stripe_sectors_dirty); 901 902 closure_debug_destroy(&d->cl); 903 } 904 905 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 906 sector_t sectors, struct block_device *cached_bdev, 907 const struct block_device_operations *ops) 908 { 909 struct request_queue *q; 910 const size_t max_stripes = min_t(size_t, INT_MAX, 911 SIZE_MAX / sizeof(atomic_t)); 912 uint64_t n; 913 int idx; 914 915 if (!d->stripe_size) 916 d->stripe_size = 1 << 31; 917 918 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 919 if (!n || n > max_stripes) { 920 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 921 n); 922 return -ENOMEM; 923 } 924 d->nr_stripes = n; 925 926 n = d->nr_stripes * sizeof(atomic_t); 927 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 928 if (!d->stripe_sectors_dirty) 929 return -ENOMEM; 930 931 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 932 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 933 if (!d->full_dirty_stripes) 934 return -ENOMEM; 935 936 idx = ida_simple_get(&bcache_device_idx, 0, 937 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 938 if (idx < 0) 939 return idx; 940 941 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 942 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 943 goto err; 944 945 d->disk = blk_alloc_disk(NUMA_NO_NODE); 946 if (!d->disk) 947 goto err; 948 949 set_capacity(d->disk, sectors); 950 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 951 952 d->disk->major = bcache_major; 953 d->disk->first_minor = idx_to_first_minor(idx); 954 d->disk->minors = BCACHE_MINORS; 955 d->disk->fops = ops; 956 d->disk->private_data = d; 957 958 q = d->disk->queue; 959 q->limits.max_hw_sectors = UINT_MAX; 960 q->limits.max_sectors = UINT_MAX; 961 q->limits.max_segment_size = UINT_MAX; 962 q->limits.max_segments = BIO_MAX_VECS; 963 blk_queue_max_discard_sectors(q, UINT_MAX); 964 q->limits.discard_granularity = 512; 965 q->limits.io_min = block_size; 966 q->limits.logical_block_size = block_size; 967 q->limits.physical_block_size = block_size; 968 969 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 970 /* 971 * This should only happen with BCACHE_SB_VERSION_BDEV. 972 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 973 */ 974 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 975 d->disk->disk_name, q->limits.logical_block_size, 976 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 977 978 /* This also adjusts physical block size/min io size if needed */ 979 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 980 } 981 982 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 983 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 984 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 985 986 blk_queue_write_cache(q, true, true); 987 988 return 0; 989 990 err: 991 ida_simple_remove(&bcache_device_idx, idx); 992 return -ENOMEM; 993 994 } 995 996 /* Cached device */ 997 998 static void calc_cached_dev_sectors(struct cache_set *c) 999 { 1000 uint64_t sectors = 0; 1001 struct cached_dev *dc; 1002 1003 list_for_each_entry(dc, &c->cached_devs, list) 1004 sectors += bdev_sectors(dc->bdev); 1005 1006 c->cached_dev_sectors = sectors; 1007 } 1008 1009 #define BACKING_DEV_OFFLINE_TIMEOUT 5 1010 static int cached_dev_status_update(void *arg) 1011 { 1012 struct cached_dev *dc = arg; 1013 struct request_queue *q; 1014 1015 /* 1016 * If this delayed worker is stopping outside, directly quit here. 1017 * dc->io_disable might be set via sysfs interface, so check it 1018 * here too. 1019 */ 1020 while (!kthread_should_stop() && !dc->io_disable) { 1021 q = bdev_get_queue(dc->bdev); 1022 if (blk_queue_dying(q)) 1023 dc->offline_seconds++; 1024 else 1025 dc->offline_seconds = 0; 1026 1027 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1028 pr_err("%s: device offline for %d seconds\n", 1029 dc->backing_dev_name, 1030 BACKING_DEV_OFFLINE_TIMEOUT); 1031 pr_err("%s: disable I/O request due to backing device offline\n", 1032 dc->disk.name); 1033 dc->io_disable = true; 1034 /* let others know earlier that io_disable is true */ 1035 smp_mb(); 1036 bcache_device_stop(&dc->disk); 1037 break; 1038 } 1039 schedule_timeout_interruptible(HZ); 1040 } 1041 1042 wait_for_kthread_stop(); 1043 return 0; 1044 } 1045 1046 1047 int bch_cached_dev_run(struct cached_dev *dc) 1048 { 1049 int ret = 0; 1050 struct bcache_device *d = &dc->disk; 1051 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1052 char *env[] = { 1053 "DRIVER=bcache", 1054 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1055 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1056 NULL, 1057 }; 1058 1059 if (dc->io_disable) { 1060 pr_err("I/O disabled on cached dev %s\n", 1061 dc->backing_dev_name); 1062 ret = -EIO; 1063 goto out; 1064 } 1065 1066 if (atomic_xchg(&dc->running, 1)) { 1067 pr_info("cached dev %s is running already\n", 1068 dc->backing_dev_name); 1069 ret = -EBUSY; 1070 goto out; 1071 } 1072 1073 if (!d->c && 1074 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1075 struct closure cl; 1076 1077 closure_init_stack(&cl); 1078 1079 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1080 bch_write_bdev_super(dc, &cl); 1081 closure_sync(&cl); 1082 } 1083 1084 add_disk(d->disk); 1085 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1086 /* 1087 * won't show up in the uevent file, use udevadm monitor -e instead 1088 * only class / kset properties are persistent 1089 */ 1090 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1091 1092 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1093 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1094 &d->kobj, "bcache")) { 1095 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1096 ret = -ENOMEM; 1097 goto out; 1098 } 1099 1100 dc->status_update_thread = kthread_run(cached_dev_status_update, 1101 dc, "bcache_status_update"); 1102 if (IS_ERR(dc->status_update_thread)) { 1103 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1104 } 1105 1106 out: 1107 kfree(env[1]); 1108 kfree(env[2]); 1109 kfree(buf); 1110 return ret; 1111 } 1112 1113 /* 1114 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1115 * work dc->writeback_rate_update is running. Wait until the routine 1116 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1117 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1118 * seconds, give up waiting here and continue to cancel it too. 1119 */ 1120 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1121 { 1122 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1123 1124 do { 1125 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1126 &dc->disk.flags)) 1127 break; 1128 time_out--; 1129 schedule_timeout_interruptible(1); 1130 } while (time_out > 0); 1131 1132 if (time_out == 0) 1133 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1134 1135 cancel_delayed_work_sync(&dc->writeback_rate_update); 1136 } 1137 1138 static void cached_dev_detach_finish(struct work_struct *w) 1139 { 1140 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1141 1142 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1143 BUG_ON(refcount_read(&dc->count)); 1144 1145 1146 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1147 cancel_writeback_rate_update_dwork(dc); 1148 1149 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1150 kthread_stop(dc->writeback_thread); 1151 dc->writeback_thread = NULL; 1152 } 1153 1154 mutex_lock(&bch_register_lock); 1155 1156 calc_cached_dev_sectors(dc->disk.c); 1157 bcache_device_detach(&dc->disk); 1158 list_move(&dc->list, &uncached_devices); 1159 1160 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1161 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1162 1163 mutex_unlock(&bch_register_lock); 1164 1165 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1166 1167 /* Drop ref we took in cached_dev_detach() */ 1168 closure_put(&dc->disk.cl); 1169 } 1170 1171 void bch_cached_dev_detach(struct cached_dev *dc) 1172 { 1173 lockdep_assert_held(&bch_register_lock); 1174 1175 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1176 return; 1177 1178 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1179 return; 1180 1181 /* 1182 * Block the device from being closed and freed until we're finished 1183 * detaching 1184 */ 1185 closure_get(&dc->disk.cl); 1186 1187 bch_writeback_queue(dc); 1188 1189 cached_dev_put(dc); 1190 } 1191 1192 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1193 uint8_t *set_uuid) 1194 { 1195 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1196 struct uuid_entry *u; 1197 struct cached_dev *exist_dc, *t; 1198 int ret = 0; 1199 1200 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1201 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1202 return -ENOENT; 1203 1204 if (dc->disk.c) { 1205 pr_err("Can't attach %s: already attached\n", 1206 dc->backing_dev_name); 1207 return -EINVAL; 1208 } 1209 1210 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1211 pr_err("Can't attach %s: shutting down\n", 1212 dc->backing_dev_name); 1213 return -EINVAL; 1214 } 1215 1216 if (dc->sb.block_size < c->cache->sb.block_size) { 1217 /* Will die */ 1218 pr_err("Couldn't attach %s: block size less than set's block size\n", 1219 dc->backing_dev_name); 1220 return -EINVAL; 1221 } 1222 1223 /* Check whether already attached */ 1224 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1225 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1226 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1227 dc->backing_dev_name); 1228 1229 return -EINVAL; 1230 } 1231 } 1232 1233 u = uuid_find(c, dc->sb.uuid); 1234 1235 if (u && 1236 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1237 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1238 memcpy(u->uuid, invalid_uuid, 16); 1239 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1240 u = NULL; 1241 } 1242 1243 if (!u) { 1244 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1245 pr_err("Couldn't find uuid for %s in set\n", 1246 dc->backing_dev_name); 1247 return -ENOENT; 1248 } 1249 1250 u = uuid_find_empty(c); 1251 if (!u) { 1252 pr_err("Not caching %s, no room for UUID\n", 1253 dc->backing_dev_name); 1254 return -EINVAL; 1255 } 1256 } 1257 1258 /* 1259 * Deadlocks since we're called via sysfs... 1260 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1261 */ 1262 1263 if (bch_is_zero(u->uuid, 16)) { 1264 struct closure cl; 1265 1266 closure_init_stack(&cl); 1267 1268 memcpy(u->uuid, dc->sb.uuid, 16); 1269 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1270 u->first_reg = u->last_reg = rtime; 1271 bch_uuid_write(c); 1272 1273 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1274 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1275 1276 bch_write_bdev_super(dc, &cl); 1277 closure_sync(&cl); 1278 } else { 1279 u->last_reg = rtime; 1280 bch_uuid_write(c); 1281 } 1282 1283 bcache_device_attach(&dc->disk, c, u - c->uuids); 1284 list_move(&dc->list, &c->cached_devs); 1285 calc_cached_dev_sectors(c); 1286 1287 /* 1288 * dc->c must be set before dc->count != 0 - paired with the mb in 1289 * cached_dev_get() 1290 */ 1291 smp_wmb(); 1292 refcount_set(&dc->count, 1); 1293 1294 /* Block writeback thread, but spawn it */ 1295 down_write(&dc->writeback_lock); 1296 if (bch_cached_dev_writeback_start(dc)) { 1297 up_write(&dc->writeback_lock); 1298 pr_err("Couldn't start writeback facilities for %s\n", 1299 dc->disk.disk->disk_name); 1300 return -ENOMEM; 1301 } 1302 1303 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1304 atomic_set(&dc->has_dirty, 1); 1305 bch_writeback_queue(dc); 1306 } 1307 1308 bch_sectors_dirty_init(&dc->disk); 1309 1310 ret = bch_cached_dev_run(dc); 1311 if (ret && (ret != -EBUSY)) { 1312 up_write(&dc->writeback_lock); 1313 /* 1314 * bch_register_lock is held, bcache_device_stop() is not 1315 * able to be directly called. The kthread and kworker 1316 * created previously in bch_cached_dev_writeback_start() 1317 * have to be stopped manually here. 1318 */ 1319 kthread_stop(dc->writeback_thread); 1320 cancel_writeback_rate_update_dwork(dc); 1321 pr_err("Couldn't run cached device %s\n", 1322 dc->backing_dev_name); 1323 return ret; 1324 } 1325 1326 bcache_device_link(&dc->disk, c, "bdev"); 1327 atomic_inc(&c->attached_dev_nr); 1328 1329 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1330 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1331 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1332 set_disk_ro(dc->disk.disk, 1); 1333 } 1334 1335 /* Allow the writeback thread to proceed */ 1336 up_write(&dc->writeback_lock); 1337 1338 pr_info("Caching %s as %s on set %pU\n", 1339 dc->backing_dev_name, 1340 dc->disk.disk->disk_name, 1341 dc->disk.c->set_uuid); 1342 return 0; 1343 } 1344 1345 /* when dc->disk.kobj released */ 1346 void bch_cached_dev_release(struct kobject *kobj) 1347 { 1348 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1349 disk.kobj); 1350 kfree(dc); 1351 module_put(THIS_MODULE); 1352 } 1353 1354 static void cached_dev_free(struct closure *cl) 1355 { 1356 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1357 1358 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1359 cancel_writeback_rate_update_dwork(dc); 1360 1361 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1362 kthread_stop(dc->writeback_thread); 1363 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1364 kthread_stop(dc->status_update_thread); 1365 1366 mutex_lock(&bch_register_lock); 1367 1368 if (atomic_read(&dc->running)) 1369 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1370 bcache_device_free(&dc->disk); 1371 list_del(&dc->list); 1372 1373 mutex_unlock(&bch_register_lock); 1374 1375 if (dc->sb_disk) 1376 put_page(virt_to_page(dc->sb_disk)); 1377 1378 if (!IS_ERR_OR_NULL(dc->bdev)) 1379 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1380 1381 wake_up(&unregister_wait); 1382 1383 kobject_put(&dc->disk.kobj); 1384 } 1385 1386 static void cached_dev_flush(struct closure *cl) 1387 { 1388 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1389 struct bcache_device *d = &dc->disk; 1390 1391 mutex_lock(&bch_register_lock); 1392 bcache_device_unlink(d); 1393 mutex_unlock(&bch_register_lock); 1394 1395 bch_cache_accounting_destroy(&dc->accounting); 1396 kobject_del(&d->kobj); 1397 1398 continue_at(cl, cached_dev_free, system_wq); 1399 } 1400 1401 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1402 { 1403 int ret; 1404 struct io *io; 1405 struct request_queue *q = bdev_get_queue(dc->bdev); 1406 1407 __module_get(THIS_MODULE); 1408 INIT_LIST_HEAD(&dc->list); 1409 closure_init(&dc->disk.cl, NULL); 1410 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1411 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1412 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1413 sema_init(&dc->sb_write_mutex, 1); 1414 INIT_LIST_HEAD(&dc->io_lru); 1415 spin_lock_init(&dc->io_lock); 1416 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1417 1418 dc->sequential_cutoff = 4 << 20; 1419 1420 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1421 list_add(&io->lru, &dc->io_lru); 1422 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1423 } 1424 1425 dc->disk.stripe_size = q->limits.io_opt >> 9; 1426 1427 if (dc->disk.stripe_size) 1428 dc->partial_stripes_expensive = 1429 q->limits.raid_partial_stripes_expensive; 1430 1431 ret = bcache_device_init(&dc->disk, block_size, 1432 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1433 dc->bdev, &bcache_cached_ops); 1434 if (ret) 1435 return ret; 1436 1437 blk_queue_io_opt(dc->disk.disk->queue, 1438 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1439 1440 atomic_set(&dc->io_errors, 0); 1441 dc->io_disable = false; 1442 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1443 /* default to auto */ 1444 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1445 1446 bch_cached_dev_request_init(dc); 1447 bch_cached_dev_writeback_init(dc); 1448 return 0; 1449 } 1450 1451 /* Cached device - bcache superblock */ 1452 1453 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1454 struct block_device *bdev, 1455 struct cached_dev *dc) 1456 { 1457 const char *err = "cannot allocate memory"; 1458 struct cache_set *c; 1459 int ret = -ENOMEM; 1460 1461 bdevname(bdev, dc->backing_dev_name); 1462 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1463 dc->bdev = bdev; 1464 dc->bdev->bd_holder = dc; 1465 dc->sb_disk = sb_disk; 1466 1467 if (cached_dev_init(dc, sb->block_size << 9)) 1468 goto err; 1469 1470 err = "error creating kobject"; 1471 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache")) 1472 goto err; 1473 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1474 goto err; 1475 1476 pr_info("registered backing device %s\n", dc->backing_dev_name); 1477 1478 list_add(&dc->list, &uncached_devices); 1479 /* attach to a matched cache set if it exists */ 1480 list_for_each_entry(c, &bch_cache_sets, list) 1481 bch_cached_dev_attach(dc, c, NULL); 1482 1483 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1484 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1485 err = "failed to run cached device"; 1486 ret = bch_cached_dev_run(dc); 1487 if (ret) 1488 goto err; 1489 } 1490 1491 return 0; 1492 err: 1493 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1494 bcache_device_stop(&dc->disk); 1495 return ret; 1496 } 1497 1498 /* Flash only volumes */ 1499 1500 /* When d->kobj released */ 1501 void bch_flash_dev_release(struct kobject *kobj) 1502 { 1503 struct bcache_device *d = container_of(kobj, struct bcache_device, 1504 kobj); 1505 kfree(d); 1506 } 1507 1508 static void flash_dev_free(struct closure *cl) 1509 { 1510 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1511 1512 mutex_lock(&bch_register_lock); 1513 atomic_long_sub(bcache_dev_sectors_dirty(d), 1514 &d->c->flash_dev_dirty_sectors); 1515 bcache_device_free(d); 1516 mutex_unlock(&bch_register_lock); 1517 kobject_put(&d->kobj); 1518 } 1519 1520 static void flash_dev_flush(struct closure *cl) 1521 { 1522 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1523 1524 mutex_lock(&bch_register_lock); 1525 bcache_device_unlink(d); 1526 mutex_unlock(&bch_register_lock); 1527 kobject_del(&d->kobj); 1528 continue_at(cl, flash_dev_free, system_wq); 1529 } 1530 1531 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1532 { 1533 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1534 GFP_KERNEL); 1535 if (!d) 1536 return -ENOMEM; 1537 1538 closure_init(&d->cl, NULL); 1539 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1540 1541 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1542 1543 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1544 NULL, &bcache_flash_ops)) 1545 goto err; 1546 1547 bcache_device_attach(d, c, u - c->uuids); 1548 bch_sectors_dirty_init(d); 1549 bch_flash_dev_request_init(d); 1550 add_disk(d->disk); 1551 1552 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1553 goto err; 1554 1555 bcache_device_link(d, c, "volume"); 1556 1557 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1558 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1559 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1560 set_disk_ro(d->disk, 1); 1561 } 1562 1563 return 0; 1564 err: 1565 kobject_put(&d->kobj); 1566 return -ENOMEM; 1567 } 1568 1569 static int flash_devs_run(struct cache_set *c) 1570 { 1571 int ret = 0; 1572 struct uuid_entry *u; 1573 1574 for (u = c->uuids; 1575 u < c->uuids + c->nr_uuids && !ret; 1576 u++) 1577 if (UUID_FLASH_ONLY(u)) 1578 ret = flash_dev_run(c, u); 1579 1580 return ret; 1581 } 1582 1583 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1584 { 1585 struct uuid_entry *u; 1586 1587 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1588 return -EINTR; 1589 1590 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1591 return -EPERM; 1592 1593 u = uuid_find_empty(c); 1594 if (!u) { 1595 pr_err("Can't create volume, no room for UUID\n"); 1596 return -EINVAL; 1597 } 1598 1599 get_random_bytes(u->uuid, 16); 1600 memset(u->label, 0, 32); 1601 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1602 1603 SET_UUID_FLASH_ONLY(u, 1); 1604 u->sectors = size >> 9; 1605 1606 bch_uuid_write(c); 1607 1608 return flash_dev_run(c, u); 1609 } 1610 1611 bool bch_cached_dev_error(struct cached_dev *dc) 1612 { 1613 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1614 return false; 1615 1616 dc->io_disable = true; 1617 /* make others know io_disable is true earlier */ 1618 smp_mb(); 1619 1620 pr_err("stop %s: too many IO errors on backing device %s\n", 1621 dc->disk.disk->disk_name, dc->backing_dev_name); 1622 1623 bcache_device_stop(&dc->disk); 1624 return true; 1625 } 1626 1627 /* Cache set */ 1628 1629 __printf(2, 3) 1630 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1631 { 1632 struct va_format vaf; 1633 va_list args; 1634 1635 if (c->on_error != ON_ERROR_PANIC && 1636 test_bit(CACHE_SET_STOPPING, &c->flags)) 1637 return false; 1638 1639 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1640 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1641 1642 /* 1643 * XXX: we can be called from atomic context 1644 * acquire_console_sem(); 1645 */ 1646 1647 va_start(args, fmt); 1648 1649 vaf.fmt = fmt; 1650 vaf.va = &args; 1651 1652 pr_err("error on %pU: %pV, disabling caching\n", 1653 c->set_uuid, &vaf); 1654 1655 va_end(args); 1656 1657 if (c->on_error == ON_ERROR_PANIC) 1658 panic("panic forced after error\n"); 1659 1660 bch_cache_set_unregister(c); 1661 return true; 1662 } 1663 1664 /* When c->kobj released */ 1665 void bch_cache_set_release(struct kobject *kobj) 1666 { 1667 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1668 1669 kfree(c); 1670 module_put(THIS_MODULE); 1671 } 1672 1673 static void cache_set_free(struct closure *cl) 1674 { 1675 struct cache_set *c = container_of(cl, struct cache_set, cl); 1676 struct cache *ca; 1677 1678 debugfs_remove(c->debug); 1679 1680 bch_open_buckets_free(c); 1681 bch_btree_cache_free(c); 1682 bch_journal_free(c); 1683 1684 mutex_lock(&bch_register_lock); 1685 bch_bset_sort_state_free(&c->sort); 1686 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1687 1688 ca = c->cache; 1689 if (ca) { 1690 ca->set = NULL; 1691 c->cache = NULL; 1692 kobject_put(&ca->kobj); 1693 } 1694 1695 1696 if (c->moving_gc_wq) 1697 destroy_workqueue(c->moving_gc_wq); 1698 bioset_exit(&c->bio_split); 1699 mempool_exit(&c->fill_iter); 1700 mempool_exit(&c->bio_meta); 1701 mempool_exit(&c->search); 1702 kfree(c->devices); 1703 1704 list_del(&c->list); 1705 mutex_unlock(&bch_register_lock); 1706 1707 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1708 wake_up(&unregister_wait); 1709 1710 closure_debug_destroy(&c->cl); 1711 kobject_put(&c->kobj); 1712 } 1713 1714 static void cache_set_flush(struct closure *cl) 1715 { 1716 struct cache_set *c = container_of(cl, struct cache_set, caching); 1717 struct cache *ca = c->cache; 1718 struct btree *b; 1719 1720 bch_cache_accounting_destroy(&c->accounting); 1721 1722 kobject_put(&c->internal); 1723 kobject_del(&c->kobj); 1724 1725 if (!IS_ERR_OR_NULL(c->gc_thread)) 1726 kthread_stop(c->gc_thread); 1727 1728 if (!IS_ERR_OR_NULL(c->root)) 1729 list_add(&c->root->list, &c->btree_cache); 1730 1731 /* 1732 * Avoid flushing cached nodes if cache set is retiring 1733 * due to too many I/O errors detected. 1734 */ 1735 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1736 list_for_each_entry(b, &c->btree_cache, list) { 1737 mutex_lock(&b->write_lock); 1738 if (btree_node_dirty(b)) 1739 __bch_btree_node_write(b, NULL); 1740 mutex_unlock(&b->write_lock); 1741 } 1742 1743 if (ca->alloc_thread) 1744 kthread_stop(ca->alloc_thread); 1745 1746 if (c->journal.cur) { 1747 cancel_delayed_work_sync(&c->journal.work); 1748 /* flush last journal entry if needed */ 1749 c->journal.work.work.func(&c->journal.work.work); 1750 } 1751 1752 closure_return(cl); 1753 } 1754 1755 /* 1756 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1757 * cache set is unregistering due to too many I/O errors. In this condition, 1758 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1759 * value and whether the broken cache has dirty data: 1760 * 1761 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1762 * BCH_CACHED_STOP_AUTO 0 NO 1763 * BCH_CACHED_STOP_AUTO 1 YES 1764 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1765 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1766 * 1767 * The expected behavior is, if stop_when_cache_set_failed is configured to 1768 * "auto" via sysfs interface, the bcache device will not be stopped if the 1769 * backing device is clean on the broken cache device. 1770 */ 1771 static void conditional_stop_bcache_device(struct cache_set *c, 1772 struct bcache_device *d, 1773 struct cached_dev *dc) 1774 { 1775 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1776 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1777 d->disk->disk_name, c->set_uuid); 1778 bcache_device_stop(d); 1779 } else if (atomic_read(&dc->has_dirty)) { 1780 /* 1781 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1782 * and dc->has_dirty == 1 1783 */ 1784 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1785 d->disk->disk_name); 1786 /* 1787 * There might be a small time gap that cache set is 1788 * released but bcache device is not. Inside this time 1789 * gap, regular I/O requests will directly go into 1790 * backing device as no cache set attached to. This 1791 * behavior may also introduce potential inconsistence 1792 * data in writeback mode while cache is dirty. 1793 * Therefore before calling bcache_device_stop() due 1794 * to a broken cache device, dc->io_disable should be 1795 * explicitly set to true. 1796 */ 1797 dc->io_disable = true; 1798 /* make others know io_disable is true earlier */ 1799 smp_mb(); 1800 bcache_device_stop(d); 1801 } else { 1802 /* 1803 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1804 * and dc->has_dirty == 0 1805 */ 1806 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1807 d->disk->disk_name); 1808 } 1809 } 1810 1811 static void __cache_set_unregister(struct closure *cl) 1812 { 1813 struct cache_set *c = container_of(cl, struct cache_set, caching); 1814 struct cached_dev *dc; 1815 struct bcache_device *d; 1816 size_t i; 1817 1818 mutex_lock(&bch_register_lock); 1819 1820 for (i = 0; i < c->devices_max_used; i++) { 1821 d = c->devices[i]; 1822 if (!d) 1823 continue; 1824 1825 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1826 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1827 dc = container_of(d, struct cached_dev, disk); 1828 bch_cached_dev_detach(dc); 1829 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1830 conditional_stop_bcache_device(c, d, dc); 1831 } else { 1832 bcache_device_stop(d); 1833 } 1834 } 1835 1836 mutex_unlock(&bch_register_lock); 1837 1838 continue_at(cl, cache_set_flush, system_wq); 1839 } 1840 1841 void bch_cache_set_stop(struct cache_set *c) 1842 { 1843 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1844 /* closure_fn set to __cache_set_unregister() */ 1845 closure_queue(&c->caching); 1846 } 1847 1848 void bch_cache_set_unregister(struct cache_set *c) 1849 { 1850 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1851 bch_cache_set_stop(c); 1852 } 1853 1854 #define alloc_meta_bucket_pages(gfp, sb) \ 1855 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1856 1857 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1858 { 1859 int iter_size; 1860 struct cache *ca = container_of(sb, struct cache, sb); 1861 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1862 1863 if (!c) 1864 return NULL; 1865 1866 __module_get(THIS_MODULE); 1867 closure_init(&c->cl, NULL); 1868 set_closure_fn(&c->cl, cache_set_free, system_wq); 1869 1870 closure_init(&c->caching, &c->cl); 1871 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1872 1873 /* Maybe create continue_at_noreturn() and use it here? */ 1874 closure_set_stopped(&c->cl); 1875 closure_put(&c->cl); 1876 1877 kobject_init(&c->kobj, &bch_cache_set_ktype); 1878 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1879 1880 bch_cache_accounting_init(&c->accounting, &c->cl); 1881 1882 memcpy(c->set_uuid, sb->set_uuid, 16); 1883 1884 c->cache = ca; 1885 c->cache->set = c; 1886 c->bucket_bits = ilog2(sb->bucket_size); 1887 c->block_bits = ilog2(sb->block_size); 1888 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1889 c->devices_max_used = 0; 1890 atomic_set(&c->attached_dev_nr, 0); 1891 c->btree_pages = meta_bucket_pages(sb); 1892 if (c->btree_pages > BTREE_MAX_PAGES) 1893 c->btree_pages = max_t(int, c->btree_pages / 4, 1894 BTREE_MAX_PAGES); 1895 1896 sema_init(&c->sb_write_mutex, 1); 1897 mutex_init(&c->bucket_lock); 1898 init_waitqueue_head(&c->btree_cache_wait); 1899 spin_lock_init(&c->btree_cannibalize_lock); 1900 init_waitqueue_head(&c->bucket_wait); 1901 init_waitqueue_head(&c->gc_wait); 1902 sema_init(&c->uuid_write_mutex, 1); 1903 1904 spin_lock_init(&c->btree_gc_time.lock); 1905 spin_lock_init(&c->btree_split_time.lock); 1906 spin_lock_init(&c->btree_read_time.lock); 1907 1908 bch_moving_init_cache_set(c); 1909 1910 INIT_LIST_HEAD(&c->list); 1911 INIT_LIST_HEAD(&c->cached_devs); 1912 INIT_LIST_HEAD(&c->btree_cache); 1913 INIT_LIST_HEAD(&c->btree_cache_freeable); 1914 INIT_LIST_HEAD(&c->btree_cache_freed); 1915 INIT_LIST_HEAD(&c->data_buckets); 1916 1917 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1918 sizeof(struct btree_iter_set); 1919 1920 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1921 if (!c->devices) 1922 goto err; 1923 1924 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1925 goto err; 1926 1927 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1928 sizeof(struct bbio) + 1929 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1930 goto err; 1931 1932 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1933 goto err; 1934 1935 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1936 BIOSET_NEED_RESCUER)) 1937 goto err; 1938 1939 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1940 if (!c->uuids) 1941 goto err; 1942 1943 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1944 if (!c->moving_gc_wq) 1945 goto err; 1946 1947 if (bch_journal_alloc(c)) 1948 goto err; 1949 1950 if (bch_btree_cache_alloc(c)) 1951 goto err; 1952 1953 if (bch_open_buckets_alloc(c)) 1954 goto err; 1955 1956 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1957 goto err; 1958 1959 c->congested_read_threshold_us = 2000; 1960 c->congested_write_threshold_us = 20000; 1961 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1962 c->idle_max_writeback_rate_enabled = 1; 1963 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1964 1965 return c; 1966 err: 1967 bch_cache_set_unregister(c); 1968 return NULL; 1969 } 1970 1971 static int run_cache_set(struct cache_set *c) 1972 { 1973 const char *err = "cannot allocate memory"; 1974 struct cached_dev *dc, *t; 1975 struct cache *ca = c->cache; 1976 struct closure cl; 1977 LIST_HEAD(journal); 1978 struct journal_replay *l; 1979 1980 closure_init_stack(&cl); 1981 1982 c->nbuckets = ca->sb.nbuckets; 1983 set_gc_sectors(c); 1984 1985 if (CACHE_SYNC(&c->cache->sb)) { 1986 struct bkey *k; 1987 struct jset *j; 1988 1989 err = "cannot allocate memory for journal"; 1990 if (bch_journal_read(c, &journal)) 1991 goto err; 1992 1993 pr_debug("btree_journal_read() done\n"); 1994 1995 err = "no journal entries found"; 1996 if (list_empty(&journal)) 1997 goto err; 1998 1999 j = &list_entry(journal.prev, struct journal_replay, list)->j; 2000 2001 err = "IO error reading priorities"; 2002 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 2003 goto err; 2004 2005 /* 2006 * If prio_read() fails it'll call cache_set_error and we'll 2007 * tear everything down right away, but if we perhaps checked 2008 * sooner we could avoid journal replay. 2009 */ 2010 2011 k = &j->btree_root; 2012 2013 err = "bad btree root"; 2014 if (__bch_btree_ptr_invalid(c, k)) 2015 goto err; 2016 2017 err = "error reading btree root"; 2018 c->root = bch_btree_node_get(c, NULL, k, 2019 j->btree_level, 2020 true, NULL); 2021 if (IS_ERR_OR_NULL(c->root)) 2022 goto err; 2023 2024 list_del_init(&c->root->list); 2025 rw_unlock(true, c->root); 2026 2027 err = uuid_read(c, j, &cl); 2028 if (err) 2029 goto err; 2030 2031 err = "error in recovery"; 2032 if (bch_btree_check(c)) 2033 goto err; 2034 2035 bch_journal_mark(c, &journal); 2036 bch_initial_gc_finish(c); 2037 pr_debug("btree_check() done\n"); 2038 2039 /* 2040 * bcache_journal_next() can't happen sooner, or 2041 * btree_gc_finish() will give spurious errors about last_gc > 2042 * gc_gen - this is a hack but oh well. 2043 */ 2044 bch_journal_next(&c->journal); 2045 2046 err = "error starting allocator thread"; 2047 if (bch_cache_allocator_start(ca)) 2048 goto err; 2049 2050 /* 2051 * First place it's safe to allocate: btree_check() and 2052 * btree_gc_finish() have to run before we have buckets to 2053 * allocate, and bch_bucket_alloc_set() might cause a journal 2054 * entry to be written so bcache_journal_next() has to be called 2055 * first. 2056 * 2057 * If the uuids were in the old format we have to rewrite them 2058 * before the next journal entry is written: 2059 */ 2060 if (j->version < BCACHE_JSET_VERSION_UUID) 2061 __uuid_write(c); 2062 2063 err = "bcache: replay journal failed"; 2064 if (bch_journal_replay(c, &journal)) 2065 goto err; 2066 } else { 2067 unsigned int j; 2068 2069 pr_notice("invalidating existing data\n"); 2070 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2071 2, SB_JOURNAL_BUCKETS); 2072 2073 for (j = 0; j < ca->sb.keys; j++) 2074 ca->sb.d[j] = ca->sb.first_bucket + j; 2075 2076 bch_initial_gc_finish(c); 2077 2078 err = "error starting allocator thread"; 2079 if (bch_cache_allocator_start(ca)) 2080 goto err; 2081 2082 mutex_lock(&c->bucket_lock); 2083 bch_prio_write(ca, true); 2084 mutex_unlock(&c->bucket_lock); 2085 2086 err = "cannot allocate new UUID bucket"; 2087 if (__uuid_write(c)) 2088 goto err; 2089 2090 err = "cannot allocate new btree root"; 2091 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2092 if (IS_ERR_OR_NULL(c->root)) 2093 goto err; 2094 2095 mutex_lock(&c->root->write_lock); 2096 bkey_copy_key(&c->root->key, &MAX_KEY); 2097 bch_btree_node_write(c->root, &cl); 2098 mutex_unlock(&c->root->write_lock); 2099 2100 bch_btree_set_root(c->root); 2101 rw_unlock(true, c->root); 2102 2103 /* 2104 * We don't want to write the first journal entry until 2105 * everything is set up - fortunately journal entries won't be 2106 * written until the SET_CACHE_SYNC() here: 2107 */ 2108 SET_CACHE_SYNC(&c->cache->sb, true); 2109 2110 bch_journal_next(&c->journal); 2111 bch_journal_meta(c, &cl); 2112 } 2113 2114 err = "error starting gc thread"; 2115 if (bch_gc_thread_start(c)) 2116 goto err; 2117 2118 closure_sync(&cl); 2119 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2120 bcache_write_super(c); 2121 2122 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2123 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2124 2125 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2126 bch_cached_dev_attach(dc, c, NULL); 2127 2128 flash_devs_run(c); 2129 2130 set_bit(CACHE_SET_RUNNING, &c->flags); 2131 return 0; 2132 err: 2133 while (!list_empty(&journal)) { 2134 l = list_first_entry(&journal, struct journal_replay, list); 2135 list_del(&l->list); 2136 kfree(l); 2137 } 2138 2139 closure_sync(&cl); 2140 2141 bch_cache_set_error(c, "%s", err); 2142 2143 return -EIO; 2144 } 2145 2146 static const char *register_cache_set(struct cache *ca) 2147 { 2148 char buf[12]; 2149 const char *err = "cannot allocate memory"; 2150 struct cache_set *c; 2151 2152 list_for_each_entry(c, &bch_cache_sets, list) 2153 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2154 if (c->cache) 2155 return "duplicate cache set member"; 2156 2157 goto found; 2158 } 2159 2160 c = bch_cache_set_alloc(&ca->sb); 2161 if (!c) 2162 return err; 2163 2164 err = "error creating kobject"; 2165 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2166 kobject_add(&c->internal, &c->kobj, "internal")) 2167 goto err; 2168 2169 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2170 goto err; 2171 2172 bch_debug_init_cache_set(c); 2173 2174 list_add(&c->list, &bch_cache_sets); 2175 found: 2176 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2177 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2178 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2179 goto err; 2180 2181 kobject_get(&ca->kobj); 2182 ca->set = c; 2183 ca->set->cache = ca; 2184 2185 err = "failed to run cache set"; 2186 if (run_cache_set(c) < 0) 2187 goto err; 2188 2189 return NULL; 2190 err: 2191 bch_cache_set_unregister(c); 2192 return err; 2193 } 2194 2195 /* Cache device */ 2196 2197 /* When ca->kobj released */ 2198 void bch_cache_release(struct kobject *kobj) 2199 { 2200 struct cache *ca = container_of(kobj, struct cache, kobj); 2201 unsigned int i; 2202 2203 if (ca->set) { 2204 BUG_ON(ca->set->cache != ca); 2205 ca->set->cache = NULL; 2206 } 2207 2208 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2209 kfree(ca->prio_buckets); 2210 vfree(ca->buckets); 2211 2212 free_heap(&ca->heap); 2213 free_fifo(&ca->free_inc); 2214 2215 for (i = 0; i < RESERVE_NR; i++) 2216 free_fifo(&ca->free[i]); 2217 2218 if (ca->sb_disk) 2219 put_page(virt_to_page(ca->sb_disk)); 2220 2221 if (!IS_ERR_OR_NULL(ca->bdev)) 2222 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2223 2224 kfree(ca); 2225 module_put(THIS_MODULE); 2226 } 2227 2228 static int cache_alloc(struct cache *ca) 2229 { 2230 size_t free; 2231 size_t btree_buckets; 2232 struct bucket *b; 2233 int ret = -ENOMEM; 2234 const char *err = NULL; 2235 2236 __module_get(THIS_MODULE); 2237 kobject_init(&ca->kobj, &bch_cache_ktype); 2238 2239 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2240 2241 /* 2242 * when ca->sb.njournal_buckets is not zero, journal exists, 2243 * and in bch_journal_replay(), tree node may split, 2244 * so bucket of RESERVE_BTREE type is needed, 2245 * the worst situation is all journal buckets are valid journal, 2246 * and all the keys need to replay, 2247 * so the number of RESERVE_BTREE type buckets should be as much 2248 * as journal buckets 2249 */ 2250 btree_buckets = ca->sb.njournal_buckets ?: 8; 2251 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2252 if (!free) { 2253 ret = -EPERM; 2254 err = "ca->sb.nbuckets is too small"; 2255 goto err_free; 2256 } 2257 2258 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2259 GFP_KERNEL)) { 2260 err = "ca->free[RESERVE_BTREE] alloc failed"; 2261 goto err_btree_alloc; 2262 } 2263 2264 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2265 GFP_KERNEL)) { 2266 err = "ca->free[RESERVE_PRIO] alloc failed"; 2267 goto err_prio_alloc; 2268 } 2269 2270 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2271 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2272 goto err_movinggc_alloc; 2273 } 2274 2275 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2276 err = "ca->free[RESERVE_NONE] alloc failed"; 2277 goto err_none_alloc; 2278 } 2279 2280 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2281 err = "ca->free_inc alloc failed"; 2282 goto err_free_inc_alloc; 2283 } 2284 2285 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2286 err = "ca->heap alloc failed"; 2287 goto err_heap_alloc; 2288 } 2289 2290 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2291 ca->sb.nbuckets)); 2292 if (!ca->buckets) { 2293 err = "ca->buckets alloc failed"; 2294 goto err_buckets_alloc; 2295 } 2296 2297 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2298 prio_buckets(ca), 2), 2299 GFP_KERNEL); 2300 if (!ca->prio_buckets) { 2301 err = "ca->prio_buckets alloc failed"; 2302 goto err_prio_buckets_alloc; 2303 } 2304 2305 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2306 if (!ca->disk_buckets) { 2307 err = "ca->disk_buckets alloc failed"; 2308 goto err_disk_buckets_alloc; 2309 } 2310 2311 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2312 2313 for_each_bucket(b, ca) 2314 atomic_set(&b->pin, 0); 2315 return 0; 2316 2317 err_disk_buckets_alloc: 2318 kfree(ca->prio_buckets); 2319 err_prio_buckets_alloc: 2320 vfree(ca->buckets); 2321 err_buckets_alloc: 2322 free_heap(&ca->heap); 2323 err_heap_alloc: 2324 free_fifo(&ca->free_inc); 2325 err_free_inc_alloc: 2326 free_fifo(&ca->free[RESERVE_NONE]); 2327 err_none_alloc: 2328 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2329 err_movinggc_alloc: 2330 free_fifo(&ca->free[RESERVE_PRIO]); 2331 err_prio_alloc: 2332 free_fifo(&ca->free[RESERVE_BTREE]); 2333 err_btree_alloc: 2334 err_free: 2335 module_put(THIS_MODULE); 2336 if (err) 2337 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2338 return ret; 2339 } 2340 2341 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2342 struct block_device *bdev, struct cache *ca) 2343 { 2344 const char *err = NULL; /* must be set for any error case */ 2345 int ret = 0; 2346 2347 bdevname(bdev, ca->cache_dev_name); 2348 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2349 ca->bdev = bdev; 2350 ca->bdev->bd_holder = ca; 2351 ca->sb_disk = sb_disk; 2352 2353 if (blk_queue_discard(bdev_get_queue(bdev))) 2354 ca->discard = CACHE_DISCARD(&ca->sb); 2355 2356 ret = cache_alloc(ca); 2357 if (ret != 0) { 2358 /* 2359 * If we failed here, it means ca->kobj is not initialized yet, 2360 * kobject_put() won't be called and there is no chance to 2361 * call blkdev_put() to bdev in bch_cache_release(). So we 2362 * explicitly call blkdev_put() here. 2363 */ 2364 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2365 if (ret == -ENOMEM) 2366 err = "cache_alloc(): -ENOMEM"; 2367 else if (ret == -EPERM) 2368 err = "cache_alloc(): cache device is too small"; 2369 else 2370 err = "cache_alloc(): unknown error"; 2371 goto err; 2372 } 2373 2374 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) { 2375 err = "error calling kobject_add"; 2376 ret = -ENOMEM; 2377 goto out; 2378 } 2379 2380 mutex_lock(&bch_register_lock); 2381 err = register_cache_set(ca); 2382 mutex_unlock(&bch_register_lock); 2383 2384 if (err) { 2385 ret = -ENODEV; 2386 goto out; 2387 } 2388 2389 pr_info("registered cache device %s\n", ca->cache_dev_name); 2390 2391 out: 2392 kobject_put(&ca->kobj); 2393 2394 err: 2395 if (err) 2396 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2397 2398 return ret; 2399 } 2400 2401 /* Global interfaces/init */ 2402 2403 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2404 const char *buffer, size_t size); 2405 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2406 struct kobj_attribute *attr, 2407 const char *buffer, size_t size); 2408 2409 kobj_attribute_write(register, register_bcache); 2410 kobj_attribute_write(register_quiet, register_bcache); 2411 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2412 2413 static bool bch_is_open_backing(dev_t dev) 2414 { 2415 struct cache_set *c, *tc; 2416 struct cached_dev *dc, *t; 2417 2418 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2419 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2420 if (dc->bdev->bd_dev == dev) 2421 return true; 2422 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2423 if (dc->bdev->bd_dev == dev) 2424 return true; 2425 return false; 2426 } 2427 2428 static bool bch_is_open_cache(dev_t dev) 2429 { 2430 struct cache_set *c, *tc; 2431 2432 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2433 struct cache *ca = c->cache; 2434 2435 if (ca->bdev->bd_dev == dev) 2436 return true; 2437 } 2438 2439 return false; 2440 } 2441 2442 static bool bch_is_open(dev_t dev) 2443 { 2444 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2445 } 2446 2447 struct async_reg_args { 2448 struct delayed_work reg_work; 2449 char *path; 2450 struct cache_sb *sb; 2451 struct cache_sb_disk *sb_disk; 2452 struct block_device *bdev; 2453 }; 2454 2455 static void register_bdev_worker(struct work_struct *work) 2456 { 2457 int fail = false; 2458 struct async_reg_args *args = 2459 container_of(work, struct async_reg_args, reg_work.work); 2460 struct cached_dev *dc; 2461 2462 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2463 if (!dc) { 2464 fail = true; 2465 put_page(virt_to_page(args->sb_disk)); 2466 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2467 goto out; 2468 } 2469 2470 mutex_lock(&bch_register_lock); 2471 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2472 fail = true; 2473 mutex_unlock(&bch_register_lock); 2474 2475 out: 2476 if (fail) 2477 pr_info("error %s: fail to register backing device\n", 2478 args->path); 2479 kfree(args->sb); 2480 kfree(args->path); 2481 kfree(args); 2482 module_put(THIS_MODULE); 2483 } 2484 2485 static void register_cache_worker(struct work_struct *work) 2486 { 2487 int fail = false; 2488 struct async_reg_args *args = 2489 container_of(work, struct async_reg_args, reg_work.work); 2490 struct cache *ca; 2491 2492 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2493 if (!ca) { 2494 fail = true; 2495 put_page(virt_to_page(args->sb_disk)); 2496 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2497 goto out; 2498 } 2499 2500 /* blkdev_put() will be called in bch_cache_release() */ 2501 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2502 fail = true; 2503 2504 out: 2505 if (fail) 2506 pr_info("error %s: fail to register cache device\n", 2507 args->path); 2508 kfree(args->sb); 2509 kfree(args->path); 2510 kfree(args); 2511 module_put(THIS_MODULE); 2512 } 2513 2514 static void register_device_async(struct async_reg_args *args) 2515 { 2516 if (SB_IS_BDEV(args->sb)) 2517 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2518 else 2519 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2520 2521 /* 10 jiffies is enough for a delay */ 2522 queue_delayed_work(system_wq, &args->reg_work, 10); 2523 } 2524 2525 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2526 const char *buffer, size_t size) 2527 { 2528 const char *err; 2529 char *path = NULL; 2530 struct cache_sb *sb; 2531 struct cache_sb_disk *sb_disk; 2532 struct block_device *bdev; 2533 ssize_t ret; 2534 bool async_registration = false; 2535 2536 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2537 async_registration = true; 2538 #endif 2539 2540 ret = -EBUSY; 2541 err = "failed to reference bcache module"; 2542 if (!try_module_get(THIS_MODULE)) 2543 goto out; 2544 2545 /* For latest state of bcache_is_reboot */ 2546 smp_mb(); 2547 err = "bcache is in reboot"; 2548 if (bcache_is_reboot) 2549 goto out_module_put; 2550 2551 ret = -ENOMEM; 2552 err = "cannot allocate memory"; 2553 path = kstrndup(buffer, size, GFP_KERNEL); 2554 if (!path) 2555 goto out_module_put; 2556 2557 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2558 if (!sb) 2559 goto out_free_path; 2560 2561 ret = -EINVAL; 2562 err = "failed to open device"; 2563 bdev = blkdev_get_by_path(strim(path), 2564 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2565 sb); 2566 if (IS_ERR(bdev)) { 2567 if (bdev == ERR_PTR(-EBUSY)) { 2568 dev_t dev; 2569 2570 mutex_lock(&bch_register_lock); 2571 if (lookup_bdev(strim(path), &dev) == 0 && 2572 bch_is_open(dev)) 2573 err = "device already registered"; 2574 else 2575 err = "device busy"; 2576 mutex_unlock(&bch_register_lock); 2577 if (attr == &ksysfs_register_quiet) 2578 goto done; 2579 } 2580 goto out_free_sb; 2581 } 2582 2583 err = "failed to set blocksize"; 2584 if (set_blocksize(bdev, 4096)) 2585 goto out_blkdev_put; 2586 2587 err = read_super(sb, bdev, &sb_disk); 2588 if (err) 2589 goto out_blkdev_put; 2590 2591 err = "failed to register device"; 2592 2593 if (async_registration) { 2594 /* register in asynchronous way */ 2595 struct async_reg_args *args = 2596 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2597 2598 if (!args) { 2599 ret = -ENOMEM; 2600 err = "cannot allocate memory"; 2601 goto out_put_sb_page; 2602 } 2603 2604 args->path = path; 2605 args->sb = sb; 2606 args->sb_disk = sb_disk; 2607 args->bdev = bdev; 2608 register_device_async(args); 2609 /* No wait and returns to user space */ 2610 goto async_done; 2611 } 2612 2613 if (SB_IS_BDEV(sb)) { 2614 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2615 2616 if (!dc) 2617 goto out_put_sb_page; 2618 2619 mutex_lock(&bch_register_lock); 2620 ret = register_bdev(sb, sb_disk, bdev, dc); 2621 mutex_unlock(&bch_register_lock); 2622 /* blkdev_put() will be called in cached_dev_free() */ 2623 if (ret < 0) 2624 goto out_free_sb; 2625 } else { 2626 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2627 2628 if (!ca) 2629 goto out_put_sb_page; 2630 2631 /* blkdev_put() will be called in bch_cache_release() */ 2632 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2633 goto out_free_sb; 2634 } 2635 2636 done: 2637 kfree(sb); 2638 kfree(path); 2639 module_put(THIS_MODULE); 2640 async_done: 2641 return size; 2642 2643 out_put_sb_page: 2644 put_page(virt_to_page(sb_disk)); 2645 out_blkdev_put: 2646 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2647 out_free_sb: 2648 kfree(sb); 2649 out_free_path: 2650 kfree(path); 2651 path = NULL; 2652 out_module_put: 2653 module_put(THIS_MODULE); 2654 out: 2655 pr_info("error %s: %s\n", path?path:"", err); 2656 return ret; 2657 } 2658 2659 2660 struct pdev { 2661 struct list_head list; 2662 struct cached_dev *dc; 2663 }; 2664 2665 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2666 struct kobj_attribute *attr, 2667 const char *buffer, 2668 size_t size) 2669 { 2670 LIST_HEAD(pending_devs); 2671 ssize_t ret = size; 2672 struct cached_dev *dc, *tdc; 2673 struct pdev *pdev, *tpdev; 2674 struct cache_set *c, *tc; 2675 2676 mutex_lock(&bch_register_lock); 2677 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2678 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2679 if (!pdev) 2680 break; 2681 pdev->dc = dc; 2682 list_add(&pdev->list, &pending_devs); 2683 } 2684 2685 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2686 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2687 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2688 char *set_uuid = c->set_uuid; 2689 2690 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2691 list_del(&pdev->list); 2692 kfree(pdev); 2693 break; 2694 } 2695 } 2696 } 2697 mutex_unlock(&bch_register_lock); 2698 2699 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2700 pr_info("delete pdev %p\n", pdev); 2701 list_del(&pdev->list); 2702 bcache_device_stop(&pdev->dc->disk); 2703 kfree(pdev); 2704 } 2705 2706 return ret; 2707 } 2708 2709 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2710 { 2711 if (bcache_is_reboot) 2712 return NOTIFY_DONE; 2713 2714 if (code == SYS_DOWN || 2715 code == SYS_HALT || 2716 code == SYS_POWER_OFF) { 2717 DEFINE_WAIT(wait); 2718 unsigned long start = jiffies; 2719 bool stopped = false; 2720 2721 struct cache_set *c, *tc; 2722 struct cached_dev *dc, *tdc; 2723 2724 mutex_lock(&bch_register_lock); 2725 2726 if (bcache_is_reboot) 2727 goto out; 2728 2729 /* New registration is rejected since now */ 2730 bcache_is_reboot = true; 2731 /* 2732 * Make registering caller (if there is) on other CPU 2733 * core know bcache_is_reboot set to true earlier 2734 */ 2735 smp_mb(); 2736 2737 if (list_empty(&bch_cache_sets) && 2738 list_empty(&uncached_devices)) 2739 goto out; 2740 2741 mutex_unlock(&bch_register_lock); 2742 2743 pr_info("Stopping all devices:\n"); 2744 2745 /* 2746 * The reason bch_register_lock is not held to call 2747 * bch_cache_set_stop() and bcache_device_stop() is to 2748 * avoid potential deadlock during reboot, because cache 2749 * set or bcache device stopping process will acqurie 2750 * bch_register_lock too. 2751 * 2752 * We are safe here because bcache_is_reboot sets to 2753 * true already, register_bcache() will reject new 2754 * registration now. bcache_is_reboot also makes sure 2755 * bcache_reboot() won't be re-entered on by other thread, 2756 * so there is no race in following list iteration by 2757 * list_for_each_entry_safe(). 2758 */ 2759 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2760 bch_cache_set_stop(c); 2761 2762 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2763 bcache_device_stop(&dc->disk); 2764 2765 2766 /* 2767 * Give an early chance for other kthreads and 2768 * kworkers to stop themselves 2769 */ 2770 schedule(); 2771 2772 /* What's a condition variable? */ 2773 while (1) { 2774 long timeout = start + 10 * HZ - jiffies; 2775 2776 mutex_lock(&bch_register_lock); 2777 stopped = list_empty(&bch_cache_sets) && 2778 list_empty(&uncached_devices); 2779 2780 if (timeout < 0 || stopped) 2781 break; 2782 2783 prepare_to_wait(&unregister_wait, &wait, 2784 TASK_UNINTERRUPTIBLE); 2785 2786 mutex_unlock(&bch_register_lock); 2787 schedule_timeout(timeout); 2788 } 2789 2790 finish_wait(&unregister_wait, &wait); 2791 2792 if (stopped) 2793 pr_info("All devices stopped\n"); 2794 else 2795 pr_notice("Timeout waiting for devices to be closed\n"); 2796 out: 2797 mutex_unlock(&bch_register_lock); 2798 } 2799 2800 return NOTIFY_DONE; 2801 } 2802 2803 static struct notifier_block reboot = { 2804 .notifier_call = bcache_reboot, 2805 .priority = INT_MAX, /* before any real devices */ 2806 }; 2807 2808 static void bcache_exit(void) 2809 { 2810 bch_debug_exit(); 2811 bch_request_exit(); 2812 if (bcache_kobj) 2813 kobject_put(bcache_kobj); 2814 if (bcache_wq) 2815 destroy_workqueue(bcache_wq); 2816 if (bch_journal_wq) 2817 destroy_workqueue(bch_journal_wq); 2818 if (bch_flush_wq) 2819 destroy_workqueue(bch_flush_wq); 2820 bch_btree_exit(); 2821 2822 if (bcache_major) 2823 unregister_blkdev(bcache_major, "bcache"); 2824 unregister_reboot_notifier(&reboot); 2825 mutex_destroy(&bch_register_lock); 2826 } 2827 2828 /* Check and fixup module parameters */ 2829 static void check_module_parameters(void) 2830 { 2831 if (bch_cutoff_writeback_sync == 0) 2832 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2833 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2834 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2835 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2836 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2837 } 2838 2839 if (bch_cutoff_writeback == 0) 2840 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2841 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2842 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2843 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2844 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2845 } 2846 2847 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2848 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2849 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2850 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2851 } 2852 } 2853 2854 static int __init bcache_init(void) 2855 { 2856 static const struct attribute *files[] = { 2857 &ksysfs_register.attr, 2858 &ksysfs_register_quiet.attr, 2859 &ksysfs_pendings_cleanup.attr, 2860 NULL 2861 }; 2862 2863 check_module_parameters(); 2864 2865 mutex_init(&bch_register_lock); 2866 init_waitqueue_head(&unregister_wait); 2867 register_reboot_notifier(&reboot); 2868 2869 bcache_major = register_blkdev(0, "bcache"); 2870 if (bcache_major < 0) { 2871 unregister_reboot_notifier(&reboot); 2872 mutex_destroy(&bch_register_lock); 2873 return bcache_major; 2874 } 2875 2876 if (bch_btree_init()) 2877 goto err; 2878 2879 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2880 if (!bcache_wq) 2881 goto err; 2882 2883 /* 2884 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: 2885 * 2886 * 1. It used `system_wq` before which also does no memory reclaim. 2887 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and 2888 * reduced throughput can be observed. 2889 * 2890 * We still want to user our own queue to not congest the `system_wq`. 2891 */ 2892 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0); 2893 if (!bch_flush_wq) 2894 goto err; 2895 2896 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2897 if (!bch_journal_wq) 2898 goto err; 2899 2900 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2901 if (!bcache_kobj) 2902 goto err; 2903 2904 if (bch_request_init() || 2905 sysfs_create_files(bcache_kobj, files)) 2906 goto err; 2907 2908 bch_debug_init(); 2909 closure_debug_init(); 2910 2911 bcache_is_reboot = false; 2912 2913 return 0; 2914 err: 2915 bcache_exit(); 2916 return -ENOMEM; 2917 } 2918 2919 /* 2920 * Module hooks 2921 */ 2922 module_exit(bcache_exit); 2923 module_init(bcache_init); 2924 2925 module_param(bch_cutoff_writeback, uint, 0); 2926 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2927 2928 module_param(bch_cutoff_writeback_sync, uint, 0); 2929 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2930 2931 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2932 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2933 MODULE_LICENSE("GPL"); 2934