1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/pagemap.h> 20 #include <linux/debugfs.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/workqueue.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/reboot.h> 27 #include <linux/sysfs.h> 28 29 unsigned int bch_cutoff_writeback; 30 unsigned int bch_cutoff_writeback_sync; 31 32 static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35 }; 36 37 static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40 }; 41 42 static struct kobject *bcache_kobj; 43 struct mutex bch_register_lock; 44 bool bcache_is_reboot; 45 LIST_HEAD(bch_cache_sets); 46 static LIST_HEAD(uncached_devices); 47 48 static int bcache_major; 49 static DEFINE_IDA(bcache_device_idx); 50 static wait_queue_head_t unregister_wait; 51 struct workqueue_struct *bcache_wq; 52 struct workqueue_struct *bch_flush_wq; 53 struct workqueue_struct *bch_journal_wq; 54 55 56 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 57 /* limitation of partitions number on single bcache device */ 58 #define BCACHE_MINORS 128 59 /* limitation of bcache devices number on single system */ 60 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 61 62 /* Superblock */ 63 64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 65 { 66 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 67 68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 69 if (bch_has_feature_large_bucket(sb)) { 70 unsigned int max, order; 71 72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 73 order = le16_to_cpu(s->bucket_size); 74 /* 75 * bcache tool will make sure the overflow won't 76 * happen, an error message here is enough. 77 */ 78 if (order > max) 79 pr_err("Bucket size (1 << %u) overflows\n", 80 order); 81 bucket_size = 1 << order; 82 } else if (bch_has_feature_obso_large_bucket(sb)) { 83 bucket_size += 84 le16_to_cpu(s->obso_bucket_size_hi) << 16; 85 } 86 } 87 88 return bucket_size; 89 } 90 91 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 92 struct cache_sb_disk *s) 93 { 94 const char *err; 95 unsigned int i; 96 97 sb->first_bucket= le16_to_cpu(s->first_bucket); 98 sb->nbuckets = le64_to_cpu(s->nbuckets); 99 sb->bucket_size = get_bucket_size(sb, s); 100 101 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 103 104 err = "Too many journal buckets"; 105 if (sb->keys > SB_JOURNAL_BUCKETS) 106 goto err; 107 108 err = "Too many buckets"; 109 if (sb->nbuckets > LONG_MAX) 110 goto err; 111 112 err = "Not enough buckets"; 113 if (sb->nbuckets < 1 << 7) 114 goto err; 115 116 err = "Bad block size (not power of 2)"; 117 if (!is_power_of_2(sb->block_size)) 118 goto err; 119 120 err = "Bad block size (larger than page size)"; 121 if (sb->block_size > PAGE_SECTORS) 122 goto err; 123 124 err = "Bad bucket size (not power of 2)"; 125 if (!is_power_of_2(sb->bucket_size)) 126 goto err; 127 128 err = "Bad bucket size (smaller than page size)"; 129 if (sb->bucket_size < PAGE_SECTORS) 130 goto err; 131 132 err = "Invalid superblock: device too small"; 133 if (get_capacity(bdev->bd_disk) < 134 sb->bucket_size * sb->nbuckets) 135 goto err; 136 137 err = "Bad UUID"; 138 if (bch_is_zero(sb->set_uuid, 16)) 139 goto err; 140 141 err = "Bad cache device number in set"; 142 if (!sb->nr_in_set || 143 sb->nr_in_set <= sb->nr_this_dev || 144 sb->nr_in_set > MAX_CACHES_PER_SET) 145 goto err; 146 147 err = "Journal buckets not sequential"; 148 for (i = 0; i < sb->keys; i++) 149 if (sb->d[i] != sb->first_bucket + i) 150 goto err; 151 152 err = "Too many journal buckets"; 153 if (sb->first_bucket + sb->keys > sb->nbuckets) 154 goto err; 155 156 err = "Invalid superblock: first bucket comes before end of super"; 157 if (sb->first_bucket * sb->bucket_size < 16) 158 goto err; 159 160 err = NULL; 161 err: 162 return err; 163 } 164 165 166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 167 struct cache_sb_disk **res) 168 { 169 const char *err; 170 struct cache_sb_disk *s; 171 struct page *page; 172 unsigned int i; 173 174 page = read_cache_page_gfp(bdev->bd_mapping, 175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 176 if (IS_ERR(page)) 177 return "IO error"; 178 s = page_address(page) + offset_in_page(SB_OFFSET); 179 180 sb->offset = le64_to_cpu(s->offset); 181 sb->version = le64_to_cpu(s->version); 182 183 memcpy(sb->magic, s->magic, 16); 184 memcpy(sb->uuid, s->uuid, 16); 185 memcpy(sb->set_uuid, s->set_uuid, 16); 186 memcpy(sb->label, s->label, SB_LABEL_SIZE); 187 188 sb->flags = le64_to_cpu(s->flags); 189 sb->seq = le64_to_cpu(s->seq); 190 sb->last_mount = le32_to_cpu(s->last_mount); 191 sb->keys = le16_to_cpu(s->keys); 192 193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 194 sb->d[i] = le64_to_cpu(s->d[i]); 195 196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 197 sb->version, sb->flags, sb->seq, sb->keys); 198 199 err = "Not a bcache superblock (bad offset)"; 200 if (sb->offset != SB_SECTOR) 201 goto err; 202 203 err = "Not a bcache superblock (bad magic)"; 204 if (memcmp(sb->magic, bcache_magic, 16)) 205 goto err; 206 207 err = "Bad checksum"; 208 if (s->csum != csum_set(s)) 209 goto err; 210 211 err = "Bad UUID"; 212 if (bch_is_zero(sb->uuid, 16)) 213 goto err; 214 215 sb->block_size = le16_to_cpu(s->block_size); 216 217 err = "Superblock block size smaller than device block size"; 218 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 219 goto err; 220 221 switch (sb->version) { 222 case BCACHE_SB_VERSION_BDEV: 223 sb->data_offset = BDEV_DATA_START_DEFAULT; 224 break; 225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 227 sb->data_offset = le64_to_cpu(s->data_offset); 228 229 err = "Bad data offset"; 230 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 231 goto err; 232 233 break; 234 case BCACHE_SB_VERSION_CDEV: 235 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 236 err = read_super_common(sb, bdev, s); 237 if (err) 238 goto err; 239 break; 240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 241 /* 242 * Feature bits are needed in read_super_common(), 243 * convert them firstly. 244 */ 245 sb->feature_compat = le64_to_cpu(s->feature_compat); 246 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 248 249 /* Check incompatible features */ 250 err = "Unsupported compatible feature found"; 251 if (bch_has_unknown_compat_features(sb)) 252 goto err; 253 254 err = "Unsupported read-only compatible feature found"; 255 if (bch_has_unknown_ro_compat_features(sb)) 256 goto err; 257 258 err = "Unsupported incompatible feature found"; 259 if (bch_has_unknown_incompat_features(sb)) 260 goto err; 261 262 err = read_super_common(sb, bdev, s); 263 if (err) 264 goto err; 265 break; 266 default: 267 err = "Unsupported superblock version"; 268 goto err; 269 } 270 271 sb->last_mount = (u32)ktime_get_real_seconds(); 272 *res = s; 273 return NULL; 274 err: 275 put_page(page); 276 return err; 277 } 278 279 static void write_bdev_super_endio(struct bio *bio) 280 { 281 struct cached_dev *dc = bio->bi_private; 282 283 if (bio->bi_status) 284 bch_count_backing_io_errors(dc, bio); 285 286 closure_put(&dc->sb_write); 287 } 288 289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 290 struct bio *bio) 291 { 292 unsigned int i; 293 294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 295 bio->bi_iter.bi_sector = SB_SECTOR; 296 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 297 offset_in_page(out)); 298 299 out->offset = cpu_to_le64(sb->offset); 300 301 memcpy(out->uuid, sb->uuid, 16); 302 memcpy(out->set_uuid, sb->set_uuid, 16); 303 memcpy(out->label, sb->label, SB_LABEL_SIZE); 304 305 out->flags = cpu_to_le64(sb->flags); 306 out->seq = cpu_to_le64(sb->seq); 307 308 out->last_mount = cpu_to_le32(sb->last_mount); 309 out->first_bucket = cpu_to_le16(sb->first_bucket); 310 out->keys = cpu_to_le16(sb->keys); 311 312 for (i = 0; i < sb->keys; i++) 313 out->d[i] = cpu_to_le64(sb->d[i]); 314 315 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 316 out->feature_compat = cpu_to_le64(sb->feature_compat); 317 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 318 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 319 } 320 321 out->version = cpu_to_le64(sb->version); 322 out->csum = csum_set(out); 323 324 pr_debug("ver %llu, flags %llu, seq %llu\n", 325 sb->version, sb->flags, sb->seq); 326 327 submit_bio(bio); 328 } 329 330 static CLOSURE_CALLBACK(bch_write_bdev_super_unlock) 331 { 332 closure_type(dc, struct cached_dev, sb_write); 333 334 up(&dc->sb_write_mutex); 335 } 336 337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 338 { 339 struct closure *cl = &dc->sb_write; 340 struct bio *bio = &dc->sb_bio; 341 342 down(&dc->sb_write_mutex); 343 closure_init(cl, parent); 344 345 bio_init(bio, dc->bdev, dc->sb_bv, 1, 0); 346 bio->bi_end_io = write_bdev_super_endio; 347 bio->bi_private = dc; 348 349 closure_get(cl); 350 /* I/O request sent to backing device */ 351 __write_super(&dc->sb, dc->sb_disk, bio); 352 353 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 354 } 355 356 static void write_super_endio(struct bio *bio) 357 { 358 struct cache *ca = bio->bi_private; 359 360 /* is_read = 0 */ 361 bch_count_io_errors(ca, bio->bi_status, 0, 362 "writing superblock"); 363 closure_put(&ca->set->sb_write); 364 } 365 366 static CLOSURE_CALLBACK(bcache_write_super_unlock) 367 { 368 closure_type(c, struct cache_set, sb_write); 369 370 up(&c->sb_write_mutex); 371 } 372 373 void bcache_write_super(struct cache_set *c) 374 { 375 struct closure *cl = &c->sb_write; 376 struct cache *ca = c->cache; 377 struct bio *bio = &ca->sb_bio; 378 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 379 380 down(&c->sb_write_mutex); 381 closure_init(cl, &c->cl); 382 383 ca->sb.seq++; 384 385 if (ca->sb.version < version) 386 ca->sb.version = version; 387 388 bio_init(bio, ca->bdev, ca->sb_bv, 1, 0); 389 bio->bi_end_io = write_super_endio; 390 bio->bi_private = ca; 391 392 closure_get(cl); 393 __write_super(&ca->sb, ca->sb_disk, bio); 394 395 closure_return_with_destructor(cl, bcache_write_super_unlock); 396 } 397 398 /* UUID io */ 399 400 static void uuid_endio(struct bio *bio) 401 { 402 struct closure *cl = bio->bi_private; 403 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 404 405 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 406 bch_bbio_free(bio, c); 407 closure_put(cl); 408 } 409 410 static CLOSURE_CALLBACK(uuid_io_unlock) 411 { 412 closure_type(c, struct cache_set, uuid_write); 413 414 up(&c->uuid_write_mutex); 415 } 416 417 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k, 418 struct closure *parent) 419 { 420 struct closure *cl = &c->uuid_write; 421 struct uuid_entry *u; 422 unsigned int i; 423 char buf[80]; 424 425 BUG_ON(!parent); 426 down(&c->uuid_write_mutex); 427 closure_init(cl, parent); 428 429 for (i = 0; i < KEY_PTRS(k); i++) { 430 struct bio *bio = bch_bbio_alloc(c); 431 432 bio->bi_opf = opf | REQ_SYNC | REQ_META; 433 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 434 435 bio->bi_end_io = uuid_endio; 436 bio->bi_private = cl; 437 bch_bio_map(bio, c->uuids); 438 439 bch_submit_bbio(bio, c, k, i); 440 441 if ((opf & REQ_OP_MASK) != REQ_OP_WRITE) 442 break; 443 } 444 445 bch_extent_to_text(buf, sizeof(buf), k); 446 pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ? 447 "wrote" : "read", buf); 448 449 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 450 if (!bch_is_zero(u->uuid, 16)) 451 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 452 u - c->uuids, u->uuid, u->label, 453 u->first_reg, u->last_reg, u->invalidated); 454 455 closure_return_with_destructor(cl, uuid_io_unlock); 456 } 457 458 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 459 { 460 struct bkey *k = &j->uuid_bucket; 461 462 if (__bch_btree_ptr_invalid(c, k)) 463 return "bad uuid pointer"; 464 465 bkey_copy(&c->uuid_bucket, k); 466 uuid_io(c, REQ_OP_READ, k, cl); 467 468 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 469 struct uuid_entry_v0 *u0 = (void *) c->uuids; 470 struct uuid_entry *u1 = (void *) c->uuids; 471 int i; 472 473 closure_sync(cl); 474 475 /* 476 * Since the new uuid entry is bigger than the old, we have to 477 * convert starting at the highest memory address and work down 478 * in order to do it in place 479 */ 480 481 for (i = c->nr_uuids - 1; 482 i >= 0; 483 --i) { 484 memcpy(u1[i].uuid, u0[i].uuid, 16); 485 memcpy(u1[i].label, u0[i].label, 32); 486 487 u1[i].first_reg = u0[i].first_reg; 488 u1[i].last_reg = u0[i].last_reg; 489 u1[i].invalidated = u0[i].invalidated; 490 491 u1[i].flags = 0; 492 u1[i].sectors = 0; 493 } 494 } 495 496 return NULL; 497 } 498 499 static int __uuid_write(struct cache_set *c) 500 { 501 BKEY_PADDED(key) k; 502 struct closure cl; 503 struct cache *ca = c->cache; 504 unsigned int size; 505 506 closure_init_stack(&cl); 507 lockdep_assert_held(&bch_register_lock); 508 509 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 510 return 1; 511 512 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 513 SET_KEY_SIZE(&k.key, size); 514 uuid_io(c, REQ_OP_WRITE, &k.key, &cl); 515 closure_sync(&cl); 516 517 /* Only one bucket used for uuid write */ 518 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 519 520 bkey_copy(&c->uuid_bucket, &k.key); 521 bkey_put(c, &k.key); 522 return 0; 523 } 524 525 int bch_uuid_write(struct cache_set *c) 526 { 527 int ret = __uuid_write(c); 528 529 if (!ret) 530 bch_journal_meta(c, NULL); 531 532 return ret; 533 } 534 535 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 536 { 537 struct uuid_entry *u; 538 539 for (u = c->uuids; 540 u < c->uuids + c->nr_uuids; u++) 541 if (!memcmp(u->uuid, uuid, 16)) 542 return u; 543 544 return NULL; 545 } 546 547 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 548 { 549 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 550 551 return uuid_find(c, zero_uuid); 552 } 553 554 /* 555 * Bucket priorities/gens: 556 * 557 * For each bucket, we store on disk its 558 * 8 bit gen 559 * 16 bit priority 560 * 561 * See alloc.c for an explanation of the gen. The priority is used to implement 562 * lru (and in the future other) cache replacement policies; for most purposes 563 * it's just an opaque integer. 564 * 565 * The gens and the priorities don't have a whole lot to do with each other, and 566 * it's actually the gens that must be written out at specific times - it's no 567 * big deal if the priorities don't get written, if we lose them we just reuse 568 * buckets in suboptimal order. 569 * 570 * On disk they're stored in a packed array, and in as many buckets are required 571 * to fit them all. The buckets we use to store them form a list; the journal 572 * header points to the first bucket, the first bucket points to the second 573 * bucket, et cetera. 574 * 575 * This code is used by the allocation code; periodically (whenever it runs out 576 * of buckets to allocate from) the allocation code will invalidate some 577 * buckets, but it can't use those buckets until their new gens are safely on 578 * disk. 579 */ 580 581 static void prio_endio(struct bio *bio) 582 { 583 struct cache *ca = bio->bi_private; 584 585 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 586 bch_bbio_free(bio, ca->set); 587 closure_put(&ca->prio); 588 } 589 590 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf) 591 { 592 struct closure *cl = &ca->prio; 593 struct bio *bio = bch_bbio_alloc(ca->set); 594 595 closure_init_stack(cl); 596 597 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 598 bio_set_dev(bio, ca->bdev); 599 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 600 601 bio->bi_end_io = prio_endio; 602 bio->bi_private = ca; 603 bio->bi_opf = opf | REQ_SYNC | REQ_META; 604 bch_bio_map(bio, ca->disk_buckets); 605 606 closure_bio_submit(ca->set, bio, &ca->prio); 607 closure_sync(cl); 608 } 609 610 int bch_prio_write(struct cache *ca, bool wait) 611 { 612 int i; 613 struct bucket *b; 614 struct closure cl; 615 616 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 617 fifo_used(&ca->free[RESERVE_PRIO]), 618 fifo_used(&ca->free[RESERVE_NONE]), 619 fifo_used(&ca->free_inc)); 620 621 /* 622 * Pre-check if there are enough free buckets. In the non-blocking 623 * scenario it's better to fail early rather than starting to allocate 624 * buckets and do a cleanup later in case of failure. 625 */ 626 if (!wait) { 627 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 628 fifo_used(&ca->free[RESERVE_NONE]); 629 if (prio_buckets(ca) > avail) 630 return -ENOMEM; 631 } 632 633 closure_init_stack(&cl); 634 635 lockdep_assert_held(&ca->set->bucket_lock); 636 637 ca->disk_buckets->seq++; 638 639 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 640 &ca->meta_sectors_written); 641 642 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 643 long bucket; 644 struct prio_set *p = ca->disk_buckets; 645 struct bucket_disk *d = p->data; 646 struct bucket_disk *end = d + prios_per_bucket(ca); 647 648 for (b = ca->buckets + i * prios_per_bucket(ca); 649 b < ca->buckets + ca->sb.nbuckets && d < end; 650 b++, d++) { 651 d->prio = cpu_to_le16(b->prio); 652 d->gen = b->gen; 653 } 654 655 p->next_bucket = ca->prio_buckets[i + 1]; 656 p->magic = pset_magic(&ca->sb); 657 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 658 659 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 660 BUG_ON(bucket == -1); 661 662 mutex_unlock(&ca->set->bucket_lock); 663 prio_io(ca, bucket, REQ_OP_WRITE); 664 mutex_lock(&ca->set->bucket_lock); 665 666 ca->prio_buckets[i] = bucket; 667 atomic_dec_bug(&ca->buckets[bucket].pin); 668 } 669 670 mutex_unlock(&ca->set->bucket_lock); 671 672 bch_journal_meta(ca->set, &cl); 673 closure_sync(&cl); 674 675 mutex_lock(&ca->set->bucket_lock); 676 677 /* 678 * Don't want the old priorities to get garbage collected until after we 679 * finish writing the new ones, and they're journalled 680 */ 681 for (i = 0; i < prio_buckets(ca); i++) { 682 if (ca->prio_last_buckets[i]) 683 __bch_bucket_free(ca, 684 &ca->buckets[ca->prio_last_buckets[i]]); 685 686 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 687 } 688 return 0; 689 } 690 691 static int prio_read(struct cache *ca, uint64_t bucket) 692 { 693 struct prio_set *p = ca->disk_buckets; 694 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 695 struct bucket *b; 696 unsigned int bucket_nr = 0; 697 int ret = -EIO; 698 699 for (b = ca->buckets; 700 b < ca->buckets + ca->sb.nbuckets; 701 b++, d++) { 702 if (d == end) { 703 ca->prio_buckets[bucket_nr] = bucket; 704 ca->prio_last_buckets[bucket_nr] = bucket; 705 bucket_nr++; 706 707 prio_io(ca, bucket, REQ_OP_READ); 708 709 if (p->csum != 710 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 711 pr_warn("bad csum reading priorities\n"); 712 goto out; 713 } 714 715 if (p->magic != pset_magic(&ca->sb)) { 716 pr_warn("bad magic reading priorities\n"); 717 goto out; 718 } 719 720 bucket = p->next_bucket; 721 d = p->data; 722 } 723 724 b->prio = le16_to_cpu(d->prio); 725 b->gen = b->last_gc = d->gen; 726 } 727 728 ret = 0; 729 out: 730 return ret; 731 } 732 733 /* Bcache device */ 734 735 static int open_dev(struct gendisk *disk, blk_mode_t mode) 736 { 737 struct bcache_device *d = disk->private_data; 738 739 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 740 return -ENXIO; 741 742 closure_get(&d->cl); 743 return 0; 744 } 745 746 static void release_dev(struct gendisk *b) 747 { 748 struct bcache_device *d = b->private_data; 749 750 closure_put(&d->cl); 751 } 752 753 static int ioctl_dev(struct block_device *b, blk_mode_t mode, 754 unsigned int cmd, unsigned long arg) 755 { 756 struct bcache_device *d = b->bd_disk->private_data; 757 758 return d->ioctl(d, mode, cmd, arg); 759 } 760 761 static const struct block_device_operations bcache_cached_ops = { 762 .submit_bio = cached_dev_submit_bio, 763 .open = open_dev, 764 .release = release_dev, 765 .ioctl = ioctl_dev, 766 .owner = THIS_MODULE, 767 }; 768 769 static const struct block_device_operations bcache_flash_ops = { 770 .submit_bio = flash_dev_submit_bio, 771 .open = open_dev, 772 .release = release_dev, 773 .ioctl = ioctl_dev, 774 .owner = THIS_MODULE, 775 }; 776 777 void bcache_device_stop(struct bcache_device *d) 778 { 779 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 780 /* 781 * closure_fn set to 782 * - cached device: cached_dev_flush() 783 * - flash dev: flash_dev_flush() 784 */ 785 closure_queue(&d->cl); 786 } 787 788 static void bcache_device_unlink(struct bcache_device *d) 789 { 790 lockdep_assert_held(&bch_register_lock); 791 792 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 793 struct cache *ca = d->c->cache; 794 795 sysfs_remove_link(&d->c->kobj, d->name); 796 sysfs_remove_link(&d->kobj, "cache"); 797 798 bd_unlink_disk_holder(ca->bdev, d->disk); 799 } 800 } 801 802 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 803 const char *name) 804 { 805 struct cache *ca = c->cache; 806 int ret; 807 808 bd_link_disk_holder(ca->bdev, d->disk); 809 810 snprintf(d->name, BCACHEDEVNAME_SIZE, 811 "%s%u", name, d->id); 812 813 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 814 if (ret < 0) 815 pr_err("Couldn't create device -> cache set symlink\n"); 816 817 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 818 if (ret < 0) 819 pr_err("Couldn't create cache set -> device symlink\n"); 820 821 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 822 } 823 824 static void bcache_device_detach(struct bcache_device *d) 825 { 826 lockdep_assert_held(&bch_register_lock); 827 828 atomic_dec(&d->c->attached_dev_nr); 829 830 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 831 struct uuid_entry *u = d->c->uuids + d->id; 832 833 SET_UUID_FLASH_ONLY(u, 0); 834 memcpy(u->uuid, invalid_uuid, 16); 835 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 836 bch_uuid_write(d->c); 837 } 838 839 bcache_device_unlink(d); 840 841 d->c->devices[d->id] = NULL; 842 closure_put(&d->c->caching); 843 d->c = NULL; 844 } 845 846 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 847 unsigned int id) 848 { 849 d->id = id; 850 d->c = c; 851 c->devices[id] = d; 852 853 if (id >= c->devices_max_used) 854 c->devices_max_used = id + 1; 855 856 closure_get(&c->caching); 857 } 858 859 static inline int first_minor_to_idx(int first_minor) 860 { 861 return (first_minor/BCACHE_MINORS); 862 } 863 864 static inline int idx_to_first_minor(int idx) 865 { 866 return (idx * BCACHE_MINORS); 867 } 868 869 static void bcache_device_free(struct bcache_device *d) 870 { 871 struct gendisk *disk = d->disk; 872 873 lockdep_assert_held(&bch_register_lock); 874 875 if (disk) 876 pr_info("%s stopped\n", disk->disk_name); 877 else 878 pr_err("bcache device (NULL gendisk) stopped\n"); 879 880 if (d->c) 881 bcache_device_detach(d); 882 883 if (disk) { 884 ida_free(&bcache_device_idx, 885 first_minor_to_idx(disk->first_minor)); 886 put_disk(disk); 887 } 888 889 bioset_exit(&d->bio_split); 890 kvfree(d->full_dirty_stripes); 891 kvfree(d->stripe_sectors_dirty); 892 893 closure_debug_destroy(&d->cl); 894 } 895 896 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 897 sector_t sectors, struct block_device *cached_bdev, 898 const struct block_device_operations *ops) 899 { 900 const size_t max_stripes = min_t(size_t, INT_MAX, 901 SIZE_MAX / sizeof(atomic_t)); 902 struct queue_limits lim = { 903 .max_hw_sectors = UINT_MAX, 904 .max_sectors = UINT_MAX, 905 .max_segment_size = UINT_MAX, 906 .max_segments = BIO_MAX_VECS, 907 .max_hw_discard_sectors = UINT_MAX, 908 .io_min = block_size, 909 .logical_block_size = block_size, 910 .physical_block_size = block_size, 911 .features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA, 912 }; 913 uint64_t n; 914 int idx; 915 916 if (cached_bdev) { 917 d->stripe_size = bdev_io_opt(cached_bdev) >> SECTOR_SHIFT; 918 lim.io_opt = umax(block_size, bdev_io_opt(cached_bdev)); 919 } 920 if (!d->stripe_size) 921 d->stripe_size = 1 << 31; 922 else if (d->stripe_size < BCH_MIN_STRIPE_SZ) 923 d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size); 924 925 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 926 if (!n || n > max_stripes) { 927 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 928 n); 929 return -ENOMEM; 930 } 931 d->nr_stripes = n; 932 933 n = d->nr_stripes * sizeof(atomic_t); 934 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 935 if (!d->stripe_sectors_dirty) 936 return -ENOMEM; 937 938 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 939 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 940 if (!d->full_dirty_stripes) 941 goto out_free_stripe_sectors_dirty; 942 943 idx = ida_alloc_max(&bcache_device_idx, BCACHE_DEVICE_IDX_MAX - 1, 944 GFP_KERNEL); 945 if (idx < 0) 946 goto out_free_full_dirty_stripes; 947 948 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 949 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 950 goto out_ida_remove; 951 952 if (lim.logical_block_size > PAGE_SIZE && cached_bdev) { 953 /* 954 * This should only happen with BCACHE_SB_VERSION_BDEV. 955 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 956 */ 957 pr_info("bcache%i: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 958 idx, lim.logical_block_size, 959 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 960 961 /* This also adjusts physical block size/min io size if needed */ 962 lim.logical_block_size = bdev_logical_block_size(cached_bdev); 963 } 964 965 d->disk = blk_alloc_disk(&lim, NUMA_NO_NODE); 966 if (IS_ERR(d->disk)) 967 goto out_bioset_exit; 968 969 set_capacity(d->disk, sectors); 970 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 971 972 d->disk->major = bcache_major; 973 d->disk->first_minor = idx_to_first_minor(idx); 974 d->disk->minors = BCACHE_MINORS; 975 d->disk->fops = ops; 976 d->disk->private_data = d; 977 return 0; 978 979 out_bioset_exit: 980 bioset_exit(&d->bio_split); 981 out_ida_remove: 982 ida_free(&bcache_device_idx, idx); 983 out_free_full_dirty_stripes: 984 kvfree(d->full_dirty_stripes); 985 out_free_stripe_sectors_dirty: 986 kvfree(d->stripe_sectors_dirty); 987 return -ENOMEM; 988 989 } 990 991 /* Cached device */ 992 993 static void calc_cached_dev_sectors(struct cache_set *c) 994 { 995 uint64_t sectors = 0; 996 struct cached_dev *dc; 997 998 list_for_each_entry(dc, &c->cached_devs, list) 999 sectors += bdev_nr_sectors(dc->bdev); 1000 1001 c->cached_dev_sectors = sectors; 1002 } 1003 1004 #define BACKING_DEV_OFFLINE_TIMEOUT 5 1005 static int cached_dev_status_update(void *arg) 1006 { 1007 struct cached_dev *dc = arg; 1008 struct request_queue *q; 1009 1010 /* 1011 * If this delayed worker is stopping outside, directly quit here. 1012 * dc->io_disable might be set via sysfs interface, so check it 1013 * here too. 1014 */ 1015 while (!kthread_should_stop() && !dc->io_disable) { 1016 q = bdev_get_queue(dc->bdev); 1017 if (blk_queue_dying(q)) 1018 dc->offline_seconds++; 1019 else 1020 dc->offline_seconds = 0; 1021 1022 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1023 pr_err("%pg: device offline for %d seconds\n", 1024 dc->bdev, 1025 BACKING_DEV_OFFLINE_TIMEOUT); 1026 pr_err("%s: disable I/O request due to backing device offline\n", 1027 dc->disk.name); 1028 dc->io_disable = true; 1029 /* let others know earlier that io_disable is true */ 1030 smp_mb(); 1031 bcache_device_stop(&dc->disk); 1032 break; 1033 } 1034 schedule_timeout_interruptible(HZ); 1035 } 1036 1037 wait_for_kthread_stop(); 1038 return 0; 1039 } 1040 1041 1042 int bch_cached_dev_run(struct cached_dev *dc) 1043 { 1044 int ret = 0; 1045 struct bcache_device *d = &dc->disk; 1046 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1047 char *env[] = { 1048 "DRIVER=bcache", 1049 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1050 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1051 NULL, 1052 }; 1053 1054 if (dc->io_disable) { 1055 pr_err("I/O disabled on cached dev %pg\n", dc->bdev); 1056 ret = -EIO; 1057 goto out; 1058 } 1059 1060 if (atomic_xchg(&dc->running, 1)) { 1061 pr_info("cached dev %pg is running already\n", dc->bdev); 1062 ret = -EBUSY; 1063 goto out; 1064 } 1065 1066 if (!d->c && 1067 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1068 struct closure cl; 1069 1070 closure_init_stack(&cl); 1071 1072 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1073 bch_write_bdev_super(dc, &cl); 1074 closure_sync(&cl); 1075 } 1076 1077 ret = add_disk(d->disk); 1078 if (ret) 1079 goto out; 1080 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1081 /* 1082 * won't show up in the uevent file, use udevadm monitor -e instead 1083 * only class / kset properties are persistent 1084 */ 1085 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1086 1087 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1088 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1089 &d->kobj, "bcache")) { 1090 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1091 ret = -ENOMEM; 1092 goto out; 1093 } 1094 1095 dc->status_update_thread = kthread_run(cached_dev_status_update, 1096 dc, "bcache_status_update"); 1097 if (IS_ERR(dc->status_update_thread)) { 1098 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1099 } 1100 1101 out: 1102 kfree(env[1]); 1103 kfree(env[2]); 1104 kfree(buf); 1105 return ret; 1106 } 1107 1108 /* 1109 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1110 * work dc->writeback_rate_update is running. Wait until the routine 1111 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1112 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1113 * seconds, give up waiting here and continue to cancel it too. 1114 */ 1115 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1116 { 1117 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1118 1119 do { 1120 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1121 &dc->disk.flags)) 1122 break; 1123 time_out--; 1124 schedule_timeout_interruptible(1); 1125 } while (time_out > 0); 1126 1127 if (time_out == 0) 1128 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1129 1130 cancel_delayed_work_sync(&dc->writeback_rate_update); 1131 } 1132 1133 static void cached_dev_detach_finish(struct work_struct *w) 1134 { 1135 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1136 struct cache_set *c = dc->disk.c; 1137 1138 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1139 BUG_ON(refcount_read(&dc->count)); 1140 1141 1142 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1143 cancel_writeback_rate_update_dwork(dc); 1144 1145 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1146 kthread_stop(dc->writeback_thread); 1147 dc->writeback_thread = NULL; 1148 } 1149 1150 mutex_lock(&bch_register_lock); 1151 1152 bcache_device_detach(&dc->disk); 1153 list_move(&dc->list, &uncached_devices); 1154 calc_cached_dev_sectors(c); 1155 1156 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1157 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1158 1159 mutex_unlock(&bch_register_lock); 1160 1161 pr_info("Caching disabled for %pg\n", dc->bdev); 1162 1163 /* Drop ref we took in cached_dev_detach() */ 1164 closure_put(&dc->disk.cl); 1165 } 1166 1167 void bch_cached_dev_detach(struct cached_dev *dc) 1168 { 1169 lockdep_assert_held(&bch_register_lock); 1170 1171 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1172 return; 1173 1174 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1175 return; 1176 1177 /* 1178 * Block the device from being closed and freed until we're finished 1179 * detaching 1180 */ 1181 closure_get(&dc->disk.cl); 1182 1183 bch_writeback_queue(dc); 1184 1185 cached_dev_put(dc); 1186 } 1187 1188 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1189 uint8_t *set_uuid) 1190 { 1191 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1192 struct uuid_entry *u; 1193 struct cached_dev *exist_dc, *t; 1194 int ret = 0; 1195 1196 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1197 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1198 return -ENOENT; 1199 1200 if (dc->disk.c) { 1201 pr_err("Can't attach %pg: already attached\n", dc->bdev); 1202 return -EINVAL; 1203 } 1204 1205 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1206 pr_err("Can't attach %pg: shutting down\n", dc->bdev); 1207 return -EINVAL; 1208 } 1209 1210 if (dc->sb.block_size < c->cache->sb.block_size) { 1211 /* Will die */ 1212 pr_err("Couldn't attach %pg: block size less than set's block size\n", 1213 dc->bdev); 1214 return -EINVAL; 1215 } 1216 1217 /* Check whether already attached */ 1218 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1219 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1220 pr_err("Tried to attach %pg but duplicate UUID already attached\n", 1221 dc->bdev); 1222 1223 return -EINVAL; 1224 } 1225 } 1226 1227 u = uuid_find(c, dc->sb.uuid); 1228 1229 if (u && 1230 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1231 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1232 memcpy(u->uuid, invalid_uuid, 16); 1233 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1234 u = NULL; 1235 } 1236 1237 if (!u) { 1238 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1239 pr_err("Couldn't find uuid for %pg in set\n", dc->bdev); 1240 return -ENOENT; 1241 } 1242 1243 u = uuid_find_empty(c); 1244 if (!u) { 1245 pr_err("Not caching %pg, no room for UUID\n", dc->bdev); 1246 return -EINVAL; 1247 } 1248 } 1249 1250 /* 1251 * Deadlocks since we're called via sysfs... 1252 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1253 */ 1254 1255 if (bch_is_zero(u->uuid, 16)) { 1256 struct closure cl; 1257 1258 closure_init_stack(&cl); 1259 1260 memcpy(u->uuid, dc->sb.uuid, 16); 1261 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1262 u->first_reg = u->last_reg = rtime; 1263 bch_uuid_write(c); 1264 1265 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1266 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1267 1268 bch_write_bdev_super(dc, &cl); 1269 closure_sync(&cl); 1270 } else { 1271 u->last_reg = rtime; 1272 bch_uuid_write(c); 1273 } 1274 1275 bcache_device_attach(&dc->disk, c, u - c->uuids); 1276 list_move(&dc->list, &c->cached_devs); 1277 calc_cached_dev_sectors(c); 1278 1279 /* 1280 * dc->c must be set before dc->count != 0 - paired with the mb in 1281 * cached_dev_get() 1282 */ 1283 smp_wmb(); 1284 refcount_set(&dc->count, 1); 1285 1286 /* Block writeback thread, but spawn it */ 1287 down_write(&dc->writeback_lock); 1288 if (bch_cached_dev_writeback_start(dc)) { 1289 up_write(&dc->writeback_lock); 1290 pr_err("Couldn't start writeback facilities for %s\n", 1291 dc->disk.disk->disk_name); 1292 return -ENOMEM; 1293 } 1294 1295 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1296 atomic_set(&dc->has_dirty, 1); 1297 bch_writeback_queue(dc); 1298 } 1299 1300 bch_sectors_dirty_init(&dc->disk); 1301 1302 ret = bch_cached_dev_run(dc); 1303 if (ret && (ret != -EBUSY)) { 1304 up_write(&dc->writeback_lock); 1305 /* 1306 * bch_register_lock is held, bcache_device_stop() is not 1307 * able to be directly called. The kthread and kworker 1308 * created previously in bch_cached_dev_writeback_start() 1309 * have to be stopped manually here. 1310 */ 1311 kthread_stop(dc->writeback_thread); 1312 cancel_writeback_rate_update_dwork(dc); 1313 pr_err("Couldn't run cached device %pg\n", dc->bdev); 1314 return ret; 1315 } 1316 1317 bcache_device_link(&dc->disk, c, "bdev"); 1318 atomic_inc(&c->attached_dev_nr); 1319 1320 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1321 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1322 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1323 set_disk_ro(dc->disk.disk, 1); 1324 } 1325 1326 /* Allow the writeback thread to proceed */ 1327 up_write(&dc->writeback_lock); 1328 1329 pr_info("Caching %pg as %s on set %pU\n", 1330 dc->bdev, 1331 dc->disk.disk->disk_name, 1332 dc->disk.c->set_uuid); 1333 return 0; 1334 } 1335 1336 /* when dc->disk.kobj released */ 1337 void bch_cached_dev_release(struct kobject *kobj) 1338 { 1339 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1340 disk.kobj); 1341 kfree(dc); 1342 module_put(THIS_MODULE); 1343 } 1344 1345 static CLOSURE_CALLBACK(cached_dev_free) 1346 { 1347 closure_type(dc, struct cached_dev, disk.cl); 1348 1349 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1350 cancel_writeback_rate_update_dwork(dc); 1351 1352 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1353 kthread_stop(dc->writeback_thread); 1354 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1355 kthread_stop(dc->status_update_thread); 1356 1357 mutex_lock(&bch_register_lock); 1358 1359 if (atomic_read(&dc->running)) { 1360 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1361 del_gendisk(dc->disk.disk); 1362 } 1363 bcache_device_free(&dc->disk); 1364 list_del(&dc->list); 1365 1366 mutex_unlock(&bch_register_lock); 1367 1368 if (dc->sb_disk) 1369 put_page(virt_to_page(dc->sb_disk)); 1370 1371 if (dc->bdev_file) 1372 fput(dc->bdev_file); 1373 1374 wake_up(&unregister_wait); 1375 1376 kobject_put(&dc->disk.kobj); 1377 } 1378 1379 static CLOSURE_CALLBACK(cached_dev_flush) 1380 { 1381 closure_type(dc, struct cached_dev, disk.cl); 1382 struct bcache_device *d = &dc->disk; 1383 1384 mutex_lock(&bch_register_lock); 1385 bcache_device_unlink(d); 1386 mutex_unlock(&bch_register_lock); 1387 1388 bch_cache_accounting_destroy(&dc->accounting); 1389 kobject_del(&d->kobj); 1390 1391 continue_at(cl, cached_dev_free, system_wq); 1392 } 1393 1394 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1395 { 1396 int ret; 1397 struct io *io; 1398 struct request_queue *q = bdev_get_queue(dc->bdev); 1399 1400 __module_get(THIS_MODULE); 1401 INIT_LIST_HEAD(&dc->list); 1402 closure_init(&dc->disk.cl, NULL); 1403 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1404 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1405 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1406 sema_init(&dc->sb_write_mutex, 1); 1407 INIT_LIST_HEAD(&dc->io_lru); 1408 spin_lock_init(&dc->io_lock); 1409 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1410 1411 dc->sequential_cutoff = 4 << 20; 1412 1413 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1414 list_add(&io->lru, &dc->io_lru); 1415 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1416 } 1417 1418 if (bdev_io_opt(dc->bdev)) 1419 dc->partial_stripes_expensive = !!(q->limits.features & 1420 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE); 1421 1422 ret = bcache_device_init(&dc->disk, block_size, 1423 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1424 dc->bdev, &bcache_cached_ops); 1425 if (ret) 1426 return ret; 1427 1428 atomic_set(&dc->io_errors, 0); 1429 dc->io_disable = false; 1430 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1431 /* default to auto */ 1432 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1433 1434 bch_cached_dev_request_init(dc); 1435 bch_cached_dev_writeback_init(dc); 1436 return 0; 1437 } 1438 1439 /* Cached device - bcache superblock */ 1440 1441 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1442 struct file *bdev_file, 1443 struct cached_dev *dc) 1444 { 1445 const char *err = "cannot allocate memory"; 1446 struct cache_set *c; 1447 int ret = -ENOMEM; 1448 1449 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1450 dc->bdev_file = bdev_file; 1451 dc->bdev = file_bdev(bdev_file); 1452 dc->sb_disk = sb_disk; 1453 1454 if (cached_dev_init(dc, sb->block_size << 9)) 1455 goto err; 1456 1457 err = "error creating kobject"; 1458 if (kobject_add(&dc->disk.kobj, bdev_kobj(dc->bdev), "bcache")) 1459 goto err; 1460 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1461 goto err; 1462 1463 pr_info("registered backing device %pg\n", dc->bdev); 1464 1465 list_add(&dc->list, &uncached_devices); 1466 /* attach to a matched cache set if it exists */ 1467 list_for_each_entry(c, &bch_cache_sets, list) 1468 bch_cached_dev_attach(dc, c, NULL); 1469 1470 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1471 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1472 err = "failed to run cached device"; 1473 ret = bch_cached_dev_run(dc); 1474 if (ret) 1475 goto err; 1476 } 1477 1478 return 0; 1479 err: 1480 pr_notice("error %pg: %s\n", dc->bdev, err); 1481 bcache_device_stop(&dc->disk); 1482 return ret; 1483 } 1484 1485 /* Flash only volumes */ 1486 1487 /* When d->kobj released */ 1488 void bch_flash_dev_release(struct kobject *kobj) 1489 { 1490 struct bcache_device *d = container_of(kobj, struct bcache_device, 1491 kobj); 1492 kfree(d); 1493 } 1494 1495 static CLOSURE_CALLBACK(flash_dev_free) 1496 { 1497 closure_type(d, struct bcache_device, cl); 1498 1499 mutex_lock(&bch_register_lock); 1500 atomic_long_sub(bcache_dev_sectors_dirty(d), 1501 &d->c->flash_dev_dirty_sectors); 1502 del_gendisk(d->disk); 1503 bcache_device_free(d); 1504 mutex_unlock(&bch_register_lock); 1505 kobject_put(&d->kobj); 1506 } 1507 1508 static CLOSURE_CALLBACK(flash_dev_flush) 1509 { 1510 closure_type(d, struct bcache_device, cl); 1511 1512 mutex_lock(&bch_register_lock); 1513 bcache_device_unlink(d); 1514 mutex_unlock(&bch_register_lock); 1515 kobject_del(&d->kobj); 1516 continue_at(cl, flash_dev_free, system_wq); 1517 } 1518 1519 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1520 { 1521 int err = -ENOMEM; 1522 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1523 GFP_KERNEL); 1524 if (!d) 1525 goto err_ret; 1526 1527 closure_init(&d->cl, NULL); 1528 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1529 1530 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1531 1532 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1533 NULL, &bcache_flash_ops)) 1534 goto err; 1535 1536 bcache_device_attach(d, c, u - c->uuids); 1537 bch_sectors_dirty_init(d); 1538 bch_flash_dev_request_init(d); 1539 err = add_disk(d->disk); 1540 if (err) 1541 goto err; 1542 1543 err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"); 1544 if (err) 1545 goto err; 1546 1547 bcache_device_link(d, c, "volume"); 1548 1549 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1550 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1551 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1552 set_disk_ro(d->disk, 1); 1553 } 1554 1555 return 0; 1556 err: 1557 kobject_put(&d->kobj); 1558 err_ret: 1559 return err; 1560 } 1561 1562 static int flash_devs_run(struct cache_set *c) 1563 { 1564 int ret = 0; 1565 struct uuid_entry *u; 1566 1567 for (u = c->uuids; 1568 u < c->uuids + c->nr_uuids && !ret; 1569 u++) 1570 if (UUID_FLASH_ONLY(u)) 1571 ret = flash_dev_run(c, u); 1572 1573 return ret; 1574 } 1575 1576 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1577 { 1578 struct uuid_entry *u; 1579 1580 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1581 return -EINTR; 1582 1583 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1584 return -EPERM; 1585 1586 u = uuid_find_empty(c); 1587 if (!u) { 1588 pr_err("Can't create volume, no room for UUID\n"); 1589 return -EINVAL; 1590 } 1591 1592 get_random_bytes(u->uuid, 16); 1593 memset(u->label, 0, 32); 1594 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1595 1596 SET_UUID_FLASH_ONLY(u, 1); 1597 u->sectors = size >> 9; 1598 1599 bch_uuid_write(c); 1600 1601 return flash_dev_run(c, u); 1602 } 1603 1604 bool bch_cached_dev_error(struct cached_dev *dc) 1605 { 1606 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1607 return false; 1608 1609 dc->io_disable = true; 1610 /* make others know io_disable is true earlier */ 1611 smp_mb(); 1612 1613 pr_err("stop %s: too many IO errors on backing device %pg\n", 1614 dc->disk.disk->disk_name, dc->bdev); 1615 1616 bcache_device_stop(&dc->disk); 1617 return true; 1618 } 1619 1620 /* Cache set */ 1621 1622 __printf(2, 3) 1623 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1624 { 1625 struct va_format vaf; 1626 va_list args; 1627 1628 if (c->on_error != ON_ERROR_PANIC && 1629 test_bit(CACHE_SET_STOPPING, &c->flags)) 1630 return false; 1631 1632 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1633 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1634 1635 /* 1636 * XXX: we can be called from atomic context 1637 * acquire_console_sem(); 1638 */ 1639 1640 va_start(args, fmt); 1641 1642 vaf.fmt = fmt; 1643 vaf.va = &args; 1644 1645 pr_err("error on %pU: %pV, disabling caching\n", 1646 c->set_uuid, &vaf); 1647 1648 va_end(args); 1649 1650 if (c->on_error == ON_ERROR_PANIC) 1651 panic("panic forced after error\n"); 1652 1653 bch_cache_set_unregister(c); 1654 return true; 1655 } 1656 1657 /* When c->kobj released */ 1658 void bch_cache_set_release(struct kobject *kobj) 1659 { 1660 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1661 1662 kfree(c); 1663 module_put(THIS_MODULE); 1664 } 1665 1666 static CLOSURE_CALLBACK(cache_set_free) 1667 { 1668 closure_type(c, struct cache_set, cl); 1669 struct cache *ca; 1670 1671 debugfs_remove(c->debug); 1672 1673 bch_open_buckets_free(c); 1674 bch_btree_cache_free(c); 1675 bch_journal_free(c); 1676 1677 mutex_lock(&bch_register_lock); 1678 bch_bset_sort_state_free(&c->sort); 1679 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1680 1681 ca = c->cache; 1682 if (ca) { 1683 ca->set = NULL; 1684 c->cache = NULL; 1685 kobject_put(&ca->kobj); 1686 } 1687 1688 1689 if (c->moving_gc_wq) 1690 destroy_workqueue(c->moving_gc_wq); 1691 bioset_exit(&c->bio_split); 1692 mempool_exit(&c->fill_iter); 1693 mempool_exit(&c->bio_meta); 1694 mempool_exit(&c->search); 1695 kfree(c->devices); 1696 1697 list_del(&c->list); 1698 mutex_unlock(&bch_register_lock); 1699 1700 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1701 wake_up(&unregister_wait); 1702 1703 closure_debug_destroy(&c->cl); 1704 kobject_put(&c->kobj); 1705 } 1706 1707 static CLOSURE_CALLBACK(cache_set_flush) 1708 { 1709 closure_type(c, struct cache_set, caching); 1710 struct cache *ca = c->cache; 1711 struct btree *b; 1712 1713 bch_cache_accounting_destroy(&c->accounting); 1714 1715 kobject_put(&c->internal); 1716 kobject_del(&c->kobj); 1717 1718 if (!IS_ERR_OR_NULL(c->gc_thread)) 1719 kthread_stop(c->gc_thread); 1720 1721 if (!IS_ERR(c->root)) 1722 list_add(&c->root->list, &c->btree_cache); 1723 1724 /* 1725 * Avoid flushing cached nodes if cache set is retiring 1726 * due to too many I/O errors detected. 1727 */ 1728 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1729 list_for_each_entry(b, &c->btree_cache, list) { 1730 mutex_lock(&b->write_lock); 1731 if (btree_node_dirty(b)) 1732 __bch_btree_node_write(b, NULL); 1733 mutex_unlock(&b->write_lock); 1734 } 1735 1736 if (ca->alloc_thread) 1737 kthread_stop(ca->alloc_thread); 1738 1739 if (c->journal.cur) { 1740 cancel_delayed_work_sync(&c->journal.work); 1741 /* flush last journal entry if needed */ 1742 c->journal.work.work.func(&c->journal.work.work); 1743 } 1744 1745 closure_return(cl); 1746 } 1747 1748 /* 1749 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1750 * cache set is unregistering due to too many I/O errors. In this condition, 1751 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1752 * value and whether the broken cache has dirty data: 1753 * 1754 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1755 * BCH_CACHED_STOP_AUTO 0 NO 1756 * BCH_CACHED_STOP_AUTO 1 YES 1757 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1758 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1759 * 1760 * The expected behavior is, if stop_when_cache_set_failed is configured to 1761 * "auto" via sysfs interface, the bcache device will not be stopped if the 1762 * backing device is clean on the broken cache device. 1763 */ 1764 static void conditional_stop_bcache_device(struct cache_set *c, 1765 struct bcache_device *d, 1766 struct cached_dev *dc) 1767 { 1768 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1769 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1770 d->disk->disk_name, c->set_uuid); 1771 bcache_device_stop(d); 1772 } else if (atomic_read(&dc->has_dirty)) { 1773 /* 1774 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1775 * and dc->has_dirty == 1 1776 */ 1777 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1778 d->disk->disk_name); 1779 /* 1780 * There might be a small time gap that cache set is 1781 * released but bcache device is not. Inside this time 1782 * gap, regular I/O requests will directly go into 1783 * backing device as no cache set attached to. This 1784 * behavior may also introduce potential inconsistence 1785 * data in writeback mode while cache is dirty. 1786 * Therefore before calling bcache_device_stop() due 1787 * to a broken cache device, dc->io_disable should be 1788 * explicitly set to true. 1789 */ 1790 dc->io_disable = true; 1791 /* make others know io_disable is true earlier */ 1792 smp_mb(); 1793 bcache_device_stop(d); 1794 } else { 1795 /* 1796 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1797 * and dc->has_dirty == 0 1798 */ 1799 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1800 d->disk->disk_name); 1801 } 1802 } 1803 1804 static CLOSURE_CALLBACK(__cache_set_unregister) 1805 { 1806 closure_type(c, struct cache_set, caching); 1807 struct cached_dev *dc; 1808 struct bcache_device *d; 1809 size_t i; 1810 1811 mutex_lock(&bch_register_lock); 1812 1813 for (i = 0; i < c->devices_max_used; i++) { 1814 d = c->devices[i]; 1815 if (!d) 1816 continue; 1817 1818 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1819 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1820 dc = container_of(d, struct cached_dev, disk); 1821 bch_cached_dev_detach(dc); 1822 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1823 conditional_stop_bcache_device(c, d, dc); 1824 } else { 1825 bcache_device_stop(d); 1826 } 1827 } 1828 1829 mutex_unlock(&bch_register_lock); 1830 1831 continue_at(cl, cache_set_flush, system_wq); 1832 } 1833 1834 void bch_cache_set_stop(struct cache_set *c) 1835 { 1836 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1837 /* closure_fn set to __cache_set_unregister() */ 1838 closure_queue(&c->caching); 1839 } 1840 1841 void bch_cache_set_unregister(struct cache_set *c) 1842 { 1843 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1844 bch_cache_set_stop(c); 1845 } 1846 1847 #define alloc_meta_bucket_pages(gfp, sb) \ 1848 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1849 1850 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1851 { 1852 int iter_size; 1853 struct cache *ca = container_of(sb, struct cache, sb); 1854 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1855 1856 if (!c) 1857 return NULL; 1858 1859 __module_get(THIS_MODULE); 1860 closure_init(&c->cl, NULL); 1861 set_closure_fn(&c->cl, cache_set_free, system_wq); 1862 1863 closure_init(&c->caching, &c->cl); 1864 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1865 1866 /* Maybe create continue_at_noreturn() and use it here? */ 1867 closure_set_stopped(&c->cl); 1868 closure_put(&c->cl); 1869 1870 kobject_init(&c->kobj, &bch_cache_set_ktype); 1871 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1872 1873 bch_cache_accounting_init(&c->accounting, &c->cl); 1874 1875 memcpy(c->set_uuid, sb->set_uuid, 16); 1876 1877 c->cache = ca; 1878 c->cache->set = c; 1879 c->bucket_bits = ilog2(sb->bucket_size); 1880 c->block_bits = ilog2(sb->block_size); 1881 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1882 c->devices_max_used = 0; 1883 atomic_set(&c->attached_dev_nr, 0); 1884 c->btree_pages = meta_bucket_pages(sb); 1885 if (c->btree_pages > BTREE_MAX_PAGES) 1886 c->btree_pages = max_t(int, c->btree_pages / 4, 1887 BTREE_MAX_PAGES); 1888 1889 sema_init(&c->sb_write_mutex, 1); 1890 mutex_init(&c->bucket_lock); 1891 init_waitqueue_head(&c->btree_cache_wait); 1892 spin_lock_init(&c->btree_cannibalize_lock); 1893 init_waitqueue_head(&c->bucket_wait); 1894 init_waitqueue_head(&c->gc_wait); 1895 sema_init(&c->uuid_write_mutex, 1); 1896 1897 spin_lock_init(&c->btree_gc_time.lock); 1898 spin_lock_init(&c->btree_split_time.lock); 1899 spin_lock_init(&c->btree_read_time.lock); 1900 1901 bch_moving_init_cache_set(c); 1902 1903 INIT_LIST_HEAD(&c->list); 1904 INIT_LIST_HEAD(&c->cached_devs); 1905 INIT_LIST_HEAD(&c->btree_cache); 1906 INIT_LIST_HEAD(&c->btree_cache_freeable); 1907 INIT_LIST_HEAD(&c->btree_cache_freed); 1908 INIT_LIST_HEAD(&c->data_buckets); 1909 1910 iter_size = sizeof(struct btree_iter) + 1911 ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size) * 1912 sizeof(struct btree_iter_set); 1913 1914 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1915 if (!c->devices) 1916 goto err; 1917 1918 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1919 goto err; 1920 1921 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1922 sizeof(struct bbio) + 1923 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1924 goto err; 1925 1926 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1927 goto err; 1928 1929 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1930 BIOSET_NEED_RESCUER)) 1931 goto err; 1932 1933 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1934 if (!c->uuids) 1935 goto err; 1936 1937 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1938 if (!c->moving_gc_wq) 1939 goto err; 1940 1941 if (bch_journal_alloc(c)) 1942 goto err; 1943 1944 if (bch_btree_cache_alloc(c)) 1945 goto err; 1946 1947 if (bch_open_buckets_alloc(c)) 1948 goto err; 1949 1950 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1951 goto err; 1952 1953 c->congested_read_threshold_us = 2000; 1954 c->congested_write_threshold_us = 20000; 1955 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1956 c->idle_max_writeback_rate_enabled = 1; 1957 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1958 1959 return c; 1960 err: 1961 bch_cache_set_unregister(c); 1962 return NULL; 1963 } 1964 1965 static int run_cache_set(struct cache_set *c) 1966 { 1967 const char *err = "cannot allocate memory"; 1968 struct cached_dev *dc, *t; 1969 struct cache *ca = c->cache; 1970 struct closure cl; 1971 LIST_HEAD(journal); 1972 struct journal_replay *l; 1973 1974 closure_init_stack(&cl); 1975 1976 c->nbuckets = ca->sb.nbuckets; 1977 set_gc_sectors(c); 1978 1979 if (CACHE_SYNC(&c->cache->sb)) { 1980 struct bkey *k; 1981 struct jset *j; 1982 1983 err = "cannot allocate memory for journal"; 1984 if (bch_journal_read(c, &journal)) 1985 goto err; 1986 1987 pr_debug("btree_journal_read() done\n"); 1988 1989 err = "no journal entries found"; 1990 if (list_empty(&journal)) 1991 goto err; 1992 1993 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1994 1995 err = "IO error reading priorities"; 1996 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 1997 goto err; 1998 1999 /* 2000 * If prio_read() fails it'll call cache_set_error and we'll 2001 * tear everything down right away, but if we perhaps checked 2002 * sooner we could avoid journal replay. 2003 */ 2004 2005 k = &j->btree_root; 2006 2007 err = "bad btree root"; 2008 if (__bch_btree_ptr_invalid(c, k)) 2009 goto err; 2010 2011 err = "error reading btree root"; 2012 c->root = bch_btree_node_get(c, NULL, k, 2013 j->btree_level, 2014 true, NULL); 2015 if (IS_ERR(c->root)) 2016 goto err; 2017 2018 list_del_init(&c->root->list); 2019 rw_unlock(true, c->root); 2020 2021 err = uuid_read(c, j, &cl); 2022 if (err) 2023 goto err; 2024 2025 err = "error in recovery"; 2026 if (bch_btree_check(c)) 2027 goto err; 2028 2029 bch_journal_mark(c, &journal); 2030 bch_initial_gc_finish(c); 2031 pr_debug("btree_check() done\n"); 2032 2033 /* 2034 * bcache_journal_next() can't happen sooner, or 2035 * btree_gc_finish() will give spurious errors about last_gc > 2036 * gc_gen - this is a hack but oh well. 2037 */ 2038 bch_journal_next(&c->journal); 2039 2040 err = "error starting allocator thread"; 2041 if (bch_cache_allocator_start(ca)) 2042 goto err; 2043 2044 /* 2045 * First place it's safe to allocate: btree_check() and 2046 * btree_gc_finish() have to run before we have buckets to 2047 * allocate, and bch_bucket_alloc_set() might cause a journal 2048 * entry to be written so bcache_journal_next() has to be called 2049 * first. 2050 * 2051 * If the uuids were in the old format we have to rewrite them 2052 * before the next journal entry is written: 2053 */ 2054 if (j->version < BCACHE_JSET_VERSION_UUID) 2055 __uuid_write(c); 2056 2057 err = "bcache: replay journal failed"; 2058 if (bch_journal_replay(c, &journal)) 2059 goto err; 2060 } else { 2061 unsigned int j; 2062 2063 pr_notice("invalidating existing data\n"); 2064 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2065 2, SB_JOURNAL_BUCKETS); 2066 2067 for (j = 0; j < ca->sb.keys; j++) 2068 ca->sb.d[j] = ca->sb.first_bucket + j; 2069 2070 bch_initial_gc_finish(c); 2071 2072 err = "error starting allocator thread"; 2073 if (bch_cache_allocator_start(ca)) 2074 goto err; 2075 2076 mutex_lock(&c->bucket_lock); 2077 bch_prio_write(ca, true); 2078 mutex_unlock(&c->bucket_lock); 2079 2080 err = "cannot allocate new UUID bucket"; 2081 if (__uuid_write(c)) 2082 goto err; 2083 2084 err = "cannot allocate new btree root"; 2085 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2086 if (IS_ERR(c->root)) 2087 goto err; 2088 2089 mutex_lock(&c->root->write_lock); 2090 bkey_copy_key(&c->root->key, &MAX_KEY); 2091 bch_btree_node_write(c->root, &cl); 2092 mutex_unlock(&c->root->write_lock); 2093 2094 bch_btree_set_root(c->root); 2095 rw_unlock(true, c->root); 2096 2097 /* 2098 * We don't want to write the first journal entry until 2099 * everything is set up - fortunately journal entries won't be 2100 * written until the SET_CACHE_SYNC() here: 2101 */ 2102 SET_CACHE_SYNC(&c->cache->sb, true); 2103 2104 bch_journal_next(&c->journal); 2105 bch_journal_meta(c, &cl); 2106 } 2107 2108 err = "error starting gc thread"; 2109 if (bch_gc_thread_start(c)) 2110 goto err; 2111 2112 closure_sync(&cl); 2113 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2114 bcache_write_super(c); 2115 2116 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2117 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2118 2119 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2120 bch_cached_dev_attach(dc, c, NULL); 2121 2122 flash_devs_run(c); 2123 2124 bch_journal_space_reserve(&c->journal); 2125 set_bit(CACHE_SET_RUNNING, &c->flags); 2126 return 0; 2127 err: 2128 while (!list_empty(&journal)) { 2129 l = list_first_entry(&journal, struct journal_replay, list); 2130 list_del(&l->list); 2131 kfree(l); 2132 } 2133 2134 closure_sync(&cl); 2135 2136 bch_cache_set_error(c, "%s", err); 2137 2138 return -EIO; 2139 } 2140 2141 static const char *register_cache_set(struct cache *ca) 2142 { 2143 char buf[12]; 2144 const char *err = "cannot allocate memory"; 2145 struct cache_set *c; 2146 2147 list_for_each_entry(c, &bch_cache_sets, list) 2148 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2149 if (c->cache) 2150 return "duplicate cache set member"; 2151 2152 goto found; 2153 } 2154 2155 c = bch_cache_set_alloc(&ca->sb); 2156 if (!c) 2157 return err; 2158 2159 err = "error creating kobject"; 2160 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2161 kobject_add(&c->internal, &c->kobj, "internal")) 2162 goto err; 2163 2164 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2165 goto err; 2166 2167 bch_debug_init_cache_set(c); 2168 2169 list_add(&c->list, &bch_cache_sets); 2170 found: 2171 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2172 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2173 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2174 goto err; 2175 2176 kobject_get(&ca->kobj); 2177 ca->set = c; 2178 ca->set->cache = ca; 2179 2180 err = "failed to run cache set"; 2181 if (run_cache_set(c) < 0) 2182 goto err; 2183 2184 return NULL; 2185 err: 2186 bch_cache_set_unregister(c); 2187 return err; 2188 } 2189 2190 /* Cache device */ 2191 2192 /* When ca->kobj released */ 2193 void bch_cache_release(struct kobject *kobj) 2194 { 2195 struct cache *ca = container_of(kobj, struct cache, kobj); 2196 unsigned int i; 2197 2198 if (ca->set) { 2199 BUG_ON(ca->set->cache != ca); 2200 ca->set->cache = NULL; 2201 } 2202 2203 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2204 kfree(ca->prio_buckets); 2205 vfree(ca->buckets); 2206 2207 free_heap(&ca->heap); 2208 free_fifo(&ca->free_inc); 2209 2210 for (i = 0; i < RESERVE_NR; i++) 2211 free_fifo(&ca->free[i]); 2212 2213 if (ca->sb_disk) 2214 put_page(virt_to_page(ca->sb_disk)); 2215 2216 if (ca->bdev_file) 2217 fput(ca->bdev_file); 2218 2219 kfree(ca); 2220 module_put(THIS_MODULE); 2221 } 2222 2223 static int cache_alloc(struct cache *ca) 2224 { 2225 size_t free; 2226 size_t btree_buckets; 2227 struct bucket *b; 2228 int ret = -ENOMEM; 2229 const char *err = NULL; 2230 2231 __module_get(THIS_MODULE); 2232 kobject_init(&ca->kobj, &bch_cache_ktype); 2233 2234 bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0); 2235 2236 /* 2237 * when ca->sb.njournal_buckets is not zero, journal exists, 2238 * and in bch_journal_replay(), tree node may split, 2239 * so bucket of RESERVE_BTREE type is needed, 2240 * the worst situation is all journal buckets are valid journal, 2241 * and all the keys need to replay, 2242 * so the number of RESERVE_BTREE type buckets should be as much 2243 * as journal buckets 2244 */ 2245 btree_buckets = ca->sb.njournal_buckets ?: 8; 2246 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2247 if (!free) { 2248 ret = -EPERM; 2249 err = "ca->sb.nbuckets is too small"; 2250 goto err_free; 2251 } 2252 2253 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2254 GFP_KERNEL)) { 2255 err = "ca->free[RESERVE_BTREE] alloc failed"; 2256 goto err_btree_alloc; 2257 } 2258 2259 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2260 GFP_KERNEL)) { 2261 err = "ca->free[RESERVE_PRIO] alloc failed"; 2262 goto err_prio_alloc; 2263 } 2264 2265 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2266 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2267 goto err_movinggc_alloc; 2268 } 2269 2270 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2271 err = "ca->free[RESERVE_NONE] alloc failed"; 2272 goto err_none_alloc; 2273 } 2274 2275 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2276 err = "ca->free_inc alloc failed"; 2277 goto err_free_inc_alloc; 2278 } 2279 2280 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2281 err = "ca->heap alloc failed"; 2282 goto err_heap_alloc; 2283 } 2284 2285 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2286 ca->sb.nbuckets)); 2287 if (!ca->buckets) { 2288 err = "ca->buckets alloc failed"; 2289 goto err_buckets_alloc; 2290 } 2291 2292 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2293 prio_buckets(ca), 2), 2294 GFP_KERNEL); 2295 if (!ca->prio_buckets) { 2296 err = "ca->prio_buckets alloc failed"; 2297 goto err_prio_buckets_alloc; 2298 } 2299 2300 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2301 if (!ca->disk_buckets) { 2302 err = "ca->disk_buckets alloc failed"; 2303 goto err_disk_buckets_alloc; 2304 } 2305 2306 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2307 2308 for_each_bucket(b, ca) 2309 atomic_set(&b->pin, 0); 2310 return 0; 2311 2312 err_disk_buckets_alloc: 2313 kfree(ca->prio_buckets); 2314 err_prio_buckets_alloc: 2315 vfree(ca->buckets); 2316 err_buckets_alloc: 2317 free_heap(&ca->heap); 2318 err_heap_alloc: 2319 free_fifo(&ca->free_inc); 2320 err_free_inc_alloc: 2321 free_fifo(&ca->free[RESERVE_NONE]); 2322 err_none_alloc: 2323 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2324 err_movinggc_alloc: 2325 free_fifo(&ca->free[RESERVE_PRIO]); 2326 err_prio_alloc: 2327 free_fifo(&ca->free[RESERVE_BTREE]); 2328 err_btree_alloc: 2329 err_free: 2330 module_put(THIS_MODULE); 2331 if (err) 2332 pr_notice("error %pg: %s\n", ca->bdev, err); 2333 return ret; 2334 } 2335 2336 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2337 struct file *bdev_file, 2338 struct cache *ca) 2339 { 2340 const char *err = NULL; /* must be set for any error case */ 2341 int ret = 0; 2342 2343 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2344 ca->bdev_file = bdev_file; 2345 ca->bdev = file_bdev(bdev_file); 2346 ca->sb_disk = sb_disk; 2347 2348 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 2349 ca->discard = CACHE_DISCARD(&ca->sb); 2350 2351 ret = cache_alloc(ca); 2352 if (ret != 0) { 2353 if (ret == -ENOMEM) 2354 err = "cache_alloc(): -ENOMEM"; 2355 else if (ret == -EPERM) 2356 err = "cache_alloc(): cache device is too small"; 2357 else 2358 err = "cache_alloc(): unknown error"; 2359 pr_notice("error %pg: %s\n", file_bdev(bdev_file), err); 2360 /* 2361 * If we failed here, it means ca->kobj is not initialized yet, 2362 * kobject_put() won't be called and there is no chance to 2363 * call fput() to bdev in bch_cache_release(). So 2364 * we explicitly call fput() on the block device here. 2365 */ 2366 fput(bdev_file); 2367 return ret; 2368 } 2369 2370 if (kobject_add(&ca->kobj, bdev_kobj(file_bdev(bdev_file)), "bcache")) { 2371 pr_notice("error %pg: error calling kobject_add\n", 2372 file_bdev(bdev_file)); 2373 ret = -ENOMEM; 2374 goto out; 2375 } 2376 2377 mutex_lock(&bch_register_lock); 2378 err = register_cache_set(ca); 2379 mutex_unlock(&bch_register_lock); 2380 2381 if (err) { 2382 ret = -ENODEV; 2383 goto out; 2384 } 2385 2386 pr_info("registered cache device %pg\n", file_bdev(ca->bdev_file)); 2387 2388 out: 2389 kobject_put(&ca->kobj); 2390 return ret; 2391 } 2392 2393 /* Global interfaces/init */ 2394 2395 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2396 const char *buffer, size_t size); 2397 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2398 struct kobj_attribute *attr, 2399 const char *buffer, size_t size); 2400 2401 kobj_attribute_write(register, register_bcache); 2402 kobj_attribute_write(register_quiet, register_bcache); 2403 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2404 2405 static bool bch_is_open_backing(dev_t dev) 2406 { 2407 struct cache_set *c, *tc; 2408 struct cached_dev *dc, *t; 2409 2410 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2411 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2412 if (dc->bdev->bd_dev == dev) 2413 return true; 2414 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2415 if (dc->bdev->bd_dev == dev) 2416 return true; 2417 return false; 2418 } 2419 2420 static bool bch_is_open_cache(dev_t dev) 2421 { 2422 struct cache_set *c, *tc; 2423 2424 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2425 struct cache *ca = c->cache; 2426 2427 if (ca->bdev->bd_dev == dev) 2428 return true; 2429 } 2430 2431 return false; 2432 } 2433 2434 static bool bch_is_open(dev_t dev) 2435 { 2436 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2437 } 2438 2439 struct async_reg_args { 2440 struct delayed_work reg_work; 2441 char *path; 2442 struct cache_sb *sb; 2443 struct cache_sb_disk *sb_disk; 2444 struct file *bdev_file; 2445 void *holder; 2446 }; 2447 2448 static void register_bdev_worker(struct work_struct *work) 2449 { 2450 int fail = false; 2451 struct async_reg_args *args = 2452 container_of(work, struct async_reg_args, reg_work.work); 2453 2454 mutex_lock(&bch_register_lock); 2455 if (register_bdev(args->sb, args->sb_disk, args->bdev_file, 2456 args->holder) < 0) 2457 fail = true; 2458 mutex_unlock(&bch_register_lock); 2459 2460 if (fail) 2461 pr_info("error %s: fail to register backing device\n", 2462 args->path); 2463 kfree(args->sb); 2464 kfree(args->path); 2465 kfree(args); 2466 module_put(THIS_MODULE); 2467 } 2468 2469 static void register_cache_worker(struct work_struct *work) 2470 { 2471 int fail = false; 2472 struct async_reg_args *args = 2473 container_of(work, struct async_reg_args, reg_work.work); 2474 2475 /* blkdev_put() will be called in bch_cache_release() */ 2476 if (register_cache(args->sb, args->sb_disk, args->bdev_file, 2477 args->holder)) 2478 fail = true; 2479 2480 if (fail) 2481 pr_info("error %s: fail to register cache device\n", 2482 args->path); 2483 kfree(args->sb); 2484 kfree(args->path); 2485 kfree(args); 2486 module_put(THIS_MODULE); 2487 } 2488 2489 static void register_device_async(struct async_reg_args *args) 2490 { 2491 if (SB_IS_BDEV(args->sb)) 2492 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2493 else 2494 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2495 2496 /* 10 jiffies is enough for a delay */ 2497 queue_delayed_work(system_wq, &args->reg_work, 10); 2498 } 2499 2500 static void *alloc_holder_object(struct cache_sb *sb) 2501 { 2502 if (SB_IS_BDEV(sb)) 2503 return kzalloc(sizeof(struct cached_dev), GFP_KERNEL); 2504 return kzalloc(sizeof(struct cache), GFP_KERNEL); 2505 } 2506 2507 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2508 const char *buffer, size_t size) 2509 { 2510 const char *err; 2511 char *path = NULL; 2512 struct cache_sb *sb; 2513 struct cache_sb_disk *sb_disk; 2514 struct file *bdev_file, *bdev_file2; 2515 void *holder = NULL; 2516 ssize_t ret; 2517 bool async_registration = false; 2518 bool quiet = false; 2519 2520 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2521 async_registration = true; 2522 #endif 2523 2524 ret = -EBUSY; 2525 err = "failed to reference bcache module"; 2526 if (!try_module_get(THIS_MODULE)) 2527 goto out; 2528 2529 /* For latest state of bcache_is_reboot */ 2530 smp_mb(); 2531 err = "bcache is in reboot"; 2532 if (bcache_is_reboot) 2533 goto out_module_put; 2534 2535 ret = -ENOMEM; 2536 err = "cannot allocate memory"; 2537 path = kstrndup(buffer, size, GFP_KERNEL); 2538 if (!path) 2539 goto out_module_put; 2540 2541 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2542 if (!sb) 2543 goto out_free_path; 2544 2545 ret = -EINVAL; 2546 err = "failed to open device"; 2547 bdev_file = bdev_file_open_by_path(strim(path), BLK_OPEN_READ, NULL, NULL); 2548 if (IS_ERR(bdev_file)) 2549 goto out_free_sb; 2550 2551 err = read_super(sb, file_bdev(bdev_file), &sb_disk); 2552 if (err) 2553 goto out_blkdev_put; 2554 2555 holder = alloc_holder_object(sb); 2556 if (!holder) { 2557 ret = -ENOMEM; 2558 err = "cannot allocate memory"; 2559 goto out_put_sb_page; 2560 } 2561 2562 /* Now reopen in exclusive mode with proper holder */ 2563 bdev_file2 = bdev_file_open_by_dev(file_bdev(bdev_file)->bd_dev, 2564 BLK_OPEN_READ | BLK_OPEN_WRITE, holder, NULL); 2565 fput(bdev_file); 2566 bdev_file = bdev_file2; 2567 if (IS_ERR(bdev_file)) { 2568 ret = PTR_ERR(bdev_file); 2569 bdev_file = NULL; 2570 if (ret == -EBUSY) { 2571 dev_t dev; 2572 2573 mutex_lock(&bch_register_lock); 2574 if (lookup_bdev(strim(path), &dev) == 0 && 2575 bch_is_open(dev)) 2576 err = "device already registered"; 2577 else 2578 err = "device busy"; 2579 mutex_unlock(&bch_register_lock); 2580 if (attr == &ksysfs_register_quiet) { 2581 quiet = true; 2582 ret = size; 2583 } 2584 } 2585 goto out_free_holder; 2586 } 2587 2588 err = "failed to register device"; 2589 2590 if (async_registration) { 2591 /* register in asynchronous way */ 2592 struct async_reg_args *args = 2593 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2594 2595 if (!args) { 2596 ret = -ENOMEM; 2597 err = "cannot allocate memory"; 2598 goto out_free_holder; 2599 } 2600 2601 args->path = path; 2602 args->sb = sb; 2603 args->sb_disk = sb_disk; 2604 args->bdev_file = bdev_file; 2605 args->holder = holder; 2606 register_device_async(args); 2607 /* No wait and returns to user space */ 2608 goto async_done; 2609 } 2610 2611 if (SB_IS_BDEV(sb)) { 2612 mutex_lock(&bch_register_lock); 2613 ret = register_bdev(sb, sb_disk, bdev_file, holder); 2614 mutex_unlock(&bch_register_lock); 2615 /* blkdev_put() will be called in cached_dev_free() */ 2616 if (ret < 0) 2617 goto out_free_sb; 2618 } else { 2619 /* blkdev_put() will be called in bch_cache_release() */ 2620 ret = register_cache(sb, sb_disk, bdev_file, holder); 2621 if (ret) 2622 goto out_free_sb; 2623 } 2624 2625 kfree(sb); 2626 kfree(path); 2627 module_put(THIS_MODULE); 2628 async_done: 2629 return size; 2630 2631 out_free_holder: 2632 kfree(holder); 2633 out_put_sb_page: 2634 put_page(virt_to_page(sb_disk)); 2635 out_blkdev_put: 2636 if (bdev_file) 2637 fput(bdev_file); 2638 out_free_sb: 2639 kfree(sb); 2640 out_free_path: 2641 kfree(path); 2642 path = NULL; 2643 out_module_put: 2644 module_put(THIS_MODULE); 2645 out: 2646 if (!quiet) 2647 pr_info("error %s: %s\n", path?path:"", err); 2648 return ret; 2649 } 2650 2651 2652 struct pdev { 2653 struct list_head list; 2654 struct cached_dev *dc; 2655 }; 2656 2657 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2658 struct kobj_attribute *attr, 2659 const char *buffer, 2660 size_t size) 2661 { 2662 LIST_HEAD(pending_devs); 2663 ssize_t ret = size; 2664 struct cached_dev *dc, *tdc; 2665 struct pdev *pdev, *tpdev; 2666 struct cache_set *c, *tc; 2667 2668 mutex_lock(&bch_register_lock); 2669 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2670 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2671 if (!pdev) 2672 break; 2673 pdev->dc = dc; 2674 list_add(&pdev->list, &pending_devs); 2675 } 2676 2677 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2678 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2679 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2680 char *set_uuid = c->set_uuid; 2681 2682 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2683 list_del(&pdev->list); 2684 kfree(pdev); 2685 break; 2686 } 2687 } 2688 } 2689 mutex_unlock(&bch_register_lock); 2690 2691 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2692 pr_info("delete pdev %p\n", pdev); 2693 list_del(&pdev->list); 2694 bcache_device_stop(&pdev->dc->disk); 2695 kfree(pdev); 2696 } 2697 2698 return ret; 2699 } 2700 2701 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2702 { 2703 if (bcache_is_reboot) 2704 return NOTIFY_DONE; 2705 2706 if (code == SYS_DOWN || 2707 code == SYS_HALT || 2708 code == SYS_POWER_OFF) { 2709 DEFINE_WAIT(wait); 2710 unsigned long start = jiffies; 2711 bool stopped = false; 2712 2713 struct cache_set *c, *tc; 2714 struct cached_dev *dc, *tdc; 2715 2716 mutex_lock(&bch_register_lock); 2717 2718 if (bcache_is_reboot) 2719 goto out; 2720 2721 /* New registration is rejected since now */ 2722 bcache_is_reboot = true; 2723 /* 2724 * Make registering caller (if there is) on other CPU 2725 * core know bcache_is_reboot set to true earlier 2726 */ 2727 smp_mb(); 2728 2729 if (list_empty(&bch_cache_sets) && 2730 list_empty(&uncached_devices)) 2731 goto out; 2732 2733 mutex_unlock(&bch_register_lock); 2734 2735 pr_info("Stopping all devices:\n"); 2736 2737 /* 2738 * The reason bch_register_lock is not held to call 2739 * bch_cache_set_stop() and bcache_device_stop() is to 2740 * avoid potential deadlock during reboot, because cache 2741 * set or bcache device stopping process will acquire 2742 * bch_register_lock too. 2743 * 2744 * We are safe here because bcache_is_reboot sets to 2745 * true already, register_bcache() will reject new 2746 * registration now. bcache_is_reboot also makes sure 2747 * bcache_reboot() won't be re-entered on by other thread, 2748 * so there is no race in following list iteration by 2749 * list_for_each_entry_safe(). 2750 */ 2751 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2752 bch_cache_set_stop(c); 2753 2754 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2755 bcache_device_stop(&dc->disk); 2756 2757 2758 /* 2759 * Give an early chance for other kthreads and 2760 * kworkers to stop themselves 2761 */ 2762 schedule(); 2763 2764 /* What's a condition variable? */ 2765 while (1) { 2766 long timeout = start + 10 * HZ - jiffies; 2767 2768 mutex_lock(&bch_register_lock); 2769 stopped = list_empty(&bch_cache_sets) && 2770 list_empty(&uncached_devices); 2771 2772 if (timeout < 0 || stopped) 2773 break; 2774 2775 prepare_to_wait(&unregister_wait, &wait, 2776 TASK_UNINTERRUPTIBLE); 2777 2778 mutex_unlock(&bch_register_lock); 2779 schedule_timeout(timeout); 2780 } 2781 2782 finish_wait(&unregister_wait, &wait); 2783 2784 if (stopped) 2785 pr_info("All devices stopped\n"); 2786 else 2787 pr_notice("Timeout waiting for devices to be closed\n"); 2788 out: 2789 mutex_unlock(&bch_register_lock); 2790 } 2791 2792 return NOTIFY_DONE; 2793 } 2794 2795 static struct notifier_block reboot = { 2796 .notifier_call = bcache_reboot, 2797 .priority = INT_MAX, /* before any real devices */ 2798 }; 2799 2800 static void bcache_exit(void) 2801 { 2802 bch_debug_exit(); 2803 bch_request_exit(); 2804 if (bcache_kobj) 2805 kobject_put(bcache_kobj); 2806 if (bcache_wq) 2807 destroy_workqueue(bcache_wq); 2808 if (bch_journal_wq) 2809 destroy_workqueue(bch_journal_wq); 2810 if (bch_flush_wq) 2811 destroy_workqueue(bch_flush_wq); 2812 bch_btree_exit(); 2813 2814 if (bcache_major) 2815 unregister_blkdev(bcache_major, "bcache"); 2816 unregister_reboot_notifier(&reboot); 2817 mutex_destroy(&bch_register_lock); 2818 } 2819 2820 /* Check and fixup module parameters */ 2821 static void check_module_parameters(void) 2822 { 2823 if (bch_cutoff_writeback_sync == 0) 2824 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2825 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2826 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2827 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2828 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2829 } 2830 2831 if (bch_cutoff_writeback == 0) 2832 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2833 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2834 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2835 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2836 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2837 } 2838 2839 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2840 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2841 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2842 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2843 } 2844 } 2845 2846 static int __init bcache_init(void) 2847 { 2848 static const struct attribute *files[] = { 2849 &ksysfs_register.attr, 2850 &ksysfs_register_quiet.attr, 2851 &ksysfs_pendings_cleanup.attr, 2852 NULL 2853 }; 2854 2855 check_module_parameters(); 2856 2857 mutex_init(&bch_register_lock); 2858 init_waitqueue_head(&unregister_wait); 2859 register_reboot_notifier(&reboot); 2860 2861 bcache_major = register_blkdev(0, "bcache"); 2862 if (bcache_major < 0) { 2863 unregister_reboot_notifier(&reboot); 2864 mutex_destroy(&bch_register_lock); 2865 return bcache_major; 2866 } 2867 2868 if (bch_btree_init()) 2869 goto err; 2870 2871 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2872 if (!bcache_wq) 2873 goto err; 2874 2875 /* 2876 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: 2877 * 2878 * 1. It used `system_wq` before which also does no memory reclaim. 2879 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and 2880 * reduced throughput can be observed. 2881 * 2882 * We still want to user our own queue to not congest the `system_wq`. 2883 */ 2884 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0); 2885 if (!bch_flush_wq) 2886 goto err; 2887 2888 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2889 if (!bch_journal_wq) 2890 goto err; 2891 2892 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2893 if (!bcache_kobj) 2894 goto err; 2895 2896 if (bch_request_init() || 2897 sysfs_create_files(bcache_kobj, files)) 2898 goto err; 2899 2900 bch_debug_init(); 2901 2902 bcache_is_reboot = false; 2903 2904 return 0; 2905 err: 2906 bcache_exit(); 2907 return -ENOMEM; 2908 } 2909 2910 /* 2911 * Module hooks 2912 */ 2913 module_exit(bcache_exit); 2914 module_init(bcache_init); 2915 2916 module_param(bch_cutoff_writeback, uint, 0); 2917 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2918 2919 module_param(bch_cutoff_writeback_sync, uint, 0); 2920 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2921 2922 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2923 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2924 MODULE_LICENSE("GPL"); 2925