1 /* 2 * bcache setup/teardown code, and some metadata io - read a superblock and 3 * figure out what to do with it. 4 * 5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcache.h" 10 #include "btree.h" 11 #include "debug.h" 12 #include "request.h" 13 #include "writeback.h" 14 15 #include <linux/blkdev.h> 16 #include <linux/buffer_head.h> 17 #include <linux/debugfs.h> 18 #include <linux/genhd.h> 19 #include <linux/kthread.h> 20 #include <linux/module.h> 21 #include <linux/random.h> 22 #include <linux/reboot.h> 23 #include <linux/sysfs.h> 24 25 MODULE_LICENSE("GPL"); 26 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 27 28 static const char bcache_magic[] = { 29 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 30 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 31 }; 32 33 static const char invalid_uuid[] = { 34 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 35 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 36 }; 37 38 /* Default is -1; we skip past it for struct cached_dev's cache mode */ 39 const char * const bch_cache_modes[] = { 40 "default", 41 "writethrough", 42 "writeback", 43 "writearound", 44 "none", 45 NULL 46 }; 47 48 struct uuid_entry_v0 { 49 uint8_t uuid[16]; 50 uint8_t label[32]; 51 uint32_t first_reg; 52 uint32_t last_reg; 53 uint32_t invalidated; 54 uint32_t pad; 55 }; 56 57 static struct kobject *bcache_kobj; 58 struct mutex bch_register_lock; 59 LIST_HEAD(bch_cache_sets); 60 static LIST_HEAD(uncached_devices); 61 62 static int bcache_major, bcache_minor; 63 static wait_queue_head_t unregister_wait; 64 struct workqueue_struct *bcache_wq; 65 66 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 67 68 static void bio_split_pool_free(struct bio_split_pool *p) 69 { 70 if (p->bio_split_hook) 71 mempool_destroy(p->bio_split_hook); 72 73 if (p->bio_split) 74 bioset_free(p->bio_split); 75 } 76 77 static int bio_split_pool_init(struct bio_split_pool *p) 78 { 79 p->bio_split = bioset_create(4, 0); 80 if (!p->bio_split) 81 return -ENOMEM; 82 83 p->bio_split_hook = mempool_create_kmalloc_pool(4, 84 sizeof(struct bio_split_hook)); 85 if (!p->bio_split_hook) 86 return -ENOMEM; 87 88 return 0; 89 } 90 91 /* Superblock */ 92 93 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 94 struct page **res) 95 { 96 const char *err; 97 struct cache_sb *s; 98 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE); 99 unsigned i; 100 101 if (!bh) 102 return "IO error"; 103 104 s = (struct cache_sb *) bh->b_data; 105 106 sb->offset = le64_to_cpu(s->offset); 107 sb->version = le64_to_cpu(s->version); 108 109 memcpy(sb->magic, s->magic, 16); 110 memcpy(sb->uuid, s->uuid, 16); 111 memcpy(sb->set_uuid, s->set_uuid, 16); 112 memcpy(sb->label, s->label, SB_LABEL_SIZE); 113 114 sb->flags = le64_to_cpu(s->flags); 115 sb->seq = le64_to_cpu(s->seq); 116 sb->last_mount = le32_to_cpu(s->last_mount); 117 sb->first_bucket = le16_to_cpu(s->first_bucket); 118 sb->keys = le16_to_cpu(s->keys); 119 120 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 121 sb->d[i] = le64_to_cpu(s->d[i]); 122 123 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u", 124 sb->version, sb->flags, sb->seq, sb->keys); 125 126 err = "Not a bcache superblock"; 127 if (sb->offset != SB_SECTOR) 128 goto err; 129 130 if (memcmp(sb->magic, bcache_magic, 16)) 131 goto err; 132 133 err = "Too many journal buckets"; 134 if (sb->keys > SB_JOURNAL_BUCKETS) 135 goto err; 136 137 err = "Bad checksum"; 138 if (s->csum != csum_set(s)) 139 goto err; 140 141 err = "Bad UUID"; 142 if (bch_is_zero(sb->uuid, 16)) 143 goto err; 144 145 sb->block_size = le16_to_cpu(s->block_size); 146 147 err = "Superblock block size smaller than device block size"; 148 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 149 goto err; 150 151 switch (sb->version) { 152 case BCACHE_SB_VERSION_BDEV: 153 sb->data_offset = BDEV_DATA_START_DEFAULT; 154 break; 155 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 156 sb->data_offset = le64_to_cpu(s->data_offset); 157 158 err = "Bad data offset"; 159 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 160 goto err; 161 162 break; 163 case BCACHE_SB_VERSION_CDEV: 164 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 165 sb->nbuckets = le64_to_cpu(s->nbuckets); 166 sb->block_size = le16_to_cpu(s->block_size); 167 sb->bucket_size = le16_to_cpu(s->bucket_size); 168 169 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 170 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 171 172 err = "Too many buckets"; 173 if (sb->nbuckets > LONG_MAX) 174 goto err; 175 176 err = "Not enough buckets"; 177 if (sb->nbuckets < 1 << 7) 178 goto err; 179 180 err = "Bad block/bucket size"; 181 if (!is_power_of_2(sb->block_size) || 182 sb->block_size > PAGE_SECTORS || 183 !is_power_of_2(sb->bucket_size) || 184 sb->bucket_size < PAGE_SECTORS) 185 goto err; 186 187 err = "Invalid superblock: device too small"; 188 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets) 189 goto err; 190 191 err = "Bad UUID"; 192 if (bch_is_zero(sb->set_uuid, 16)) 193 goto err; 194 195 err = "Bad cache device number in set"; 196 if (!sb->nr_in_set || 197 sb->nr_in_set <= sb->nr_this_dev || 198 sb->nr_in_set > MAX_CACHES_PER_SET) 199 goto err; 200 201 err = "Journal buckets not sequential"; 202 for (i = 0; i < sb->keys; i++) 203 if (sb->d[i] != sb->first_bucket + i) 204 goto err; 205 206 err = "Too many journal buckets"; 207 if (sb->first_bucket + sb->keys > sb->nbuckets) 208 goto err; 209 210 err = "Invalid superblock: first bucket comes before end of super"; 211 if (sb->first_bucket * sb->bucket_size < 16) 212 goto err; 213 214 break; 215 default: 216 err = "Unsupported superblock version"; 217 goto err; 218 } 219 220 sb->last_mount = get_seconds(); 221 err = NULL; 222 223 get_page(bh->b_page); 224 *res = bh->b_page; 225 err: 226 put_bh(bh); 227 return err; 228 } 229 230 static void write_bdev_super_endio(struct bio *bio, int error) 231 { 232 struct cached_dev *dc = bio->bi_private; 233 /* XXX: error checking */ 234 235 closure_put(&dc->sb_write.cl); 236 } 237 238 static void __write_super(struct cache_sb *sb, struct bio *bio) 239 { 240 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page); 241 unsigned i; 242 243 bio->bi_sector = SB_SECTOR; 244 bio->bi_rw = REQ_SYNC|REQ_META; 245 bio->bi_size = SB_SIZE; 246 bch_bio_map(bio, NULL); 247 248 out->offset = cpu_to_le64(sb->offset); 249 out->version = cpu_to_le64(sb->version); 250 251 memcpy(out->uuid, sb->uuid, 16); 252 memcpy(out->set_uuid, sb->set_uuid, 16); 253 memcpy(out->label, sb->label, SB_LABEL_SIZE); 254 255 out->flags = cpu_to_le64(sb->flags); 256 out->seq = cpu_to_le64(sb->seq); 257 258 out->last_mount = cpu_to_le32(sb->last_mount); 259 out->first_bucket = cpu_to_le16(sb->first_bucket); 260 out->keys = cpu_to_le16(sb->keys); 261 262 for (i = 0; i < sb->keys; i++) 263 out->d[i] = cpu_to_le64(sb->d[i]); 264 265 out->csum = csum_set(out); 266 267 pr_debug("ver %llu, flags %llu, seq %llu", 268 sb->version, sb->flags, sb->seq); 269 270 submit_bio(REQ_WRITE, bio); 271 } 272 273 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 274 { 275 struct closure *cl = &dc->sb_write.cl; 276 struct bio *bio = &dc->sb_bio; 277 278 closure_lock(&dc->sb_write, parent); 279 280 bio_reset(bio); 281 bio->bi_bdev = dc->bdev; 282 bio->bi_end_io = write_bdev_super_endio; 283 bio->bi_private = dc; 284 285 closure_get(cl); 286 __write_super(&dc->sb, bio); 287 288 closure_return(cl); 289 } 290 291 static void write_super_endio(struct bio *bio, int error) 292 { 293 struct cache *ca = bio->bi_private; 294 295 bch_count_io_errors(ca, error, "writing superblock"); 296 closure_put(&ca->set->sb_write.cl); 297 } 298 299 void bcache_write_super(struct cache_set *c) 300 { 301 struct closure *cl = &c->sb_write.cl; 302 struct cache *ca; 303 unsigned i; 304 305 closure_lock(&c->sb_write, &c->cl); 306 307 c->sb.seq++; 308 309 for_each_cache(ca, c, i) { 310 struct bio *bio = &ca->sb_bio; 311 312 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 313 ca->sb.seq = c->sb.seq; 314 ca->sb.last_mount = c->sb.last_mount; 315 316 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); 317 318 bio_reset(bio); 319 bio->bi_bdev = ca->bdev; 320 bio->bi_end_io = write_super_endio; 321 bio->bi_private = ca; 322 323 closure_get(cl); 324 __write_super(&ca->sb, bio); 325 } 326 327 closure_return(cl); 328 } 329 330 /* UUID io */ 331 332 static void uuid_endio(struct bio *bio, int error) 333 { 334 struct closure *cl = bio->bi_private; 335 struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl); 336 337 cache_set_err_on(error, c, "accessing uuids"); 338 bch_bbio_free(bio, c); 339 closure_put(cl); 340 } 341 342 static void uuid_io(struct cache_set *c, unsigned long rw, 343 struct bkey *k, struct closure *parent) 344 { 345 struct closure *cl = &c->uuid_write.cl; 346 struct uuid_entry *u; 347 unsigned i; 348 char buf[80]; 349 350 BUG_ON(!parent); 351 closure_lock(&c->uuid_write, parent); 352 353 for (i = 0; i < KEY_PTRS(k); i++) { 354 struct bio *bio = bch_bbio_alloc(c); 355 356 bio->bi_rw = REQ_SYNC|REQ_META|rw; 357 bio->bi_size = KEY_SIZE(k) << 9; 358 359 bio->bi_end_io = uuid_endio; 360 bio->bi_private = cl; 361 bch_bio_map(bio, c->uuids); 362 363 bch_submit_bbio(bio, c, k, i); 364 365 if (!(rw & WRITE)) 366 break; 367 } 368 369 bch_bkey_to_text(buf, sizeof(buf), k); 370 pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf); 371 372 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 373 if (!bch_is_zero(u->uuid, 16)) 374 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u", 375 u - c->uuids, u->uuid, u->label, 376 u->first_reg, u->last_reg, u->invalidated); 377 378 closure_return(cl); 379 } 380 381 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 382 { 383 struct bkey *k = &j->uuid_bucket; 384 385 if (__bch_ptr_invalid(c, 1, k)) 386 return "bad uuid pointer"; 387 388 bkey_copy(&c->uuid_bucket, k); 389 uuid_io(c, READ_SYNC, k, cl); 390 391 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 392 struct uuid_entry_v0 *u0 = (void *) c->uuids; 393 struct uuid_entry *u1 = (void *) c->uuids; 394 int i; 395 396 closure_sync(cl); 397 398 /* 399 * Since the new uuid entry is bigger than the old, we have to 400 * convert starting at the highest memory address and work down 401 * in order to do it in place 402 */ 403 404 for (i = c->nr_uuids - 1; 405 i >= 0; 406 --i) { 407 memcpy(u1[i].uuid, u0[i].uuid, 16); 408 memcpy(u1[i].label, u0[i].label, 32); 409 410 u1[i].first_reg = u0[i].first_reg; 411 u1[i].last_reg = u0[i].last_reg; 412 u1[i].invalidated = u0[i].invalidated; 413 414 u1[i].flags = 0; 415 u1[i].sectors = 0; 416 } 417 } 418 419 return NULL; 420 } 421 422 static int __uuid_write(struct cache_set *c) 423 { 424 BKEY_PADDED(key) k; 425 struct closure cl; 426 closure_init_stack(&cl); 427 428 lockdep_assert_held(&bch_register_lock); 429 430 if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl)) 431 return 1; 432 433 SET_KEY_SIZE(&k.key, c->sb.bucket_size); 434 uuid_io(c, REQ_WRITE, &k.key, &cl); 435 closure_sync(&cl); 436 437 bkey_copy(&c->uuid_bucket, &k.key); 438 __bkey_put(c, &k.key); 439 return 0; 440 } 441 442 int bch_uuid_write(struct cache_set *c) 443 { 444 int ret = __uuid_write(c); 445 446 if (!ret) 447 bch_journal_meta(c, NULL); 448 449 return ret; 450 } 451 452 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 453 { 454 struct uuid_entry *u; 455 456 for (u = c->uuids; 457 u < c->uuids + c->nr_uuids; u++) 458 if (!memcmp(u->uuid, uuid, 16)) 459 return u; 460 461 return NULL; 462 } 463 464 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 465 { 466 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 467 return uuid_find(c, zero_uuid); 468 } 469 470 /* 471 * Bucket priorities/gens: 472 * 473 * For each bucket, we store on disk its 474 * 8 bit gen 475 * 16 bit priority 476 * 477 * See alloc.c for an explanation of the gen. The priority is used to implement 478 * lru (and in the future other) cache replacement policies; for most purposes 479 * it's just an opaque integer. 480 * 481 * The gens and the priorities don't have a whole lot to do with each other, and 482 * it's actually the gens that must be written out at specific times - it's no 483 * big deal if the priorities don't get written, if we lose them we just reuse 484 * buckets in suboptimal order. 485 * 486 * On disk they're stored in a packed array, and in as many buckets are required 487 * to fit them all. The buckets we use to store them form a list; the journal 488 * header points to the first bucket, the first bucket points to the second 489 * bucket, et cetera. 490 * 491 * This code is used by the allocation code; periodically (whenever it runs out 492 * of buckets to allocate from) the allocation code will invalidate some 493 * buckets, but it can't use those buckets until their new gens are safely on 494 * disk. 495 */ 496 497 static void prio_endio(struct bio *bio, int error) 498 { 499 struct cache *ca = bio->bi_private; 500 501 cache_set_err_on(error, ca->set, "accessing priorities"); 502 bch_bbio_free(bio, ca->set); 503 closure_put(&ca->prio); 504 } 505 506 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw) 507 { 508 struct closure *cl = &ca->prio; 509 struct bio *bio = bch_bbio_alloc(ca->set); 510 511 closure_init_stack(cl); 512 513 bio->bi_sector = bucket * ca->sb.bucket_size; 514 bio->bi_bdev = ca->bdev; 515 bio->bi_rw = REQ_SYNC|REQ_META|rw; 516 bio->bi_size = bucket_bytes(ca); 517 518 bio->bi_end_io = prio_endio; 519 bio->bi_private = ca; 520 bch_bio_map(bio, ca->disk_buckets); 521 522 closure_bio_submit(bio, &ca->prio, ca); 523 closure_sync(cl); 524 } 525 526 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu", \ 527 fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused) 528 529 void bch_prio_write(struct cache *ca) 530 { 531 int i; 532 struct bucket *b; 533 struct closure cl; 534 535 closure_init_stack(&cl); 536 537 lockdep_assert_held(&ca->set->bucket_lock); 538 539 for (b = ca->buckets; 540 b < ca->buckets + ca->sb.nbuckets; b++) 541 b->disk_gen = b->gen; 542 543 ca->disk_buckets->seq++; 544 545 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 546 &ca->meta_sectors_written); 547 548 pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free), 549 fifo_used(&ca->free_inc), fifo_used(&ca->unused)); 550 551 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 552 long bucket; 553 struct prio_set *p = ca->disk_buckets; 554 struct bucket_disk *d = p->data; 555 struct bucket_disk *end = d + prios_per_bucket(ca); 556 557 for (b = ca->buckets + i * prios_per_bucket(ca); 558 b < ca->buckets + ca->sb.nbuckets && d < end; 559 b++, d++) { 560 d->prio = cpu_to_le16(b->prio); 561 d->gen = b->gen; 562 } 563 564 p->next_bucket = ca->prio_buckets[i + 1]; 565 p->magic = pset_magic(ca); 566 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8); 567 568 bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl); 569 BUG_ON(bucket == -1); 570 571 mutex_unlock(&ca->set->bucket_lock); 572 prio_io(ca, bucket, REQ_WRITE); 573 mutex_lock(&ca->set->bucket_lock); 574 575 ca->prio_buckets[i] = bucket; 576 atomic_dec_bug(&ca->buckets[bucket].pin); 577 } 578 579 mutex_unlock(&ca->set->bucket_lock); 580 581 bch_journal_meta(ca->set, &cl); 582 closure_sync(&cl); 583 584 mutex_lock(&ca->set->bucket_lock); 585 586 ca->need_save_prio = 0; 587 588 /* 589 * Don't want the old priorities to get garbage collected until after we 590 * finish writing the new ones, and they're journalled 591 */ 592 for (i = 0; i < prio_buckets(ca); i++) 593 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 594 } 595 596 static void prio_read(struct cache *ca, uint64_t bucket) 597 { 598 struct prio_set *p = ca->disk_buckets; 599 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 600 struct bucket *b; 601 unsigned bucket_nr = 0; 602 603 for (b = ca->buckets; 604 b < ca->buckets + ca->sb.nbuckets; 605 b++, d++) { 606 if (d == end) { 607 ca->prio_buckets[bucket_nr] = bucket; 608 ca->prio_last_buckets[bucket_nr] = bucket; 609 bucket_nr++; 610 611 prio_io(ca, bucket, READ_SYNC); 612 613 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8)) 614 pr_warn("bad csum reading priorities"); 615 616 if (p->magic != pset_magic(ca)) 617 pr_warn("bad magic reading priorities"); 618 619 bucket = p->next_bucket; 620 d = p->data; 621 } 622 623 b->prio = le16_to_cpu(d->prio); 624 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen; 625 } 626 } 627 628 /* Bcache device */ 629 630 static int open_dev(struct block_device *b, fmode_t mode) 631 { 632 struct bcache_device *d = b->bd_disk->private_data; 633 if (atomic_read(&d->closing)) 634 return -ENXIO; 635 636 closure_get(&d->cl); 637 return 0; 638 } 639 640 static void release_dev(struct gendisk *b, fmode_t mode) 641 { 642 struct bcache_device *d = b->private_data; 643 closure_put(&d->cl); 644 } 645 646 static int ioctl_dev(struct block_device *b, fmode_t mode, 647 unsigned int cmd, unsigned long arg) 648 { 649 struct bcache_device *d = b->bd_disk->private_data; 650 return d->ioctl(d, mode, cmd, arg); 651 } 652 653 static const struct block_device_operations bcache_ops = { 654 .open = open_dev, 655 .release = release_dev, 656 .ioctl = ioctl_dev, 657 .owner = THIS_MODULE, 658 }; 659 660 void bcache_device_stop(struct bcache_device *d) 661 { 662 if (!atomic_xchg(&d->closing, 1)) 663 closure_queue(&d->cl); 664 } 665 666 static void bcache_device_unlink(struct bcache_device *d) 667 { 668 unsigned i; 669 struct cache *ca; 670 671 sysfs_remove_link(&d->c->kobj, d->name); 672 sysfs_remove_link(&d->kobj, "cache"); 673 674 for_each_cache(ca, d->c, i) 675 bd_unlink_disk_holder(ca->bdev, d->disk); 676 } 677 678 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 679 const char *name) 680 { 681 unsigned i; 682 struct cache *ca; 683 684 for_each_cache(ca, d->c, i) 685 bd_link_disk_holder(ca->bdev, d->disk); 686 687 snprintf(d->name, BCACHEDEVNAME_SIZE, 688 "%s%u", name, d->id); 689 690 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") || 691 sysfs_create_link(&c->kobj, &d->kobj, d->name), 692 "Couldn't create device <-> cache set symlinks"); 693 } 694 695 static void bcache_device_detach(struct bcache_device *d) 696 { 697 lockdep_assert_held(&bch_register_lock); 698 699 if (atomic_read(&d->detaching)) { 700 struct uuid_entry *u = d->c->uuids + d->id; 701 702 SET_UUID_FLASH_ONLY(u, 0); 703 memcpy(u->uuid, invalid_uuid, 16); 704 u->invalidated = cpu_to_le32(get_seconds()); 705 bch_uuid_write(d->c); 706 707 atomic_set(&d->detaching, 0); 708 } 709 710 if (!d->flush_done) 711 bcache_device_unlink(d); 712 713 d->c->devices[d->id] = NULL; 714 closure_put(&d->c->caching); 715 d->c = NULL; 716 } 717 718 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 719 unsigned id) 720 { 721 BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags)); 722 723 d->id = id; 724 d->c = c; 725 c->devices[id] = d; 726 727 closure_get(&c->caching); 728 } 729 730 static void bcache_device_free(struct bcache_device *d) 731 { 732 lockdep_assert_held(&bch_register_lock); 733 734 pr_info("%s stopped", d->disk->disk_name); 735 736 if (d->c) 737 bcache_device_detach(d); 738 if (d->disk && d->disk->flags & GENHD_FL_UP) 739 del_gendisk(d->disk); 740 if (d->disk && d->disk->queue) 741 blk_cleanup_queue(d->disk->queue); 742 if (d->disk) 743 put_disk(d->disk); 744 745 bio_split_pool_free(&d->bio_split_hook); 746 if (d->unaligned_bvec) 747 mempool_destroy(d->unaligned_bvec); 748 if (d->bio_split) 749 bioset_free(d->bio_split); 750 if (is_vmalloc_addr(d->stripe_sectors_dirty)) 751 vfree(d->stripe_sectors_dirty); 752 else 753 kfree(d->stripe_sectors_dirty); 754 755 closure_debug_destroy(&d->cl); 756 } 757 758 static int bcache_device_init(struct bcache_device *d, unsigned block_size, 759 sector_t sectors) 760 { 761 struct request_queue *q; 762 size_t n; 763 764 if (!d->stripe_size_bits) 765 d->stripe_size_bits = 31; 766 767 d->nr_stripes = round_up(sectors, 1 << d->stripe_size_bits) >> 768 d->stripe_size_bits; 769 770 if (!d->nr_stripes || d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) 771 return -ENOMEM; 772 773 n = d->nr_stripes * sizeof(atomic_t); 774 d->stripe_sectors_dirty = n < PAGE_SIZE << 6 775 ? kzalloc(n, GFP_KERNEL) 776 : vzalloc(n); 777 if (!d->stripe_sectors_dirty) 778 return -ENOMEM; 779 780 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) || 781 !(d->unaligned_bvec = mempool_create_kmalloc_pool(1, 782 sizeof(struct bio_vec) * BIO_MAX_PAGES)) || 783 bio_split_pool_init(&d->bio_split_hook) || 784 !(d->disk = alloc_disk(1)) || 785 !(q = blk_alloc_queue(GFP_KERNEL))) 786 return -ENOMEM; 787 788 set_capacity(d->disk, sectors); 789 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor); 790 791 d->disk->major = bcache_major; 792 d->disk->first_minor = bcache_minor++; 793 d->disk->fops = &bcache_ops; 794 d->disk->private_data = d; 795 796 blk_queue_make_request(q, NULL); 797 d->disk->queue = q; 798 q->queuedata = d; 799 q->backing_dev_info.congested_data = d; 800 q->limits.max_hw_sectors = UINT_MAX; 801 q->limits.max_sectors = UINT_MAX; 802 q->limits.max_segment_size = UINT_MAX; 803 q->limits.max_segments = BIO_MAX_PAGES; 804 q->limits.max_discard_sectors = UINT_MAX; 805 q->limits.io_min = block_size; 806 q->limits.logical_block_size = block_size; 807 q->limits.physical_block_size = block_size; 808 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags); 809 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags); 810 811 blk_queue_flush(q, REQ_FLUSH|REQ_FUA); 812 813 return 0; 814 } 815 816 /* Cached device */ 817 818 static void calc_cached_dev_sectors(struct cache_set *c) 819 { 820 uint64_t sectors = 0; 821 struct cached_dev *dc; 822 823 list_for_each_entry(dc, &c->cached_devs, list) 824 sectors += bdev_sectors(dc->bdev); 825 826 c->cached_dev_sectors = sectors; 827 } 828 829 void bch_cached_dev_run(struct cached_dev *dc) 830 { 831 struct bcache_device *d = &dc->disk; 832 char buf[SB_LABEL_SIZE + 1]; 833 char *env[] = { 834 "DRIVER=bcache", 835 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 836 NULL, 837 NULL, 838 }; 839 840 memcpy(buf, dc->sb.label, SB_LABEL_SIZE); 841 buf[SB_LABEL_SIZE] = '\0'; 842 env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf); 843 844 if (atomic_xchg(&dc->running, 1)) 845 return; 846 847 if (!d->c && 848 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 849 struct closure cl; 850 closure_init_stack(&cl); 851 852 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 853 bch_write_bdev_super(dc, &cl); 854 closure_sync(&cl); 855 } 856 857 add_disk(d->disk); 858 bd_link_disk_holder(dc->bdev, dc->disk.disk); 859 /* won't show up in the uevent file, use udevadm monitor -e instead 860 * only class / kset properties are persistent */ 861 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 862 kfree(env[1]); 863 kfree(env[2]); 864 865 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 866 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache")) 867 pr_debug("error creating sysfs link"); 868 } 869 870 static void cached_dev_detach_finish(struct work_struct *w) 871 { 872 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 873 char buf[BDEVNAME_SIZE]; 874 struct closure cl; 875 closure_init_stack(&cl); 876 877 BUG_ON(!atomic_read(&dc->disk.detaching)); 878 BUG_ON(atomic_read(&dc->count)); 879 880 mutex_lock(&bch_register_lock); 881 882 memset(&dc->sb.set_uuid, 0, 16); 883 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); 884 885 bch_write_bdev_super(dc, &cl); 886 closure_sync(&cl); 887 888 bcache_device_detach(&dc->disk); 889 list_move(&dc->list, &uncached_devices); 890 891 mutex_unlock(&bch_register_lock); 892 893 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf)); 894 895 /* Drop ref we took in cached_dev_detach() */ 896 closure_put(&dc->disk.cl); 897 } 898 899 void bch_cached_dev_detach(struct cached_dev *dc) 900 { 901 lockdep_assert_held(&bch_register_lock); 902 903 if (atomic_read(&dc->disk.closing)) 904 return; 905 906 if (atomic_xchg(&dc->disk.detaching, 1)) 907 return; 908 909 /* 910 * Block the device from being closed and freed until we're finished 911 * detaching 912 */ 913 closure_get(&dc->disk.cl); 914 915 bch_writeback_queue(dc); 916 cached_dev_put(dc); 917 } 918 919 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c) 920 { 921 uint32_t rtime = cpu_to_le32(get_seconds()); 922 struct uuid_entry *u; 923 char buf[BDEVNAME_SIZE]; 924 925 bdevname(dc->bdev, buf); 926 927 if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)) 928 return -ENOENT; 929 930 if (dc->disk.c) { 931 pr_err("Can't attach %s: already attached", buf); 932 return -EINVAL; 933 } 934 935 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 936 pr_err("Can't attach %s: shutting down", buf); 937 return -EINVAL; 938 } 939 940 if (dc->sb.block_size < c->sb.block_size) { 941 /* Will die */ 942 pr_err("Couldn't attach %s: block size less than set's block size", 943 buf); 944 return -EINVAL; 945 } 946 947 u = uuid_find(c, dc->sb.uuid); 948 949 if (u && 950 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 951 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 952 memcpy(u->uuid, invalid_uuid, 16); 953 u->invalidated = cpu_to_le32(get_seconds()); 954 u = NULL; 955 } 956 957 if (!u) { 958 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 959 pr_err("Couldn't find uuid for %s in set", buf); 960 return -ENOENT; 961 } 962 963 u = uuid_find_empty(c); 964 if (!u) { 965 pr_err("Not caching %s, no room for UUID", buf); 966 return -EINVAL; 967 } 968 } 969 970 /* Deadlocks since we're called via sysfs... 971 sysfs_remove_file(&dc->kobj, &sysfs_attach); 972 */ 973 974 if (bch_is_zero(u->uuid, 16)) { 975 struct closure cl; 976 closure_init_stack(&cl); 977 978 memcpy(u->uuid, dc->sb.uuid, 16); 979 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 980 u->first_reg = u->last_reg = rtime; 981 bch_uuid_write(c); 982 983 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); 984 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 985 986 bch_write_bdev_super(dc, &cl); 987 closure_sync(&cl); 988 } else { 989 u->last_reg = rtime; 990 bch_uuid_write(c); 991 } 992 993 bcache_device_attach(&dc->disk, c, u - c->uuids); 994 list_move(&dc->list, &c->cached_devs); 995 calc_cached_dev_sectors(c); 996 997 smp_wmb(); 998 /* 999 * dc->c must be set before dc->count != 0 - paired with the mb in 1000 * cached_dev_get() 1001 */ 1002 atomic_set(&dc->count, 1); 1003 1004 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1005 bch_sectors_dirty_init(dc); 1006 atomic_set(&dc->has_dirty, 1); 1007 atomic_inc(&dc->count); 1008 bch_writeback_queue(dc); 1009 } 1010 1011 bch_cached_dev_run(dc); 1012 bcache_device_link(&dc->disk, c, "bdev"); 1013 1014 pr_info("Caching %s as %s on set %pU", 1015 bdevname(dc->bdev, buf), dc->disk.disk->disk_name, 1016 dc->disk.c->sb.set_uuid); 1017 return 0; 1018 } 1019 1020 void bch_cached_dev_release(struct kobject *kobj) 1021 { 1022 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1023 disk.kobj); 1024 kfree(dc); 1025 module_put(THIS_MODULE); 1026 } 1027 1028 static void cached_dev_free(struct closure *cl) 1029 { 1030 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1031 1032 cancel_delayed_work_sync(&dc->writeback_rate_update); 1033 1034 mutex_lock(&bch_register_lock); 1035 1036 if (atomic_read(&dc->running)) 1037 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1038 bcache_device_free(&dc->disk); 1039 list_del(&dc->list); 1040 1041 mutex_unlock(&bch_register_lock); 1042 1043 if (!IS_ERR_OR_NULL(dc->bdev)) { 1044 if (dc->bdev->bd_disk) 1045 blk_sync_queue(bdev_get_queue(dc->bdev)); 1046 1047 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1048 } 1049 1050 wake_up(&unregister_wait); 1051 1052 kobject_put(&dc->disk.kobj); 1053 } 1054 1055 static void cached_dev_flush(struct closure *cl) 1056 { 1057 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1058 struct bcache_device *d = &dc->disk; 1059 1060 mutex_lock(&bch_register_lock); 1061 d->flush_done = 1; 1062 1063 if (d->c) 1064 bcache_device_unlink(d); 1065 1066 mutex_unlock(&bch_register_lock); 1067 1068 bch_cache_accounting_destroy(&dc->accounting); 1069 kobject_del(&d->kobj); 1070 1071 continue_at(cl, cached_dev_free, system_wq); 1072 } 1073 1074 static int cached_dev_init(struct cached_dev *dc, unsigned block_size) 1075 { 1076 int ret; 1077 struct io *io; 1078 struct request_queue *q = bdev_get_queue(dc->bdev); 1079 1080 __module_get(THIS_MODULE); 1081 INIT_LIST_HEAD(&dc->list); 1082 closure_init(&dc->disk.cl, NULL); 1083 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1084 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1085 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1086 closure_init_unlocked(&dc->sb_write); 1087 INIT_LIST_HEAD(&dc->io_lru); 1088 spin_lock_init(&dc->io_lock); 1089 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1090 1091 dc->sequential_merge = true; 1092 dc->sequential_cutoff = 4 << 20; 1093 1094 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1095 list_add(&io->lru, &dc->io_lru); 1096 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1097 } 1098 1099 ret = bcache_device_init(&dc->disk, block_size, 1100 dc->bdev->bd_part->nr_sects - dc->sb.data_offset); 1101 if (ret) 1102 return ret; 1103 1104 set_capacity(dc->disk.disk, 1105 dc->bdev->bd_part->nr_sects - dc->sb.data_offset); 1106 1107 dc->disk.disk->queue->backing_dev_info.ra_pages = 1108 max(dc->disk.disk->queue->backing_dev_info.ra_pages, 1109 q->backing_dev_info.ra_pages); 1110 1111 bch_cached_dev_request_init(dc); 1112 bch_cached_dev_writeback_init(dc); 1113 return 0; 1114 } 1115 1116 /* Cached device - bcache superblock */ 1117 1118 static void register_bdev(struct cache_sb *sb, struct page *sb_page, 1119 struct block_device *bdev, 1120 struct cached_dev *dc) 1121 { 1122 char name[BDEVNAME_SIZE]; 1123 const char *err = "cannot allocate memory"; 1124 struct cache_set *c; 1125 1126 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1127 dc->bdev = bdev; 1128 dc->bdev->bd_holder = dc; 1129 1130 bio_init(&dc->sb_bio); 1131 dc->sb_bio.bi_max_vecs = 1; 1132 dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs; 1133 dc->sb_bio.bi_io_vec[0].bv_page = sb_page; 1134 get_page(sb_page); 1135 1136 if (cached_dev_init(dc, sb->block_size << 9)) 1137 goto err; 1138 1139 err = "error creating kobject"; 1140 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, 1141 "bcache")) 1142 goto err; 1143 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1144 goto err; 1145 1146 pr_info("registered backing device %s", bdevname(bdev, name)); 1147 1148 list_add(&dc->list, &uncached_devices); 1149 list_for_each_entry(c, &bch_cache_sets, list) 1150 bch_cached_dev_attach(dc, c); 1151 1152 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1153 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) 1154 bch_cached_dev_run(dc); 1155 1156 return; 1157 err: 1158 pr_notice("error opening %s: %s", bdevname(bdev, name), err); 1159 bcache_device_stop(&dc->disk); 1160 } 1161 1162 /* Flash only volumes */ 1163 1164 void bch_flash_dev_release(struct kobject *kobj) 1165 { 1166 struct bcache_device *d = container_of(kobj, struct bcache_device, 1167 kobj); 1168 kfree(d); 1169 } 1170 1171 static void flash_dev_free(struct closure *cl) 1172 { 1173 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1174 bcache_device_free(d); 1175 kobject_put(&d->kobj); 1176 } 1177 1178 static void flash_dev_flush(struct closure *cl) 1179 { 1180 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1181 1182 bcache_device_unlink(d); 1183 kobject_del(&d->kobj); 1184 continue_at(cl, flash_dev_free, system_wq); 1185 } 1186 1187 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1188 { 1189 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1190 GFP_KERNEL); 1191 if (!d) 1192 return -ENOMEM; 1193 1194 closure_init(&d->cl, NULL); 1195 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1196 1197 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1198 1199 if (bcache_device_init(d, block_bytes(c), u->sectors)) 1200 goto err; 1201 1202 bcache_device_attach(d, c, u - c->uuids); 1203 bch_flash_dev_request_init(d); 1204 add_disk(d->disk); 1205 1206 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1207 goto err; 1208 1209 bcache_device_link(d, c, "volume"); 1210 1211 return 0; 1212 err: 1213 kobject_put(&d->kobj); 1214 return -ENOMEM; 1215 } 1216 1217 static int flash_devs_run(struct cache_set *c) 1218 { 1219 int ret = 0; 1220 struct uuid_entry *u; 1221 1222 for (u = c->uuids; 1223 u < c->uuids + c->nr_uuids && !ret; 1224 u++) 1225 if (UUID_FLASH_ONLY(u)) 1226 ret = flash_dev_run(c, u); 1227 1228 return ret; 1229 } 1230 1231 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1232 { 1233 struct uuid_entry *u; 1234 1235 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1236 return -EINTR; 1237 1238 u = uuid_find_empty(c); 1239 if (!u) { 1240 pr_err("Can't create volume, no room for UUID"); 1241 return -EINVAL; 1242 } 1243 1244 get_random_bytes(u->uuid, 16); 1245 memset(u->label, 0, 32); 1246 u->first_reg = u->last_reg = cpu_to_le32(get_seconds()); 1247 1248 SET_UUID_FLASH_ONLY(u, 1); 1249 u->sectors = size >> 9; 1250 1251 bch_uuid_write(c); 1252 1253 return flash_dev_run(c, u); 1254 } 1255 1256 /* Cache set */ 1257 1258 __printf(2, 3) 1259 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1260 { 1261 va_list args; 1262 1263 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1264 return false; 1265 1266 /* XXX: we can be called from atomic context 1267 acquire_console_sem(); 1268 */ 1269 1270 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid); 1271 1272 va_start(args, fmt); 1273 vprintk(fmt, args); 1274 va_end(args); 1275 1276 printk(", disabling caching\n"); 1277 1278 bch_cache_set_unregister(c); 1279 return true; 1280 } 1281 1282 void bch_cache_set_release(struct kobject *kobj) 1283 { 1284 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1285 kfree(c); 1286 module_put(THIS_MODULE); 1287 } 1288 1289 static void cache_set_free(struct closure *cl) 1290 { 1291 struct cache_set *c = container_of(cl, struct cache_set, cl); 1292 struct cache *ca; 1293 unsigned i; 1294 1295 if (!IS_ERR_OR_NULL(c->debug)) 1296 debugfs_remove(c->debug); 1297 1298 bch_open_buckets_free(c); 1299 bch_btree_cache_free(c); 1300 bch_journal_free(c); 1301 1302 for_each_cache(ca, c, i) 1303 if (ca) 1304 kobject_put(&ca->kobj); 1305 1306 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c))); 1307 free_pages((unsigned long) c->sort, ilog2(bucket_pages(c))); 1308 1309 if (c->bio_split) 1310 bioset_free(c->bio_split); 1311 if (c->fill_iter) 1312 mempool_destroy(c->fill_iter); 1313 if (c->bio_meta) 1314 mempool_destroy(c->bio_meta); 1315 if (c->search) 1316 mempool_destroy(c->search); 1317 kfree(c->devices); 1318 1319 mutex_lock(&bch_register_lock); 1320 list_del(&c->list); 1321 mutex_unlock(&bch_register_lock); 1322 1323 pr_info("Cache set %pU unregistered", c->sb.set_uuid); 1324 wake_up(&unregister_wait); 1325 1326 closure_debug_destroy(&c->cl); 1327 kobject_put(&c->kobj); 1328 } 1329 1330 static void cache_set_flush(struct closure *cl) 1331 { 1332 struct cache_set *c = container_of(cl, struct cache_set, caching); 1333 struct cache *ca; 1334 struct btree *b; 1335 unsigned i; 1336 1337 bch_cache_accounting_destroy(&c->accounting); 1338 1339 kobject_put(&c->internal); 1340 kobject_del(&c->kobj); 1341 1342 if (!IS_ERR_OR_NULL(c->root)) 1343 list_add(&c->root->list, &c->btree_cache); 1344 1345 /* Should skip this if we're unregistering because of an error */ 1346 list_for_each_entry(b, &c->btree_cache, list) 1347 if (btree_node_dirty(b)) 1348 bch_btree_node_write(b, NULL); 1349 1350 for_each_cache(ca, c, i) 1351 if (ca->alloc_thread) 1352 kthread_stop(ca->alloc_thread); 1353 1354 closure_return(cl); 1355 } 1356 1357 static void __cache_set_unregister(struct closure *cl) 1358 { 1359 struct cache_set *c = container_of(cl, struct cache_set, caching); 1360 struct cached_dev *dc; 1361 size_t i; 1362 1363 mutex_lock(&bch_register_lock); 1364 1365 for (i = 0; i < c->nr_uuids; i++) 1366 if (c->devices[i]) { 1367 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1368 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1369 dc = container_of(c->devices[i], 1370 struct cached_dev, disk); 1371 bch_cached_dev_detach(dc); 1372 } else { 1373 bcache_device_stop(c->devices[i]); 1374 } 1375 } 1376 1377 mutex_unlock(&bch_register_lock); 1378 1379 continue_at(cl, cache_set_flush, system_wq); 1380 } 1381 1382 void bch_cache_set_stop(struct cache_set *c) 1383 { 1384 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1385 closure_queue(&c->caching); 1386 } 1387 1388 void bch_cache_set_unregister(struct cache_set *c) 1389 { 1390 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1391 bch_cache_set_stop(c); 1392 } 1393 1394 #define alloc_bucket_pages(gfp, c) \ 1395 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c)))) 1396 1397 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1398 { 1399 int iter_size; 1400 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1401 if (!c) 1402 return NULL; 1403 1404 __module_get(THIS_MODULE); 1405 closure_init(&c->cl, NULL); 1406 set_closure_fn(&c->cl, cache_set_free, system_wq); 1407 1408 closure_init(&c->caching, &c->cl); 1409 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1410 1411 /* Maybe create continue_at_noreturn() and use it here? */ 1412 closure_set_stopped(&c->cl); 1413 closure_put(&c->cl); 1414 1415 kobject_init(&c->kobj, &bch_cache_set_ktype); 1416 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1417 1418 bch_cache_accounting_init(&c->accounting, &c->cl); 1419 1420 memcpy(c->sb.set_uuid, sb->set_uuid, 16); 1421 c->sb.block_size = sb->block_size; 1422 c->sb.bucket_size = sb->bucket_size; 1423 c->sb.nr_in_set = sb->nr_in_set; 1424 c->sb.last_mount = sb->last_mount; 1425 c->bucket_bits = ilog2(sb->bucket_size); 1426 c->block_bits = ilog2(sb->block_size); 1427 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry); 1428 1429 c->btree_pages = c->sb.bucket_size / PAGE_SECTORS; 1430 if (c->btree_pages > BTREE_MAX_PAGES) 1431 c->btree_pages = max_t(int, c->btree_pages / 4, 1432 BTREE_MAX_PAGES); 1433 1434 c->sort_crit_factor = int_sqrt(c->btree_pages); 1435 1436 mutex_init(&c->bucket_lock); 1437 mutex_init(&c->sort_lock); 1438 spin_lock_init(&c->sort_time_lock); 1439 closure_init_unlocked(&c->sb_write); 1440 closure_init_unlocked(&c->uuid_write); 1441 spin_lock_init(&c->btree_read_time_lock); 1442 bch_moving_init_cache_set(c); 1443 1444 INIT_LIST_HEAD(&c->list); 1445 INIT_LIST_HEAD(&c->cached_devs); 1446 INIT_LIST_HEAD(&c->btree_cache); 1447 INIT_LIST_HEAD(&c->btree_cache_freeable); 1448 INIT_LIST_HEAD(&c->btree_cache_freed); 1449 INIT_LIST_HEAD(&c->data_buckets); 1450 1451 c->search = mempool_create_slab_pool(32, bch_search_cache); 1452 if (!c->search) 1453 goto err; 1454 1455 iter_size = (sb->bucket_size / sb->block_size + 1) * 1456 sizeof(struct btree_iter_set); 1457 1458 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) || 1459 !(c->bio_meta = mempool_create_kmalloc_pool(2, 1460 sizeof(struct bbio) + sizeof(struct bio_vec) * 1461 bucket_pages(c))) || 1462 !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) || 1463 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) || 1464 !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) || 1465 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) || 1466 bch_journal_alloc(c) || 1467 bch_btree_cache_alloc(c) || 1468 bch_open_buckets_alloc(c)) 1469 goto err; 1470 1471 c->congested_read_threshold_us = 2000; 1472 c->congested_write_threshold_us = 20000; 1473 c->error_limit = 8 << IO_ERROR_SHIFT; 1474 1475 return c; 1476 err: 1477 bch_cache_set_unregister(c); 1478 return NULL; 1479 } 1480 1481 static void run_cache_set(struct cache_set *c) 1482 { 1483 const char *err = "cannot allocate memory"; 1484 struct cached_dev *dc, *t; 1485 struct cache *ca; 1486 unsigned i; 1487 1488 struct btree_op op; 1489 bch_btree_op_init_stack(&op); 1490 op.lock = SHRT_MAX; 1491 1492 for_each_cache(ca, c, i) 1493 c->nbuckets += ca->sb.nbuckets; 1494 1495 if (CACHE_SYNC(&c->sb)) { 1496 LIST_HEAD(journal); 1497 struct bkey *k; 1498 struct jset *j; 1499 1500 err = "cannot allocate memory for journal"; 1501 if (bch_journal_read(c, &journal, &op)) 1502 goto err; 1503 1504 pr_debug("btree_journal_read() done"); 1505 1506 err = "no journal entries found"; 1507 if (list_empty(&journal)) 1508 goto err; 1509 1510 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1511 1512 err = "IO error reading priorities"; 1513 for_each_cache(ca, c, i) 1514 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]); 1515 1516 /* 1517 * If prio_read() fails it'll call cache_set_error and we'll 1518 * tear everything down right away, but if we perhaps checked 1519 * sooner we could avoid journal replay. 1520 */ 1521 1522 k = &j->btree_root; 1523 1524 err = "bad btree root"; 1525 if (__bch_ptr_invalid(c, j->btree_level + 1, k)) 1526 goto err; 1527 1528 err = "error reading btree root"; 1529 c->root = bch_btree_node_get(c, k, j->btree_level, &op); 1530 if (IS_ERR_OR_NULL(c->root)) 1531 goto err; 1532 1533 list_del_init(&c->root->list); 1534 rw_unlock(true, c->root); 1535 1536 err = uuid_read(c, j, &op.cl); 1537 if (err) 1538 goto err; 1539 1540 err = "error in recovery"; 1541 if (bch_btree_check(c, &op)) 1542 goto err; 1543 1544 bch_journal_mark(c, &journal); 1545 bch_btree_gc_finish(c); 1546 pr_debug("btree_check() done"); 1547 1548 /* 1549 * bcache_journal_next() can't happen sooner, or 1550 * btree_gc_finish() will give spurious errors about last_gc > 1551 * gc_gen - this is a hack but oh well. 1552 */ 1553 bch_journal_next(&c->journal); 1554 1555 err = "error starting allocator thread"; 1556 for_each_cache(ca, c, i) 1557 if (bch_cache_allocator_start(ca)) 1558 goto err; 1559 1560 /* 1561 * First place it's safe to allocate: btree_check() and 1562 * btree_gc_finish() have to run before we have buckets to 1563 * allocate, and bch_bucket_alloc_set() might cause a journal 1564 * entry to be written so bcache_journal_next() has to be called 1565 * first. 1566 * 1567 * If the uuids were in the old format we have to rewrite them 1568 * before the next journal entry is written: 1569 */ 1570 if (j->version < BCACHE_JSET_VERSION_UUID) 1571 __uuid_write(c); 1572 1573 bch_journal_replay(c, &journal, &op); 1574 } else { 1575 pr_notice("invalidating existing data"); 1576 /* Don't want invalidate_buckets() to queue a gc yet */ 1577 closure_lock(&c->gc, NULL); 1578 1579 for_each_cache(ca, c, i) { 1580 unsigned j; 1581 1582 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 1583 2, SB_JOURNAL_BUCKETS); 1584 1585 for (j = 0; j < ca->sb.keys; j++) 1586 ca->sb.d[j] = ca->sb.first_bucket + j; 1587 } 1588 1589 bch_btree_gc_finish(c); 1590 1591 err = "error starting allocator thread"; 1592 for_each_cache(ca, c, i) 1593 if (bch_cache_allocator_start(ca)) 1594 goto err; 1595 1596 mutex_lock(&c->bucket_lock); 1597 for_each_cache(ca, c, i) 1598 bch_prio_write(ca); 1599 mutex_unlock(&c->bucket_lock); 1600 1601 err = "cannot allocate new UUID bucket"; 1602 if (__uuid_write(c)) 1603 goto err_unlock_gc; 1604 1605 err = "cannot allocate new btree root"; 1606 c->root = bch_btree_node_alloc(c, 0, &op.cl); 1607 if (IS_ERR_OR_NULL(c->root)) 1608 goto err_unlock_gc; 1609 1610 bkey_copy_key(&c->root->key, &MAX_KEY); 1611 bch_btree_node_write(c->root, &op.cl); 1612 1613 bch_btree_set_root(c->root); 1614 rw_unlock(true, c->root); 1615 1616 /* 1617 * We don't want to write the first journal entry until 1618 * everything is set up - fortunately journal entries won't be 1619 * written until the SET_CACHE_SYNC() here: 1620 */ 1621 SET_CACHE_SYNC(&c->sb, true); 1622 1623 bch_journal_next(&c->journal); 1624 bch_journal_meta(c, &op.cl); 1625 1626 /* Unlock */ 1627 closure_set_stopped(&c->gc.cl); 1628 closure_put(&c->gc.cl); 1629 } 1630 1631 closure_sync(&op.cl); 1632 c->sb.last_mount = get_seconds(); 1633 bcache_write_super(c); 1634 1635 list_for_each_entry_safe(dc, t, &uncached_devices, list) 1636 bch_cached_dev_attach(dc, c); 1637 1638 flash_devs_run(c); 1639 1640 return; 1641 err_unlock_gc: 1642 closure_set_stopped(&c->gc.cl); 1643 closure_put(&c->gc.cl); 1644 err: 1645 closure_sync(&op.cl); 1646 /* XXX: test this, it's broken */ 1647 bch_cache_set_error(c, err); 1648 } 1649 1650 static bool can_attach_cache(struct cache *ca, struct cache_set *c) 1651 { 1652 return ca->sb.block_size == c->sb.block_size && 1653 ca->sb.bucket_size == c->sb.block_size && 1654 ca->sb.nr_in_set == c->sb.nr_in_set; 1655 } 1656 1657 static const char *register_cache_set(struct cache *ca) 1658 { 1659 char buf[12]; 1660 const char *err = "cannot allocate memory"; 1661 struct cache_set *c; 1662 1663 list_for_each_entry(c, &bch_cache_sets, list) 1664 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { 1665 if (c->cache[ca->sb.nr_this_dev]) 1666 return "duplicate cache set member"; 1667 1668 if (!can_attach_cache(ca, c)) 1669 return "cache sb does not match set"; 1670 1671 if (!CACHE_SYNC(&ca->sb)) 1672 SET_CACHE_SYNC(&c->sb, false); 1673 1674 goto found; 1675 } 1676 1677 c = bch_cache_set_alloc(&ca->sb); 1678 if (!c) 1679 return err; 1680 1681 err = "error creating kobject"; 1682 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || 1683 kobject_add(&c->internal, &c->kobj, "internal")) 1684 goto err; 1685 1686 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 1687 goto err; 1688 1689 bch_debug_init_cache_set(c); 1690 1691 list_add(&c->list, &bch_cache_sets); 1692 found: 1693 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 1694 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 1695 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 1696 goto err; 1697 1698 if (ca->sb.seq > c->sb.seq) { 1699 c->sb.version = ca->sb.version; 1700 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); 1701 c->sb.flags = ca->sb.flags; 1702 c->sb.seq = ca->sb.seq; 1703 pr_debug("set version = %llu", c->sb.version); 1704 } 1705 1706 ca->set = c; 1707 ca->set->cache[ca->sb.nr_this_dev] = ca; 1708 c->cache_by_alloc[c->caches_loaded++] = ca; 1709 1710 if (c->caches_loaded == c->sb.nr_in_set) 1711 run_cache_set(c); 1712 1713 return NULL; 1714 err: 1715 bch_cache_set_unregister(c); 1716 return err; 1717 } 1718 1719 /* Cache device */ 1720 1721 void bch_cache_release(struct kobject *kobj) 1722 { 1723 struct cache *ca = container_of(kobj, struct cache, kobj); 1724 1725 if (ca->set) 1726 ca->set->cache[ca->sb.nr_this_dev] = NULL; 1727 1728 bch_cache_allocator_exit(ca); 1729 1730 bio_split_pool_free(&ca->bio_split_hook); 1731 1732 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca))); 1733 kfree(ca->prio_buckets); 1734 vfree(ca->buckets); 1735 1736 free_heap(&ca->heap); 1737 free_fifo(&ca->unused); 1738 free_fifo(&ca->free_inc); 1739 free_fifo(&ca->free); 1740 1741 if (ca->sb_bio.bi_inline_vecs[0].bv_page) 1742 put_page(ca->sb_bio.bi_io_vec[0].bv_page); 1743 1744 if (!IS_ERR_OR_NULL(ca->bdev)) { 1745 blk_sync_queue(bdev_get_queue(ca->bdev)); 1746 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1747 } 1748 1749 kfree(ca); 1750 module_put(THIS_MODULE); 1751 } 1752 1753 static int cache_alloc(struct cache_sb *sb, struct cache *ca) 1754 { 1755 size_t free; 1756 struct bucket *b; 1757 1758 __module_get(THIS_MODULE); 1759 kobject_init(&ca->kobj, &bch_cache_ktype); 1760 1761 INIT_LIST_HEAD(&ca->discards); 1762 1763 bio_init(&ca->journal.bio); 1764 ca->journal.bio.bi_max_vecs = 8; 1765 ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs; 1766 1767 free = roundup_pow_of_two(ca->sb.nbuckets) >> 9; 1768 free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2); 1769 1770 if (!init_fifo(&ca->free, free, GFP_KERNEL) || 1771 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) || 1772 !init_fifo(&ca->unused, free << 2, GFP_KERNEL) || 1773 !init_heap(&ca->heap, free << 3, GFP_KERNEL) || 1774 !(ca->buckets = vzalloc(sizeof(struct bucket) * 1775 ca->sb.nbuckets)) || 1776 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) * 1777 2, GFP_KERNEL)) || 1778 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) || 1779 bio_split_pool_init(&ca->bio_split_hook)) 1780 return -ENOMEM; 1781 1782 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 1783 1784 for_each_bucket(b, ca) 1785 atomic_set(&b->pin, 0); 1786 1787 if (bch_cache_allocator_init(ca)) 1788 goto err; 1789 1790 return 0; 1791 err: 1792 kobject_put(&ca->kobj); 1793 return -ENOMEM; 1794 } 1795 1796 static void register_cache(struct cache_sb *sb, struct page *sb_page, 1797 struct block_device *bdev, struct cache *ca) 1798 { 1799 char name[BDEVNAME_SIZE]; 1800 const char *err = "cannot allocate memory"; 1801 1802 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 1803 ca->bdev = bdev; 1804 ca->bdev->bd_holder = ca; 1805 1806 bio_init(&ca->sb_bio); 1807 ca->sb_bio.bi_max_vecs = 1; 1808 ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs; 1809 ca->sb_bio.bi_io_vec[0].bv_page = sb_page; 1810 get_page(sb_page); 1811 1812 if (blk_queue_discard(bdev_get_queue(ca->bdev))) 1813 ca->discard = CACHE_DISCARD(&ca->sb); 1814 1815 if (cache_alloc(sb, ca) != 0) 1816 goto err; 1817 1818 err = "error creating kobject"; 1819 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) 1820 goto err; 1821 1822 err = register_cache_set(ca); 1823 if (err) 1824 goto err; 1825 1826 pr_info("registered cache device %s", bdevname(bdev, name)); 1827 return; 1828 err: 1829 pr_notice("error opening %s: %s", bdevname(bdev, name), err); 1830 kobject_put(&ca->kobj); 1831 } 1832 1833 /* Global interfaces/init */ 1834 1835 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *, 1836 const char *, size_t); 1837 1838 kobj_attribute_write(register, register_bcache); 1839 kobj_attribute_write(register_quiet, register_bcache); 1840 1841 static bool bch_is_open_backing(struct block_device *bdev) { 1842 struct cache_set *c, *tc; 1843 struct cached_dev *dc, *t; 1844 1845 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 1846 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 1847 if (dc->bdev == bdev) 1848 return true; 1849 list_for_each_entry_safe(dc, t, &uncached_devices, list) 1850 if (dc->bdev == bdev) 1851 return true; 1852 return false; 1853 } 1854 1855 static bool bch_is_open_cache(struct block_device *bdev) { 1856 struct cache_set *c, *tc; 1857 struct cache *ca; 1858 unsigned i; 1859 1860 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 1861 for_each_cache(ca, c, i) 1862 if (ca->bdev == bdev) 1863 return true; 1864 return false; 1865 } 1866 1867 static bool bch_is_open(struct block_device *bdev) { 1868 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); 1869 } 1870 1871 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 1872 const char *buffer, size_t size) 1873 { 1874 ssize_t ret = size; 1875 const char *err = "cannot allocate memory"; 1876 char *path = NULL; 1877 struct cache_sb *sb = NULL; 1878 struct block_device *bdev = NULL; 1879 struct page *sb_page = NULL; 1880 1881 if (!try_module_get(THIS_MODULE)) 1882 return -EBUSY; 1883 1884 mutex_lock(&bch_register_lock); 1885 1886 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) || 1887 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL))) 1888 goto err; 1889 1890 err = "failed to open device"; 1891 bdev = blkdev_get_by_path(strim(path), 1892 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 1893 sb); 1894 if (IS_ERR(bdev)) { 1895 if (bdev == ERR_PTR(-EBUSY)) { 1896 bdev = lookup_bdev(strim(path)); 1897 if (!IS_ERR(bdev) && bch_is_open(bdev)) 1898 err = "device already registered"; 1899 else 1900 err = "device busy"; 1901 } 1902 goto err; 1903 } 1904 1905 err = "failed to set blocksize"; 1906 if (set_blocksize(bdev, 4096)) 1907 goto err_close; 1908 1909 err = read_super(sb, bdev, &sb_page); 1910 if (err) 1911 goto err_close; 1912 1913 if (SB_IS_BDEV(sb)) { 1914 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 1915 if (!dc) 1916 goto err_close; 1917 1918 register_bdev(sb, sb_page, bdev, dc); 1919 } else { 1920 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 1921 if (!ca) 1922 goto err_close; 1923 1924 register_cache(sb, sb_page, bdev, ca); 1925 } 1926 out: 1927 if (sb_page) 1928 put_page(sb_page); 1929 kfree(sb); 1930 kfree(path); 1931 mutex_unlock(&bch_register_lock); 1932 module_put(THIS_MODULE); 1933 return ret; 1934 1935 err_close: 1936 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1937 err: 1938 if (attr != &ksysfs_register_quiet) 1939 pr_info("error opening %s: %s", path, err); 1940 ret = -EINVAL; 1941 goto out; 1942 } 1943 1944 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 1945 { 1946 if (code == SYS_DOWN || 1947 code == SYS_HALT || 1948 code == SYS_POWER_OFF) { 1949 DEFINE_WAIT(wait); 1950 unsigned long start = jiffies; 1951 bool stopped = false; 1952 1953 struct cache_set *c, *tc; 1954 struct cached_dev *dc, *tdc; 1955 1956 mutex_lock(&bch_register_lock); 1957 1958 if (list_empty(&bch_cache_sets) && 1959 list_empty(&uncached_devices)) 1960 goto out; 1961 1962 pr_info("Stopping all devices:"); 1963 1964 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 1965 bch_cache_set_stop(c); 1966 1967 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 1968 bcache_device_stop(&dc->disk); 1969 1970 /* What's a condition variable? */ 1971 while (1) { 1972 long timeout = start + 2 * HZ - jiffies; 1973 1974 stopped = list_empty(&bch_cache_sets) && 1975 list_empty(&uncached_devices); 1976 1977 if (timeout < 0 || stopped) 1978 break; 1979 1980 prepare_to_wait(&unregister_wait, &wait, 1981 TASK_UNINTERRUPTIBLE); 1982 1983 mutex_unlock(&bch_register_lock); 1984 schedule_timeout(timeout); 1985 mutex_lock(&bch_register_lock); 1986 } 1987 1988 finish_wait(&unregister_wait, &wait); 1989 1990 if (stopped) 1991 pr_info("All devices stopped"); 1992 else 1993 pr_notice("Timeout waiting for devices to be closed"); 1994 out: 1995 mutex_unlock(&bch_register_lock); 1996 } 1997 1998 return NOTIFY_DONE; 1999 } 2000 2001 static struct notifier_block reboot = { 2002 .notifier_call = bcache_reboot, 2003 .priority = INT_MAX, /* before any real devices */ 2004 }; 2005 2006 static void bcache_exit(void) 2007 { 2008 bch_debug_exit(); 2009 bch_writeback_exit(); 2010 bch_request_exit(); 2011 bch_btree_exit(); 2012 if (bcache_kobj) 2013 kobject_put(bcache_kobj); 2014 if (bcache_wq) 2015 destroy_workqueue(bcache_wq); 2016 unregister_blkdev(bcache_major, "bcache"); 2017 unregister_reboot_notifier(&reboot); 2018 } 2019 2020 static int __init bcache_init(void) 2021 { 2022 static const struct attribute *files[] = { 2023 &ksysfs_register.attr, 2024 &ksysfs_register_quiet.attr, 2025 NULL 2026 }; 2027 2028 mutex_init(&bch_register_lock); 2029 init_waitqueue_head(&unregister_wait); 2030 register_reboot_notifier(&reboot); 2031 closure_debug_init(); 2032 2033 bcache_major = register_blkdev(0, "bcache"); 2034 if (bcache_major < 0) 2035 return bcache_major; 2036 2037 if (!(bcache_wq = create_workqueue("bcache")) || 2038 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) || 2039 sysfs_create_files(bcache_kobj, files) || 2040 bch_btree_init() || 2041 bch_request_init() || 2042 bch_writeback_init() || 2043 bch_debug_init(bcache_kobj)) 2044 goto err; 2045 2046 return 0; 2047 err: 2048 bcache_exit(); 2049 return -ENOMEM; 2050 } 2051 2052 module_exit(bcache_exit); 2053 module_init(bcache_init); 2054