1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/pagemap.h> 20 #include <linux/debugfs.h> 21 #include <linux/genhd.h> 22 #include <linux/idr.h> 23 #include <linux/kthread.h> 24 #include <linux/workqueue.h> 25 #include <linux/module.h> 26 #include <linux/random.h> 27 #include <linux/reboot.h> 28 #include <linux/sysfs.h> 29 30 unsigned int bch_cutoff_writeback; 31 unsigned int bch_cutoff_writeback_sync; 32 33 static const char bcache_magic[] = { 34 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 35 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 36 }; 37 38 static const char invalid_uuid[] = { 39 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 40 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 41 }; 42 43 static struct kobject *bcache_kobj; 44 struct mutex bch_register_lock; 45 bool bcache_is_reboot; 46 LIST_HEAD(bch_cache_sets); 47 static LIST_HEAD(uncached_devices); 48 49 static int bcache_major; 50 static DEFINE_IDA(bcache_device_idx); 51 static wait_queue_head_t unregister_wait; 52 struct workqueue_struct *bcache_wq; 53 struct workqueue_struct *bch_flush_wq; 54 struct workqueue_struct *bch_journal_wq; 55 56 57 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 58 /* limitation of partitions number on single bcache device */ 59 #define BCACHE_MINORS 128 60 /* limitation of bcache devices number on single system */ 61 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 62 63 /* Superblock */ 64 65 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 66 { 67 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 68 69 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 70 if (bch_has_feature_large_bucket(sb)) { 71 unsigned int max, order; 72 73 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 74 order = le16_to_cpu(s->bucket_size); 75 /* 76 * bcache tool will make sure the overflow won't 77 * happen, an error message here is enough. 78 */ 79 if (order > max) 80 pr_err("Bucket size (1 << %u) overflows\n", 81 order); 82 bucket_size = 1 << order; 83 } else if (bch_has_feature_obso_large_bucket(sb)) { 84 bucket_size += 85 le16_to_cpu(s->obso_bucket_size_hi) << 16; 86 } 87 } 88 89 return bucket_size; 90 } 91 92 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 93 struct cache_sb_disk *s) 94 { 95 const char *err; 96 unsigned int i; 97 98 sb->first_bucket= le16_to_cpu(s->first_bucket); 99 sb->nbuckets = le64_to_cpu(s->nbuckets); 100 sb->bucket_size = get_bucket_size(sb, s); 101 102 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 103 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 104 105 err = "Too many journal buckets"; 106 if (sb->keys > SB_JOURNAL_BUCKETS) 107 goto err; 108 109 err = "Too many buckets"; 110 if (sb->nbuckets > LONG_MAX) 111 goto err; 112 113 err = "Not enough buckets"; 114 if (sb->nbuckets < 1 << 7) 115 goto err; 116 117 err = "Bad block size (not power of 2)"; 118 if (!is_power_of_2(sb->block_size)) 119 goto err; 120 121 err = "Bad block size (larger than page size)"; 122 if (sb->block_size > PAGE_SECTORS) 123 goto err; 124 125 err = "Bad bucket size (not power of 2)"; 126 if (!is_power_of_2(sb->bucket_size)) 127 goto err; 128 129 err = "Bad bucket size (smaller than page size)"; 130 if (sb->bucket_size < PAGE_SECTORS) 131 goto err; 132 133 err = "Invalid superblock: device too small"; 134 if (get_capacity(bdev->bd_disk) < 135 sb->bucket_size * sb->nbuckets) 136 goto err; 137 138 err = "Bad UUID"; 139 if (bch_is_zero(sb->set_uuid, 16)) 140 goto err; 141 142 err = "Bad cache device number in set"; 143 if (!sb->nr_in_set || 144 sb->nr_in_set <= sb->nr_this_dev || 145 sb->nr_in_set > MAX_CACHES_PER_SET) 146 goto err; 147 148 err = "Journal buckets not sequential"; 149 for (i = 0; i < sb->keys; i++) 150 if (sb->d[i] != sb->first_bucket + i) 151 goto err; 152 153 err = "Too many journal buckets"; 154 if (sb->first_bucket + sb->keys > sb->nbuckets) 155 goto err; 156 157 err = "Invalid superblock: first bucket comes before end of super"; 158 if (sb->first_bucket * sb->bucket_size < 16) 159 goto err; 160 161 err = NULL; 162 err: 163 return err; 164 } 165 166 167 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 168 struct cache_sb_disk **res) 169 { 170 const char *err; 171 struct cache_sb_disk *s; 172 struct page *page; 173 unsigned int i; 174 175 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 176 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 177 if (IS_ERR(page)) 178 return "IO error"; 179 s = page_address(page) + offset_in_page(SB_OFFSET); 180 181 sb->offset = le64_to_cpu(s->offset); 182 sb->version = le64_to_cpu(s->version); 183 184 memcpy(sb->magic, s->magic, 16); 185 memcpy(sb->uuid, s->uuid, 16); 186 memcpy(sb->set_uuid, s->set_uuid, 16); 187 memcpy(sb->label, s->label, SB_LABEL_SIZE); 188 189 sb->flags = le64_to_cpu(s->flags); 190 sb->seq = le64_to_cpu(s->seq); 191 sb->last_mount = le32_to_cpu(s->last_mount); 192 sb->keys = le16_to_cpu(s->keys); 193 194 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 195 sb->d[i] = le64_to_cpu(s->d[i]); 196 197 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 198 sb->version, sb->flags, sb->seq, sb->keys); 199 200 err = "Not a bcache superblock (bad offset)"; 201 if (sb->offset != SB_SECTOR) 202 goto err; 203 204 err = "Not a bcache superblock (bad magic)"; 205 if (memcmp(sb->magic, bcache_magic, 16)) 206 goto err; 207 208 err = "Bad checksum"; 209 if (s->csum != csum_set(s)) 210 goto err; 211 212 err = "Bad UUID"; 213 if (bch_is_zero(sb->uuid, 16)) 214 goto err; 215 216 sb->block_size = le16_to_cpu(s->block_size); 217 218 err = "Superblock block size smaller than device block size"; 219 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 220 goto err; 221 222 switch (sb->version) { 223 case BCACHE_SB_VERSION_BDEV: 224 sb->data_offset = BDEV_DATA_START_DEFAULT; 225 break; 226 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 227 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 228 sb->data_offset = le64_to_cpu(s->data_offset); 229 230 err = "Bad data offset"; 231 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 232 goto err; 233 234 break; 235 case BCACHE_SB_VERSION_CDEV: 236 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 237 err = read_super_common(sb, bdev, s); 238 if (err) 239 goto err; 240 break; 241 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 242 /* 243 * Feature bits are needed in read_super_common(), 244 * convert them firstly. 245 */ 246 sb->feature_compat = le64_to_cpu(s->feature_compat); 247 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 248 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 249 250 /* Check incompatible features */ 251 err = "Unsupported compatible feature found"; 252 if (bch_has_unknown_compat_features(sb)) 253 goto err; 254 255 err = "Unsupported read-only compatible feature found"; 256 if (bch_has_unknown_ro_compat_features(sb)) 257 goto err; 258 259 err = "Unsupported incompatible feature found"; 260 if (bch_has_unknown_incompat_features(sb)) 261 goto err; 262 263 err = read_super_common(sb, bdev, s); 264 if (err) 265 goto err; 266 break; 267 default: 268 err = "Unsupported superblock version"; 269 goto err; 270 } 271 272 sb->last_mount = (u32)ktime_get_real_seconds(); 273 *res = s; 274 return NULL; 275 err: 276 put_page(page); 277 return err; 278 } 279 280 static void write_bdev_super_endio(struct bio *bio) 281 { 282 struct cached_dev *dc = bio->bi_private; 283 284 if (bio->bi_status) 285 bch_count_backing_io_errors(dc, bio); 286 287 closure_put(&dc->sb_write); 288 } 289 290 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 291 struct bio *bio) 292 { 293 unsigned int i; 294 295 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 296 bio->bi_iter.bi_sector = SB_SECTOR; 297 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 298 offset_in_page(out)); 299 300 out->offset = cpu_to_le64(sb->offset); 301 302 memcpy(out->uuid, sb->uuid, 16); 303 memcpy(out->set_uuid, sb->set_uuid, 16); 304 memcpy(out->label, sb->label, SB_LABEL_SIZE); 305 306 out->flags = cpu_to_le64(sb->flags); 307 out->seq = cpu_to_le64(sb->seq); 308 309 out->last_mount = cpu_to_le32(sb->last_mount); 310 out->first_bucket = cpu_to_le16(sb->first_bucket); 311 out->keys = cpu_to_le16(sb->keys); 312 313 for (i = 0; i < sb->keys; i++) 314 out->d[i] = cpu_to_le64(sb->d[i]); 315 316 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 317 out->feature_compat = cpu_to_le64(sb->feature_compat); 318 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 319 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 320 } 321 322 out->version = cpu_to_le64(sb->version); 323 out->csum = csum_set(out); 324 325 pr_debug("ver %llu, flags %llu, seq %llu\n", 326 sb->version, sb->flags, sb->seq); 327 328 submit_bio(bio); 329 } 330 331 static void bch_write_bdev_super_unlock(struct closure *cl) 332 { 333 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 334 335 up(&dc->sb_write_mutex); 336 } 337 338 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 339 { 340 struct closure *cl = &dc->sb_write; 341 struct bio *bio = &dc->sb_bio; 342 343 down(&dc->sb_write_mutex); 344 closure_init(cl, parent); 345 346 bio_init(bio, dc->sb_bv, 1); 347 bio_set_dev(bio, dc->bdev); 348 bio->bi_end_io = write_bdev_super_endio; 349 bio->bi_private = dc; 350 351 closure_get(cl); 352 /* I/O request sent to backing device */ 353 __write_super(&dc->sb, dc->sb_disk, bio); 354 355 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 356 } 357 358 static void write_super_endio(struct bio *bio) 359 { 360 struct cache *ca = bio->bi_private; 361 362 /* is_read = 0 */ 363 bch_count_io_errors(ca, bio->bi_status, 0, 364 "writing superblock"); 365 closure_put(&ca->set->sb_write); 366 } 367 368 static void bcache_write_super_unlock(struct closure *cl) 369 { 370 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 371 372 up(&c->sb_write_mutex); 373 } 374 375 void bcache_write_super(struct cache_set *c) 376 { 377 struct closure *cl = &c->sb_write; 378 struct cache *ca = c->cache; 379 struct bio *bio = &ca->sb_bio; 380 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 381 382 down(&c->sb_write_mutex); 383 closure_init(cl, &c->cl); 384 385 ca->sb.seq++; 386 387 if (ca->sb.version < version) 388 ca->sb.version = version; 389 390 bio_init(bio, ca->sb_bv, 1); 391 bio_set_dev(bio, ca->bdev); 392 bio->bi_end_io = write_super_endio; 393 bio->bi_private = ca; 394 395 closure_get(cl); 396 __write_super(&ca->sb, ca->sb_disk, bio); 397 398 closure_return_with_destructor(cl, bcache_write_super_unlock); 399 } 400 401 /* UUID io */ 402 403 static void uuid_endio(struct bio *bio) 404 { 405 struct closure *cl = bio->bi_private; 406 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 407 408 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 409 bch_bbio_free(bio, c); 410 closure_put(cl); 411 } 412 413 static void uuid_io_unlock(struct closure *cl) 414 { 415 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 416 417 up(&c->uuid_write_mutex); 418 } 419 420 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 421 struct bkey *k, struct closure *parent) 422 { 423 struct closure *cl = &c->uuid_write; 424 struct uuid_entry *u; 425 unsigned int i; 426 char buf[80]; 427 428 BUG_ON(!parent); 429 down(&c->uuid_write_mutex); 430 closure_init(cl, parent); 431 432 for (i = 0; i < KEY_PTRS(k); i++) { 433 struct bio *bio = bch_bbio_alloc(c); 434 435 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 436 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 437 438 bio->bi_end_io = uuid_endio; 439 bio->bi_private = cl; 440 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 441 bch_bio_map(bio, c->uuids); 442 443 bch_submit_bbio(bio, c, k, i); 444 445 if (op != REQ_OP_WRITE) 446 break; 447 } 448 449 bch_extent_to_text(buf, sizeof(buf), k); 450 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 451 452 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 453 if (!bch_is_zero(u->uuid, 16)) 454 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 455 u - c->uuids, u->uuid, u->label, 456 u->first_reg, u->last_reg, u->invalidated); 457 458 closure_return_with_destructor(cl, uuid_io_unlock); 459 } 460 461 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 462 { 463 struct bkey *k = &j->uuid_bucket; 464 465 if (__bch_btree_ptr_invalid(c, k)) 466 return "bad uuid pointer"; 467 468 bkey_copy(&c->uuid_bucket, k); 469 uuid_io(c, REQ_OP_READ, 0, k, cl); 470 471 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 472 struct uuid_entry_v0 *u0 = (void *) c->uuids; 473 struct uuid_entry *u1 = (void *) c->uuids; 474 int i; 475 476 closure_sync(cl); 477 478 /* 479 * Since the new uuid entry is bigger than the old, we have to 480 * convert starting at the highest memory address and work down 481 * in order to do it in place 482 */ 483 484 for (i = c->nr_uuids - 1; 485 i >= 0; 486 --i) { 487 memcpy(u1[i].uuid, u0[i].uuid, 16); 488 memcpy(u1[i].label, u0[i].label, 32); 489 490 u1[i].first_reg = u0[i].first_reg; 491 u1[i].last_reg = u0[i].last_reg; 492 u1[i].invalidated = u0[i].invalidated; 493 494 u1[i].flags = 0; 495 u1[i].sectors = 0; 496 } 497 } 498 499 return NULL; 500 } 501 502 static int __uuid_write(struct cache_set *c) 503 { 504 BKEY_PADDED(key) k; 505 struct closure cl; 506 struct cache *ca = c->cache; 507 unsigned int size; 508 509 closure_init_stack(&cl); 510 lockdep_assert_held(&bch_register_lock); 511 512 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 513 return 1; 514 515 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 516 SET_KEY_SIZE(&k.key, size); 517 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 518 closure_sync(&cl); 519 520 /* Only one bucket used for uuid write */ 521 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 522 523 bkey_copy(&c->uuid_bucket, &k.key); 524 bkey_put(c, &k.key); 525 return 0; 526 } 527 528 int bch_uuid_write(struct cache_set *c) 529 { 530 int ret = __uuid_write(c); 531 532 if (!ret) 533 bch_journal_meta(c, NULL); 534 535 return ret; 536 } 537 538 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 539 { 540 struct uuid_entry *u; 541 542 for (u = c->uuids; 543 u < c->uuids + c->nr_uuids; u++) 544 if (!memcmp(u->uuid, uuid, 16)) 545 return u; 546 547 return NULL; 548 } 549 550 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 551 { 552 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 553 554 return uuid_find(c, zero_uuid); 555 } 556 557 /* 558 * Bucket priorities/gens: 559 * 560 * For each bucket, we store on disk its 561 * 8 bit gen 562 * 16 bit priority 563 * 564 * See alloc.c for an explanation of the gen. The priority is used to implement 565 * lru (and in the future other) cache replacement policies; for most purposes 566 * it's just an opaque integer. 567 * 568 * The gens and the priorities don't have a whole lot to do with each other, and 569 * it's actually the gens that must be written out at specific times - it's no 570 * big deal if the priorities don't get written, if we lose them we just reuse 571 * buckets in suboptimal order. 572 * 573 * On disk they're stored in a packed array, and in as many buckets are required 574 * to fit them all. The buckets we use to store them form a list; the journal 575 * header points to the first bucket, the first bucket points to the second 576 * bucket, et cetera. 577 * 578 * This code is used by the allocation code; periodically (whenever it runs out 579 * of buckets to allocate from) the allocation code will invalidate some 580 * buckets, but it can't use those buckets until their new gens are safely on 581 * disk. 582 */ 583 584 static void prio_endio(struct bio *bio) 585 { 586 struct cache *ca = bio->bi_private; 587 588 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 589 bch_bbio_free(bio, ca->set); 590 closure_put(&ca->prio); 591 } 592 593 static void prio_io(struct cache *ca, uint64_t bucket, int op, 594 unsigned long op_flags) 595 { 596 struct closure *cl = &ca->prio; 597 struct bio *bio = bch_bbio_alloc(ca->set); 598 599 closure_init_stack(cl); 600 601 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 602 bio_set_dev(bio, ca->bdev); 603 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 604 605 bio->bi_end_io = prio_endio; 606 bio->bi_private = ca; 607 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 608 bch_bio_map(bio, ca->disk_buckets); 609 610 closure_bio_submit(ca->set, bio, &ca->prio); 611 closure_sync(cl); 612 } 613 614 int bch_prio_write(struct cache *ca, bool wait) 615 { 616 int i; 617 struct bucket *b; 618 struct closure cl; 619 620 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 621 fifo_used(&ca->free[RESERVE_PRIO]), 622 fifo_used(&ca->free[RESERVE_NONE]), 623 fifo_used(&ca->free_inc)); 624 625 /* 626 * Pre-check if there are enough free buckets. In the non-blocking 627 * scenario it's better to fail early rather than starting to allocate 628 * buckets and do a cleanup later in case of failure. 629 */ 630 if (!wait) { 631 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 632 fifo_used(&ca->free[RESERVE_NONE]); 633 if (prio_buckets(ca) > avail) 634 return -ENOMEM; 635 } 636 637 closure_init_stack(&cl); 638 639 lockdep_assert_held(&ca->set->bucket_lock); 640 641 ca->disk_buckets->seq++; 642 643 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 644 &ca->meta_sectors_written); 645 646 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 647 long bucket; 648 struct prio_set *p = ca->disk_buckets; 649 struct bucket_disk *d = p->data; 650 struct bucket_disk *end = d + prios_per_bucket(ca); 651 652 for (b = ca->buckets + i * prios_per_bucket(ca); 653 b < ca->buckets + ca->sb.nbuckets && d < end; 654 b++, d++) { 655 d->prio = cpu_to_le16(b->prio); 656 d->gen = b->gen; 657 } 658 659 p->next_bucket = ca->prio_buckets[i + 1]; 660 p->magic = pset_magic(&ca->sb); 661 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 662 663 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 664 BUG_ON(bucket == -1); 665 666 mutex_unlock(&ca->set->bucket_lock); 667 prio_io(ca, bucket, REQ_OP_WRITE, 0); 668 mutex_lock(&ca->set->bucket_lock); 669 670 ca->prio_buckets[i] = bucket; 671 atomic_dec_bug(&ca->buckets[bucket].pin); 672 } 673 674 mutex_unlock(&ca->set->bucket_lock); 675 676 bch_journal_meta(ca->set, &cl); 677 closure_sync(&cl); 678 679 mutex_lock(&ca->set->bucket_lock); 680 681 /* 682 * Don't want the old priorities to get garbage collected until after we 683 * finish writing the new ones, and they're journalled 684 */ 685 for (i = 0; i < prio_buckets(ca); i++) { 686 if (ca->prio_last_buckets[i]) 687 __bch_bucket_free(ca, 688 &ca->buckets[ca->prio_last_buckets[i]]); 689 690 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 691 } 692 return 0; 693 } 694 695 static int prio_read(struct cache *ca, uint64_t bucket) 696 { 697 struct prio_set *p = ca->disk_buckets; 698 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 699 struct bucket *b; 700 unsigned int bucket_nr = 0; 701 int ret = -EIO; 702 703 for (b = ca->buckets; 704 b < ca->buckets + ca->sb.nbuckets; 705 b++, d++) { 706 if (d == end) { 707 ca->prio_buckets[bucket_nr] = bucket; 708 ca->prio_last_buckets[bucket_nr] = bucket; 709 bucket_nr++; 710 711 prio_io(ca, bucket, REQ_OP_READ, 0); 712 713 if (p->csum != 714 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 715 pr_warn("bad csum reading priorities\n"); 716 goto out; 717 } 718 719 if (p->magic != pset_magic(&ca->sb)) { 720 pr_warn("bad magic reading priorities\n"); 721 goto out; 722 } 723 724 bucket = p->next_bucket; 725 d = p->data; 726 } 727 728 b->prio = le16_to_cpu(d->prio); 729 b->gen = b->last_gc = d->gen; 730 } 731 732 ret = 0; 733 out: 734 return ret; 735 } 736 737 /* Bcache device */ 738 739 static int open_dev(struct block_device *b, fmode_t mode) 740 { 741 struct bcache_device *d = b->bd_disk->private_data; 742 743 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 744 return -ENXIO; 745 746 closure_get(&d->cl); 747 return 0; 748 } 749 750 static void release_dev(struct gendisk *b, fmode_t mode) 751 { 752 struct bcache_device *d = b->private_data; 753 754 closure_put(&d->cl); 755 } 756 757 static int ioctl_dev(struct block_device *b, fmode_t mode, 758 unsigned int cmd, unsigned long arg) 759 { 760 struct bcache_device *d = b->bd_disk->private_data; 761 762 return d->ioctl(d, mode, cmd, arg); 763 } 764 765 static const struct block_device_operations bcache_cached_ops = { 766 .submit_bio = cached_dev_submit_bio, 767 .open = open_dev, 768 .release = release_dev, 769 .ioctl = ioctl_dev, 770 .owner = THIS_MODULE, 771 }; 772 773 static const struct block_device_operations bcache_flash_ops = { 774 .submit_bio = flash_dev_submit_bio, 775 .open = open_dev, 776 .release = release_dev, 777 .ioctl = ioctl_dev, 778 .owner = THIS_MODULE, 779 }; 780 781 void bcache_device_stop(struct bcache_device *d) 782 { 783 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 784 /* 785 * closure_fn set to 786 * - cached device: cached_dev_flush() 787 * - flash dev: flash_dev_flush() 788 */ 789 closure_queue(&d->cl); 790 } 791 792 static void bcache_device_unlink(struct bcache_device *d) 793 { 794 lockdep_assert_held(&bch_register_lock); 795 796 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 797 struct cache *ca = d->c->cache; 798 799 sysfs_remove_link(&d->c->kobj, d->name); 800 sysfs_remove_link(&d->kobj, "cache"); 801 802 bd_unlink_disk_holder(ca->bdev, d->disk); 803 } 804 } 805 806 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 807 const char *name) 808 { 809 struct cache *ca = c->cache; 810 int ret; 811 812 bd_link_disk_holder(ca->bdev, d->disk); 813 814 snprintf(d->name, BCACHEDEVNAME_SIZE, 815 "%s%u", name, d->id); 816 817 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 818 if (ret < 0) 819 pr_err("Couldn't create device -> cache set symlink\n"); 820 821 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 822 if (ret < 0) 823 pr_err("Couldn't create cache set -> device symlink\n"); 824 825 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 826 } 827 828 static void bcache_device_detach(struct bcache_device *d) 829 { 830 lockdep_assert_held(&bch_register_lock); 831 832 atomic_dec(&d->c->attached_dev_nr); 833 834 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 835 struct uuid_entry *u = d->c->uuids + d->id; 836 837 SET_UUID_FLASH_ONLY(u, 0); 838 memcpy(u->uuid, invalid_uuid, 16); 839 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 840 bch_uuid_write(d->c); 841 } 842 843 bcache_device_unlink(d); 844 845 d->c->devices[d->id] = NULL; 846 closure_put(&d->c->caching); 847 d->c = NULL; 848 } 849 850 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 851 unsigned int id) 852 { 853 d->id = id; 854 d->c = c; 855 c->devices[id] = d; 856 857 if (id >= c->devices_max_used) 858 c->devices_max_used = id + 1; 859 860 closure_get(&c->caching); 861 } 862 863 static inline int first_minor_to_idx(int first_minor) 864 { 865 return (first_minor/BCACHE_MINORS); 866 } 867 868 static inline int idx_to_first_minor(int idx) 869 { 870 return (idx * BCACHE_MINORS); 871 } 872 873 static void bcache_device_free(struct bcache_device *d) 874 { 875 struct gendisk *disk = d->disk; 876 877 lockdep_assert_held(&bch_register_lock); 878 879 if (disk) 880 pr_info("%s stopped\n", disk->disk_name); 881 else 882 pr_err("bcache device (NULL gendisk) stopped\n"); 883 884 if (d->c) 885 bcache_device_detach(d); 886 887 if (disk) { 888 blk_cleanup_disk(disk); 889 ida_simple_remove(&bcache_device_idx, 890 first_minor_to_idx(disk->first_minor)); 891 } 892 893 bioset_exit(&d->bio_split); 894 kvfree(d->full_dirty_stripes); 895 kvfree(d->stripe_sectors_dirty); 896 897 closure_debug_destroy(&d->cl); 898 } 899 900 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 901 sector_t sectors, struct block_device *cached_bdev, 902 const struct block_device_operations *ops) 903 { 904 struct request_queue *q; 905 const size_t max_stripes = min_t(size_t, INT_MAX, 906 SIZE_MAX / sizeof(atomic_t)); 907 uint64_t n; 908 int idx; 909 910 if (!d->stripe_size) 911 d->stripe_size = 1 << 31; 912 913 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 914 if (!n || n > max_stripes) { 915 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 916 n); 917 return -ENOMEM; 918 } 919 d->nr_stripes = n; 920 921 n = d->nr_stripes * sizeof(atomic_t); 922 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 923 if (!d->stripe_sectors_dirty) 924 return -ENOMEM; 925 926 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 927 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 928 if (!d->full_dirty_stripes) 929 goto out_free_stripe_sectors_dirty; 930 931 idx = ida_simple_get(&bcache_device_idx, 0, 932 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 933 if (idx < 0) 934 goto out_free_full_dirty_stripes; 935 936 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 937 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 938 goto out_ida_remove; 939 940 d->disk = blk_alloc_disk(NUMA_NO_NODE); 941 if (!d->disk) 942 goto out_bioset_exit; 943 944 set_capacity(d->disk, sectors); 945 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 946 947 d->disk->major = bcache_major; 948 d->disk->first_minor = idx_to_first_minor(idx); 949 d->disk->minors = BCACHE_MINORS; 950 d->disk->fops = ops; 951 d->disk->private_data = d; 952 953 q = d->disk->queue; 954 q->limits.max_hw_sectors = UINT_MAX; 955 q->limits.max_sectors = UINT_MAX; 956 q->limits.max_segment_size = UINT_MAX; 957 q->limits.max_segments = BIO_MAX_VECS; 958 blk_queue_max_discard_sectors(q, UINT_MAX); 959 q->limits.discard_granularity = 512; 960 q->limits.io_min = block_size; 961 q->limits.logical_block_size = block_size; 962 q->limits.physical_block_size = block_size; 963 964 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 965 /* 966 * This should only happen with BCACHE_SB_VERSION_BDEV. 967 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 968 */ 969 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 970 d->disk->disk_name, q->limits.logical_block_size, 971 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 972 973 /* This also adjusts physical block size/min io size if needed */ 974 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 975 } 976 977 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 978 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 979 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 980 981 blk_queue_write_cache(q, true, true); 982 983 return 0; 984 985 out_bioset_exit: 986 bioset_exit(&d->bio_split); 987 out_ida_remove: 988 ida_simple_remove(&bcache_device_idx, idx); 989 out_free_full_dirty_stripes: 990 kvfree(d->full_dirty_stripes); 991 out_free_stripe_sectors_dirty: 992 kvfree(d->stripe_sectors_dirty); 993 return -ENOMEM; 994 995 } 996 997 /* Cached device */ 998 999 static void calc_cached_dev_sectors(struct cache_set *c) 1000 { 1001 uint64_t sectors = 0; 1002 struct cached_dev *dc; 1003 1004 list_for_each_entry(dc, &c->cached_devs, list) 1005 sectors += bdev_sectors(dc->bdev); 1006 1007 c->cached_dev_sectors = sectors; 1008 } 1009 1010 #define BACKING_DEV_OFFLINE_TIMEOUT 5 1011 static int cached_dev_status_update(void *arg) 1012 { 1013 struct cached_dev *dc = arg; 1014 struct request_queue *q; 1015 1016 /* 1017 * If this delayed worker is stopping outside, directly quit here. 1018 * dc->io_disable might be set via sysfs interface, so check it 1019 * here too. 1020 */ 1021 while (!kthread_should_stop() && !dc->io_disable) { 1022 q = bdev_get_queue(dc->bdev); 1023 if (blk_queue_dying(q)) 1024 dc->offline_seconds++; 1025 else 1026 dc->offline_seconds = 0; 1027 1028 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1029 pr_err("%s: device offline for %d seconds\n", 1030 dc->backing_dev_name, 1031 BACKING_DEV_OFFLINE_TIMEOUT); 1032 pr_err("%s: disable I/O request due to backing device offline\n", 1033 dc->disk.name); 1034 dc->io_disable = true; 1035 /* let others know earlier that io_disable is true */ 1036 smp_mb(); 1037 bcache_device_stop(&dc->disk); 1038 break; 1039 } 1040 schedule_timeout_interruptible(HZ); 1041 } 1042 1043 wait_for_kthread_stop(); 1044 return 0; 1045 } 1046 1047 1048 int bch_cached_dev_run(struct cached_dev *dc) 1049 { 1050 int ret = 0; 1051 struct bcache_device *d = &dc->disk; 1052 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1053 char *env[] = { 1054 "DRIVER=bcache", 1055 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1056 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1057 NULL, 1058 }; 1059 1060 if (dc->io_disable) { 1061 pr_err("I/O disabled on cached dev %s\n", 1062 dc->backing_dev_name); 1063 ret = -EIO; 1064 goto out; 1065 } 1066 1067 if (atomic_xchg(&dc->running, 1)) { 1068 pr_info("cached dev %s is running already\n", 1069 dc->backing_dev_name); 1070 ret = -EBUSY; 1071 goto out; 1072 } 1073 1074 if (!d->c && 1075 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1076 struct closure cl; 1077 1078 closure_init_stack(&cl); 1079 1080 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1081 bch_write_bdev_super(dc, &cl); 1082 closure_sync(&cl); 1083 } 1084 1085 add_disk(d->disk); 1086 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1087 /* 1088 * won't show up in the uevent file, use udevadm monitor -e instead 1089 * only class / kset properties are persistent 1090 */ 1091 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1092 1093 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1094 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1095 &d->kobj, "bcache")) { 1096 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1097 ret = -ENOMEM; 1098 goto out; 1099 } 1100 1101 dc->status_update_thread = kthread_run(cached_dev_status_update, 1102 dc, "bcache_status_update"); 1103 if (IS_ERR(dc->status_update_thread)) { 1104 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1105 } 1106 1107 out: 1108 kfree(env[1]); 1109 kfree(env[2]); 1110 kfree(buf); 1111 return ret; 1112 } 1113 1114 /* 1115 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1116 * work dc->writeback_rate_update is running. Wait until the routine 1117 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1118 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1119 * seconds, give up waiting here and continue to cancel it too. 1120 */ 1121 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1122 { 1123 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1124 1125 do { 1126 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1127 &dc->disk.flags)) 1128 break; 1129 time_out--; 1130 schedule_timeout_interruptible(1); 1131 } while (time_out > 0); 1132 1133 if (time_out == 0) 1134 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1135 1136 cancel_delayed_work_sync(&dc->writeback_rate_update); 1137 } 1138 1139 static void cached_dev_detach_finish(struct work_struct *w) 1140 { 1141 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1142 1143 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1144 BUG_ON(refcount_read(&dc->count)); 1145 1146 1147 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1148 cancel_writeback_rate_update_dwork(dc); 1149 1150 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1151 kthread_stop(dc->writeback_thread); 1152 dc->writeback_thread = NULL; 1153 } 1154 1155 mutex_lock(&bch_register_lock); 1156 1157 calc_cached_dev_sectors(dc->disk.c); 1158 bcache_device_detach(&dc->disk); 1159 list_move(&dc->list, &uncached_devices); 1160 1161 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1162 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1163 1164 mutex_unlock(&bch_register_lock); 1165 1166 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1167 1168 /* Drop ref we took in cached_dev_detach() */ 1169 closure_put(&dc->disk.cl); 1170 } 1171 1172 void bch_cached_dev_detach(struct cached_dev *dc) 1173 { 1174 lockdep_assert_held(&bch_register_lock); 1175 1176 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1177 return; 1178 1179 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1180 return; 1181 1182 /* 1183 * Block the device from being closed and freed until we're finished 1184 * detaching 1185 */ 1186 closure_get(&dc->disk.cl); 1187 1188 bch_writeback_queue(dc); 1189 1190 cached_dev_put(dc); 1191 } 1192 1193 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1194 uint8_t *set_uuid) 1195 { 1196 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1197 struct uuid_entry *u; 1198 struct cached_dev *exist_dc, *t; 1199 int ret = 0; 1200 1201 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1202 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1203 return -ENOENT; 1204 1205 if (dc->disk.c) { 1206 pr_err("Can't attach %s: already attached\n", 1207 dc->backing_dev_name); 1208 return -EINVAL; 1209 } 1210 1211 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1212 pr_err("Can't attach %s: shutting down\n", 1213 dc->backing_dev_name); 1214 return -EINVAL; 1215 } 1216 1217 if (dc->sb.block_size < c->cache->sb.block_size) { 1218 /* Will die */ 1219 pr_err("Couldn't attach %s: block size less than set's block size\n", 1220 dc->backing_dev_name); 1221 return -EINVAL; 1222 } 1223 1224 /* Check whether already attached */ 1225 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1226 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1227 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1228 dc->backing_dev_name); 1229 1230 return -EINVAL; 1231 } 1232 } 1233 1234 u = uuid_find(c, dc->sb.uuid); 1235 1236 if (u && 1237 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1238 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1239 memcpy(u->uuid, invalid_uuid, 16); 1240 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1241 u = NULL; 1242 } 1243 1244 if (!u) { 1245 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1246 pr_err("Couldn't find uuid for %s in set\n", 1247 dc->backing_dev_name); 1248 return -ENOENT; 1249 } 1250 1251 u = uuid_find_empty(c); 1252 if (!u) { 1253 pr_err("Not caching %s, no room for UUID\n", 1254 dc->backing_dev_name); 1255 return -EINVAL; 1256 } 1257 } 1258 1259 /* 1260 * Deadlocks since we're called via sysfs... 1261 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1262 */ 1263 1264 if (bch_is_zero(u->uuid, 16)) { 1265 struct closure cl; 1266 1267 closure_init_stack(&cl); 1268 1269 memcpy(u->uuid, dc->sb.uuid, 16); 1270 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1271 u->first_reg = u->last_reg = rtime; 1272 bch_uuid_write(c); 1273 1274 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1275 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1276 1277 bch_write_bdev_super(dc, &cl); 1278 closure_sync(&cl); 1279 } else { 1280 u->last_reg = rtime; 1281 bch_uuid_write(c); 1282 } 1283 1284 bcache_device_attach(&dc->disk, c, u - c->uuids); 1285 list_move(&dc->list, &c->cached_devs); 1286 calc_cached_dev_sectors(c); 1287 1288 /* 1289 * dc->c must be set before dc->count != 0 - paired with the mb in 1290 * cached_dev_get() 1291 */ 1292 smp_wmb(); 1293 refcount_set(&dc->count, 1); 1294 1295 /* Block writeback thread, but spawn it */ 1296 down_write(&dc->writeback_lock); 1297 if (bch_cached_dev_writeback_start(dc)) { 1298 up_write(&dc->writeback_lock); 1299 pr_err("Couldn't start writeback facilities for %s\n", 1300 dc->disk.disk->disk_name); 1301 return -ENOMEM; 1302 } 1303 1304 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1305 atomic_set(&dc->has_dirty, 1); 1306 bch_writeback_queue(dc); 1307 } 1308 1309 bch_sectors_dirty_init(&dc->disk); 1310 1311 ret = bch_cached_dev_run(dc); 1312 if (ret && (ret != -EBUSY)) { 1313 up_write(&dc->writeback_lock); 1314 /* 1315 * bch_register_lock is held, bcache_device_stop() is not 1316 * able to be directly called. The kthread and kworker 1317 * created previously in bch_cached_dev_writeback_start() 1318 * have to be stopped manually here. 1319 */ 1320 kthread_stop(dc->writeback_thread); 1321 cancel_writeback_rate_update_dwork(dc); 1322 pr_err("Couldn't run cached device %s\n", 1323 dc->backing_dev_name); 1324 return ret; 1325 } 1326 1327 bcache_device_link(&dc->disk, c, "bdev"); 1328 atomic_inc(&c->attached_dev_nr); 1329 1330 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1331 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1332 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1333 set_disk_ro(dc->disk.disk, 1); 1334 } 1335 1336 /* Allow the writeback thread to proceed */ 1337 up_write(&dc->writeback_lock); 1338 1339 pr_info("Caching %s as %s on set %pU\n", 1340 dc->backing_dev_name, 1341 dc->disk.disk->disk_name, 1342 dc->disk.c->set_uuid); 1343 return 0; 1344 } 1345 1346 /* when dc->disk.kobj released */ 1347 void bch_cached_dev_release(struct kobject *kobj) 1348 { 1349 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1350 disk.kobj); 1351 kfree(dc); 1352 module_put(THIS_MODULE); 1353 } 1354 1355 static void cached_dev_free(struct closure *cl) 1356 { 1357 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1358 1359 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1360 cancel_writeback_rate_update_dwork(dc); 1361 1362 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1363 kthread_stop(dc->writeback_thread); 1364 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1365 kthread_stop(dc->status_update_thread); 1366 1367 mutex_lock(&bch_register_lock); 1368 1369 if (atomic_read(&dc->running)) { 1370 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1371 del_gendisk(dc->disk.disk); 1372 } 1373 bcache_device_free(&dc->disk); 1374 list_del(&dc->list); 1375 1376 mutex_unlock(&bch_register_lock); 1377 1378 if (dc->sb_disk) 1379 put_page(virt_to_page(dc->sb_disk)); 1380 1381 if (!IS_ERR_OR_NULL(dc->bdev)) 1382 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1383 1384 wake_up(&unregister_wait); 1385 1386 kobject_put(&dc->disk.kobj); 1387 } 1388 1389 static void cached_dev_flush(struct closure *cl) 1390 { 1391 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1392 struct bcache_device *d = &dc->disk; 1393 1394 mutex_lock(&bch_register_lock); 1395 bcache_device_unlink(d); 1396 mutex_unlock(&bch_register_lock); 1397 1398 bch_cache_accounting_destroy(&dc->accounting); 1399 kobject_del(&d->kobj); 1400 1401 continue_at(cl, cached_dev_free, system_wq); 1402 } 1403 1404 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1405 { 1406 int ret; 1407 struct io *io; 1408 struct request_queue *q = bdev_get_queue(dc->bdev); 1409 1410 __module_get(THIS_MODULE); 1411 INIT_LIST_HEAD(&dc->list); 1412 closure_init(&dc->disk.cl, NULL); 1413 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1414 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1415 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1416 sema_init(&dc->sb_write_mutex, 1); 1417 INIT_LIST_HEAD(&dc->io_lru); 1418 spin_lock_init(&dc->io_lock); 1419 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1420 1421 dc->sequential_cutoff = 4 << 20; 1422 1423 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1424 list_add(&io->lru, &dc->io_lru); 1425 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1426 } 1427 1428 dc->disk.stripe_size = q->limits.io_opt >> 9; 1429 1430 if (dc->disk.stripe_size) 1431 dc->partial_stripes_expensive = 1432 q->limits.raid_partial_stripes_expensive; 1433 1434 ret = bcache_device_init(&dc->disk, block_size, 1435 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1436 dc->bdev, &bcache_cached_ops); 1437 if (ret) 1438 return ret; 1439 1440 blk_queue_io_opt(dc->disk.disk->queue, 1441 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1442 1443 atomic_set(&dc->io_errors, 0); 1444 dc->io_disable = false; 1445 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1446 /* default to auto */ 1447 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1448 1449 bch_cached_dev_request_init(dc); 1450 bch_cached_dev_writeback_init(dc); 1451 return 0; 1452 } 1453 1454 /* Cached device - bcache superblock */ 1455 1456 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1457 struct block_device *bdev, 1458 struct cached_dev *dc) 1459 { 1460 const char *err = "cannot allocate memory"; 1461 struct cache_set *c; 1462 int ret = -ENOMEM; 1463 1464 bdevname(bdev, dc->backing_dev_name); 1465 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1466 dc->bdev = bdev; 1467 dc->bdev->bd_holder = dc; 1468 dc->sb_disk = sb_disk; 1469 1470 if (cached_dev_init(dc, sb->block_size << 9)) 1471 goto err; 1472 1473 err = "error creating kobject"; 1474 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache")) 1475 goto err; 1476 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1477 goto err; 1478 1479 pr_info("registered backing device %s\n", dc->backing_dev_name); 1480 1481 list_add(&dc->list, &uncached_devices); 1482 /* attach to a matched cache set if it exists */ 1483 list_for_each_entry(c, &bch_cache_sets, list) 1484 bch_cached_dev_attach(dc, c, NULL); 1485 1486 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1487 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1488 err = "failed to run cached device"; 1489 ret = bch_cached_dev_run(dc); 1490 if (ret) 1491 goto err; 1492 } 1493 1494 return 0; 1495 err: 1496 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1497 bcache_device_stop(&dc->disk); 1498 return ret; 1499 } 1500 1501 /* Flash only volumes */ 1502 1503 /* When d->kobj released */ 1504 void bch_flash_dev_release(struct kobject *kobj) 1505 { 1506 struct bcache_device *d = container_of(kobj, struct bcache_device, 1507 kobj); 1508 kfree(d); 1509 } 1510 1511 static void flash_dev_free(struct closure *cl) 1512 { 1513 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1514 1515 mutex_lock(&bch_register_lock); 1516 atomic_long_sub(bcache_dev_sectors_dirty(d), 1517 &d->c->flash_dev_dirty_sectors); 1518 del_gendisk(d->disk); 1519 bcache_device_free(d); 1520 mutex_unlock(&bch_register_lock); 1521 kobject_put(&d->kobj); 1522 } 1523 1524 static void flash_dev_flush(struct closure *cl) 1525 { 1526 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1527 1528 mutex_lock(&bch_register_lock); 1529 bcache_device_unlink(d); 1530 mutex_unlock(&bch_register_lock); 1531 kobject_del(&d->kobj); 1532 continue_at(cl, flash_dev_free, system_wq); 1533 } 1534 1535 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1536 { 1537 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1538 GFP_KERNEL); 1539 if (!d) 1540 return -ENOMEM; 1541 1542 closure_init(&d->cl, NULL); 1543 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1544 1545 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1546 1547 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1548 NULL, &bcache_flash_ops)) 1549 goto err; 1550 1551 bcache_device_attach(d, c, u - c->uuids); 1552 bch_sectors_dirty_init(d); 1553 bch_flash_dev_request_init(d); 1554 add_disk(d->disk); 1555 1556 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1557 goto err; 1558 1559 bcache_device_link(d, c, "volume"); 1560 1561 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1562 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1563 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1564 set_disk_ro(d->disk, 1); 1565 } 1566 1567 return 0; 1568 err: 1569 kobject_put(&d->kobj); 1570 return -ENOMEM; 1571 } 1572 1573 static int flash_devs_run(struct cache_set *c) 1574 { 1575 int ret = 0; 1576 struct uuid_entry *u; 1577 1578 for (u = c->uuids; 1579 u < c->uuids + c->nr_uuids && !ret; 1580 u++) 1581 if (UUID_FLASH_ONLY(u)) 1582 ret = flash_dev_run(c, u); 1583 1584 return ret; 1585 } 1586 1587 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1588 { 1589 struct uuid_entry *u; 1590 1591 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1592 return -EINTR; 1593 1594 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1595 return -EPERM; 1596 1597 u = uuid_find_empty(c); 1598 if (!u) { 1599 pr_err("Can't create volume, no room for UUID\n"); 1600 return -EINVAL; 1601 } 1602 1603 get_random_bytes(u->uuid, 16); 1604 memset(u->label, 0, 32); 1605 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1606 1607 SET_UUID_FLASH_ONLY(u, 1); 1608 u->sectors = size >> 9; 1609 1610 bch_uuid_write(c); 1611 1612 return flash_dev_run(c, u); 1613 } 1614 1615 bool bch_cached_dev_error(struct cached_dev *dc) 1616 { 1617 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1618 return false; 1619 1620 dc->io_disable = true; 1621 /* make others know io_disable is true earlier */ 1622 smp_mb(); 1623 1624 pr_err("stop %s: too many IO errors on backing device %s\n", 1625 dc->disk.disk->disk_name, dc->backing_dev_name); 1626 1627 bcache_device_stop(&dc->disk); 1628 return true; 1629 } 1630 1631 /* Cache set */ 1632 1633 __printf(2, 3) 1634 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1635 { 1636 struct va_format vaf; 1637 va_list args; 1638 1639 if (c->on_error != ON_ERROR_PANIC && 1640 test_bit(CACHE_SET_STOPPING, &c->flags)) 1641 return false; 1642 1643 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1644 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1645 1646 /* 1647 * XXX: we can be called from atomic context 1648 * acquire_console_sem(); 1649 */ 1650 1651 va_start(args, fmt); 1652 1653 vaf.fmt = fmt; 1654 vaf.va = &args; 1655 1656 pr_err("error on %pU: %pV, disabling caching\n", 1657 c->set_uuid, &vaf); 1658 1659 va_end(args); 1660 1661 if (c->on_error == ON_ERROR_PANIC) 1662 panic("panic forced after error\n"); 1663 1664 bch_cache_set_unregister(c); 1665 return true; 1666 } 1667 1668 /* When c->kobj released */ 1669 void bch_cache_set_release(struct kobject *kobj) 1670 { 1671 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1672 1673 kfree(c); 1674 module_put(THIS_MODULE); 1675 } 1676 1677 static void cache_set_free(struct closure *cl) 1678 { 1679 struct cache_set *c = container_of(cl, struct cache_set, cl); 1680 struct cache *ca; 1681 1682 debugfs_remove(c->debug); 1683 1684 bch_open_buckets_free(c); 1685 bch_btree_cache_free(c); 1686 bch_journal_free(c); 1687 1688 mutex_lock(&bch_register_lock); 1689 bch_bset_sort_state_free(&c->sort); 1690 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1691 1692 ca = c->cache; 1693 if (ca) { 1694 ca->set = NULL; 1695 c->cache = NULL; 1696 kobject_put(&ca->kobj); 1697 } 1698 1699 1700 if (c->moving_gc_wq) 1701 destroy_workqueue(c->moving_gc_wq); 1702 bioset_exit(&c->bio_split); 1703 mempool_exit(&c->fill_iter); 1704 mempool_exit(&c->bio_meta); 1705 mempool_exit(&c->search); 1706 kfree(c->devices); 1707 1708 list_del(&c->list); 1709 mutex_unlock(&bch_register_lock); 1710 1711 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1712 wake_up(&unregister_wait); 1713 1714 closure_debug_destroy(&c->cl); 1715 kobject_put(&c->kobj); 1716 } 1717 1718 static void cache_set_flush(struct closure *cl) 1719 { 1720 struct cache_set *c = container_of(cl, struct cache_set, caching); 1721 struct cache *ca = c->cache; 1722 struct btree *b; 1723 1724 bch_cache_accounting_destroy(&c->accounting); 1725 1726 kobject_put(&c->internal); 1727 kobject_del(&c->kobj); 1728 1729 if (!IS_ERR_OR_NULL(c->gc_thread)) 1730 kthread_stop(c->gc_thread); 1731 1732 if (!IS_ERR_OR_NULL(c->root)) 1733 list_add(&c->root->list, &c->btree_cache); 1734 1735 /* 1736 * Avoid flushing cached nodes if cache set is retiring 1737 * due to too many I/O errors detected. 1738 */ 1739 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1740 list_for_each_entry(b, &c->btree_cache, list) { 1741 mutex_lock(&b->write_lock); 1742 if (btree_node_dirty(b)) 1743 __bch_btree_node_write(b, NULL); 1744 mutex_unlock(&b->write_lock); 1745 } 1746 1747 if (ca->alloc_thread) 1748 kthread_stop(ca->alloc_thread); 1749 1750 if (c->journal.cur) { 1751 cancel_delayed_work_sync(&c->journal.work); 1752 /* flush last journal entry if needed */ 1753 c->journal.work.work.func(&c->journal.work.work); 1754 } 1755 1756 closure_return(cl); 1757 } 1758 1759 /* 1760 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1761 * cache set is unregistering due to too many I/O errors. In this condition, 1762 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1763 * value and whether the broken cache has dirty data: 1764 * 1765 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1766 * BCH_CACHED_STOP_AUTO 0 NO 1767 * BCH_CACHED_STOP_AUTO 1 YES 1768 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1769 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1770 * 1771 * The expected behavior is, if stop_when_cache_set_failed is configured to 1772 * "auto" via sysfs interface, the bcache device will not be stopped if the 1773 * backing device is clean on the broken cache device. 1774 */ 1775 static void conditional_stop_bcache_device(struct cache_set *c, 1776 struct bcache_device *d, 1777 struct cached_dev *dc) 1778 { 1779 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1780 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1781 d->disk->disk_name, c->set_uuid); 1782 bcache_device_stop(d); 1783 } else if (atomic_read(&dc->has_dirty)) { 1784 /* 1785 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1786 * and dc->has_dirty == 1 1787 */ 1788 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1789 d->disk->disk_name); 1790 /* 1791 * There might be a small time gap that cache set is 1792 * released but bcache device is not. Inside this time 1793 * gap, regular I/O requests will directly go into 1794 * backing device as no cache set attached to. This 1795 * behavior may also introduce potential inconsistence 1796 * data in writeback mode while cache is dirty. 1797 * Therefore before calling bcache_device_stop() due 1798 * to a broken cache device, dc->io_disable should be 1799 * explicitly set to true. 1800 */ 1801 dc->io_disable = true; 1802 /* make others know io_disable is true earlier */ 1803 smp_mb(); 1804 bcache_device_stop(d); 1805 } else { 1806 /* 1807 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1808 * and dc->has_dirty == 0 1809 */ 1810 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1811 d->disk->disk_name); 1812 } 1813 } 1814 1815 static void __cache_set_unregister(struct closure *cl) 1816 { 1817 struct cache_set *c = container_of(cl, struct cache_set, caching); 1818 struct cached_dev *dc; 1819 struct bcache_device *d; 1820 size_t i; 1821 1822 mutex_lock(&bch_register_lock); 1823 1824 for (i = 0; i < c->devices_max_used; i++) { 1825 d = c->devices[i]; 1826 if (!d) 1827 continue; 1828 1829 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1830 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1831 dc = container_of(d, struct cached_dev, disk); 1832 bch_cached_dev_detach(dc); 1833 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1834 conditional_stop_bcache_device(c, d, dc); 1835 } else { 1836 bcache_device_stop(d); 1837 } 1838 } 1839 1840 mutex_unlock(&bch_register_lock); 1841 1842 continue_at(cl, cache_set_flush, system_wq); 1843 } 1844 1845 void bch_cache_set_stop(struct cache_set *c) 1846 { 1847 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1848 /* closure_fn set to __cache_set_unregister() */ 1849 closure_queue(&c->caching); 1850 } 1851 1852 void bch_cache_set_unregister(struct cache_set *c) 1853 { 1854 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1855 bch_cache_set_stop(c); 1856 } 1857 1858 #define alloc_meta_bucket_pages(gfp, sb) \ 1859 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1860 1861 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1862 { 1863 int iter_size; 1864 struct cache *ca = container_of(sb, struct cache, sb); 1865 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1866 1867 if (!c) 1868 return NULL; 1869 1870 __module_get(THIS_MODULE); 1871 closure_init(&c->cl, NULL); 1872 set_closure_fn(&c->cl, cache_set_free, system_wq); 1873 1874 closure_init(&c->caching, &c->cl); 1875 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1876 1877 /* Maybe create continue_at_noreturn() and use it here? */ 1878 closure_set_stopped(&c->cl); 1879 closure_put(&c->cl); 1880 1881 kobject_init(&c->kobj, &bch_cache_set_ktype); 1882 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1883 1884 bch_cache_accounting_init(&c->accounting, &c->cl); 1885 1886 memcpy(c->set_uuid, sb->set_uuid, 16); 1887 1888 c->cache = ca; 1889 c->cache->set = c; 1890 c->bucket_bits = ilog2(sb->bucket_size); 1891 c->block_bits = ilog2(sb->block_size); 1892 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1893 c->devices_max_used = 0; 1894 atomic_set(&c->attached_dev_nr, 0); 1895 c->btree_pages = meta_bucket_pages(sb); 1896 if (c->btree_pages > BTREE_MAX_PAGES) 1897 c->btree_pages = max_t(int, c->btree_pages / 4, 1898 BTREE_MAX_PAGES); 1899 1900 sema_init(&c->sb_write_mutex, 1); 1901 mutex_init(&c->bucket_lock); 1902 init_waitqueue_head(&c->btree_cache_wait); 1903 spin_lock_init(&c->btree_cannibalize_lock); 1904 init_waitqueue_head(&c->bucket_wait); 1905 init_waitqueue_head(&c->gc_wait); 1906 sema_init(&c->uuid_write_mutex, 1); 1907 1908 spin_lock_init(&c->btree_gc_time.lock); 1909 spin_lock_init(&c->btree_split_time.lock); 1910 spin_lock_init(&c->btree_read_time.lock); 1911 1912 bch_moving_init_cache_set(c); 1913 1914 INIT_LIST_HEAD(&c->list); 1915 INIT_LIST_HEAD(&c->cached_devs); 1916 INIT_LIST_HEAD(&c->btree_cache); 1917 INIT_LIST_HEAD(&c->btree_cache_freeable); 1918 INIT_LIST_HEAD(&c->btree_cache_freed); 1919 INIT_LIST_HEAD(&c->data_buckets); 1920 1921 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1922 sizeof(struct btree_iter_set); 1923 1924 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1925 if (!c->devices) 1926 goto err; 1927 1928 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1929 goto err; 1930 1931 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1932 sizeof(struct bbio) + 1933 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1934 goto err; 1935 1936 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1937 goto err; 1938 1939 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1940 BIOSET_NEED_RESCUER)) 1941 goto err; 1942 1943 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1944 if (!c->uuids) 1945 goto err; 1946 1947 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1948 if (!c->moving_gc_wq) 1949 goto err; 1950 1951 if (bch_journal_alloc(c)) 1952 goto err; 1953 1954 if (bch_btree_cache_alloc(c)) 1955 goto err; 1956 1957 if (bch_open_buckets_alloc(c)) 1958 goto err; 1959 1960 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1961 goto err; 1962 1963 c->congested_read_threshold_us = 2000; 1964 c->congested_write_threshold_us = 20000; 1965 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1966 c->idle_max_writeback_rate_enabled = 1; 1967 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1968 1969 return c; 1970 err: 1971 bch_cache_set_unregister(c); 1972 return NULL; 1973 } 1974 1975 static int run_cache_set(struct cache_set *c) 1976 { 1977 const char *err = "cannot allocate memory"; 1978 struct cached_dev *dc, *t; 1979 struct cache *ca = c->cache; 1980 struct closure cl; 1981 LIST_HEAD(journal); 1982 struct journal_replay *l; 1983 1984 closure_init_stack(&cl); 1985 1986 c->nbuckets = ca->sb.nbuckets; 1987 set_gc_sectors(c); 1988 1989 if (CACHE_SYNC(&c->cache->sb)) { 1990 struct bkey *k; 1991 struct jset *j; 1992 1993 err = "cannot allocate memory for journal"; 1994 if (bch_journal_read(c, &journal)) 1995 goto err; 1996 1997 pr_debug("btree_journal_read() done\n"); 1998 1999 err = "no journal entries found"; 2000 if (list_empty(&journal)) 2001 goto err; 2002 2003 j = &list_entry(journal.prev, struct journal_replay, list)->j; 2004 2005 err = "IO error reading priorities"; 2006 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 2007 goto err; 2008 2009 /* 2010 * If prio_read() fails it'll call cache_set_error and we'll 2011 * tear everything down right away, but if we perhaps checked 2012 * sooner we could avoid journal replay. 2013 */ 2014 2015 k = &j->btree_root; 2016 2017 err = "bad btree root"; 2018 if (__bch_btree_ptr_invalid(c, k)) 2019 goto err; 2020 2021 err = "error reading btree root"; 2022 c->root = bch_btree_node_get(c, NULL, k, 2023 j->btree_level, 2024 true, NULL); 2025 if (IS_ERR_OR_NULL(c->root)) 2026 goto err; 2027 2028 list_del_init(&c->root->list); 2029 rw_unlock(true, c->root); 2030 2031 err = uuid_read(c, j, &cl); 2032 if (err) 2033 goto err; 2034 2035 err = "error in recovery"; 2036 if (bch_btree_check(c)) 2037 goto err; 2038 2039 bch_journal_mark(c, &journal); 2040 bch_initial_gc_finish(c); 2041 pr_debug("btree_check() done\n"); 2042 2043 /* 2044 * bcache_journal_next() can't happen sooner, or 2045 * btree_gc_finish() will give spurious errors about last_gc > 2046 * gc_gen - this is a hack but oh well. 2047 */ 2048 bch_journal_next(&c->journal); 2049 2050 err = "error starting allocator thread"; 2051 if (bch_cache_allocator_start(ca)) 2052 goto err; 2053 2054 /* 2055 * First place it's safe to allocate: btree_check() and 2056 * btree_gc_finish() have to run before we have buckets to 2057 * allocate, and bch_bucket_alloc_set() might cause a journal 2058 * entry to be written so bcache_journal_next() has to be called 2059 * first. 2060 * 2061 * If the uuids were in the old format we have to rewrite them 2062 * before the next journal entry is written: 2063 */ 2064 if (j->version < BCACHE_JSET_VERSION_UUID) 2065 __uuid_write(c); 2066 2067 err = "bcache: replay journal failed"; 2068 if (bch_journal_replay(c, &journal)) 2069 goto err; 2070 } else { 2071 unsigned int j; 2072 2073 pr_notice("invalidating existing data\n"); 2074 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2075 2, SB_JOURNAL_BUCKETS); 2076 2077 for (j = 0; j < ca->sb.keys; j++) 2078 ca->sb.d[j] = ca->sb.first_bucket + j; 2079 2080 bch_initial_gc_finish(c); 2081 2082 err = "error starting allocator thread"; 2083 if (bch_cache_allocator_start(ca)) 2084 goto err; 2085 2086 mutex_lock(&c->bucket_lock); 2087 bch_prio_write(ca, true); 2088 mutex_unlock(&c->bucket_lock); 2089 2090 err = "cannot allocate new UUID bucket"; 2091 if (__uuid_write(c)) 2092 goto err; 2093 2094 err = "cannot allocate new btree root"; 2095 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2096 if (IS_ERR_OR_NULL(c->root)) 2097 goto err; 2098 2099 mutex_lock(&c->root->write_lock); 2100 bkey_copy_key(&c->root->key, &MAX_KEY); 2101 bch_btree_node_write(c->root, &cl); 2102 mutex_unlock(&c->root->write_lock); 2103 2104 bch_btree_set_root(c->root); 2105 rw_unlock(true, c->root); 2106 2107 /* 2108 * We don't want to write the first journal entry until 2109 * everything is set up - fortunately journal entries won't be 2110 * written until the SET_CACHE_SYNC() here: 2111 */ 2112 SET_CACHE_SYNC(&c->cache->sb, true); 2113 2114 bch_journal_next(&c->journal); 2115 bch_journal_meta(c, &cl); 2116 } 2117 2118 err = "error starting gc thread"; 2119 if (bch_gc_thread_start(c)) 2120 goto err; 2121 2122 closure_sync(&cl); 2123 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2124 bcache_write_super(c); 2125 2126 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2127 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2128 2129 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2130 bch_cached_dev_attach(dc, c, NULL); 2131 2132 flash_devs_run(c); 2133 2134 set_bit(CACHE_SET_RUNNING, &c->flags); 2135 return 0; 2136 err: 2137 while (!list_empty(&journal)) { 2138 l = list_first_entry(&journal, struct journal_replay, list); 2139 list_del(&l->list); 2140 kfree(l); 2141 } 2142 2143 closure_sync(&cl); 2144 2145 bch_cache_set_error(c, "%s", err); 2146 2147 return -EIO; 2148 } 2149 2150 static const char *register_cache_set(struct cache *ca) 2151 { 2152 char buf[12]; 2153 const char *err = "cannot allocate memory"; 2154 struct cache_set *c; 2155 2156 list_for_each_entry(c, &bch_cache_sets, list) 2157 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2158 if (c->cache) 2159 return "duplicate cache set member"; 2160 2161 goto found; 2162 } 2163 2164 c = bch_cache_set_alloc(&ca->sb); 2165 if (!c) 2166 return err; 2167 2168 err = "error creating kobject"; 2169 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2170 kobject_add(&c->internal, &c->kobj, "internal")) 2171 goto err; 2172 2173 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2174 goto err; 2175 2176 bch_debug_init_cache_set(c); 2177 2178 list_add(&c->list, &bch_cache_sets); 2179 found: 2180 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2181 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2182 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2183 goto err; 2184 2185 kobject_get(&ca->kobj); 2186 ca->set = c; 2187 ca->set->cache = ca; 2188 2189 err = "failed to run cache set"; 2190 if (run_cache_set(c) < 0) 2191 goto err; 2192 2193 return NULL; 2194 err: 2195 bch_cache_set_unregister(c); 2196 return err; 2197 } 2198 2199 /* Cache device */ 2200 2201 /* When ca->kobj released */ 2202 void bch_cache_release(struct kobject *kobj) 2203 { 2204 struct cache *ca = container_of(kobj, struct cache, kobj); 2205 unsigned int i; 2206 2207 if (ca->set) { 2208 BUG_ON(ca->set->cache != ca); 2209 ca->set->cache = NULL; 2210 } 2211 2212 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2213 kfree(ca->prio_buckets); 2214 vfree(ca->buckets); 2215 2216 free_heap(&ca->heap); 2217 free_fifo(&ca->free_inc); 2218 2219 for (i = 0; i < RESERVE_NR; i++) 2220 free_fifo(&ca->free[i]); 2221 2222 if (ca->sb_disk) 2223 put_page(virt_to_page(ca->sb_disk)); 2224 2225 if (!IS_ERR_OR_NULL(ca->bdev)) 2226 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2227 2228 kfree(ca); 2229 module_put(THIS_MODULE); 2230 } 2231 2232 static int cache_alloc(struct cache *ca) 2233 { 2234 size_t free; 2235 size_t btree_buckets; 2236 struct bucket *b; 2237 int ret = -ENOMEM; 2238 const char *err = NULL; 2239 2240 __module_get(THIS_MODULE); 2241 kobject_init(&ca->kobj, &bch_cache_ktype); 2242 2243 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2244 2245 /* 2246 * when ca->sb.njournal_buckets is not zero, journal exists, 2247 * and in bch_journal_replay(), tree node may split, 2248 * so bucket of RESERVE_BTREE type is needed, 2249 * the worst situation is all journal buckets are valid journal, 2250 * and all the keys need to replay, 2251 * so the number of RESERVE_BTREE type buckets should be as much 2252 * as journal buckets 2253 */ 2254 btree_buckets = ca->sb.njournal_buckets ?: 8; 2255 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2256 if (!free) { 2257 ret = -EPERM; 2258 err = "ca->sb.nbuckets is too small"; 2259 goto err_free; 2260 } 2261 2262 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2263 GFP_KERNEL)) { 2264 err = "ca->free[RESERVE_BTREE] alloc failed"; 2265 goto err_btree_alloc; 2266 } 2267 2268 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2269 GFP_KERNEL)) { 2270 err = "ca->free[RESERVE_PRIO] alloc failed"; 2271 goto err_prio_alloc; 2272 } 2273 2274 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2275 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2276 goto err_movinggc_alloc; 2277 } 2278 2279 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2280 err = "ca->free[RESERVE_NONE] alloc failed"; 2281 goto err_none_alloc; 2282 } 2283 2284 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2285 err = "ca->free_inc alloc failed"; 2286 goto err_free_inc_alloc; 2287 } 2288 2289 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2290 err = "ca->heap alloc failed"; 2291 goto err_heap_alloc; 2292 } 2293 2294 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2295 ca->sb.nbuckets)); 2296 if (!ca->buckets) { 2297 err = "ca->buckets alloc failed"; 2298 goto err_buckets_alloc; 2299 } 2300 2301 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2302 prio_buckets(ca), 2), 2303 GFP_KERNEL); 2304 if (!ca->prio_buckets) { 2305 err = "ca->prio_buckets alloc failed"; 2306 goto err_prio_buckets_alloc; 2307 } 2308 2309 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2310 if (!ca->disk_buckets) { 2311 err = "ca->disk_buckets alloc failed"; 2312 goto err_disk_buckets_alloc; 2313 } 2314 2315 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2316 2317 for_each_bucket(b, ca) 2318 atomic_set(&b->pin, 0); 2319 return 0; 2320 2321 err_disk_buckets_alloc: 2322 kfree(ca->prio_buckets); 2323 err_prio_buckets_alloc: 2324 vfree(ca->buckets); 2325 err_buckets_alloc: 2326 free_heap(&ca->heap); 2327 err_heap_alloc: 2328 free_fifo(&ca->free_inc); 2329 err_free_inc_alloc: 2330 free_fifo(&ca->free[RESERVE_NONE]); 2331 err_none_alloc: 2332 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2333 err_movinggc_alloc: 2334 free_fifo(&ca->free[RESERVE_PRIO]); 2335 err_prio_alloc: 2336 free_fifo(&ca->free[RESERVE_BTREE]); 2337 err_btree_alloc: 2338 err_free: 2339 module_put(THIS_MODULE); 2340 if (err) 2341 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2342 return ret; 2343 } 2344 2345 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2346 struct block_device *bdev, struct cache *ca) 2347 { 2348 const char *err = NULL; /* must be set for any error case */ 2349 int ret = 0; 2350 2351 bdevname(bdev, ca->cache_dev_name); 2352 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2353 ca->bdev = bdev; 2354 ca->bdev->bd_holder = ca; 2355 ca->sb_disk = sb_disk; 2356 2357 if (blk_queue_discard(bdev_get_queue(bdev))) 2358 ca->discard = CACHE_DISCARD(&ca->sb); 2359 2360 ret = cache_alloc(ca); 2361 if (ret != 0) { 2362 /* 2363 * If we failed here, it means ca->kobj is not initialized yet, 2364 * kobject_put() won't be called and there is no chance to 2365 * call blkdev_put() to bdev in bch_cache_release(). So we 2366 * explicitly call blkdev_put() here. 2367 */ 2368 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2369 if (ret == -ENOMEM) 2370 err = "cache_alloc(): -ENOMEM"; 2371 else if (ret == -EPERM) 2372 err = "cache_alloc(): cache device is too small"; 2373 else 2374 err = "cache_alloc(): unknown error"; 2375 goto err; 2376 } 2377 2378 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) { 2379 err = "error calling kobject_add"; 2380 ret = -ENOMEM; 2381 goto out; 2382 } 2383 2384 mutex_lock(&bch_register_lock); 2385 err = register_cache_set(ca); 2386 mutex_unlock(&bch_register_lock); 2387 2388 if (err) { 2389 ret = -ENODEV; 2390 goto out; 2391 } 2392 2393 pr_info("registered cache device %s\n", ca->cache_dev_name); 2394 2395 out: 2396 kobject_put(&ca->kobj); 2397 2398 err: 2399 if (err) 2400 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2401 2402 return ret; 2403 } 2404 2405 /* Global interfaces/init */ 2406 2407 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2408 const char *buffer, size_t size); 2409 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2410 struct kobj_attribute *attr, 2411 const char *buffer, size_t size); 2412 2413 kobj_attribute_write(register, register_bcache); 2414 kobj_attribute_write(register_quiet, register_bcache); 2415 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2416 2417 static bool bch_is_open_backing(dev_t dev) 2418 { 2419 struct cache_set *c, *tc; 2420 struct cached_dev *dc, *t; 2421 2422 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2423 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2424 if (dc->bdev->bd_dev == dev) 2425 return true; 2426 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2427 if (dc->bdev->bd_dev == dev) 2428 return true; 2429 return false; 2430 } 2431 2432 static bool bch_is_open_cache(dev_t dev) 2433 { 2434 struct cache_set *c, *tc; 2435 2436 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2437 struct cache *ca = c->cache; 2438 2439 if (ca->bdev->bd_dev == dev) 2440 return true; 2441 } 2442 2443 return false; 2444 } 2445 2446 static bool bch_is_open(dev_t dev) 2447 { 2448 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2449 } 2450 2451 struct async_reg_args { 2452 struct delayed_work reg_work; 2453 char *path; 2454 struct cache_sb *sb; 2455 struct cache_sb_disk *sb_disk; 2456 struct block_device *bdev; 2457 }; 2458 2459 static void register_bdev_worker(struct work_struct *work) 2460 { 2461 int fail = false; 2462 struct async_reg_args *args = 2463 container_of(work, struct async_reg_args, reg_work.work); 2464 struct cached_dev *dc; 2465 2466 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2467 if (!dc) { 2468 fail = true; 2469 put_page(virt_to_page(args->sb_disk)); 2470 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2471 goto out; 2472 } 2473 2474 mutex_lock(&bch_register_lock); 2475 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2476 fail = true; 2477 mutex_unlock(&bch_register_lock); 2478 2479 out: 2480 if (fail) 2481 pr_info("error %s: fail to register backing device\n", 2482 args->path); 2483 kfree(args->sb); 2484 kfree(args->path); 2485 kfree(args); 2486 module_put(THIS_MODULE); 2487 } 2488 2489 static void register_cache_worker(struct work_struct *work) 2490 { 2491 int fail = false; 2492 struct async_reg_args *args = 2493 container_of(work, struct async_reg_args, reg_work.work); 2494 struct cache *ca; 2495 2496 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2497 if (!ca) { 2498 fail = true; 2499 put_page(virt_to_page(args->sb_disk)); 2500 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2501 goto out; 2502 } 2503 2504 /* blkdev_put() will be called in bch_cache_release() */ 2505 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2506 fail = true; 2507 2508 out: 2509 if (fail) 2510 pr_info("error %s: fail to register cache device\n", 2511 args->path); 2512 kfree(args->sb); 2513 kfree(args->path); 2514 kfree(args); 2515 module_put(THIS_MODULE); 2516 } 2517 2518 static void register_device_async(struct async_reg_args *args) 2519 { 2520 if (SB_IS_BDEV(args->sb)) 2521 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2522 else 2523 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2524 2525 /* 10 jiffies is enough for a delay */ 2526 queue_delayed_work(system_wq, &args->reg_work, 10); 2527 } 2528 2529 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2530 const char *buffer, size_t size) 2531 { 2532 const char *err; 2533 char *path = NULL; 2534 struct cache_sb *sb; 2535 struct cache_sb_disk *sb_disk; 2536 struct block_device *bdev; 2537 ssize_t ret; 2538 bool async_registration = false; 2539 2540 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2541 async_registration = true; 2542 #endif 2543 2544 ret = -EBUSY; 2545 err = "failed to reference bcache module"; 2546 if (!try_module_get(THIS_MODULE)) 2547 goto out; 2548 2549 /* For latest state of bcache_is_reboot */ 2550 smp_mb(); 2551 err = "bcache is in reboot"; 2552 if (bcache_is_reboot) 2553 goto out_module_put; 2554 2555 ret = -ENOMEM; 2556 err = "cannot allocate memory"; 2557 path = kstrndup(buffer, size, GFP_KERNEL); 2558 if (!path) 2559 goto out_module_put; 2560 2561 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2562 if (!sb) 2563 goto out_free_path; 2564 2565 ret = -EINVAL; 2566 err = "failed to open device"; 2567 bdev = blkdev_get_by_path(strim(path), 2568 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2569 sb); 2570 if (IS_ERR(bdev)) { 2571 if (bdev == ERR_PTR(-EBUSY)) { 2572 dev_t dev; 2573 2574 mutex_lock(&bch_register_lock); 2575 if (lookup_bdev(strim(path), &dev) == 0 && 2576 bch_is_open(dev)) 2577 err = "device already registered"; 2578 else 2579 err = "device busy"; 2580 mutex_unlock(&bch_register_lock); 2581 if (attr == &ksysfs_register_quiet) 2582 goto done; 2583 } 2584 goto out_free_sb; 2585 } 2586 2587 err = "failed to set blocksize"; 2588 if (set_blocksize(bdev, 4096)) 2589 goto out_blkdev_put; 2590 2591 err = read_super(sb, bdev, &sb_disk); 2592 if (err) 2593 goto out_blkdev_put; 2594 2595 err = "failed to register device"; 2596 2597 if (async_registration) { 2598 /* register in asynchronous way */ 2599 struct async_reg_args *args = 2600 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2601 2602 if (!args) { 2603 ret = -ENOMEM; 2604 err = "cannot allocate memory"; 2605 goto out_put_sb_page; 2606 } 2607 2608 args->path = path; 2609 args->sb = sb; 2610 args->sb_disk = sb_disk; 2611 args->bdev = bdev; 2612 register_device_async(args); 2613 /* No wait and returns to user space */ 2614 goto async_done; 2615 } 2616 2617 if (SB_IS_BDEV(sb)) { 2618 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2619 2620 if (!dc) 2621 goto out_put_sb_page; 2622 2623 mutex_lock(&bch_register_lock); 2624 ret = register_bdev(sb, sb_disk, bdev, dc); 2625 mutex_unlock(&bch_register_lock); 2626 /* blkdev_put() will be called in cached_dev_free() */ 2627 if (ret < 0) 2628 goto out_free_sb; 2629 } else { 2630 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2631 2632 if (!ca) 2633 goto out_put_sb_page; 2634 2635 /* blkdev_put() will be called in bch_cache_release() */ 2636 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2637 goto out_free_sb; 2638 } 2639 2640 done: 2641 kfree(sb); 2642 kfree(path); 2643 module_put(THIS_MODULE); 2644 async_done: 2645 return size; 2646 2647 out_put_sb_page: 2648 put_page(virt_to_page(sb_disk)); 2649 out_blkdev_put: 2650 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2651 out_free_sb: 2652 kfree(sb); 2653 out_free_path: 2654 kfree(path); 2655 path = NULL; 2656 out_module_put: 2657 module_put(THIS_MODULE); 2658 out: 2659 pr_info("error %s: %s\n", path?path:"", err); 2660 return ret; 2661 } 2662 2663 2664 struct pdev { 2665 struct list_head list; 2666 struct cached_dev *dc; 2667 }; 2668 2669 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2670 struct kobj_attribute *attr, 2671 const char *buffer, 2672 size_t size) 2673 { 2674 LIST_HEAD(pending_devs); 2675 ssize_t ret = size; 2676 struct cached_dev *dc, *tdc; 2677 struct pdev *pdev, *tpdev; 2678 struct cache_set *c, *tc; 2679 2680 mutex_lock(&bch_register_lock); 2681 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2682 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2683 if (!pdev) 2684 break; 2685 pdev->dc = dc; 2686 list_add(&pdev->list, &pending_devs); 2687 } 2688 2689 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2690 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2691 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2692 char *set_uuid = c->set_uuid; 2693 2694 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2695 list_del(&pdev->list); 2696 kfree(pdev); 2697 break; 2698 } 2699 } 2700 } 2701 mutex_unlock(&bch_register_lock); 2702 2703 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2704 pr_info("delete pdev %p\n", pdev); 2705 list_del(&pdev->list); 2706 bcache_device_stop(&pdev->dc->disk); 2707 kfree(pdev); 2708 } 2709 2710 return ret; 2711 } 2712 2713 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2714 { 2715 if (bcache_is_reboot) 2716 return NOTIFY_DONE; 2717 2718 if (code == SYS_DOWN || 2719 code == SYS_HALT || 2720 code == SYS_POWER_OFF) { 2721 DEFINE_WAIT(wait); 2722 unsigned long start = jiffies; 2723 bool stopped = false; 2724 2725 struct cache_set *c, *tc; 2726 struct cached_dev *dc, *tdc; 2727 2728 mutex_lock(&bch_register_lock); 2729 2730 if (bcache_is_reboot) 2731 goto out; 2732 2733 /* New registration is rejected since now */ 2734 bcache_is_reboot = true; 2735 /* 2736 * Make registering caller (if there is) on other CPU 2737 * core know bcache_is_reboot set to true earlier 2738 */ 2739 smp_mb(); 2740 2741 if (list_empty(&bch_cache_sets) && 2742 list_empty(&uncached_devices)) 2743 goto out; 2744 2745 mutex_unlock(&bch_register_lock); 2746 2747 pr_info("Stopping all devices:\n"); 2748 2749 /* 2750 * The reason bch_register_lock is not held to call 2751 * bch_cache_set_stop() and bcache_device_stop() is to 2752 * avoid potential deadlock during reboot, because cache 2753 * set or bcache device stopping process will acqurie 2754 * bch_register_lock too. 2755 * 2756 * We are safe here because bcache_is_reboot sets to 2757 * true already, register_bcache() will reject new 2758 * registration now. bcache_is_reboot also makes sure 2759 * bcache_reboot() won't be re-entered on by other thread, 2760 * so there is no race in following list iteration by 2761 * list_for_each_entry_safe(). 2762 */ 2763 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2764 bch_cache_set_stop(c); 2765 2766 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2767 bcache_device_stop(&dc->disk); 2768 2769 2770 /* 2771 * Give an early chance for other kthreads and 2772 * kworkers to stop themselves 2773 */ 2774 schedule(); 2775 2776 /* What's a condition variable? */ 2777 while (1) { 2778 long timeout = start + 10 * HZ - jiffies; 2779 2780 mutex_lock(&bch_register_lock); 2781 stopped = list_empty(&bch_cache_sets) && 2782 list_empty(&uncached_devices); 2783 2784 if (timeout < 0 || stopped) 2785 break; 2786 2787 prepare_to_wait(&unregister_wait, &wait, 2788 TASK_UNINTERRUPTIBLE); 2789 2790 mutex_unlock(&bch_register_lock); 2791 schedule_timeout(timeout); 2792 } 2793 2794 finish_wait(&unregister_wait, &wait); 2795 2796 if (stopped) 2797 pr_info("All devices stopped\n"); 2798 else 2799 pr_notice("Timeout waiting for devices to be closed\n"); 2800 out: 2801 mutex_unlock(&bch_register_lock); 2802 } 2803 2804 return NOTIFY_DONE; 2805 } 2806 2807 static struct notifier_block reboot = { 2808 .notifier_call = bcache_reboot, 2809 .priority = INT_MAX, /* before any real devices */ 2810 }; 2811 2812 static void bcache_exit(void) 2813 { 2814 bch_debug_exit(); 2815 bch_request_exit(); 2816 if (bcache_kobj) 2817 kobject_put(bcache_kobj); 2818 if (bcache_wq) 2819 destroy_workqueue(bcache_wq); 2820 if (bch_journal_wq) 2821 destroy_workqueue(bch_journal_wq); 2822 if (bch_flush_wq) 2823 destroy_workqueue(bch_flush_wq); 2824 bch_btree_exit(); 2825 2826 if (bcache_major) 2827 unregister_blkdev(bcache_major, "bcache"); 2828 unregister_reboot_notifier(&reboot); 2829 mutex_destroy(&bch_register_lock); 2830 } 2831 2832 /* Check and fixup module parameters */ 2833 static void check_module_parameters(void) 2834 { 2835 if (bch_cutoff_writeback_sync == 0) 2836 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2837 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2838 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2839 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2840 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2841 } 2842 2843 if (bch_cutoff_writeback == 0) 2844 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2845 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2846 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2847 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2848 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2849 } 2850 2851 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2852 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2853 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2854 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2855 } 2856 } 2857 2858 static int __init bcache_init(void) 2859 { 2860 static const struct attribute *files[] = { 2861 &ksysfs_register.attr, 2862 &ksysfs_register_quiet.attr, 2863 &ksysfs_pendings_cleanup.attr, 2864 NULL 2865 }; 2866 2867 check_module_parameters(); 2868 2869 mutex_init(&bch_register_lock); 2870 init_waitqueue_head(&unregister_wait); 2871 register_reboot_notifier(&reboot); 2872 2873 bcache_major = register_blkdev(0, "bcache"); 2874 if (bcache_major < 0) { 2875 unregister_reboot_notifier(&reboot); 2876 mutex_destroy(&bch_register_lock); 2877 return bcache_major; 2878 } 2879 2880 if (bch_btree_init()) 2881 goto err; 2882 2883 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2884 if (!bcache_wq) 2885 goto err; 2886 2887 /* 2888 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: 2889 * 2890 * 1. It used `system_wq` before which also does no memory reclaim. 2891 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and 2892 * reduced throughput can be observed. 2893 * 2894 * We still want to user our own queue to not congest the `system_wq`. 2895 */ 2896 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0); 2897 if (!bch_flush_wq) 2898 goto err; 2899 2900 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2901 if (!bch_journal_wq) 2902 goto err; 2903 2904 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2905 if (!bcache_kobj) 2906 goto err; 2907 2908 if (bch_request_init() || 2909 sysfs_create_files(bcache_kobj, files)) 2910 goto err; 2911 2912 bch_debug_init(); 2913 closure_debug_init(); 2914 2915 bcache_is_reboot = false; 2916 2917 return 0; 2918 err: 2919 bcache_exit(); 2920 return -ENOMEM; 2921 } 2922 2923 /* 2924 * Module hooks 2925 */ 2926 module_exit(bcache_exit); 2927 module_init(bcache_init); 2928 2929 module_param(bch_cutoff_writeback, uint, 0); 2930 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2931 2932 module_param(bch_cutoff_writeback_sync, uint, 0); 2933 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2934 2935 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2936 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2937 MODULE_LICENSE("GPL"); 2938