xref: /linux/drivers/md/bcache/super.c (revision 31a1b26f16e822577def5402ffc79cfe4aed2db9)
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/buffer_head.h>
17 #include <linux/debugfs.h>
18 #include <linux/genhd.h>
19 #include <linux/kthread.h>
20 #include <linux/module.h>
21 #include <linux/random.h>
22 #include <linux/reboot.h>
23 #include <linux/sysfs.h>
24 
25 MODULE_LICENSE("GPL");
26 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
27 
28 static const char bcache_magic[] = {
29 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
30 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
31 };
32 
33 static const char invalid_uuid[] = {
34 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
35 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
36 };
37 
38 /* Default is -1; we skip past it for struct cached_dev's cache mode */
39 const char * const bch_cache_modes[] = {
40 	"default",
41 	"writethrough",
42 	"writeback",
43 	"writearound",
44 	"none",
45 	NULL
46 };
47 
48 struct uuid_entry_v0 {
49 	uint8_t		uuid[16];
50 	uint8_t		label[32];
51 	uint32_t	first_reg;
52 	uint32_t	last_reg;
53 	uint32_t	invalidated;
54 	uint32_t	pad;
55 };
56 
57 static struct kobject *bcache_kobj;
58 struct mutex bch_register_lock;
59 LIST_HEAD(bch_cache_sets);
60 static LIST_HEAD(uncached_devices);
61 
62 static int bcache_major, bcache_minor;
63 static wait_queue_head_t unregister_wait;
64 struct workqueue_struct *bcache_wq;
65 
66 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
67 
68 static void bio_split_pool_free(struct bio_split_pool *p)
69 {
70 	if (p->bio_split_hook)
71 		mempool_destroy(p->bio_split_hook);
72 
73 	if (p->bio_split)
74 		bioset_free(p->bio_split);
75 }
76 
77 static int bio_split_pool_init(struct bio_split_pool *p)
78 {
79 	p->bio_split = bioset_create(4, 0);
80 	if (!p->bio_split)
81 		return -ENOMEM;
82 
83 	p->bio_split_hook = mempool_create_kmalloc_pool(4,
84 				sizeof(struct bio_split_hook));
85 	if (!p->bio_split_hook)
86 		return -ENOMEM;
87 
88 	return 0;
89 }
90 
91 /* Superblock */
92 
93 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
94 			      struct page **res)
95 {
96 	const char *err;
97 	struct cache_sb *s;
98 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
99 	unsigned i;
100 
101 	if (!bh)
102 		return "IO error";
103 
104 	s = (struct cache_sb *) bh->b_data;
105 
106 	sb->offset		= le64_to_cpu(s->offset);
107 	sb->version		= le64_to_cpu(s->version);
108 
109 	memcpy(sb->magic,	s->magic, 16);
110 	memcpy(sb->uuid,	s->uuid, 16);
111 	memcpy(sb->set_uuid,	s->set_uuid, 16);
112 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
113 
114 	sb->flags		= le64_to_cpu(s->flags);
115 	sb->seq			= le64_to_cpu(s->seq);
116 	sb->last_mount		= le32_to_cpu(s->last_mount);
117 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
118 	sb->keys		= le16_to_cpu(s->keys);
119 
120 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
121 		sb->d[i] = le64_to_cpu(s->d[i]);
122 
123 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
124 		 sb->version, sb->flags, sb->seq, sb->keys);
125 
126 	err = "Not a bcache superblock";
127 	if (sb->offset != SB_SECTOR)
128 		goto err;
129 
130 	if (memcmp(sb->magic, bcache_magic, 16))
131 		goto err;
132 
133 	err = "Too many journal buckets";
134 	if (sb->keys > SB_JOURNAL_BUCKETS)
135 		goto err;
136 
137 	err = "Bad checksum";
138 	if (s->csum != csum_set(s))
139 		goto err;
140 
141 	err = "Bad UUID";
142 	if (bch_is_zero(sb->uuid, 16))
143 		goto err;
144 
145 	sb->block_size	= le16_to_cpu(s->block_size);
146 
147 	err = "Superblock block size smaller than device block size";
148 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
149 		goto err;
150 
151 	switch (sb->version) {
152 	case BCACHE_SB_VERSION_BDEV:
153 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
154 		break;
155 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
156 		sb->data_offset	= le64_to_cpu(s->data_offset);
157 
158 		err = "Bad data offset";
159 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
160 			goto err;
161 
162 		break;
163 	case BCACHE_SB_VERSION_CDEV:
164 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
165 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
166 		sb->block_size	= le16_to_cpu(s->block_size);
167 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
168 
169 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
170 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
171 
172 		err = "Too many buckets";
173 		if (sb->nbuckets > LONG_MAX)
174 			goto err;
175 
176 		err = "Not enough buckets";
177 		if (sb->nbuckets < 1 << 7)
178 			goto err;
179 
180 		err = "Bad block/bucket size";
181 		if (!is_power_of_2(sb->block_size) ||
182 		    sb->block_size > PAGE_SECTORS ||
183 		    !is_power_of_2(sb->bucket_size) ||
184 		    sb->bucket_size < PAGE_SECTORS)
185 			goto err;
186 
187 		err = "Invalid superblock: device too small";
188 		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
189 			goto err;
190 
191 		err = "Bad UUID";
192 		if (bch_is_zero(sb->set_uuid, 16))
193 			goto err;
194 
195 		err = "Bad cache device number in set";
196 		if (!sb->nr_in_set ||
197 		    sb->nr_in_set <= sb->nr_this_dev ||
198 		    sb->nr_in_set > MAX_CACHES_PER_SET)
199 			goto err;
200 
201 		err = "Journal buckets not sequential";
202 		for (i = 0; i < sb->keys; i++)
203 			if (sb->d[i] != sb->first_bucket + i)
204 				goto err;
205 
206 		err = "Too many journal buckets";
207 		if (sb->first_bucket + sb->keys > sb->nbuckets)
208 			goto err;
209 
210 		err = "Invalid superblock: first bucket comes before end of super";
211 		if (sb->first_bucket * sb->bucket_size < 16)
212 			goto err;
213 
214 		break;
215 	default:
216 		err = "Unsupported superblock version";
217 		goto err;
218 	}
219 
220 	sb->last_mount = get_seconds();
221 	err = NULL;
222 
223 	get_page(bh->b_page);
224 	*res = bh->b_page;
225 err:
226 	put_bh(bh);
227 	return err;
228 }
229 
230 static void write_bdev_super_endio(struct bio *bio, int error)
231 {
232 	struct cached_dev *dc = bio->bi_private;
233 	/* XXX: error checking */
234 
235 	closure_put(&dc->sb_write.cl);
236 }
237 
238 static void __write_super(struct cache_sb *sb, struct bio *bio)
239 {
240 	struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
241 	unsigned i;
242 
243 	bio->bi_sector	= SB_SECTOR;
244 	bio->bi_rw	= REQ_SYNC|REQ_META;
245 	bio->bi_size	= SB_SIZE;
246 	bch_bio_map(bio, NULL);
247 
248 	out->offset		= cpu_to_le64(sb->offset);
249 	out->version		= cpu_to_le64(sb->version);
250 
251 	memcpy(out->uuid,	sb->uuid, 16);
252 	memcpy(out->set_uuid,	sb->set_uuid, 16);
253 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
254 
255 	out->flags		= cpu_to_le64(sb->flags);
256 	out->seq		= cpu_to_le64(sb->seq);
257 
258 	out->last_mount		= cpu_to_le32(sb->last_mount);
259 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
260 	out->keys		= cpu_to_le16(sb->keys);
261 
262 	for (i = 0; i < sb->keys; i++)
263 		out->d[i] = cpu_to_le64(sb->d[i]);
264 
265 	out->csum = csum_set(out);
266 
267 	pr_debug("ver %llu, flags %llu, seq %llu",
268 		 sb->version, sb->flags, sb->seq);
269 
270 	submit_bio(REQ_WRITE, bio);
271 }
272 
273 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
274 {
275 	struct closure *cl = &dc->sb_write.cl;
276 	struct bio *bio = &dc->sb_bio;
277 
278 	closure_lock(&dc->sb_write, parent);
279 
280 	bio_reset(bio);
281 	bio->bi_bdev	= dc->bdev;
282 	bio->bi_end_io	= write_bdev_super_endio;
283 	bio->bi_private = dc;
284 
285 	closure_get(cl);
286 	__write_super(&dc->sb, bio);
287 
288 	closure_return(cl);
289 }
290 
291 static void write_super_endio(struct bio *bio, int error)
292 {
293 	struct cache *ca = bio->bi_private;
294 
295 	bch_count_io_errors(ca, error, "writing superblock");
296 	closure_put(&ca->set->sb_write.cl);
297 }
298 
299 void bcache_write_super(struct cache_set *c)
300 {
301 	struct closure *cl = &c->sb_write.cl;
302 	struct cache *ca;
303 	unsigned i;
304 
305 	closure_lock(&c->sb_write, &c->cl);
306 
307 	c->sb.seq++;
308 
309 	for_each_cache(ca, c, i) {
310 		struct bio *bio = &ca->sb_bio;
311 
312 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
313 		ca->sb.seq		= c->sb.seq;
314 		ca->sb.last_mount	= c->sb.last_mount;
315 
316 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
317 
318 		bio_reset(bio);
319 		bio->bi_bdev	= ca->bdev;
320 		bio->bi_end_io	= write_super_endio;
321 		bio->bi_private = ca;
322 
323 		closure_get(cl);
324 		__write_super(&ca->sb, bio);
325 	}
326 
327 	closure_return(cl);
328 }
329 
330 /* UUID io */
331 
332 static void uuid_endio(struct bio *bio, int error)
333 {
334 	struct closure *cl = bio->bi_private;
335 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
336 
337 	cache_set_err_on(error, c, "accessing uuids");
338 	bch_bbio_free(bio, c);
339 	closure_put(cl);
340 }
341 
342 static void uuid_io(struct cache_set *c, unsigned long rw,
343 		    struct bkey *k, struct closure *parent)
344 {
345 	struct closure *cl = &c->uuid_write.cl;
346 	struct uuid_entry *u;
347 	unsigned i;
348 	char buf[80];
349 
350 	BUG_ON(!parent);
351 	closure_lock(&c->uuid_write, parent);
352 
353 	for (i = 0; i < KEY_PTRS(k); i++) {
354 		struct bio *bio = bch_bbio_alloc(c);
355 
356 		bio->bi_rw	= REQ_SYNC|REQ_META|rw;
357 		bio->bi_size	= KEY_SIZE(k) << 9;
358 
359 		bio->bi_end_io	= uuid_endio;
360 		bio->bi_private = cl;
361 		bch_bio_map(bio, c->uuids);
362 
363 		bch_submit_bbio(bio, c, k, i);
364 
365 		if (!(rw & WRITE))
366 			break;
367 	}
368 
369 	bch_bkey_to_text(buf, sizeof(buf), k);
370 	pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
371 
372 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
373 		if (!bch_is_zero(u->uuid, 16))
374 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
375 				 u - c->uuids, u->uuid, u->label,
376 				 u->first_reg, u->last_reg, u->invalidated);
377 
378 	closure_return(cl);
379 }
380 
381 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
382 {
383 	struct bkey *k = &j->uuid_bucket;
384 
385 	if (__bch_ptr_invalid(c, 1, k))
386 		return "bad uuid pointer";
387 
388 	bkey_copy(&c->uuid_bucket, k);
389 	uuid_io(c, READ_SYNC, k, cl);
390 
391 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
392 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
393 		struct uuid_entry	*u1 = (void *) c->uuids;
394 		int i;
395 
396 		closure_sync(cl);
397 
398 		/*
399 		 * Since the new uuid entry is bigger than the old, we have to
400 		 * convert starting at the highest memory address and work down
401 		 * in order to do it in place
402 		 */
403 
404 		for (i = c->nr_uuids - 1;
405 		     i >= 0;
406 		     --i) {
407 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
408 			memcpy(u1[i].label,	u0[i].label, 32);
409 
410 			u1[i].first_reg		= u0[i].first_reg;
411 			u1[i].last_reg		= u0[i].last_reg;
412 			u1[i].invalidated	= u0[i].invalidated;
413 
414 			u1[i].flags	= 0;
415 			u1[i].sectors	= 0;
416 		}
417 	}
418 
419 	return NULL;
420 }
421 
422 static int __uuid_write(struct cache_set *c)
423 {
424 	BKEY_PADDED(key) k;
425 	struct closure cl;
426 	closure_init_stack(&cl);
427 
428 	lockdep_assert_held(&bch_register_lock);
429 
430 	if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
431 		return 1;
432 
433 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
434 	uuid_io(c, REQ_WRITE, &k.key, &cl);
435 	closure_sync(&cl);
436 
437 	bkey_copy(&c->uuid_bucket, &k.key);
438 	__bkey_put(c, &k.key);
439 	return 0;
440 }
441 
442 int bch_uuid_write(struct cache_set *c)
443 {
444 	int ret = __uuid_write(c);
445 
446 	if (!ret)
447 		bch_journal_meta(c, NULL);
448 
449 	return ret;
450 }
451 
452 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
453 {
454 	struct uuid_entry *u;
455 
456 	for (u = c->uuids;
457 	     u < c->uuids + c->nr_uuids; u++)
458 		if (!memcmp(u->uuid, uuid, 16))
459 			return u;
460 
461 	return NULL;
462 }
463 
464 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
465 {
466 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
467 	return uuid_find(c, zero_uuid);
468 }
469 
470 /*
471  * Bucket priorities/gens:
472  *
473  * For each bucket, we store on disk its
474    * 8 bit gen
475    * 16 bit priority
476  *
477  * See alloc.c for an explanation of the gen. The priority is used to implement
478  * lru (and in the future other) cache replacement policies; for most purposes
479  * it's just an opaque integer.
480  *
481  * The gens and the priorities don't have a whole lot to do with each other, and
482  * it's actually the gens that must be written out at specific times - it's no
483  * big deal if the priorities don't get written, if we lose them we just reuse
484  * buckets in suboptimal order.
485  *
486  * On disk they're stored in a packed array, and in as many buckets are required
487  * to fit them all. The buckets we use to store them form a list; the journal
488  * header points to the first bucket, the first bucket points to the second
489  * bucket, et cetera.
490  *
491  * This code is used by the allocation code; periodically (whenever it runs out
492  * of buckets to allocate from) the allocation code will invalidate some
493  * buckets, but it can't use those buckets until their new gens are safely on
494  * disk.
495  */
496 
497 static void prio_endio(struct bio *bio, int error)
498 {
499 	struct cache *ca = bio->bi_private;
500 
501 	cache_set_err_on(error, ca->set, "accessing priorities");
502 	bch_bbio_free(bio, ca->set);
503 	closure_put(&ca->prio);
504 }
505 
506 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
507 {
508 	struct closure *cl = &ca->prio;
509 	struct bio *bio = bch_bbio_alloc(ca->set);
510 
511 	closure_init_stack(cl);
512 
513 	bio->bi_sector	= bucket * ca->sb.bucket_size;
514 	bio->bi_bdev	= ca->bdev;
515 	bio->bi_rw	= REQ_SYNC|REQ_META|rw;
516 	bio->bi_size	= bucket_bytes(ca);
517 
518 	bio->bi_end_io	= prio_endio;
519 	bio->bi_private = ca;
520 	bch_bio_map(bio, ca->disk_buckets);
521 
522 	closure_bio_submit(bio, &ca->prio, ca);
523 	closure_sync(cl);
524 }
525 
526 #define buckets_free(c)	"free %zu, free_inc %zu, unused %zu",		\
527 	fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
528 
529 void bch_prio_write(struct cache *ca)
530 {
531 	int i;
532 	struct bucket *b;
533 	struct closure cl;
534 
535 	closure_init_stack(&cl);
536 
537 	lockdep_assert_held(&ca->set->bucket_lock);
538 
539 	for (b = ca->buckets;
540 	     b < ca->buckets + ca->sb.nbuckets; b++)
541 		b->disk_gen = b->gen;
542 
543 	ca->disk_buckets->seq++;
544 
545 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
546 			&ca->meta_sectors_written);
547 
548 	pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
549 		 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
550 
551 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
552 		long bucket;
553 		struct prio_set *p = ca->disk_buckets;
554 		struct bucket_disk *d = p->data;
555 		struct bucket_disk *end = d + prios_per_bucket(ca);
556 
557 		for (b = ca->buckets + i * prios_per_bucket(ca);
558 		     b < ca->buckets + ca->sb.nbuckets && d < end;
559 		     b++, d++) {
560 			d->prio = cpu_to_le16(b->prio);
561 			d->gen = b->gen;
562 		}
563 
564 		p->next_bucket	= ca->prio_buckets[i + 1];
565 		p->magic	= pset_magic(ca);
566 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
567 
568 		bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
569 		BUG_ON(bucket == -1);
570 
571 		mutex_unlock(&ca->set->bucket_lock);
572 		prio_io(ca, bucket, REQ_WRITE);
573 		mutex_lock(&ca->set->bucket_lock);
574 
575 		ca->prio_buckets[i] = bucket;
576 		atomic_dec_bug(&ca->buckets[bucket].pin);
577 	}
578 
579 	mutex_unlock(&ca->set->bucket_lock);
580 
581 	bch_journal_meta(ca->set, &cl);
582 	closure_sync(&cl);
583 
584 	mutex_lock(&ca->set->bucket_lock);
585 
586 	ca->need_save_prio = 0;
587 
588 	/*
589 	 * Don't want the old priorities to get garbage collected until after we
590 	 * finish writing the new ones, and they're journalled
591 	 */
592 	for (i = 0; i < prio_buckets(ca); i++)
593 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
594 }
595 
596 static void prio_read(struct cache *ca, uint64_t bucket)
597 {
598 	struct prio_set *p = ca->disk_buckets;
599 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
600 	struct bucket *b;
601 	unsigned bucket_nr = 0;
602 
603 	for (b = ca->buckets;
604 	     b < ca->buckets + ca->sb.nbuckets;
605 	     b++, d++) {
606 		if (d == end) {
607 			ca->prio_buckets[bucket_nr] = bucket;
608 			ca->prio_last_buckets[bucket_nr] = bucket;
609 			bucket_nr++;
610 
611 			prio_io(ca, bucket, READ_SYNC);
612 
613 			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
614 				pr_warn("bad csum reading priorities");
615 
616 			if (p->magic != pset_magic(ca))
617 				pr_warn("bad magic reading priorities");
618 
619 			bucket = p->next_bucket;
620 			d = p->data;
621 		}
622 
623 		b->prio = le16_to_cpu(d->prio);
624 		b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
625 	}
626 }
627 
628 /* Bcache device */
629 
630 static int open_dev(struct block_device *b, fmode_t mode)
631 {
632 	struct bcache_device *d = b->bd_disk->private_data;
633 	if (atomic_read(&d->closing))
634 		return -ENXIO;
635 
636 	closure_get(&d->cl);
637 	return 0;
638 }
639 
640 static void release_dev(struct gendisk *b, fmode_t mode)
641 {
642 	struct bcache_device *d = b->private_data;
643 	closure_put(&d->cl);
644 }
645 
646 static int ioctl_dev(struct block_device *b, fmode_t mode,
647 		     unsigned int cmd, unsigned long arg)
648 {
649 	struct bcache_device *d = b->bd_disk->private_data;
650 	return d->ioctl(d, mode, cmd, arg);
651 }
652 
653 static const struct block_device_operations bcache_ops = {
654 	.open		= open_dev,
655 	.release	= release_dev,
656 	.ioctl		= ioctl_dev,
657 	.owner		= THIS_MODULE,
658 };
659 
660 void bcache_device_stop(struct bcache_device *d)
661 {
662 	if (!atomic_xchg(&d->closing, 1))
663 		closure_queue(&d->cl);
664 }
665 
666 static void bcache_device_unlink(struct bcache_device *d)
667 {
668 	unsigned i;
669 	struct cache *ca;
670 
671 	sysfs_remove_link(&d->c->kobj, d->name);
672 	sysfs_remove_link(&d->kobj, "cache");
673 
674 	for_each_cache(ca, d->c, i)
675 		bd_unlink_disk_holder(ca->bdev, d->disk);
676 }
677 
678 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
679 			       const char *name)
680 {
681 	unsigned i;
682 	struct cache *ca;
683 
684 	for_each_cache(ca, d->c, i)
685 		bd_link_disk_holder(ca->bdev, d->disk);
686 
687 	snprintf(d->name, BCACHEDEVNAME_SIZE,
688 		 "%s%u", name, d->id);
689 
690 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
691 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
692 	     "Couldn't create device <-> cache set symlinks");
693 }
694 
695 static void bcache_device_detach(struct bcache_device *d)
696 {
697 	lockdep_assert_held(&bch_register_lock);
698 
699 	if (atomic_read(&d->detaching)) {
700 		struct uuid_entry *u = d->c->uuids + d->id;
701 
702 		SET_UUID_FLASH_ONLY(u, 0);
703 		memcpy(u->uuid, invalid_uuid, 16);
704 		u->invalidated = cpu_to_le32(get_seconds());
705 		bch_uuid_write(d->c);
706 
707 		atomic_set(&d->detaching, 0);
708 	}
709 
710 	if (!d->flush_done)
711 		bcache_device_unlink(d);
712 
713 	d->c->devices[d->id] = NULL;
714 	closure_put(&d->c->caching);
715 	d->c = NULL;
716 }
717 
718 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
719 				 unsigned id)
720 {
721 	BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
722 
723 	d->id = id;
724 	d->c = c;
725 	c->devices[id] = d;
726 
727 	closure_get(&c->caching);
728 }
729 
730 static void bcache_device_free(struct bcache_device *d)
731 {
732 	lockdep_assert_held(&bch_register_lock);
733 
734 	pr_info("%s stopped", d->disk->disk_name);
735 
736 	if (d->c)
737 		bcache_device_detach(d);
738 	if (d->disk && d->disk->flags & GENHD_FL_UP)
739 		del_gendisk(d->disk);
740 	if (d->disk && d->disk->queue)
741 		blk_cleanup_queue(d->disk->queue);
742 	if (d->disk)
743 		put_disk(d->disk);
744 
745 	bio_split_pool_free(&d->bio_split_hook);
746 	if (d->unaligned_bvec)
747 		mempool_destroy(d->unaligned_bvec);
748 	if (d->bio_split)
749 		bioset_free(d->bio_split);
750 	if (is_vmalloc_addr(d->stripe_sectors_dirty))
751 		vfree(d->stripe_sectors_dirty);
752 	else
753 		kfree(d->stripe_sectors_dirty);
754 
755 	closure_debug_destroy(&d->cl);
756 }
757 
758 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
759 			      sector_t sectors)
760 {
761 	struct request_queue *q;
762 	size_t n;
763 
764 	if (!d->stripe_size_bits)
765 		d->stripe_size_bits = 31;
766 
767 	d->nr_stripes = round_up(sectors, 1 << d->stripe_size_bits) >>
768 		d->stripe_size_bits;
769 
770 	if (!d->nr_stripes || d->nr_stripes > SIZE_MAX / sizeof(atomic_t))
771 		return -ENOMEM;
772 
773 	n = d->nr_stripes * sizeof(atomic_t);
774 	d->stripe_sectors_dirty = n < PAGE_SIZE << 6
775 		? kzalloc(n, GFP_KERNEL)
776 		: vzalloc(n);
777 	if (!d->stripe_sectors_dirty)
778 		return -ENOMEM;
779 
780 	if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
781 	    !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
782 				sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
783 	    bio_split_pool_init(&d->bio_split_hook) ||
784 	    !(d->disk = alloc_disk(1)) ||
785 	    !(q = blk_alloc_queue(GFP_KERNEL)))
786 		return -ENOMEM;
787 
788 	set_capacity(d->disk, sectors);
789 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
790 
791 	d->disk->major		= bcache_major;
792 	d->disk->first_minor	= bcache_minor++;
793 	d->disk->fops		= &bcache_ops;
794 	d->disk->private_data	= d;
795 
796 	blk_queue_make_request(q, NULL);
797 	d->disk->queue			= q;
798 	q->queuedata			= d;
799 	q->backing_dev_info.congested_data = d;
800 	q->limits.max_hw_sectors	= UINT_MAX;
801 	q->limits.max_sectors		= UINT_MAX;
802 	q->limits.max_segment_size	= UINT_MAX;
803 	q->limits.max_segments		= BIO_MAX_PAGES;
804 	q->limits.max_discard_sectors	= UINT_MAX;
805 	q->limits.io_min		= block_size;
806 	q->limits.logical_block_size	= block_size;
807 	q->limits.physical_block_size	= block_size;
808 	set_bit(QUEUE_FLAG_NONROT,	&d->disk->queue->queue_flags);
809 	set_bit(QUEUE_FLAG_DISCARD,	&d->disk->queue->queue_flags);
810 
811 	blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
812 
813 	return 0;
814 }
815 
816 /* Cached device */
817 
818 static void calc_cached_dev_sectors(struct cache_set *c)
819 {
820 	uint64_t sectors = 0;
821 	struct cached_dev *dc;
822 
823 	list_for_each_entry(dc, &c->cached_devs, list)
824 		sectors += bdev_sectors(dc->bdev);
825 
826 	c->cached_dev_sectors = sectors;
827 }
828 
829 void bch_cached_dev_run(struct cached_dev *dc)
830 {
831 	struct bcache_device *d = &dc->disk;
832 	char buf[SB_LABEL_SIZE + 1];
833 	char *env[] = {
834 		"DRIVER=bcache",
835 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
836 		NULL,
837 		NULL,
838 	};
839 
840 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
841 	buf[SB_LABEL_SIZE] = '\0';
842 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
843 
844 	if (atomic_xchg(&dc->running, 1))
845 		return;
846 
847 	if (!d->c &&
848 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
849 		struct closure cl;
850 		closure_init_stack(&cl);
851 
852 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
853 		bch_write_bdev_super(dc, &cl);
854 		closure_sync(&cl);
855 	}
856 
857 	add_disk(d->disk);
858 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
859 	/* won't show up in the uevent file, use udevadm monitor -e instead
860 	 * only class / kset properties are persistent */
861 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
862 	kfree(env[1]);
863 	kfree(env[2]);
864 
865 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
866 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
867 		pr_debug("error creating sysfs link");
868 }
869 
870 static void cached_dev_detach_finish(struct work_struct *w)
871 {
872 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
873 	char buf[BDEVNAME_SIZE];
874 	struct closure cl;
875 	closure_init_stack(&cl);
876 
877 	BUG_ON(!atomic_read(&dc->disk.detaching));
878 	BUG_ON(atomic_read(&dc->count));
879 
880 	mutex_lock(&bch_register_lock);
881 
882 	memset(&dc->sb.set_uuid, 0, 16);
883 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
884 
885 	bch_write_bdev_super(dc, &cl);
886 	closure_sync(&cl);
887 
888 	bcache_device_detach(&dc->disk);
889 	list_move(&dc->list, &uncached_devices);
890 
891 	mutex_unlock(&bch_register_lock);
892 
893 	pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
894 
895 	/* Drop ref we took in cached_dev_detach() */
896 	closure_put(&dc->disk.cl);
897 }
898 
899 void bch_cached_dev_detach(struct cached_dev *dc)
900 {
901 	lockdep_assert_held(&bch_register_lock);
902 
903 	if (atomic_read(&dc->disk.closing))
904 		return;
905 
906 	if (atomic_xchg(&dc->disk.detaching, 1))
907 		return;
908 
909 	/*
910 	 * Block the device from being closed and freed until we're finished
911 	 * detaching
912 	 */
913 	closure_get(&dc->disk.cl);
914 
915 	bch_writeback_queue(dc);
916 	cached_dev_put(dc);
917 }
918 
919 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
920 {
921 	uint32_t rtime = cpu_to_le32(get_seconds());
922 	struct uuid_entry *u;
923 	char buf[BDEVNAME_SIZE];
924 
925 	bdevname(dc->bdev, buf);
926 
927 	if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
928 		return -ENOENT;
929 
930 	if (dc->disk.c) {
931 		pr_err("Can't attach %s: already attached", buf);
932 		return -EINVAL;
933 	}
934 
935 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
936 		pr_err("Can't attach %s: shutting down", buf);
937 		return -EINVAL;
938 	}
939 
940 	if (dc->sb.block_size < c->sb.block_size) {
941 		/* Will die */
942 		pr_err("Couldn't attach %s: block size less than set's block size",
943 		       buf);
944 		return -EINVAL;
945 	}
946 
947 	u = uuid_find(c, dc->sb.uuid);
948 
949 	if (u &&
950 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
951 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
952 		memcpy(u->uuid, invalid_uuid, 16);
953 		u->invalidated = cpu_to_le32(get_seconds());
954 		u = NULL;
955 	}
956 
957 	if (!u) {
958 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
959 			pr_err("Couldn't find uuid for %s in set", buf);
960 			return -ENOENT;
961 		}
962 
963 		u = uuid_find_empty(c);
964 		if (!u) {
965 			pr_err("Not caching %s, no room for UUID", buf);
966 			return -EINVAL;
967 		}
968 	}
969 
970 	/* Deadlocks since we're called via sysfs...
971 	sysfs_remove_file(&dc->kobj, &sysfs_attach);
972 	 */
973 
974 	if (bch_is_zero(u->uuid, 16)) {
975 		struct closure cl;
976 		closure_init_stack(&cl);
977 
978 		memcpy(u->uuid, dc->sb.uuid, 16);
979 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
980 		u->first_reg = u->last_reg = rtime;
981 		bch_uuid_write(c);
982 
983 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
984 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
985 
986 		bch_write_bdev_super(dc, &cl);
987 		closure_sync(&cl);
988 	} else {
989 		u->last_reg = rtime;
990 		bch_uuid_write(c);
991 	}
992 
993 	bcache_device_attach(&dc->disk, c, u - c->uuids);
994 	list_move(&dc->list, &c->cached_devs);
995 	calc_cached_dev_sectors(c);
996 
997 	smp_wmb();
998 	/*
999 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1000 	 * cached_dev_get()
1001 	 */
1002 	atomic_set(&dc->count, 1);
1003 
1004 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1005 		bch_sectors_dirty_init(dc);
1006 		atomic_set(&dc->has_dirty, 1);
1007 		atomic_inc(&dc->count);
1008 		bch_writeback_queue(dc);
1009 	}
1010 
1011 	bch_cached_dev_run(dc);
1012 	bcache_device_link(&dc->disk, c, "bdev");
1013 
1014 	pr_info("Caching %s as %s on set %pU",
1015 		bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1016 		dc->disk.c->sb.set_uuid);
1017 	return 0;
1018 }
1019 
1020 void bch_cached_dev_release(struct kobject *kobj)
1021 {
1022 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1023 					     disk.kobj);
1024 	kfree(dc);
1025 	module_put(THIS_MODULE);
1026 }
1027 
1028 static void cached_dev_free(struct closure *cl)
1029 {
1030 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1031 
1032 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1033 
1034 	mutex_lock(&bch_register_lock);
1035 
1036 	if (atomic_read(&dc->running))
1037 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1038 	bcache_device_free(&dc->disk);
1039 	list_del(&dc->list);
1040 
1041 	mutex_unlock(&bch_register_lock);
1042 
1043 	if (!IS_ERR_OR_NULL(dc->bdev)) {
1044 		if (dc->bdev->bd_disk)
1045 			blk_sync_queue(bdev_get_queue(dc->bdev));
1046 
1047 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1048 	}
1049 
1050 	wake_up(&unregister_wait);
1051 
1052 	kobject_put(&dc->disk.kobj);
1053 }
1054 
1055 static void cached_dev_flush(struct closure *cl)
1056 {
1057 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1058 	struct bcache_device *d = &dc->disk;
1059 
1060 	mutex_lock(&bch_register_lock);
1061 	d->flush_done = 1;
1062 
1063 	if (d->c)
1064 		bcache_device_unlink(d);
1065 
1066 	mutex_unlock(&bch_register_lock);
1067 
1068 	bch_cache_accounting_destroy(&dc->accounting);
1069 	kobject_del(&d->kobj);
1070 
1071 	continue_at(cl, cached_dev_free, system_wq);
1072 }
1073 
1074 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1075 {
1076 	int ret;
1077 	struct io *io;
1078 	struct request_queue *q = bdev_get_queue(dc->bdev);
1079 
1080 	__module_get(THIS_MODULE);
1081 	INIT_LIST_HEAD(&dc->list);
1082 	closure_init(&dc->disk.cl, NULL);
1083 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1084 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1085 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1086 	closure_init_unlocked(&dc->sb_write);
1087 	INIT_LIST_HEAD(&dc->io_lru);
1088 	spin_lock_init(&dc->io_lock);
1089 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1090 
1091 	dc->sequential_merge		= true;
1092 	dc->sequential_cutoff		= 4 << 20;
1093 
1094 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1095 		list_add(&io->lru, &dc->io_lru);
1096 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1097 	}
1098 
1099 	ret = bcache_device_init(&dc->disk, block_size,
1100 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1101 	if (ret)
1102 		return ret;
1103 
1104 	set_capacity(dc->disk.disk,
1105 		     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1106 
1107 	dc->disk.disk->queue->backing_dev_info.ra_pages =
1108 		max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1109 		    q->backing_dev_info.ra_pages);
1110 
1111 	bch_cached_dev_request_init(dc);
1112 	bch_cached_dev_writeback_init(dc);
1113 	return 0;
1114 }
1115 
1116 /* Cached device - bcache superblock */
1117 
1118 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1119 				 struct block_device *bdev,
1120 				 struct cached_dev *dc)
1121 {
1122 	char name[BDEVNAME_SIZE];
1123 	const char *err = "cannot allocate memory";
1124 	struct cache_set *c;
1125 
1126 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1127 	dc->bdev = bdev;
1128 	dc->bdev->bd_holder = dc;
1129 
1130 	bio_init(&dc->sb_bio);
1131 	dc->sb_bio.bi_max_vecs	= 1;
1132 	dc->sb_bio.bi_io_vec	= dc->sb_bio.bi_inline_vecs;
1133 	dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1134 	get_page(sb_page);
1135 
1136 	if (cached_dev_init(dc, sb->block_size << 9))
1137 		goto err;
1138 
1139 	err = "error creating kobject";
1140 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1141 			"bcache"))
1142 		goto err;
1143 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1144 		goto err;
1145 
1146 	pr_info("registered backing device %s", bdevname(bdev, name));
1147 
1148 	list_add(&dc->list, &uncached_devices);
1149 	list_for_each_entry(c, &bch_cache_sets, list)
1150 		bch_cached_dev_attach(dc, c);
1151 
1152 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1153 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1154 		bch_cached_dev_run(dc);
1155 
1156 	return;
1157 err:
1158 	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1159 	bcache_device_stop(&dc->disk);
1160 }
1161 
1162 /* Flash only volumes */
1163 
1164 void bch_flash_dev_release(struct kobject *kobj)
1165 {
1166 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1167 					       kobj);
1168 	kfree(d);
1169 }
1170 
1171 static void flash_dev_free(struct closure *cl)
1172 {
1173 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1174 	bcache_device_free(d);
1175 	kobject_put(&d->kobj);
1176 }
1177 
1178 static void flash_dev_flush(struct closure *cl)
1179 {
1180 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1181 
1182 	bcache_device_unlink(d);
1183 	kobject_del(&d->kobj);
1184 	continue_at(cl, flash_dev_free, system_wq);
1185 }
1186 
1187 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1188 {
1189 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1190 					  GFP_KERNEL);
1191 	if (!d)
1192 		return -ENOMEM;
1193 
1194 	closure_init(&d->cl, NULL);
1195 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1196 
1197 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1198 
1199 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1200 		goto err;
1201 
1202 	bcache_device_attach(d, c, u - c->uuids);
1203 	bch_flash_dev_request_init(d);
1204 	add_disk(d->disk);
1205 
1206 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1207 		goto err;
1208 
1209 	bcache_device_link(d, c, "volume");
1210 
1211 	return 0;
1212 err:
1213 	kobject_put(&d->kobj);
1214 	return -ENOMEM;
1215 }
1216 
1217 static int flash_devs_run(struct cache_set *c)
1218 {
1219 	int ret = 0;
1220 	struct uuid_entry *u;
1221 
1222 	for (u = c->uuids;
1223 	     u < c->uuids + c->nr_uuids && !ret;
1224 	     u++)
1225 		if (UUID_FLASH_ONLY(u))
1226 			ret = flash_dev_run(c, u);
1227 
1228 	return ret;
1229 }
1230 
1231 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1232 {
1233 	struct uuid_entry *u;
1234 
1235 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1236 		return -EINTR;
1237 
1238 	u = uuid_find_empty(c);
1239 	if (!u) {
1240 		pr_err("Can't create volume, no room for UUID");
1241 		return -EINVAL;
1242 	}
1243 
1244 	get_random_bytes(u->uuid, 16);
1245 	memset(u->label, 0, 32);
1246 	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1247 
1248 	SET_UUID_FLASH_ONLY(u, 1);
1249 	u->sectors = size >> 9;
1250 
1251 	bch_uuid_write(c);
1252 
1253 	return flash_dev_run(c, u);
1254 }
1255 
1256 /* Cache set */
1257 
1258 __printf(2, 3)
1259 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1260 {
1261 	va_list args;
1262 
1263 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1264 		return false;
1265 
1266 	/* XXX: we can be called from atomic context
1267 	acquire_console_sem();
1268 	*/
1269 
1270 	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1271 
1272 	va_start(args, fmt);
1273 	vprintk(fmt, args);
1274 	va_end(args);
1275 
1276 	printk(", disabling caching\n");
1277 
1278 	bch_cache_set_unregister(c);
1279 	return true;
1280 }
1281 
1282 void bch_cache_set_release(struct kobject *kobj)
1283 {
1284 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1285 	kfree(c);
1286 	module_put(THIS_MODULE);
1287 }
1288 
1289 static void cache_set_free(struct closure *cl)
1290 {
1291 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1292 	struct cache *ca;
1293 	unsigned i;
1294 
1295 	if (!IS_ERR_OR_NULL(c->debug))
1296 		debugfs_remove(c->debug);
1297 
1298 	bch_open_buckets_free(c);
1299 	bch_btree_cache_free(c);
1300 	bch_journal_free(c);
1301 
1302 	for_each_cache(ca, c, i)
1303 		if (ca)
1304 			kobject_put(&ca->kobj);
1305 
1306 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1307 	free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1308 
1309 	if (c->bio_split)
1310 		bioset_free(c->bio_split);
1311 	if (c->fill_iter)
1312 		mempool_destroy(c->fill_iter);
1313 	if (c->bio_meta)
1314 		mempool_destroy(c->bio_meta);
1315 	if (c->search)
1316 		mempool_destroy(c->search);
1317 	kfree(c->devices);
1318 
1319 	mutex_lock(&bch_register_lock);
1320 	list_del(&c->list);
1321 	mutex_unlock(&bch_register_lock);
1322 
1323 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1324 	wake_up(&unregister_wait);
1325 
1326 	closure_debug_destroy(&c->cl);
1327 	kobject_put(&c->kobj);
1328 }
1329 
1330 static void cache_set_flush(struct closure *cl)
1331 {
1332 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1333 	struct cache *ca;
1334 	struct btree *b;
1335 	unsigned i;
1336 
1337 	bch_cache_accounting_destroy(&c->accounting);
1338 
1339 	kobject_put(&c->internal);
1340 	kobject_del(&c->kobj);
1341 
1342 	if (!IS_ERR_OR_NULL(c->root))
1343 		list_add(&c->root->list, &c->btree_cache);
1344 
1345 	/* Should skip this if we're unregistering because of an error */
1346 	list_for_each_entry(b, &c->btree_cache, list)
1347 		if (btree_node_dirty(b))
1348 			bch_btree_node_write(b, NULL);
1349 
1350 	for_each_cache(ca, c, i)
1351 		if (ca->alloc_thread)
1352 			kthread_stop(ca->alloc_thread);
1353 
1354 	closure_return(cl);
1355 }
1356 
1357 static void __cache_set_unregister(struct closure *cl)
1358 {
1359 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1360 	struct cached_dev *dc;
1361 	size_t i;
1362 
1363 	mutex_lock(&bch_register_lock);
1364 
1365 	for (i = 0; i < c->nr_uuids; i++)
1366 		if (c->devices[i]) {
1367 			if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1368 			    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1369 				dc = container_of(c->devices[i],
1370 						  struct cached_dev, disk);
1371 				bch_cached_dev_detach(dc);
1372 			} else {
1373 				bcache_device_stop(c->devices[i]);
1374 			}
1375 		}
1376 
1377 	mutex_unlock(&bch_register_lock);
1378 
1379 	continue_at(cl, cache_set_flush, system_wq);
1380 }
1381 
1382 void bch_cache_set_stop(struct cache_set *c)
1383 {
1384 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1385 		closure_queue(&c->caching);
1386 }
1387 
1388 void bch_cache_set_unregister(struct cache_set *c)
1389 {
1390 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1391 	bch_cache_set_stop(c);
1392 }
1393 
1394 #define alloc_bucket_pages(gfp, c)			\
1395 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1396 
1397 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1398 {
1399 	int iter_size;
1400 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1401 	if (!c)
1402 		return NULL;
1403 
1404 	__module_get(THIS_MODULE);
1405 	closure_init(&c->cl, NULL);
1406 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1407 
1408 	closure_init(&c->caching, &c->cl);
1409 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1410 
1411 	/* Maybe create continue_at_noreturn() and use it here? */
1412 	closure_set_stopped(&c->cl);
1413 	closure_put(&c->cl);
1414 
1415 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1416 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1417 
1418 	bch_cache_accounting_init(&c->accounting, &c->cl);
1419 
1420 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1421 	c->sb.block_size	= sb->block_size;
1422 	c->sb.bucket_size	= sb->bucket_size;
1423 	c->sb.nr_in_set		= sb->nr_in_set;
1424 	c->sb.last_mount	= sb->last_mount;
1425 	c->bucket_bits		= ilog2(sb->bucket_size);
1426 	c->block_bits		= ilog2(sb->block_size);
1427 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1428 
1429 	c->btree_pages		= c->sb.bucket_size / PAGE_SECTORS;
1430 	if (c->btree_pages > BTREE_MAX_PAGES)
1431 		c->btree_pages = max_t(int, c->btree_pages / 4,
1432 				       BTREE_MAX_PAGES);
1433 
1434 	c->sort_crit_factor = int_sqrt(c->btree_pages);
1435 
1436 	mutex_init(&c->bucket_lock);
1437 	mutex_init(&c->sort_lock);
1438 	spin_lock_init(&c->sort_time_lock);
1439 	closure_init_unlocked(&c->sb_write);
1440 	closure_init_unlocked(&c->uuid_write);
1441 	spin_lock_init(&c->btree_read_time_lock);
1442 	bch_moving_init_cache_set(c);
1443 
1444 	INIT_LIST_HEAD(&c->list);
1445 	INIT_LIST_HEAD(&c->cached_devs);
1446 	INIT_LIST_HEAD(&c->btree_cache);
1447 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1448 	INIT_LIST_HEAD(&c->btree_cache_freed);
1449 	INIT_LIST_HEAD(&c->data_buckets);
1450 
1451 	c->search = mempool_create_slab_pool(32, bch_search_cache);
1452 	if (!c->search)
1453 		goto err;
1454 
1455 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1456 		sizeof(struct btree_iter_set);
1457 
1458 	if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1459 	    !(c->bio_meta = mempool_create_kmalloc_pool(2,
1460 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1461 				bucket_pages(c))) ||
1462 	    !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1463 	    !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1464 	    !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1465 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1466 	    bch_journal_alloc(c) ||
1467 	    bch_btree_cache_alloc(c) ||
1468 	    bch_open_buckets_alloc(c))
1469 		goto err;
1470 
1471 	c->congested_read_threshold_us	= 2000;
1472 	c->congested_write_threshold_us	= 20000;
1473 	c->error_limit	= 8 << IO_ERROR_SHIFT;
1474 
1475 	return c;
1476 err:
1477 	bch_cache_set_unregister(c);
1478 	return NULL;
1479 }
1480 
1481 static void run_cache_set(struct cache_set *c)
1482 {
1483 	const char *err = "cannot allocate memory";
1484 	struct cached_dev *dc, *t;
1485 	struct cache *ca;
1486 	unsigned i;
1487 
1488 	struct btree_op op;
1489 	bch_btree_op_init_stack(&op);
1490 	op.lock = SHRT_MAX;
1491 
1492 	for_each_cache(ca, c, i)
1493 		c->nbuckets += ca->sb.nbuckets;
1494 
1495 	if (CACHE_SYNC(&c->sb)) {
1496 		LIST_HEAD(journal);
1497 		struct bkey *k;
1498 		struct jset *j;
1499 
1500 		err = "cannot allocate memory for journal";
1501 		if (bch_journal_read(c, &journal, &op))
1502 			goto err;
1503 
1504 		pr_debug("btree_journal_read() done");
1505 
1506 		err = "no journal entries found";
1507 		if (list_empty(&journal))
1508 			goto err;
1509 
1510 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1511 
1512 		err = "IO error reading priorities";
1513 		for_each_cache(ca, c, i)
1514 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1515 
1516 		/*
1517 		 * If prio_read() fails it'll call cache_set_error and we'll
1518 		 * tear everything down right away, but if we perhaps checked
1519 		 * sooner we could avoid journal replay.
1520 		 */
1521 
1522 		k = &j->btree_root;
1523 
1524 		err = "bad btree root";
1525 		if (__bch_ptr_invalid(c, j->btree_level + 1, k))
1526 			goto err;
1527 
1528 		err = "error reading btree root";
1529 		c->root = bch_btree_node_get(c, k, j->btree_level, &op);
1530 		if (IS_ERR_OR_NULL(c->root))
1531 			goto err;
1532 
1533 		list_del_init(&c->root->list);
1534 		rw_unlock(true, c->root);
1535 
1536 		err = uuid_read(c, j, &op.cl);
1537 		if (err)
1538 			goto err;
1539 
1540 		err = "error in recovery";
1541 		if (bch_btree_check(c, &op))
1542 			goto err;
1543 
1544 		bch_journal_mark(c, &journal);
1545 		bch_btree_gc_finish(c);
1546 		pr_debug("btree_check() done");
1547 
1548 		/*
1549 		 * bcache_journal_next() can't happen sooner, or
1550 		 * btree_gc_finish() will give spurious errors about last_gc >
1551 		 * gc_gen - this is a hack but oh well.
1552 		 */
1553 		bch_journal_next(&c->journal);
1554 
1555 		err = "error starting allocator thread";
1556 		for_each_cache(ca, c, i)
1557 			if (bch_cache_allocator_start(ca))
1558 				goto err;
1559 
1560 		/*
1561 		 * First place it's safe to allocate: btree_check() and
1562 		 * btree_gc_finish() have to run before we have buckets to
1563 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1564 		 * entry to be written so bcache_journal_next() has to be called
1565 		 * first.
1566 		 *
1567 		 * If the uuids were in the old format we have to rewrite them
1568 		 * before the next journal entry is written:
1569 		 */
1570 		if (j->version < BCACHE_JSET_VERSION_UUID)
1571 			__uuid_write(c);
1572 
1573 		bch_journal_replay(c, &journal, &op);
1574 	} else {
1575 		pr_notice("invalidating existing data");
1576 		/* Don't want invalidate_buckets() to queue a gc yet */
1577 		closure_lock(&c->gc, NULL);
1578 
1579 		for_each_cache(ca, c, i) {
1580 			unsigned j;
1581 
1582 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1583 					      2, SB_JOURNAL_BUCKETS);
1584 
1585 			for (j = 0; j < ca->sb.keys; j++)
1586 				ca->sb.d[j] = ca->sb.first_bucket + j;
1587 		}
1588 
1589 		bch_btree_gc_finish(c);
1590 
1591 		err = "error starting allocator thread";
1592 		for_each_cache(ca, c, i)
1593 			if (bch_cache_allocator_start(ca))
1594 				goto err;
1595 
1596 		mutex_lock(&c->bucket_lock);
1597 		for_each_cache(ca, c, i)
1598 			bch_prio_write(ca);
1599 		mutex_unlock(&c->bucket_lock);
1600 
1601 		err = "cannot allocate new UUID bucket";
1602 		if (__uuid_write(c))
1603 			goto err_unlock_gc;
1604 
1605 		err = "cannot allocate new btree root";
1606 		c->root = bch_btree_node_alloc(c, 0, &op.cl);
1607 		if (IS_ERR_OR_NULL(c->root))
1608 			goto err_unlock_gc;
1609 
1610 		bkey_copy_key(&c->root->key, &MAX_KEY);
1611 		bch_btree_node_write(c->root, &op.cl);
1612 
1613 		bch_btree_set_root(c->root);
1614 		rw_unlock(true, c->root);
1615 
1616 		/*
1617 		 * We don't want to write the first journal entry until
1618 		 * everything is set up - fortunately journal entries won't be
1619 		 * written until the SET_CACHE_SYNC() here:
1620 		 */
1621 		SET_CACHE_SYNC(&c->sb, true);
1622 
1623 		bch_journal_next(&c->journal);
1624 		bch_journal_meta(c, &op.cl);
1625 
1626 		/* Unlock */
1627 		closure_set_stopped(&c->gc.cl);
1628 		closure_put(&c->gc.cl);
1629 	}
1630 
1631 	closure_sync(&op.cl);
1632 	c->sb.last_mount = get_seconds();
1633 	bcache_write_super(c);
1634 
1635 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1636 		bch_cached_dev_attach(dc, c);
1637 
1638 	flash_devs_run(c);
1639 
1640 	return;
1641 err_unlock_gc:
1642 	closure_set_stopped(&c->gc.cl);
1643 	closure_put(&c->gc.cl);
1644 err:
1645 	closure_sync(&op.cl);
1646 	/* XXX: test this, it's broken */
1647 	bch_cache_set_error(c, err);
1648 }
1649 
1650 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1651 {
1652 	return ca->sb.block_size	== c->sb.block_size &&
1653 		ca->sb.bucket_size	== c->sb.block_size &&
1654 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1655 }
1656 
1657 static const char *register_cache_set(struct cache *ca)
1658 {
1659 	char buf[12];
1660 	const char *err = "cannot allocate memory";
1661 	struct cache_set *c;
1662 
1663 	list_for_each_entry(c, &bch_cache_sets, list)
1664 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1665 			if (c->cache[ca->sb.nr_this_dev])
1666 				return "duplicate cache set member";
1667 
1668 			if (!can_attach_cache(ca, c))
1669 				return "cache sb does not match set";
1670 
1671 			if (!CACHE_SYNC(&ca->sb))
1672 				SET_CACHE_SYNC(&c->sb, false);
1673 
1674 			goto found;
1675 		}
1676 
1677 	c = bch_cache_set_alloc(&ca->sb);
1678 	if (!c)
1679 		return err;
1680 
1681 	err = "error creating kobject";
1682 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1683 	    kobject_add(&c->internal, &c->kobj, "internal"))
1684 		goto err;
1685 
1686 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1687 		goto err;
1688 
1689 	bch_debug_init_cache_set(c);
1690 
1691 	list_add(&c->list, &bch_cache_sets);
1692 found:
1693 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1694 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1695 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1696 		goto err;
1697 
1698 	if (ca->sb.seq > c->sb.seq) {
1699 		c->sb.version		= ca->sb.version;
1700 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1701 		c->sb.flags             = ca->sb.flags;
1702 		c->sb.seq		= ca->sb.seq;
1703 		pr_debug("set version = %llu", c->sb.version);
1704 	}
1705 
1706 	ca->set = c;
1707 	ca->set->cache[ca->sb.nr_this_dev] = ca;
1708 	c->cache_by_alloc[c->caches_loaded++] = ca;
1709 
1710 	if (c->caches_loaded == c->sb.nr_in_set)
1711 		run_cache_set(c);
1712 
1713 	return NULL;
1714 err:
1715 	bch_cache_set_unregister(c);
1716 	return err;
1717 }
1718 
1719 /* Cache device */
1720 
1721 void bch_cache_release(struct kobject *kobj)
1722 {
1723 	struct cache *ca = container_of(kobj, struct cache, kobj);
1724 
1725 	if (ca->set)
1726 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1727 
1728 	bch_cache_allocator_exit(ca);
1729 
1730 	bio_split_pool_free(&ca->bio_split_hook);
1731 
1732 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1733 	kfree(ca->prio_buckets);
1734 	vfree(ca->buckets);
1735 
1736 	free_heap(&ca->heap);
1737 	free_fifo(&ca->unused);
1738 	free_fifo(&ca->free_inc);
1739 	free_fifo(&ca->free);
1740 
1741 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1742 		put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1743 
1744 	if (!IS_ERR_OR_NULL(ca->bdev)) {
1745 		blk_sync_queue(bdev_get_queue(ca->bdev));
1746 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1747 	}
1748 
1749 	kfree(ca);
1750 	module_put(THIS_MODULE);
1751 }
1752 
1753 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1754 {
1755 	size_t free;
1756 	struct bucket *b;
1757 
1758 	__module_get(THIS_MODULE);
1759 	kobject_init(&ca->kobj, &bch_cache_ktype);
1760 
1761 	INIT_LIST_HEAD(&ca->discards);
1762 
1763 	bio_init(&ca->journal.bio);
1764 	ca->journal.bio.bi_max_vecs = 8;
1765 	ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1766 
1767 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1768 	free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1769 
1770 	if (!init_fifo(&ca->free,	free, GFP_KERNEL) ||
1771 	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
1772 	    !init_fifo(&ca->unused,	free << 2, GFP_KERNEL) ||
1773 	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
1774 	    !(ca->buckets	= vzalloc(sizeof(struct bucket) *
1775 					  ca->sb.nbuckets)) ||
1776 	    !(ca->prio_buckets	= kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1777 					  2, GFP_KERNEL)) ||
1778 	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)) ||
1779 	    bio_split_pool_init(&ca->bio_split_hook))
1780 		return -ENOMEM;
1781 
1782 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1783 
1784 	for_each_bucket(b, ca)
1785 		atomic_set(&b->pin, 0);
1786 
1787 	if (bch_cache_allocator_init(ca))
1788 		goto err;
1789 
1790 	return 0;
1791 err:
1792 	kobject_put(&ca->kobj);
1793 	return -ENOMEM;
1794 }
1795 
1796 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1797 				  struct block_device *bdev, struct cache *ca)
1798 {
1799 	char name[BDEVNAME_SIZE];
1800 	const char *err = "cannot allocate memory";
1801 
1802 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1803 	ca->bdev = bdev;
1804 	ca->bdev->bd_holder = ca;
1805 
1806 	bio_init(&ca->sb_bio);
1807 	ca->sb_bio.bi_max_vecs	= 1;
1808 	ca->sb_bio.bi_io_vec	= ca->sb_bio.bi_inline_vecs;
1809 	ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1810 	get_page(sb_page);
1811 
1812 	if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1813 		ca->discard = CACHE_DISCARD(&ca->sb);
1814 
1815 	if (cache_alloc(sb, ca) != 0)
1816 		goto err;
1817 
1818 	err = "error creating kobject";
1819 	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1820 		goto err;
1821 
1822 	err = register_cache_set(ca);
1823 	if (err)
1824 		goto err;
1825 
1826 	pr_info("registered cache device %s", bdevname(bdev, name));
1827 	return;
1828 err:
1829 	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1830 	kobject_put(&ca->kobj);
1831 }
1832 
1833 /* Global interfaces/init */
1834 
1835 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1836 			       const char *, size_t);
1837 
1838 kobj_attribute_write(register,		register_bcache);
1839 kobj_attribute_write(register_quiet,	register_bcache);
1840 
1841 static bool bch_is_open_backing(struct block_device *bdev) {
1842 	struct cache_set *c, *tc;
1843 	struct cached_dev *dc, *t;
1844 
1845 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1846 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1847 			if (dc->bdev == bdev)
1848 				return true;
1849 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1850 		if (dc->bdev == bdev)
1851 			return true;
1852 	return false;
1853 }
1854 
1855 static bool bch_is_open_cache(struct block_device *bdev) {
1856 	struct cache_set *c, *tc;
1857 	struct cache *ca;
1858 	unsigned i;
1859 
1860 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1861 		for_each_cache(ca, c, i)
1862 			if (ca->bdev == bdev)
1863 				return true;
1864 	return false;
1865 }
1866 
1867 static bool bch_is_open(struct block_device *bdev) {
1868 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1869 }
1870 
1871 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1872 			       const char *buffer, size_t size)
1873 {
1874 	ssize_t ret = size;
1875 	const char *err = "cannot allocate memory";
1876 	char *path = NULL;
1877 	struct cache_sb *sb = NULL;
1878 	struct block_device *bdev = NULL;
1879 	struct page *sb_page = NULL;
1880 
1881 	if (!try_module_get(THIS_MODULE))
1882 		return -EBUSY;
1883 
1884 	mutex_lock(&bch_register_lock);
1885 
1886 	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1887 	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1888 		goto err;
1889 
1890 	err = "failed to open device";
1891 	bdev = blkdev_get_by_path(strim(path),
1892 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1893 				  sb);
1894 	if (IS_ERR(bdev)) {
1895 		if (bdev == ERR_PTR(-EBUSY)) {
1896 			bdev = lookup_bdev(strim(path));
1897 			if (!IS_ERR(bdev) && bch_is_open(bdev))
1898 				err = "device already registered";
1899 			else
1900 				err = "device busy";
1901 		}
1902 		goto err;
1903 	}
1904 
1905 	err = "failed to set blocksize";
1906 	if (set_blocksize(bdev, 4096))
1907 		goto err_close;
1908 
1909 	err = read_super(sb, bdev, &sb_page);
1910 	if (err)
1911 		goto err_close;
1912 
1913 	if (SB_IS_BDEV(sb)) {
1914 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1915 		if (!dc)
1916 			goto err_close;
1917 
1918 		register_bdev(sb, sb_page, bdev, dc);
1919 	} else {
1920 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1921 		if (!ca)
1922 			goto err_close;
1923 
1924 		register_cache(sb, sb_page, bdev, ca);
1925 	}
1926 out:
1927 	if (sb_page)
1928 		put_page(sb_page);
1929 	kfree(sb);
1930 	kfree(path);
1931 	mutex_unlock(&bch_register_lock);
1932 	module_put(THIS_MODULE);
1933 	return ret;
1934 
1935 err_close:
1936 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1937 err:
1938 	if (attr != &ksysfs_register_quiet)
1939 		pr_info("error opening %s: %s", path, err);
1940 	ret = -EINVAL;
1941 	goto out;
1942 }
1943 
1944 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1945 {
1946 	if (code == SYS_DOWN ||
1947 	    code == SYS_HALT ||
1948 	    code == SYS_POWER_OFF) {
1949 		DEFINE_WAIT(wait);
1950 		unsigned long start = jiffies;
1951 		bool stopped = false;
1952 
1953 		struct cache_set *c, *tc;
1954 		struct cached_dev *dc, *tdc;
1955 
1956 		mutex_lock(&bch_register_lock);
1957 
1958 		if (list_empty(&bch_cache_sets) &&
1959 		    list_empty(&uncached_devices))
1960 			goto out;
1961 
1962 		pr_info("Stopping all devices:");
1963 
1964 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1965 			bch_cache_set_stop(c);
1966 
1967 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1968 			bcache_device_stop(&dc->disk);
1969 
1970 		/* What's a condition variable? */
1971 		while (1) {
1972 			long timeout = start + 2 * HZ - jiffies;
1973 
1974 			stopped = list_empty(&bch_cache_sets) &&
1975 				list_empty(&uncached_devices);
1976 
1977 			if (timeout < 0 || stopped)
1978 				break;
1979 
1980 			prepare_to_wait(&unregister_wait, &wait,
1981 					TASK_UNINTERRUPTIBLE);
1982 
1983 			mutex_unlock(&bch_register_lock);
1984 			schedule_timeout(timeout);
1985 			mutex_lock(&bch_register_lock);
1986 		}
1987 
1988 		finish_wait(&unregister_wait, &wait);
1989 
1990 		if (stopped)
1991 			pr_info("All devices stopped");
1992 		else
1993 			pr_notice("Timeout waiting for devices to be closed");
1994 out:
1995 		mutex_unlock(&bch_register_lock);
1996 	}
1997 
1998 	return NOTIFY_DONE;
1999 }
2000 
2001 static struct notifier_block reboot = {
2002 	.notifier_call	= bcache_reboot,
2003 	.priority	= INT_MAX, /* before any real devices */
2004 };
2005 
2006 static void bcache_exit(void)
2007 {
2008 	bch_debug_exit();
2009 	bch_writeback_exit();
2010 	bch_request_exit();
2011 	bch_btree_exit();
2012 	if (bcache_kobj)
2013 		kobject_put(bcache_kobj);
2014 	if (bcache_wq)
2015 		destroy_workqueue(bcache_wq);
2016 	unregister_blkdev(bcache_major, "bcache");
2017 	unregister_reboot_notifier(&reboot);
2018 }
2019 
2020 static int __init bcache_init(void)
2021 {
2022 	static const struct attribute *files[] = {
2023 		&ksysfs_register.attr,
2024 		&ksysfs_register_quiet.attr,
2025 		NULL
2026 	};
2027 
2028 	mutex_init(&bch_register_lock);
2029 	init_waitqueue_head(&unregister_wait);
2030 	register_reboot_notifier(&reboot);
2031 	closure_debug_init();
2032 
2033 	bcache_major = register_blkdev(0, "bcache");
2034 	if (bcache_major < 0)
2035 		return bcache_major;
2036 
2037 	if (!(bcache_wq = create_workqueue("bcache")) ||
2038 	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2039 	    sysfs_create_files(bcache_kobj, files) ||
2040 	    bch_btree_init() ||
2041 	    bch_request_init() ||
2042 	    bch_writeback_init() ||
2043 	    bch_debug_init(bcache_kobj))
2044 		goto err;
2045 
2046 	return 0;
2047 err:
2048 	bcache_exit();
2049 	return -ENOMEM;
2050 }
2051 
2052 module_exit(bcache_exit);
2053 module_init(bcache_init);
2054