xref: /linux/drivers/md/bcache/super.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17 
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28 
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31 
32 static const char bcache_magic[] = {
33 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36 
37 static const char invalid_uuid[] = {
38 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41 
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47 
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_journal_wq;
53 
54 
55 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
56 /* limitation of partitions number on single bcache device */
57 #define BCACHE_MINORS		128
58 /* limitation of bcache devices number on single system */
59 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
60 
61 /* Superblock */
62 
63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
64 {
65 	unsigned int bucket_size = le16_to_cpu(s->bucket_size);
66 
67 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
68 		if (bch_has_feature_large_bucket(sb)) {
69 			unsigned int max, order;
70 
71 			max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
72 			order = le16_to_cpu(s->bucket_size);
73 			/*
74 			 * bcache tool will make sure the overflow won't
75 			 * happen, an error message here is enough.
76 			 */
77 			if (order > max)
78 				pr_err("Bucket size (1 << %u) overflows\n",
79 					order);
80 			bucket_size = 1 << order;
81 		} else if (bch_has_feature_obso_large_bucket(sb)) {
82 			bucket_size +=
83 				le16_to_cpu(s->obso_bucket_size_hi) << 16;
84 		}
85 	}
86 
87 	return bucket_size;
88 }
89 
90 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
91 				     struct cache_sb_disk *s)
92 {
93 	const char *err;
94 	unsigned int i;
95 
96 	sb->first_bucket= le16_to_cpu(s->first_bucket);
97 	sb->nbuckets	= le64_to_cpu(s->nbuckets);
98 	sb->bucket_size	= get_bucket_size(sb, s);
99 
100 	sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
101 	sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
102 
103 	err = "Too many journal buckets";
104 	if (sb->keys > SB_JOURNAL_BUCKETS)
105 		goto err;
106 
107 	err = "Too many buckets";
108 	if (sb->nbuckets > LONG_MAX)
109 		goto err;
110 
111 	err = "Not enough buckets";
112 	if (sb->nbuckets < 1 << 7)
113 		goto err;
114 
115 	err = "Bad block size (not power of 2)";
116 	if (!is_power_of_2(sb->block_size))
117 		goto err;
118 
119 	err = "Bad block size (larger than page size)";
120 	if (sb->block_size > PAGE_SECTORS)
121 		goto err;
122 
123 	err = "Bad bucket size (not power of 2)";
124 	if (!is_power_of_2(sb->bucket_size))
125 		goto err;
126 
127 	err = "Bad bucket size (smaller than page size)";
128 	if (sb->bucket_size < PAGE_SECTORS)
129 		goto err;
130 
131 	err = "Invalid superblock: device too small";
132 	if (get_capacity(bdev->bd_disk) <
133 	    sb->bucket_size * sb->nbuckets)
134 		goto err;
135 
136 	err = "Bad UUID";
137 	if (bch_is_zero(sb->set_uuid, 16))
138 		goto err;
139 
140 	err = "Bad cache device number in set";
141 	if (!sb->nr_in_set ||
142 	    sb->nr_in_set <= sb->nr_this_dev ||
143 	    sb->nr_in_set > MAX_CACHES_PER_SET)
144 		goto err;
145 
146 	err = "Journal buckets not sequential";
147 	for (i = 0; i < sb->keys; i++)
148 		if (sb->d[i] != sb->first_bucket + i)
149 			goto err;
150 
151 	err = "Too many journal buckets";
152 	if (sb->first_bucket + sb->keys > sb->nbuckets)
153 		goto err;
154 
155 	err = "Invalid superblock: first bucket comes before end of super";
156 	if (sb->first_bucket * sb->bucket_size < 16)
157 		goto err;
158 
159 	err = NULL;
160 err:
161 	return err;
162 }
163 
164 
165 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
166 			      struct cache_sb_disk **res)
167 {
168 	const char *err;
169 	struct cache_sb_disk *s;
170 	struct page *page;
171 	unsigned int i;
172 
173 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
174 				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
175 	if (IS_ERR(page))
176 		return "IO error";
177 	s = page_address(page) + offset_in_page(SB_OFFSET);
178 
179 	sb->offset		= le64_to_cpu(s->offset);
180 	sb->version		= le64_to_cpu(s->version);
181 
182 	memcpy(sb->magic,	s->magic, 16);
183 	memcpy(sb->uuid,	s->uuid, 16);
184 	memcpy(sb->set_uuid,	s->set_uuid, 16);
185 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
186 
187 	sb->flags		= le64_to_cpu(s->flags);
188 	sb->seq			= le64_to_cpu(s->seq);
189 	sb->last_mount		= le32_to_cpu(s->last_mount);
190 	sb->keys		= le16_to_cpu(s->keys);
191 
192 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
193 		sb->d[i] = le64_to_cpu(s->d[i]);
194 
195 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
196 		 sb->version, sb->flags, sb->seq, sb->keys);
197 
198 	err = "Not a bcache superblock (bad offset)";
199 	if (sb->offset != SB_SECTOR)
200 		goto err;
201 
202 	err = "Not a bcache superblock (bad magic)";
203 	if (memcmp(sb->magic, bcache_magic, 16))
204 		goto err;
205 
206 	err = "Bad checksum";
207 	if (s->csum != csum_set(s))
208 		goto err;
209 
210 	err = "Bad UUID";
211 	if (bch_is_zero(sb->uuid, 16))
212 		goto err;
213 
214 	sb->block_size	= le16_to_cpu(s->block_size);
215 
216 	err = "Superblock block size smaller than device block size";
217 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
218 		goto err;
219 
220 	switch (sb->version) {
221 	case BCACHE_SB_VERSION_BDEV:
222 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
223 		break;
224 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
225 	case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
226 		sb->data_offset	= le64_to_cpu(s->data_offset);
227 
228 		err = "Bad data offset";
229 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
230 			goto err;
231 
232 		break;
233 	case BCACHE_SB_VERSION_CDEV:
234 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
235 		err = read_super_common(sb, bdev, s);
236 		if (err)
237 			goto err;
238 		break;
239 	case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
240 		/*
241 		 * Feature bits are needed in read_super_common(),
242 		 * convert them firstly.
243 		 */
244 		sb->feature_compat = le64_to_cpu(s->feature_compat);
245 		sb->feature_incompat = le64_to_cpu(s->feature_incompat);
246 		sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
247 
248 		/* Check incompatible features */
249 		err = "Unsupported compatible feature found";
250 		if (bch_has_unknown_compat_features(sb))
251 			goto err;
252 
253 		err = "Unsupported read-only compatible feature found";
254 		if (bch_has_unknown_ro_compat_features(sb))
255 			goto err;
256 
257 		err = "Unsupported incompatible feature found";
258 		if (bch_has_unknown_incompat_features(sb))
259 			goto err;
260 
261 		err = read_super_common(sb, bdev, s);
262 		if (err)
263 			goto err;
264 		break;
265 	default:
266 		err = "Unsupported superblock version";
267 		goto err;
268 	}
269 
270 	sb->last_mount = (u32)ktime_get_real_seconds();
271 	*res = s;
272 	return NULL;
273 err:
274 	put_page(page);
275 	return err;
276 }
277 
278 static void write_bdev_super_endio(struct bio *bio)
279 {
280 	struct cached_dev *dc = bio->bi_private;
281 
282 	if (bio->bi_status)
283 		bch_count_backing_io_errors(dc, bio);
284 
285 	closure_put(&dc->sb_write);
286 }
287 
288 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
289 		struct bio *bio)
290 {
291 	unsigned int i;
292 
293 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
294 	bio->bi_iter.bi_sector	= SB_SECTOR;
295 	__bio_add_page(bio, virt_to_page(out), SB_SIZE,
296 			offset_in_page(out));
297 
298 	out->offset		= cpu_to_le64(sb->offset);
299 
300 	memcpy(out->uuid,	sb->uuid, 16);
301 	memcpy(out->set_uuid,	sb->set_uuid, 16);
302 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
303 
304 	out->flags		= cpu_to_le64(sb->flags);
305 	out->seq		= cpu_to_le64(sb->seq);
306 
307 	out->last_mount		= cpu_to_le32(sb->last_mount);
308 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
309 	out->keys		= cpu_to_le16(sb->keys);
310 
311 	for (i = 0; i < sb->keys; i++)
312 		out->d[i] = cpu_to_le64(sb->d[i]);
313 
314 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
315 		out->feature_compat    = cpu_to_le64(sb->feature_compat);
316 		out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
317 		out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
318 	}
319 
320 	out->version		= cpu_to_le64(sb->version);
321 	out->csum = csum_set(out);
322 
323 	pr_debug("ver %llu, flags %llu, seq %llu\n",
324 		 sb->version, sb->flags, sb->seq);
325 
326 	submit_bio(bio);
327 }
328 
329 static void bch_write_bdev_super_unlock(struct closure *cl)
330 {
331 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
332 
333 	up(&dc->sb_write_mutex);
334 }
335 
336 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
337 {
338 	struct closure *cl = &dc->sb_write;
339 	struct bio *bio = &dc->sb_bio;
340 
341 	down(&dc->sb_write_mutex);
342 	closure_init(cl, parent);
343 
344 	bio_init(bio, dc->sb_bv, 1);
345 	bio_set_dev(bio, dc->bdev);
346 	bio->bi_end_io	= write_bdev_super_endio;
347 	bio->bi_private = dc;
348 
349 	closure_get(cl);
350 	/* I/O request sent to backing device */
351 	__write_super(&dc->sb, dc->sb_disk, bio);
352 
353 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
354 }
355 
356 static void write_super_endio(struct bio *bio)
357 {
358 	struct cache *ca = bio->bi_private;
359 
360 	/* is_read = 0 */
361 	bch_count_io_errors(ca, bio->bi_status, 0,
362 			    "writing superblock");
363 	closure_put(&ca->set->sb_write);
364 }
365 
366 static void bcache_write_super_unlock(struct closure *cl)
367 {
368 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
369 
370 	up(&c->sb_write_mutex);
371 }
372 
373 void bcache_write_super(struct cache_set *c)
374 {
375 	struct closure *cl = &c->sb_write;
376 	struct cache *ca = c->cache;
377 	struct bio *bio = &ca->sb_bio;
378 	unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
379 
380 	down(&c->sb_write_mutex);
381 	closure_init(cl, &c->cl);
382 
383 	ca->sb.seq++;
384 
385 	if (ca->sb.version < version)
386 		ca->sb.version = version;
387 
388 	bio_init(bio, ca->sb_bv, 1);
389 	bio_set_dev(bio, ca->bdev);
390 	bio->bi_end_io	= write_super_endio;
391 	bio->bi_private = ca;
392 
393 	closure_get(cl);
394 	__write_super(&ca->sb, ca->sb_disk, bio);
395 
396 	closure_return_with_destructor(cl, bcache_write_super_unlock);
397 }
398 
399 /* UUID io */
400 
401 static void uuid_endio(struct bio *bio)
402 {
403 	struct closure *cl = bio->bi_private;
404 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
405 
406 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
407 	bch_bbio_free(bio, c);
408 	closure_put(cl);
409 }
410 
411 static void uuid_io_unlock(struct closure *cl)
412 {
413 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
414 
415 	up(&c->uuid_write_mutex);
416 }
417 
418 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
419 		    struct bkey *k, struct closure *parent)
420 {
421 	struct closure *cl = &c->uuid_write;
422 	struct uuid_entry *u;
423 	unsigned int i;
424 	char buf[80];
425 
426 	BUG_ON(!parent);
427 	down(&c->uuid_write_mutex);
428 	closure_init(cl, parent);
429 
430 	for (i = 0; i < KEY_PTRS(k); i++) {
431 		struct bio *bio = bch_bbio_alloc(c);
432 
433 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
434 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
435 
436 		bio->bi_end_io	= uuid_endio;
437 		bio->bi_private = cl;
438 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
439 		bch_bio_map(bio, c->uuids);
440 
441 		bch_submit_bbio(bio, c, k, i);
442 
443 		if (op != REQ_OP_WRITE)
444 			break;
445 	}
446 
447 	bch_extent_to_text(buf, sizeof(buf), k);
448 	pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
449 
450 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
451 		if (!bch_is_zero(u->uuid, 16))
452 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
453 				 u - c->uuids, u->uuid, u->label,
454 				 u->first_reg, u->last_reg, u->invalidated);
455 
456 	closure_return_with_destructor(cl, uuid_io_unlock);
457 }
458 
459 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
460 {
461 	struct bkey *k = &j->uuid_bucket;
462 
463 	if (__bch_btree_ptr_invalid(c, k))
464 		return "bad uuid pointer";
465 
466 	bkey_copy(&c->uuid_bucket, k);
467 	uuid_io(c, REQ_OP_READ, 0, k, cl);
468 
469 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
470 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
471 		struct uuid_entry	*u1 = (void *) c->uuids;
472 		int i;
473 
474 		closure_sync(cl);
475 
476 		/*
477 		 * Since the new uuid entry is bigger than the old, we have to
478 		 * convert starting at the highest memory address and work down
479 		 * in order to do it in place
480 		 */
481 
482 		for (i = c->nr_uuids - 1;
483 		     i >= 0;
484 		     --i) {
485 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
486 			memcpy(u1[i].label,	u0[i].label, 32);
487 
488 			u1[i].first_reg		= u0[i].first_reg;
489 			u1[i].last_reg		= u0[i].last_reg;
490 			u1[i].invalidated	= u0[i].invalidated;
491 
492 			u1[i].flags	= 0;
493 			u1[i].sectors	= 0;
494 		}
495 	}
496 
497 	return NULL;
498 }
499 
500 static int __uuid_write(struct cache_set *c)
501 {
502 	BKEY_PADDED(key) k;
503 	struct closure cl;
504 	struct cache *ca = c->cache;
505 	unsigned int size;
506 
507 	closure_init_stack(&cl);
508 	lockdep_assert_held(&bch_register_lock);
509 
510 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
511 		return 1;
512 
513 	size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
514 	SET_KEY_SIZE(&k.key, size);
515 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
516 	closure_sync(&cl);
517 
518 	/* Only one bucket used for uuid write */
519 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
520 
521 	bkey_copy(&c->uuid_bucket, &k.key);
522 	bkey_put(c, &k.key);
523 	return 0;
524 }
525 
526 int bch_uuid_write(struct cache_set *c)
527 {
528 	int ret = __uuid_write(c);
529 
530 	if (!ret)
531 		bch_journal_meta(c, NULL);
532 
533 	return ret;
534 }
535 
536 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
537 {
538 	struct uuid_entry *u;
539 
540 	for (u = c->uuids;
541 	     u < c->uuids + c->nr_uuids; u++)
542 		if (!memcmp(u->uuid, uuid, 16))
543 			return u;
544 
545 	return NULL;
546 }
547 
548 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
549 {
550 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
551 
552 	return uuid_find(c, zero_uuid);
553 }
554 
555 /*
556  * Bucket priorities/gens:
557  *
558  * For each bucket, we store on disk its
559  *   8 bit gen
560  *  16 bit priority
561  *
562  * See alloc.c for an explanation of the gen. The priority is used to implement
563  * lru (and in the future other) cache replacement policies; for most purposes
564  * it's just an opaque integer.
565  *
566  * The gens and the priorities don't have a whole lot to do with each other, and
567  * it's actually the gens that must be written out at specific times - it's no
568  * big deal if the priorities don't get written, if we lose them we just reuse
569  * buckets in suboptimal order.
570  *
571  * On disk they're stored in a packed array, and in as many buckets are required
572  * to fit them all. The buckets we use to store them form a list; the journal
573  * header points to the first bucket, the first bucket points to the second
574  * bucket, et cetera.
575  *
576  * This code is used by the allocation code; periodically (whenever it runs out
577  * of buckets to allocate from) the allocation code will invalidate some
578  * buckets, but it can't use those buckets until their new gens are safely on
579  * disk.
580  */
581 
582 static void prio_endio(struct bio *bio)
583 {
584 	struct cache *ca = bio->bi_private;
585 
586 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
587 	bch_bbio_free(bio, ca->set);
588 	closure_put(&ca->prio);
589 }
590 
591 static void prio_io(struct cache *ca, uint64_t bucket, int op,
592 		    unsigned long op_flags)
593 {
594 	struct closure *cl = &ca->prio;
595 	struct bio *bio = bch_bbio_alloc(ca->set);
596 
597 	closure_init_stack(cl);
598 
599 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
600 	bio_set_dev(bio, ca->bdev);
601 	bio->bi_iter.bi_size	= meta_bucket_bytes(&ca->sb);
602 
603 	bio->bi_end_io	= prio_endio;
604 	bio->bi_private = ca;
605 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
606 	bch_bio_map(bio, ca->disk_buckets);
607 
608 	closure_bio_submit(ca->set, bio, &ca->prio);
609 	closure_sync(cl);
610 }
611 
612 int bch_prio_write(struct cache *ca, bool wait)
613 {
614 	int i;
615 	struct bucket *b;
616 	struct closure cl;
617 
618 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
619 		 fifo_used(&ca->free[RESERVE_PRIO]),
620 		 fifo_used(&ca->free[RESERVE_NONE]),
621 		 fifo_used(&ca->free_inc));
622 
623 	/*
624 	 * Pre-check if there are enough free buckets. In the non-blocking
625 	 * scenario it's better to fail early rather than starting to allocate
626 	 * buckets and do a cleanup later in case of failure.
627 	 */
628 	if (!wait) {
629 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
630 			       fifo_used(&ca->free[RESERVE_NONE]);
631 		if (prio_buckets(ca) > avail)
632 			return -ENOMEM;
633 	}
634 
635 	closure_init_stack(&cl);
636 
637 	lockdep_assert_held(&ca->set->bucket_lock);
638 
639 	ca->disk_buckets->seq++;
640 
641 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
642 			&ca->meta_sectors_written);
643 
644 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
645 		long bucket;
646 		struct prio_set *p = ca->disk_buckets;
647 		struct bucket_disk *d = p->data;
648 		struct bucket_disk *end = d + prios_per_bucket(ca);
649 
650 		for (b = ca->buckets + i * prios_per_bucket(ca);
651 		     b < ca->buckets + ca->sb.nbuckets && d < end;
652 		     b++, d++) {
653 			d->prio = cpu_to_le16(b->prio);
654 			d->gen = b->gen;
655 		}
656 
657 		p->next_bucket	= ca->prio_buckets[i + 1];
658 		p->magic	= pset_magic(&ca->sb);
659 		p->csum		= bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
660 
661 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
662 		BUG_ON(bucket == -1);
663 
664 		mutex_unlock(&ca->set->bucket_lock);
665 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
666 		mutex_lock(&ca->set->bucket_lock);
667 
668 		ca->prio_buckets[i] = bucket;
669 		atomic_dec_bug(&ca->buckets[bucket].pin);
670 	}
671 
672 	mutex_unlock(&ca->set->bucket_lock);
673 
674 	bch_journal_meta(ca->set, &cl);
675 	closure_sync(&cl);
676 
677 	mutex_lock(&ca->set->bucket_lock);
678 
679 	/*
680 	 * Don't want the old priorities to get garbage collected until after we
681 	 * finish writing the new ones, and they're journalled
682 	 */
683 	for (i = 0; i < prio_buckets(ca); i++) {
684 		if (ca->prio_last_buckets[i])
685 			__bch_bucket_free(ca,
686 				&ca->buckets[ca->prio_last_buckets[i]]);
687 
688 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
689 	}
690 	return 0;
691 }
692 
693 static int prio_read(struct cache *ca, uint64_t bucket)
694 {
695 	struct prio_set *p = ca->disk_buckets;
696 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
697 	struct bucket *b;
698 	unsigned int bucket_nr = 0;
699 	int ret = -EIO;
700 
701 	for (b = ca->buckets;
702 	     b < ca->buckets + ca->sb.nbuckets;
703 	     b++, d++) {
704 		if (d == end) {
705 			ca->prio_buckets[bucket_nr] = bucket;
706 			ca->prio_last_buckets[bucket_nr] = bucket;
707 			bucket_nr++;
708 
709 			prio_io(ca, bucket, REQ_OP_READ, 0);
710 
711 			if (p->csum !=
712 			    bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
713 				pr_warn("bad csum reading priorities\n");
714 				goto out;
715 			}
716 
717 			if (p->magic != pset_magic(&ca->sb)) {
718 				pr_warn("bad magic reading priorities\n");
719 				goto out;
720 			}
721 
722 			bucket = p->next_bucket;
723 			d = p->data;
724 		}
725 
726 		b->prio = le16_to_cpu(d->prio);
727 		b->gen = b->last_gc = d->gen;
728 	}
729 
730 	ret = 0;
731 out:
732 	return ret;
733 }
734 
735 /* Bcache device */
736 
737 static int open_dev(struct block_device *b, fmode_t mode)
738 {
739 	struct bcache_device *d = b->bd_disk->private_data;
740 
741 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
742 		return -ENXIO;
743 
744 	closure_get(&d->cl);
745 	return 0;
746 }
747 
748 static void release_dev(struct gendisk *b, fmode_t mode)
749 {
750 	struct bcache_device *d = b->private_data;
751 
752 	closure_put(&d->cl);
753 }
754 
755 static int ioctl_dev(struct block_device *b, fmode_t mode,
756 		     unsigned int cmd, unsigned long arg)
757 {
758 	struct bcache_device *d = b->bd_disk->private_data;
759 
760 	return d->ioctl(d, mode, cmd, arg);
761 }
762 
763 static const struct block_device_operations bcache_cached_ops = {
764 	.submit_bio	= cached_dev_submit_bio,
765 	.open		= open_dev,
766 	.release	= release_dev,
767 	.ioctl		= ioctl_dev,
768 	.owner		= THIS_MODULE,
769 };
770 
771 static const struct block_device_operations bcache_flash_ops = {
772 	.submit_bio	= flash_dev_submit_bio,
773 	.open		= open_dev,
774 	.release	= release_dev,
775 	.ioctl		= ioctl_dev,
776 	.owner		= THIS_MODULE,
777 };
778 
779 void bcache_device_stop(struct bcache_device *d)
780 {
781 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
782 		/*
783 		 * closure_fn set to
784 		 * - cached device: cached_dev_flush()
785 		 * - flash dev: flash_dev_flush()
786 		 */
787 		closure_queue(&d->cl);
788 }
789 
790 static void bcache_device_unlink(struct bcache_device *d)
791 {
792 	lockdep_assert_held(&bch_register_lock);
793 
794 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
795 		struct cache *ca = d->c->cache;
796 
797 		sysfs_remove_link(&d->c->kobj, d->name);
798 		sysfs_remove_link(&d->kobj, "cache");
799 
800 		bd_unlink_disk_holder(ca->bdev, d->disk);
801 	}
802 }
803 
804 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
805 			       const char *name)
806 {
807 	struct cache *ca = c->cache;
808 	int ret;
809 
810 	bd_link_disk_holder(ca->bdev, d->disk);
811 
812 	snprintf(d->name, BCACHEDEVNAME_SIZE,
813 		 "%s%u", name, d->id);
814 
815 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
816 	if (ret < 0)
817 		pr_err("Couldn't create device -> cache set symlink\n");
818 
819 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
820 	if (ret < 0)
821 		pr_err("Couldn't create cache set -> device symlink\n");
822 
823 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
824 }
825 
826 static void bcache_device_detach(struct bcache_device *d)
827 {
828 	lockdep_assert_held(&bch_register_lock);
829 
830 	atomic_dec(&d->c->attached_dev_nr);
831 
832 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
833 		struct uuid_entry *u = d->c->uuids + d->id;
834 
835 		SET_UUID_FLASH_ONLY(u, 0);
836 		memcpy(u->uuid, invalid_uuid, 16);
837 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
838 		bch_uuid_write(d->c);
839 	}
840 
841 	bcache_device_unlink(d);
842 
843 	d->c->devices[d->id] = NULL;
844 	closure_put(&d->c->caching);
845 	d->c = NULL;
846 }
847 
848 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
849 				 unsigned int id)
850 {
851 	d->id = id;
852 	d->c = c;
853 	c->devices[id] = d;
854 
855 	if (id >= c->devices_max_used)
856 		c->devices_max_used = id + 1;
857 
858 	closure_get(&c->caching);
859 }
860 
861 static inline int first_minor_to_idx(int first_minor)
862 {
863 	return (first_minor/BCACHE_MINORS);
864 }
865 
866 static inline int idx_to_first_minor(int idx)
867 {
868 	return (idx * BCACHE_MINORS);
869 }
870 
871 static void bcache_device_free(struct bcache_device *d)
872 {
873 	struct gendisk *disk = d->disk;
874 
875 	lockdep_assert_held(&bch_register_lock);
876 
877 	if (disk)
878 		pr_info("%s stopped\n", disk->disk_name);
879 	else
880 		pr_err("bcache device (NULL gendisk) stopped\n");
881 
882 	if (d->c)
883 		bcache_device_detach(d);
884 
885 	if (disk) {
886 		bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
887 
888 		if (disk_added)
889 			del_gendisk(disk);
890 
891 		if (disk->queue)
892 			blk_cleanup_queue(disk->queue);
893 
894 		ida_simple_remove(&bcache_device_idx,
895 				  first_minor_to_idx(disk->first_minor));
896 		if (disk_added)
897 			put_disk(disk);
898 	}
899 
900 	bioset_exit(&d->bio_split);
901 	kvfree(d->full_dirty_stripes);
902 	kvfree(d->stripe_sectors_dirty);
903 
904 	closure_debug_destroy(&d->cl);
905 }
906 
907 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
908 		sector_t sectors, struct block_device *cached_bdev,
909 		const struct block_device_operations *ops)
910 {
911 	struct request_queue *q;
912 	const size_t max_stripes = min_t(size_t, INT_MAX,
913 					 SIZE_MAX / sizeof(atomic_t));
914 	uint64_t n;
915 	int idx;
916 
917 	if (!d->stripe_size)
918 		d->stripe_size = 1 << 31;
919 
920 	n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
921 	if (!n || n > max_stripes) {
922 		pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
923 			n);
924 		return -ENOMEM;
925 	}
926 	d->nr_stripes = n;
927 
928 	n = d->nr_stripes * sizeof(atomic_t);
929 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
930 	if (!d->stripe_sectors_dirty)
931 		return -ENOMEM;
932 
933 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
934 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
935 	if (!d->full_dirty_stripes)
936 		return -ENOMEM;
937 
938 	idx = ida_simple_get(&bcache_device_idx, 0,
939 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
940 	if (idx < 0)
941 		return idx;
942 
943 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
944 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
945 		goto err;
946 
947 	d->disk = alloc_disk(BCACHE_MINORS);
948 	if (!d->disk)
949 		goto err;
950 
951 	set_capacity(d->disk, sectors);
952 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
953 
954 	d->disk->major		= bcache_major;
955 	d->disk->first_minor	= idx_to_first_minor(idx);
956 	d->disk->fops		= ops;
957 	d->disk->private_data	= d;
958 
959 	q = blk_alloc_queue(NUMA_NO_NODE);
960 	if (!q)
961 		return -ENOMEM;
962 
963 	d->disk->queue			= q;
964 	q->limits.max_hw_sectors	= UINT_MAX;
965 	q->limits.max_sectors		= UINT_MAX;
966 	q->limits.max_segment_size	= UINT_MAX;
967 	q->limits.max_segments		= BIO_MAX_PAGES;
968 	blk_queue_max_discard_sectors(q, UINT_MAX);
969 	q->limits.discard_granularity	= 512;
970 	q->limits.io_min		= block_size;
971 	q->limits.logical_block_size	= block_size;
972 	q->limits.physical_block_size	= block_size;
973 
974 	if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
975 		/*
976 		 * This should only happen with BCACHE_SB_VERSION_BDEV.
977 		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
978 		 */
979 		pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
980 			d->disk->disk_name, q->limits.logical_block_size,
981 			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
982 
983 		/* This also adjusts physical block size/min io size if needed */
984 		blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
985 	}
986 
987 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
988 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
989 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
990 
991 	blk_queue_write_cache(q, true, true);
992 
993 	return 0;
994 
995 err:
996 	ida_simple_remove(&bcache_device_idx, idx);
997 	return -ENOMEM;
998 
999 }
1000 
1001 /* Cached device */
1002 
1003 static void calc_cached_dev_sectors(struct cache_set *c)
1004 {
1005 	uint64_t sectors = 0;
1006 	struct cached_dev *dc;
1007 
1008 	list_for_each_entry(dc, &c->cached_devs, list)
1009 		sectors += bdev_sectors(dc->bdev);
1010 
1011 	c->cached_dev_sectors = sectors;
1012 }
1013 
1014 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1015 static int cached_dev_status_update(void *arg)
1016 {
1017 	struct cached_dev *dc = arg;
1018 	struct request_queue *q;
1019 
1020 	/*
1021 	 * If this delayed worker is stopping outside, directly quit here.
1022 	 * dc->io_disable might be set via sysfs interface, so check it
1023 	 * here too.
1024 	 */
1025 	while (!kthread_should_stop() && !dc->io_disable) {
1026 		q = bdev_get_queue(dc->bdev);
1027 		if (blk_queue_dying(q))
1028 			dc->offline_seconds++;
1029 		else
1030 			dc->offline_seconds = 0;
1031 
1032 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1033 			pr_err("%s: device offline for %d seconds\n",
1034 			       dc->backing_dev_name,
1035 			       BACKING_DEV_OFFLINE_TIMEOUT);
1036 			pr_err("%s: disable I/O request due to backing device offline\n",
1037 			       dc->disk.name);
1038 			dc->io_disable = true;
1039 			/* let others know earlier that io_disable is true */
1040 			smp_mb();
1041 			bcache_device_stop(&dc->disk);
1042 			break;
1043 		}
1044 		schedule_timeout_interruptible(HZ);
1045 	}
1046 
1047 	wait_for_kthread_stop();
1048 	return 0;
1049 }
1050 
1051 
1052 int bch_cached_dev_run(struct cached_dev *dc)
1053 {
1054 	struct bcache_device *d = &dc->disk;
1055 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1056 	char *env[] = {
1057 		"DRIVER=bcache",
1058 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1059 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1060 		NULL,
1061 	};
1062 
1063 	if (dc->io_disable) {
1064 		pr_err("I/O disabled on cached dev %s\n",
1065 		       dc->backing_dev_name);
1066 		kfree(env[1]);
1067 		kfree(env[2]);
1068 		kfree(buf);
1069 		return -EIO;
1070 	}
1071 
1072 	if (atomic_xchg(&dc->running, 1)) {
1073 		kfree(env[1]);
1074 		kfree(env[2]);
1075 		kfree(buf);
1076 		pr_info("cached dev %s is running already\n",
1077 		       dc->backing_dev_name);
1078 		return -EBUSY;
1079 	}
1080 
1081 	if (!d->c &&
1082 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1083 		struct closure cl;
1084 
1085 		closure_init_stack(&cl);
1086 
1087 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1088 		bch_write_bdev_super(dc, &cl);
1089 		closure_sync(&cl);
1090 	}
1091 
1092 	add_disk(d->disk);
1093 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1094 	/*
1095 	 * won't show up in the uevent file, use udevadm monitor -e instead
1096 	 * only class / kset properties are persistent
1097 	 */
1098 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1099 	kfree(env[1]);
1100 	kfree(env[2]);
1101 	kfree(buf);
1102 
1103 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1104 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1105 			      &d->kobj, "bcache")) {
1106 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1107 		return -ENOMEM;
1108 	}
1109 
1110 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1111 					       dc, "bcache_status_update");
1112 	if (IS_ERR(dc->status_update_thread)) {
1113 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 /*
1120  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1121  * work dc->writeback_rate_update is running. Wait until the routine
1122  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1123  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1124  * seconds, give up waiting here and continue to cancel it too.
1125  */
1126 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1127 {
1128 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1129 
1130 	do {
1131 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1132 			      &dc->disk.flags))
1133 			break;
1134 		time_out--;
1135 		schedule_timeout_interruptible(1);
1136 	} while (time_out > 0);
1137 
1138 	if (time_out == 0)
1139 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1140 
1141 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1142 }
1143 
1144 static void cached_dev_detach_finish(struct work_struct *w)
1145 {
1146 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1147 
1148 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1149 	BUG_ON(refcount_read(&dc->count));
1150 
1151 
1152 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1153 		cancel_writeback_rate_update_dwork(dc);
1154 
1155 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1156 		kthread_stop(dc->writeback_thread);
1157 		dc->writeback_thread = NULL;
1158 	}
1159 
1160 	mutex_lock(&bch_register_lock);
1161 
1162 	calc_cached_dev_sectors(dc->disk.c);
1163 	bcache_device_detach(&dc->disk);
1164 	list_move(&dc->list, &uncached_devices);
1165 
1166 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1167 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1168 
1169 	mutex_unlock(&bch_register_lock);
1170 
1171 	pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1172 
1173 	/* Drop ref we took in cached_dev_detach() */
1174 	closure_put(&dc->disk.cl);
1175 }
1176 
1177 void bch_cached_dev_detach(struct cached_dev *dc)
1178 {
1179 	lockdep_assert_held(&bch_register_lock);
1180 
1181 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1182 		return;
1183 
1184 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1185 		return;
1186 
1187 	/*
1188 	 * Block the device from being closed and freed until we're finished
1189 	 * detaching
1190 	 */
1191 	closure_get(&dc->disk.cl);
1192 
1193 	bch_writeback_queue(dc);
1194 
1195 	cached_dev_put(dc);
1196 }
1197 
1198 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1199 			  uint8_t *set_uuid)
1200 {
1201 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1202 	struct uuid_entry *u;
1203 	struct cached_dev *exist_dc, *t;
1204 	int ret = 0;
1205 
1206 	if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1207 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1208 		return -ENOENT;
1209 
1210 	if (dc->disk.c) {
1211 		pr_err("Can't attach %s: already attached\n",
1212 		       dc->backing_dev_name);
1213 		return -EINVAL;
1214 	}
1215 
1216 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1217 		pr_err("Can't attach %s: shutting down\n",
1218 		       dc->backing_dev_name);
1219 		return -EINVAL;
1220 	}
1221 
1222 	if (dc->sb.block_size < c->cache->sb.block_size) {
1223 		/* Will die */
1224 		pr_err("Couldn't attach %s: block size less than set's block size\n",
1225 		       dc->backing_dev_name);
1226 		return -EINVAL;
1227 	}
1228 
1229 	/* Check whether already attached */
1230 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1231 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1232 			pr_err("Tried to attach %s but duplicate UUID already attached\n",
1233 				dc->backing_dev_name);
1234 
1235 			return -EINVAL;
1236 		}
1237 	}
1238 
1239 	u = uuid_find(c, dc->sb.uuid);
1240 
1241 	if (u &&
1242 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1243 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1244 		memcpy(u->uuid, invalid_uuid, 16);
1245 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1246 		u = NULL;
1247 	}
1248 
1249 	if (!u) {
1250 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1251 			pr_err("Couldn't find uuid for %s in set\n",
1252 			       dc->backing_dev_name);
1253 			return -ENOENT;
1254 		}
1255 
1256 		u = uuid_find_empty(c);
1257 		if (!u) {
1258 			pr_err("Not caching %s, no room for UUID\n",
1259 			       dc->backing_dev_name);
1260 			return -EINVAL;
1261 		}
1262 	}
1263 
1264 	/*
1265 	 * Deadlocks since we're called via sysfs...
1266 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1267 	 */
1268 
1269 	if (bch_is_zero(u->uuid, 16)) {
1270 		struct closure cl;
1271 
1272 		closure_init_stack(&cl);
1273 
1274 		memcpy(u->uuid, dc->sb.uuid, 16);
1275 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1276 		u->first_reg = u->last_reg = rtime;
1277 		bch_uuid_write(c);
1278 
1279 		memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1280 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1281 
1282 		bch_write_bdev_super(dc, &cl);
1283 		closure_sync(&cl);
1284 	} else {
1285 		u->last_reg = rtime;
1286 		bch_uuid_write(c);
1287 	}
1288 
1289 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1290 	list_move(&dc->list, &c->cached_devs);
1291 	calc_cached_dev_sectors(c);
1292 
1293 	/*
1294 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1295 	 * cached_dev_get()
1296 	 */
1297 	smp_wmb();
1298 	refcount_set(&dc->count, 1);
1299 
1300 	/* Block writeback thread, but spawn it */
1301 	down_write(&dc->writeback_lock);
1302 	if (bch_cached_dev_writeback_start(dc)) {
1303 		up_write(&dc->writeback_lock);
1304 		pr_err("Couldn't start writeback facilities for %s\n",
1305 		       dc->disk.disk->disk_name);
1306 		return -ENOMEM;
1307 	}
1308 
1309 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1310 		atomic_set(&dc->has_dirty, 1);
1311 		bch_writeback_queue(dc);
1312 	}
1313 
1314 	bch_sectors_dirty_init(&dc->disk);
1315 
1316 	ret = bch_cached_dev_run(dc);
1317 	if (ret && (ret != -EBUSY)) {
1318 		up_write(&dc->writeback_lock);
1319 		/*
1320 		 * bch_register_lock is held, bcache_device_stop() is not
1321 		 * able to be directly called. The kthread and kworker
1322 		 * created previously in bch_cached_dev_writeback_start()
1323 		 * have to be stopped manually here.
1324 		 */
1325 		kthread_stop(dc->writeback_thread);
1326 		cancel_writeback_rate_update_dwork(dc);
1327 		pr_err("Couldn't run cached device %s\n",
1328 		       dc->backing_dev_name);
1329 		return ret;
1330 	}
1331 
1332 	bcache_device_link(&dc->disk, c, "bdev");
1333 	atomic_inc(&c->attached_dev_nr);
1334 
1335 	if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1336 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1337 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1338 		set_disk_ro(dc->disk.disk, 1);
1339 	}
1340 
1341 	/* Allow the writeback thread to proceed */
1342 	up_write(&dc->writeback_lock);
1343 
1344 	pr_info("Caching %s as %s on set %pU\n",
1345 		dc->backing_dev_name,
1346 		dc->disk.disk->disk_name,
1347 		dc->disk.c->set_uuid);
1348 	return 0;
1349 }
1350 
1351 /* when dc->disk.kobj released */
1352 void bch_cached_dev_release(struct kobject *kobj)
1353 {
1354 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1355 					     disk.kobj);
1356 	kfree(dc);
1357 	module_put(THIS_MODULE);
1358 }
1359 
1360 static void cached_dev_free(struct closure *cl)
1361 {
1362 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1363 
1364 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1365 		cancel_writeback_rate_update_dwork(dc);
1366 
1367 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1368 		kthread_stop(dc->writeback_thread);
1369 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1370 		kthread_stop(dc->status_update_thread);
1371 
1372 	mutex_lock(&bch_register_lock);
1373 
1374 	if (atomic_read(&dc->running))
1375 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1376 	bcache_device_free(&dc->disk);
1377 	list_del(&dc->list);
1378 
1379 	mutex_unlock(&bch_register_lock);
1380 
1381 	if (dc->sb_disk)
1382 		put_page(virt_to_page(dc->sb_disk));
1383 
1384 	if (!IS_ERR_OR_NULL(dc->bdev))
1385 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1386 
1387 	wake_up(&unregister_wait);
1388 
1389 	kobject_put(&dc->disk.kobj);
1390 }
1391 
1392 static void cached_dev_flush(struct closure *cl)
1393 {
1394 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1395 	struct bcache_device *d = &dc->disk;
1396 
1397 	mutex_lock(&bch_register_lock);
1398 	bcache_device_unlink(d);
1399 	mutex_unlock(&bch_register_lock);
1400 
1401 	bch_cache_accounting_destroy(&dc->accounting);
1402 	kobject_del(&d->kobj);
1403 
1404 	continue_at(cl, cached_dev_free, system_wq);
1405 }
1406 
1407 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1408 {
1409 	int ret;
1410 	struct io *io;
1411 	struct request_queue *q = bdev_get_queue(dc->bdev);
1412 
1413 	__module_get(THIS_MODULE);
1414 	INIT_LIST_HEAD(&dc->list);
1415 	closure_init(&dc->disk.cl, NULL);
1416 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1417 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1418 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1419 	sema_init(&dc->sb_write_mutex, 1);
1420 	INIT_LIST_HEAD(&dc->io_lru);
1421 	spin_lock_init(&dc->io_lock);
1422 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1423 
1424 	dc->sequential_cutoff		= 4 << 20;
1425 
1426 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1427 		list_add(&io->lru, &dc->io_lru);
1428 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1429 	}
1430 
1431 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1432 
1433 	if (dc->disk.stripe_size)
1434 		dc->partial_stripes_expensive =
1435 			q->limits.raid_partial_stripes_expensive;
1436 
1437 	ret = bcache_device_init(&dc->disk, block_size,
1438 			 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1439 			 dc->bdev, &bcache_cached_ops);
1440 	if (ret)
1441 		return ret;
1442 
1443 	blk_queue_io_opt(dc->disk.disk->queue,
1444 		max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1445 
1446 	atomic_set(&dc->io_errors, 0);
1447 	dc->io_disable = false;
1448 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1449 	/* default to auto */
1450 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1451 
1452 	bch_cached_dev_request_init(dc);
1453 	bch_cached_dev_writeback_init(dc);
1454 	return 0;
1455 }
1456 
1457 /* Cached device - bcache superblock */
1458 
1459 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1460 				 struct block_device *bdev,
1461 				 struct cached_dev *dc)
1462 {
1463 	const char *err = "cannot allocate memory";
1464 	struct cache_set *c;
1465 	int ret = -ENOMEM;
1466 
1467 	bdevname(bdev, dc->backing_dev_name);
1468 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1469 	dc->bdev = bdev;
1470 	dc->bdev->bd_holder = dc;
1471 	dc->sb_disk = sb_disk;
1472 
1473 	if (cached_dev_init(dc, sb->block_size << 9))
1474 		goto err;
1475 
1476 	err = "error creating kobject";
1477 	if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1478 		goto err;
1479 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1480 		goto err;
1481 
1482 	pr_info("registered backing device %s\n", dc->backing_dev_name);
1483 
1484 	list_add(&dc->list, &uncached_devices);
1485 	/* attach to a matched cache set if it exists */
1486 	list_for_each_entry(c, &bch_cache_sets, list)
1487 		bch_cached_dev_attach(dc, c, NULL);
1488 
1489 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1490 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1491 		err = "failed to run cached device";
1492 		ret = bch_cached_dev_run(dc);
1493 		if (ret)
1494 			goto err;
1495 	}
1496 
1497 	return 0;
1498 err:
1499 	pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1500 	bcache_device_stop(&dc->disk);
1501 	return ret;
1502 }
1503 
1504 /* Flash only volumes */
1505 
1506 /* When d->kobj released */
1507 void bch_flash_dev_release(struct kobject *kobj)
1508 {
1509 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1510 					       kobj);
1511 	kfree(d);
1512 }
1513 
1514 static void flash_dev_free(struct closure *cl)
1515 {
1516 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1517 
1518 	mutex_lock(&bch_register_lock);
1519 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1520 			&d->c->flash_dev_dirty_sectors);
1521 	bcache_device_free(d);
1522 	mutex_unlock(&bch_register_lock);
1523 	kobject_put(&d->kobj);
1524 }
1525 
1526 static void flash_dev_flush(struct closure *cl)
1527 {
1528 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1529 
1530 	mutex_lock(&bch_register_lock);
1531 	bcache_device_unlink(d);
1532 	mutex_unlock(&bch_register_lock);
1533 	kobject_del(&d->kobj);
1534 	continue_at(cl, flash_dev_free, system_wq);
1535 }
1536 
1537 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1538 {
1539 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1540 					  GFP_KERNEL);
1541 	if (!d)
1542 		return -ENOMEM;
1543 
1544 	closure_init(&d->cl, NULL);
1545 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1546 
1547 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1548 
1549 	if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1550 			NULL, &bcache_flash_ops))
1551 		goto err;
1552 
1553 	bcache_device_attach(d, c, u - c->uuids);
1554 	bch_sectors_dirty_init(d);
1555 	bch_flash_dev_request_init(d);
1556 	add_disk(d->disk);
1557 
1558 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1559 		goto err;
1560 
1561 	bcache_device_link(d, c, "volume");
1562 
1563 	if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1564 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1565 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1566 		set_disk_ro(d->disk, 1);
1567 	}
1568 
1569 	return 0;
1570 err:
1571 	kobject_put(&d->kobj);
1572 	return -ENOMEM;
1573 }
1574 
1575 static int flash_devs_run(struct cache_set *c)
1576 {
1577 	int ret = 0;
1578 	struct uuid_entry *u;
1579 
1580 	for (u = c->uuids;
1581 	     u < c->uuids + c->nr_uuids && !ret;
1582 	     u++)
1583 		if (UUID_FLASH_ONLY(u))
1584 			ret = flash_dev_run(c, u);
1585 
1586 	return ret;
1587 }
1588 
1589 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1590 {
1591 	struct uuid_entry *u;
1592 
1593 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1594 		return -EINTR;
1595 
1596 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1597 		return -EPERM;
1598 
1599 	u = uuid_find_empty(c);
1600 	if (!u) {
1601 		pr_err("Can't create volume, no room for UUID\n");
1602 		return -EINVAL;
1603 	}
1604 
1605 	get_random_bytes(u->uuid, 16);
1606 	memset(u->label, 0, 32);
1607 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1608 
1609 	SET_UUID_FLASH_ONLY(u, 1);
1610 	u->sectors = size >> 9;
1611 
1612 	bch_uuid_write(c);
1613 
1614 	return flash_dev_run(c, u);
1615 }
1616 
1617 bool bch_cached_dev_error(struct cached_dev *dc)
1618 {
1619 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1620 		return false;
1621 
1622 	dc->io_disable = true;
1623 	/* make others know io_disable is true earlier */
1624 	smp_mb();
1625 
1626 	pr_err("stop %s: too many IO errors on backing device %s\n",
1627 	       dc->disk.disk->disk_name, dc->backing_dev_name);
1628 
1629 	bcache_device_stop(&dc->disk);
1630 	return true;
1631 }
1632 
1633 /* Cache set */
1634 
1635 __printf(2, 3)
1636 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1637 {
1638 	struct va_format vaf;
1639 	va_list args;
1640 
1641 	if (c->on_error != ON_ERROR_PANIC &&
1642 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1643 		return false;
1644 
1645 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1646 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1647 
1648 	/*
1649 	 * XXX: we can be called from atomic context
1650 	 * acquire_console_sem();
1651 	 */
1652 
1653 	va_start(args, fmt);
1654 
1655 	vaf.fmt = fmt;
1656 	vaf.va = &args;
1657 
1658 	pr_err("error on %pU: %pV, disabling caching\n",
1659 	       c->set_uuid, &vaf);
1660 
1661 	va_end(args);
1662 
1663 	if (c->on_error == ON_ERROR_PANIC)
1664 		panic("panic forced after error\n");
1665 
1666 	bch_cache_set_unregister(c);
1667 	return true;
1668 }
1669 
1670 /* When c->kobj released */
1671 void bch_cache_set_release(struct kobject *kobj)
1672 {
1673 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1674 
1675 	kfree(c);
1676 	module_put(THIS_MODULE);
1677 }
1678 
1679 static void cache_set_free(struct closure *cl)
1680 {
1681 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1682 	struct cache *ca;
1683 
1684 	debugfs_remove(c->debug);
1685 
1686 	bch_open_buckets_free(c);
1687 	bch_btree_cache_free(c);
1688 	bch_journal_free(c);
1689 
1690 	mutex_lock(&bch_register_lock);
1691 	bch_bset_sort_state_free(&c->sort);
1692 	free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1693 
1694 	ca = c->cache;
1695 	if (ca) {
1696 		ca->set = NULL;
1697 		c->cache = NULL;
1698 		kobject_put(&ca->kobj);
1699 	}
1700 
1701 
1702 	if (c->moving_gc_wq)
1703 		destroy_workqueue(c->moving_gc_wq);
1704 	bioset_exit(&c->bio_split);
1705 	mempool_exit(&c->fill_iter);
1706 	mempool_exit(&c->bio_meta);
1707 	mempool_exit(&c->search);
1708 	kfree(c->devices);
1709 
1710 	list_del(&c->list);
1711 	mutex_unlock(&bch_register_lock);
1712 
1713 	pr_info("Cache set %pU unregistered\n", c->set_uuid);
1714 	wake_up(&unregister_wait);
1715 
1716 	closure_debug_destroy(&c->cl);
1717 	kobject_put(&c->kobj);
1718 }
1719 
1720 static void cache_set_flush(struct closure *cl)
1721 {
1722 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1723 	struct cache *ca = c->cache;
1724 	struct btree *b;
1725 
1726 	bch_cache_accounting_destroy(&c->accounting);
1727 
1728 	kobject_put(&c->internal);
1729 	kobject_del(&c->kobj);
1730 
1731 	if (!IS_ERR_OR_NULL(c->gc_thread))
1732 		kthread_stop(c->gc_thread);
1733 
1734 	if (!IS_ERR_OR_NULL(c->root))
1735 		list_add(&c->root->list, &c->btree_cache);
1736 
1737 	/*
1738 	 * Avoid flushing cached nodes if cache set is retiring
1739 	 * due to too many I/O errors detected.
1740 	 */
1741 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1742 		list_for_each_entry(b, &c->btree_cache, list) {
1743 			mutex_lock(&b->write_lock);
1744 			if (btree_node_dirty(b))
1745 				__bch_btree_node_write(b, NULL);
1746 			mutex_unlock(&b->write_lock);
1747 		}
1748 
1749 	if (ca->alloc_thread)
1750 		kthread_stop(ca->alloc_thread);
1751 
1752 	if (c->journal.cur) {
1753 		cancel_delayed_work_sync(&c->journal.work);
1754 		/* flush last journal entry if needed */
1755 		c->journal.work.work.func(&c->journal.work.work);
1756 	}
1757 
1758 	closure_return(cl);
1759 }
1760 
1761 /*
1762  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1763  * cache set is unregistering due to too many I/O errors. In this condition,
1764  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1765  * value and whether the broken cache has dirty data:
1766  *
1767  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1768  *  BCH_CACHED_STOP_AUTO               0               NO
1769  *  BCH_CACHED_STOP_AUTO               1               YES
1770  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1771  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1772  *
1773  * The expected behavior is, if stop_when_cache_set_failed is configured to
1774  * "auto" via sysfs interface, the bcache device will not be stopped if the
1775  * backing device is clean on the broken cache device.
1776  */
1777 static void conditional_stop_bcache_device(struct cache_set *c,
1778 					   struct bcache_device *d,
1779 					   struct cached_dev *dc)
1780 {
1781 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1782 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1783 			d->disk->disk_name, c->set_uuid);
1784 		bcache_device_stop(d);
1785 	} else if (atomic_read(&dc->has_dirty)) {
1786 		/*
1787 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1788 		 * and dc->has_dirty == 1
1789 		 */
1790 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1791 			d->disk->disk_name);
1792 		/*
1793 		 * There might be a small time gap that cache set is
1794 		 * released but bcache device is not. Inside this time
1795 		 * gap, regular I/O requests will directly go into
1796 		 * backing device as no cache set attached to. This
1797 		 * behavior may also introduce potential inconsistence
1798 		 * data in writeback mode while cache is dirty.
1799 		 * Therefore before calling bcache_device_stop() due
1800 		 * to a broken cache device, dc->io_disable should be
1801 		 * explicitly set to true.
1802 		 */
1803 		dc->io_disable = true;
1804 		/* make others know io_disable is true earlier */
1805 		smp_mb();
1806 		bcache_device_stop(d);
1807 	} else {
1808 		/*
1809 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1810 		 * and dc->has_dirty == 0
1811 		 */
1812 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1813 			d->disk->disk_name);
1814 	}
1815 }
1816 
1817 static void __cache_set_unregister(struct closure *cl)
1818 {
1819 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1820 	struct cached_dev *dc;
1821 	struct bcache_device *d;
1822 	size_t i;
1823 
1824 	mutex_lock(&bch_register_lock);
1825 
1826 	for (i = 0; i < c->devices_max_used; i++) {
1827 		d = c->devices[i];
1828 		if (!d)
1829 			continue;
1830 
1831 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1832 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1833 			dc = container_of(d, struct cached_dev, disk);
1834 			bch_cached_dev_detach(dc);
1835 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1836 				conditional_stop_bcache_device(c, d, dc);
1837 		} else {
1838 			bcache_device_stop(d);
1839 		}
1840 	}
1841 
1842 	mutex_unlock(&bch_register_lock);
1843 
1844 	continue_at(cl, cache_set_flush, system_wq);
1845 }
1846 
1847 void bch_cache_set_stop(struct cache_set *c)
1848 {
1849 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1850 		/* closure_fn set to __cache_set_unregister() */
1851 		closure_queue(&c->caching);
1852 }
1853 
1854 void bch_cache_set_unregister(struct cache_set *c)
1855 {
1856 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1857 	bch_cache_set_stop(c);
1858 }
1859 
1860 #define alloc_meta_bucket_pages(gfp, sb)		\
1861 	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1862 
1863 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1864 {
1865 	int iter_size;
1866 	struct cache *ca = container_of(sb, struct cache, sb);
1867 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1868 
1869 	if (!c)
1870 		return NULL;
1871 
1872 	__module_get(THIS_MODULE);
1873 	closure_init(&c->cl, NULL);
1874 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1875 
1876 	closure_init(&c->caching, &c->cl);
1877 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1878 
1879 	/* Maybe create continue_at_noreturn() and use it here? */
1880 	closure_set_stopped(&c->cl);
1881 	closure_put(&c->cl);
1882 
1883 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1884 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1885 
1886 	bch_cache_accounting_init(&c->accounting, &c->cl);
1887 
1888 	memcpy(c->set_uuid, sb->set_uuid, 16);
1889 
1890 	c->cache		= ca;
1891 	c->cache->set		= c;
1892 	c->bucket_bits		= ilog2(sb->bucket_size);
1893 	c->block_bits		= ilog2(sb->block_size);
1894 	c->nr_uuids		= meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1895 	c->devices_max_used	= 0;
1896 	atomic_set(&c->attached_dev_nr, 0);
1897 	c->btree_pages		= meta_bucket_pages(sb);
1898 	if (c->btree_pages > BTREE_MAX_PAGES)
1899 		c->btree_pages = max_t(int, c->btree_pages / 4,
1900 				       BTREE_MAX_PAGES);
1901 
1902 	sema_init(&c->sb_write_mutex, 1);
1903 	mutex_init(&c->bucket_lock);
1904 	init_waitqueue_head(&c->btree_cache_wait);
1905 	spin_lock_init(&c->btree_cannibalize_lock);
1906 	init_waitqueue_head(&c->bucket_wait);
1907 	init_waitqueue_head(&c->gc_wait);
1908 	sema_init(&c->uuid_write_mutex, 1);
1909 
1910 	spin_lock_init(&c->btree_gc_time.lock);
1911 	spin_lock_init(&c->btree_split_time.lock);
1912 	spin_lock_init(&c->btree_read_time.lock);
1913 
1914 	bch_moving_init_cache_set(c);
1915 
1916 	INIT_LIST_HEAD(&c->list);
1917 	INIT_LIST_HEAD(&c->cached_devs);
1918 	INIT_LIST_HEAD(&c->btree_cache);
1919 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1920 	INIT_LIST_HEAD(&c->btree_cache_freed);
1921 	INIT_LIST_HEAD(&c->data_buckets);
1922 
1923 	iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1924 		sizeof(struct btree_iter_set);
1925 
1926 	c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1927 	if (!c->devices)
1928 		goto err;
1929 
1930 	if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1931 		goto err;
1932 
1933 	if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1934 			sizeof(struct bbio) +
1935 			sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1936 		goto err;
1937 
1938 	if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1939 		goto err;
1940 
1941 	if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1942 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1943 		goto err;
1944 
1945 	c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1946 	if (!c->uuids)
1947 		goto err;
1948 
1949 	c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1950 	if (!c->moving_gc_wq)
1951 		goto err;
1952 
1953 	if (bch_journal_alloc(c))
1954 		goto err;
1955 
1956 	if (bch_btree_cache_alloc(c))
1957 		goto err;
1958 
1959 	if (bch_open_buckets_alloc(c))
1960 		goto err;
1961 
1962 	if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1963 		goto err;
1964 
1965 	c->congested_read_threshold_us	= 2000;
1966 	c->congested_write_threshold_us	= 20000;
1967 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1968 	c->idle_max_writeback_rate_enabled = 1;
1969 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1970 
1971 	return c;
1972 err:
1973 	bch_cache_set_unregister(c);
1974 	return NULL;
1975 }
1976 
1977 static int run_cache_set(struct cache_set *c)
1978 {
1979 	const char *err = "cannot allocate memory";
1980 	struct cached_dev *dc, *t;
1981 	struct cache *ca = c->cache;
1982 	struct closure cl;
1983 	LIST_HEAD(journal);
1984 	struct journal_replay *l;
1985 
1986 	closure_init_stack(&cl);
1987 
1988 	c->nbuckets = ca->sb.nbuckets;
1989 	set_gc_sectors(c);
1990 
1991 	if (CACHE_SYNC(&c->cache->sb)) {
1992 		struct bkey *k;
1993 		struct jset *j;
1994 
1995 		err = "cannot allocate memory for journal";
1996 		if (bch_journal_read(c, &journal))
1997 			goto err;
1998 
1999 		pr_debug("btree_journal_read() done\n");
2000 
2001 		err = "no journal entries found";
2002 		if (list_empty(&journal))
2003 			goto err;
2004 
2005 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
2006 
2007 		err = "IO error reading priorities";
2008 		if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2009 			goto err;
2010 
2011 		/*
2012 		 * If prio_read() fails it'll call cache_set_error and we'll
2013 		 * tear everything down right away, but if we perhaps checked
2014 		 * sooner we could avoid journal replay.
2015 		 */
2016 
2017 		k = &j->btree_root;
2018 
2019 		err = "bad btree root";
2020 		if (__bch_btree_ptr_invalid(c, k))
2021 			goto err;
2022 
2023 		err = "error reading btree root";
2024 		c->root = bch_btree_node_get(c, NULL, k,
2025 					     j->btree_level,
2026 					     true, NULL);
2027 		if (IS_ERR_OR_NULL(c->root))
2028 			goto err;
2029 
2030 		list_del_init(&c->root->list);
2031 		rw_unlock(true, c->root);
2032 
2033 		err = uuid_read(c, j, &cl);
2034 		if (err)
2035 			goto err;
2036 
2037 		err = "error in recovery";
2038 		if (bch_btree_check(c))
2039 			goto err;
2040 
2041 		bch_journal_mark(c, &journal);
2042 		bch_initial_gc_finish(c);
2043 		pr_debug("btree_check() done\n");
2044 
2045 		/*
2046 		 * bcache_journal_next() can't happen sooner, or
2047 		 * btree_gc_finish() will give spurious errors about last_gc >
2048 		 * gc_gen - this is a hack but oh well.
2049 		 */
2050 		bch_journal_next(&c->journal);
2051 
2052 		err = "error starting allocator thread";
2053 		if (bch_cache_allocator_start(ca))
2054 			goto err;
2055 
2056 		/*
2057 		 * First place it's safe to allocate: btree_check() and
2058 		 * btree_gc_finish() have to run before we have buckets to
2059 		 * allocate, and bch_bucket_alloc_set() might cause a journal
2060 		 * entry to be written so bcache_journal_next() has to be called
2061 		 * first.
2062 		 *
2063 		 * If the uuids were in the old format we have to rewrite them
2064 		 * before the next journal entry is written:
2065 		 */
2066 		if (j->version < BCACHE_JSET_VERSION_UUID)
2067 			__uuid_write(c);
2068 
2069 		err = "bcache: replay journal failed";
2070 		if (bch_journal_replay(c, &journal))
2071 			goto err;
2072 	} else {
2073 		unsigned int j;
2074 
2075 		pr_notice("invalidating existing data\n");
2076 		ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2077 					2, SB_JOURNAL_BUCKETS);
2078 
2079 		for (j = 0; j < ca->sb.keys; j++)
2080 			ca->sb.d[j] = ca->sb.first_bucket + j;
2081 
2082 		bch_initial_gc_finish(c);
2083 
2084 		err = "error starting allocator thread";
2085 		if (bch_cache_allocator_start(ca))
2086 			goto err;
2087 
2088 		mutex_lock(&c->bucket_lock);
2089 		bch_prio_write(ca, true);
2090 		mutex_unlock(&c->bucket_lock);
2091 
2092 		err = "cannot allocate new UUID bucket";
2093 		if (__uuid_write(c))
2094 			goto err;
2095 
2096 		err = "cannot allocate new btree root";
2097 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2098 		if (IS_ERR_OR_NULL(c->root))
2099 			goto err;
2100 
2101 		mutex_lock(&c->root->write_lock);
2102 		bkey_copy_key(&c->root->key, &MAX_KEY);
2103 		bch_btree_node_write(c->root, &cl);
2104 		mutex_unlock(&c->root->write_lock);
2105 
2106 		bch_btree_set_root(c->root);
2107 		rw_unlock(true, c->root);
2108 
2109 		/*
2110 		 * We don't want to write the first journal entry until
2111 		 * everything is set up - fortunately journal entries won't be
2112 		 * written until the SET_CACHE_SYNC() here:
2113 		 */
2114 		SET_CACHE_SYNC(&c->cache->sb, true);
2115 
2116 		bch_journal_next(&c->journal);
2117 		bch_journal_meta(c, &cl);
2118 	}
2119 
2120 	err = "error starting gc thread";
2121 	if (bch_gc_thread_start(c))
2122 		goto err;
2123 
2124 	closure_sync(&cl);
2125 	c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2126 	bcache_write_super(c);
2127 
2128 	if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2129 		pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2130 
2131 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2132 		bch_cached_dev_attach(dc, c, NULL);
2133 
2134 	flash_devs_run(c);
2135 
2136 	set_bit(CACHE_SET_RUNNING, &c->flags);
2137 	return 0;
2138 err:
2139 	while (!list_empty(&journal)) {
2140 		l = list_first_entry(&journal, struct journal_replay, list);
2141 		list_del(&l->list);
2142 		kfree(l);
2143 	}
2144 
2145 	closure_sync(&cl);
2146 
2147 	bch_cache_set_error(c, "%s", err);
2148 
2149 	return -EIO;
2150 }
2151 
2152 static const char *register_cache_set(struct cache *ca)
2153 {
2154 	char buf[12];
2155 	const char *err = "cannot allocate memory";
2156 	struct cache_set *c;
2157 
2158 	list_for_each_entry(c, &bch_cache_sets, list)
2159 		if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2160 			if (c->cache)
2161 				return "duplicate cache set member";
2162 
2163 			goto found;
2164 		}
2165 
2166 	c = bch_cache_set_alloc(&ca->sb);
2167 	if (!c)
2168 		return err;
2169 
2170 	err = "error creating kobject";
2171 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2172 	    kobject_add(&c->internal, &c->kobj, "internal"))
2173 		goto err;
2174 
2175 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2176 		goto err;
2177 
2178 	bch_debug_init_cache_set(c);
2179 
2180 	list_add(&c->list, &bch_cache_sets);
2181 found:
2182 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2183 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2184 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2185 		goto err;
2186 
2187 	kobject_get(&ca->kobj);
2188 	ca->set = c;
2189 	ca->set->cache = ca;
2190 
2191 	err = "failed to run cache set";
2192 	if (run_cache_set(c) < 0)
2193 		goto err;
2194 
2195 	return NULL;
2196 err:
2197 	bch_cache_set_unregister(c);
2198 	return err;
2199 }
2200 
2201 /* Cache device */
2202 
2203 /* When ca->kobj released */
2204 void bch_cache_release(struct kobject *kobj)
2205 {
2206 	struct cache *ca = container_of(kobj, struct cache, kobj);
2207 	unsigned int i;
2208 
2209 	if (ca->set) {
2210 		BUG_ON(ca->set->cache != ca);
2211 		ca->set->cache = NULL;
2212 	}
2213 
2214 	free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2215 	kfree(ca->prio_buckets);
2216 	vfree(ca->buckets);
2217 
2218 	free_heap(&ca->heap);
2219 	free_fifo(&ca->free_inc);
2220 
2221 	for (i = 0; i < RESERVE_NR; i++)
2222 		free_fifo(&ca->free[i]);
2223 
2224 	if (ca->sb_disk)
2225 		put_page(virt_to_page(ca->sb_disk));
2226 
2227 	if (!IS_ERR_OR_NULL(ca->bdev))
2228 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2229 
2230 	kfree(ca);
2231 	module_put(THIS_MODULE);
2232 }
2233 
2234 static int cache_alloc(struct cache *ca)
2235 {
2236 	size_t free;
2237 	size_t btree_buckets;
2238 	struct bucket *b;
2239 	int ret = -ENOMEM;
2240 	const char *err = NULL;
2241 
2242 	__module_get(THIS_MODULE);
2243 	kobject_init(&ca->kobj, &bch_cache_ktype);
2244 
2245 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2246 
2247 	/*
2248 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2249 	 * and in bch_journal_replay(), tree node may split,
2250 	 * so bucket of RESERVE_BTREE type is needed,
2251 	 * the worst situation is all journal buckets are valid journal,
2252 	 * and all the keys need to replay,
2253 	 * so the number of  RESERVE_BTREE type buckets should be as much
2254 	 * as journal buckets
2255 	 */
2256 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2257 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2258 	if (!free) {
2259 		ret = -EPERM;
2260 		err = "ca->sb.nbuckets is too small";
2261 		goto err_free;
2262 	}
2263 
2264 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2265 						GFP_KERNEL)) {
2266 		err = "ca->free[RESERVE_BTREE] alloc failed";
2267 		goto err_btree_alloc;
2268 	}
2269 
2270 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2271 							GFP_KERNEL)) {
2272 		err = "ca->free[RESERVE_PRIO] alloc failed";
2273 		goto err_prio_alloc;
2274 	}
2275 
2276 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2277 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2278 		goto err_movinggc_alloc;
2279 	}
2280 
2281 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2282 		err = "ca->free[RESERVE_NONE] alloc failed";
2283 		goto err_none_alloc;
2284 	}
2285 
2286 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2287 		err = "ca->free_inc alloc failed";
2288 		goto err_free_inc_alloc;
2289 	}
2290 
2291 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2292 		err = "ca->heap alloc failed";
2293 		goto err_heap_alloc;
2294 	}
2295 
2296 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2297 			      ca->sb.nbuckets));
2298 	if (!ca->buckets) {
2299 		err = "ca->buckets alloc failed";
2300 		goto err_buckets_alloc;
2301 	}
2302 
2303 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2304 				   prio_buckets(ca), 2),
2305 				   GFP_KERNEL);
2306 	if (!ca->prio_buckets) {
2307 		err = "ca->prio_buckets alloc failed";
2308 		goto err_prio_buckets_alloc;
2309 	}
2310 
2311 	ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2312 	if (!ca->disk_buckets) {
2313 		err = "ca->disk_buckets alloc failed";
2314 		goto err_disk_buckets_alloc;
2315 	}
2316 
2317 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2318 
2319 	for_each_bucket(b, ca)
2320 		atomic_set(&b->pin, 0);
2321 	return 0;
2322 
2323 err_disk_buckets_alloc:
2324 	kfree(ca->prio_buckets);
2325 err_prio_buckets_alloc:
2326 	vfree(ca->buckets);
2327 err_buckets_alloc:
2328 	free_heap(&ca->heap);
2329 err_heap_alloc:
2330 	free_fifo(&ca->free_inc);
2331 err_free_inc_alloc:
2332 	free_fifo(&ca->free[RESERVE_NONE]);
2333 err_none_alloc:
2334 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2335 err_movinggc_alloc:
2336 	free_fifo(&ca->free[RESERVE_PRIO]);
2337 err_prio_alloc:
2338 	free_fifo(&ca->free[RESERVE_BTREE]);
2339 err_btree_alloc:
2340 err_free:
2341 	module_put(THIS_MODULE);
2342 	if (err)
2343 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2344 	return ret;
2345 }
2346 
2347 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2348 				struct block_device *bdev, struct cache *ca)
2349 {
2350 	const char *err = NULL; /* must be set for any error case */
2351 	int ret = 0;
2352 
2353 	bdevname(bdev, ca->cache_dev_name);
2354 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2355 	ca->bdev = bdev;
2356 	ca->bdev->bd_holder = ca;
2357 	ca->sb_disk = sb_disk;
2358 
2359 	if (blk_queue_discard(bdev_get_queue(bdev)))
2360 		ca->discard = CACHE_DISCARD(&ca->sb);
2361 
2362 	ret = cache_alloc(ca);
2363 	if (ret != 0) {
2364 		/*
2365 		 * If we failed here, it means ca->kobj is not initialized yet,
2366 		 * kobject_put() won't be called and there is no chance to
2367 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2368 		 * explicitly call blkdev_put() here.
2369 		 */
2370 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2371 		if (ret == -ENOMEM)
2372 			err = "cache_alloc(): -ENOMEM";
2373 		else if (ret == -EPERM)
2374 			err = "cache_alloc(): cache device is too small";
2375 		else
2376 			err = "cache_alloc(): unknown error";
2377 		goto err;
2378 	}
2379 
2380 	if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2381 		err = "error calling kobject_add";
2382 		ret = -ENOMEM;
2383 		goto out;
2384 	}
2385 
2386 	mutex_lock(&bch_register_lock);
2387 	err = register_cache_set(ca);
2388 	mutex_unlock(&bch_register_lock);
2389 
2390 	if (err) {
2391 		ret = -ENODEV;
2392 		goto out;
2393 	}
2394 
2395 	pr_info("registered cache device %s\n", ca->cache_dev_name);
2396 
2397 out:
2398 	kobject_put(&ca->kobj);
2399 
2400 err:
2401 	if (err)
2402 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2403 
2404 	return ret;
2405 }
2406 
2407 /* Global interfaces/init */
2408 
2409 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2410 			       const char *buffer, size_t size);
2411 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2412 					 struct kobj_attribute *attr,
2413 					 const char *buffer, size_t size);
2414 
2415 kobj_attribute_write(register,		register_bcache);
2416 kobj_attribute_write(register_quiet,	register_bcache);
2417 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2418 
2419 static bool bch_is_open_backing(dev_t dev)
2420 {
2421 	struct cache_set *c, *tc;
2422 	struct cached_dev *dc, *t;
2423 
2424 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2425 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2426 			if (dc->bdev->bd_dev == dev)
2427 				return true;
2428 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2429 		if (dc->bdev->bd_dev == dev)
2430 			return true;
2431 	return false;
2432 }
2433 
2434 static bool bch_is_open_cache(dev_t dev)
2435 {
2436 	struct cache_set *c, *tc;
2437 
2438 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2439 		struct cache *ca = c->cache;
2440 
2441 		if (ca->bdev->bd_dev == dev)
2442 			return true;
2443 	}
2444 
2445 	return false;
2446 }
2447 
2448 static bool bch_is_open(dev_t dev)
2449 {
2450 	return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2451 }
2452 
2453 struct async_reg_args {
2454 	struct delayed_work reg_work;
2455 	char *path;
2456 	struct cache_sb *sb;
2457 	struct cache_sb_disk *sb_disk;
2458 	struct block_device *bdev;
2459 };
2460 
2461 static void register_bdev_worker(struct work_struct *work)
2462 {
2463 	int fail = false;
2464 	struct async_reg_args *args =
2465 		container_of(work, struct async_reg_args, reg_work.work);
2466 	struct cached_dev *dc;
2467 
2468 	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2469 	if (!dc) {
2470 		fail = true;
2471 		put_page(virt_to_page(args->sb_disk));
2472 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2473 		goto out;
2474 	}
2475 
2476 	mutex_lock(&bch_register_lock);
2477 	if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2478 		fail = true;
2479 	mutex_unlock(&bch_register_lock);
2480 
2481 out:
2482 	if (fail)
2483 		pr_info("error %s: fail to register backing device\n",
2484 			args->path);
2485 	kfree(args->sb);
2486 	kfree(args->path);
2487 	kfree(args);
2488 	module_put(THIS_MODULE);
2489 }
2490 
2491 static void register_cache_worker(struct work_struct *work)
2492 {
2493 	int fail = false;
2494 	struct async_reg_args *args =
2495 		container_of(work, struct async_reg_args, reg_work.work);
2496 	struct cache *ca;
2497 
2498 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2499 	if (!ca) {
2500 		fail = true;
2501 		put_page(virt_to_page(args->sb_disk));
2502 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2503 		goto out;
2504 	}
2505 
2506 	/* blkdev_put() will be called in bch_cache_release() */
2507 	if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2508 		fail = true;
2509 
2510 out:
2511 	if (fail)
2512 		pr_info("error %s: fail to register cache device\n",
2513 			args->path);
2514 	kfree(args->sb);
2515 	kfree(args->path);
2516 	kfree(args);
2517 	module_put(THIS_MODULE);
2518 }
2519 
2520 static void register_device_aync(struct async_reg_args *args)
2521 {
2522 	if (SB_IS_BDEV(args->sb))
2523 		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2524 	else
2525 		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2526 
2527 	/* 10 jiffies is enough for a delay */
2528 	queue_delayed_work(system_wq, &args->reg_work, 10);
2529 }
2530 
2531 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2532 			       const char *buffer, size_t size)
2533 {
2534 	const char *err;
2535 	char *path = NULL;
2536 	struct cache_sb *sb;
2537 	struct cache_sb_disk *sb_disk;
2538 	struct block_device *bdev;
2539 	ssize_t ret;
2540 	bool async_registration = false;
2541 
2542 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2543 	async_registration = true;
2544 #endif
2545 
2546 	ret = -EBUSY;
2547 	err = "failed to reference bcache module";
2548 	if (!try_module_get(THIS_MODULE))
2549 		goto out;
2550 
2551 	/* For latest state of bcache_is_reboot */
2552 	smp_mb();
2553 	err = "bcache is in reboot";
2554 	if (bcache_is_reboot)
2555 		goto out_module_put;
2556 
2557 	ret = -ENOMEM;
2558 	err = "cannot allocate memory";
2559 	path = kstrndup(buffer, size, GFP_KERNEL);
2560 	if (!path)
2561 		goto out_module_put;
2562 
2563 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2564 	if (!sb)
2565 		goto out_free_path;
2566 
2567 	ret = -EINVAL;
2568 	err = "failed to open device";
2569 	bdev = blkdev_get_by_path(strim(path),
2570 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2571 				  sb);
2572 	if (IS_ERR(bdev)) {
2573 		if (bdev == ERR_PTR(-EBUSY)) {
2574 			dev_t dev;
2575 
2576 			mutex_lock(&bch_register_lock);
2577 			if (lookup_bdev(strim(path), &dev) == 0 &&
2578 			    bch_is_open(dev))
2579 				err = "device already registered";
2580 			else
2581 				err = "device busy";
2582 			mutex_unlock(&bch_register_lock);
2583 			if (attr == &ksysfs_register_quiet)
2584 				goto done;
2585 		}
2586 		goto out_free_sb;
2587 	}
2588 
2589 	err = "failed to set blocksize";
2590 	if (set_blocksize(bdev, 4096))
2591 		goto out_blkdev_put;
2592 
2593 	err = read_super(sb, bdev, &sb_disk);
2594 	if (err)
2595 		goto out_blkdev_put;
2596 
2597 	err = "failed to register device";
2598 
2599 	if (async_registration) {
2600 		/* register in asynchronous way */
2601 		struct async_reg_args *args =
2602 			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2603 
2604 		if (!args) {
2605 			ret = -ENOMEM;
2606 			err = "cannot allocate memory";
2607 			goto out_put_sb_page;
2608 		}
2609 
2610 		args->path	= path;
2611 		args->sb	= sb;
2612 		args->sb_disk	= sb_disk;
2613 		args->bdev	= bdev;
2614 		register_device_aync(args);
2615 		/* No wait and returns to user space */
2616 		goto async_done;
2617 	}
2618 
2619 	if (SB_IS_BDEV(sb)) {
2620 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2621 
2622 		if (!dc)
2623 			goto out_put_sb_page;
2624 
2625 		mutex_lock(&bch_register_lock);
2626 		ret = register_bdev(sb, sb_disk, bdev, dc);
2627 		mutex_unlock(&bch_register_lock);
2628 		/* blkdev_put() will be called in cached_dev_free() */
2629 		if (ret < 0)
2630 			goto out_free_sb;
2631 	} else {
2632 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2633 
2634 		if (!ca)
2635 			goto out_put_sb_page;
2636 
2637 		/* blkdev_put() will be called in bch_cache_release() */
2638 		if (register_cache(sb, sb_disk, bdev, ca) != 0)
2639 			goto out_free_sb;
2640 	}
2641 
2642 done:
2643 	kfree(sb);
2644 	kfree(path);
2645 	module_put(THIS_MODULE);
2646 async_done:
2647 	return size;
2648 
2649 out_put_sb_page:
2650 	put_page(virt_to_page(sb_disk));
2651 out_blkdev_put:
2652 	blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2653 out_free_sb:
2654 	kfree(sb);
2655 out_free_path:
2656 	kfree(path);
2657 	path = NULL;
2658 out_module_put:
2659 	module_put(THIS_MODULE);
2660 out:
2661 	pr_info("error %s: %s\n", path?path:"", err);
2662 	return ret;
2663 }
2664 
2665 
2666 struct pdev {
2667 	struct list_head list;
2668 	struct cached_dev *dc;
2669 };
2670 
2671 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2672 					 struct kobj_attribute *attr,
2673 					 const char *buffer,
2674 					 size_t size)
2675 {
2676 	LIST_HEAD(pending_devs);
2677 	ssize_t ret = size;
2678 	struct cached_dev *dc, *tdc;
2679 	struct pdev *pdev, *tpdev;
2680 	struct cache_set *c, *tc;
2681 
2682 	mutex_lock(&bch_register_lock);
2683 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2684 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2685 		if (!pdev)
2686 			break;
2687 		pdev->dc = dc;
2688 		list_add(&pdev->list, &pending_devs);
2689 	}
2690 
2691 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2692 		char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2693 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2694 			char *set_uuid = c->set_uuid;
2695 
2696 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2697 				list_del(&pdev->list);
2698 				kfree(pdev);
2699 				break;
2700 			}
2701 		}
2702 	}
2703 	mutex_unlock(&bch_register_lock);
2704 
2705 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2706 		pr_info("delete pdev %p\n", pdev);
2707 		list_del(&pdev->list);
2708 		bcache_device_stop(&pdev->dc->disk);
2709 		kfree(pdev);
2710 	}
2711 
2712 	return ret;
2713 }
2714 
2715 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2716 {
2717 	if (bcache_is_reboot)
2718 		return NOTIFY_DONE;
2719 
2720 	if (code == SYS_DOWN ||
2721 	    code == SYS_HALT ||
2722 	    code == SYS_POWER_OFF) {
2723 		DEFINE_WAIT(wait);
2724 		unsigned long start = jiffies;
2725 		bool stopped = false;
2726 
2727 		struct cache_set *c, *tc;
2728 		struct cached_dev *dc, *tdc;
2729 
2730 		mutex_lock(&bch_register_lock);
2731 
2732 		if (bcache_is_reboot)
2733 			goto out;
2734 
2735 		/* New registration is rejected since now */
2736 		bcache_is_reboot = true;
2737 		/*
2738 		 * Make registering caller (if there is) on other CPU
2739 		 * core know bcache_is_reboot set to true earlier
2740 		 */
2741 		smp_mb();
2742 
2743 		if (list_empty(&bch_cache_sets) &&
2744 		    list_empty(&uncached_devices))
2745 			goto out;
2746 
2747 		mutex_unlock(&bch_register_lock);
2748 
2749 		pr_info("Stopping all devices:\n");
2750 
2751 		/*
2752 		 * The reason bch_register_lock is not held to call
2753 		 * bch_cache_set_stop() and bcache_device_stop() is to
2754 		 * avoid potential deadlock during reboot, because cache
2755 		 * set or bcache device stopping process will acqurie
2756 		 * bch_register_lock too.
2757 		 *
2758 		 * We are safe here because bcache_is_reboot sets to
2759 		 * true already, register_bcache() will reject new
2760 		 * registration now. bcache_is_reboot also makes sure
2761 		 * bcache_reboot() won't be re-entered on by other thread,
2762 		 * so there is no race in following list iteration by
2763 		 * list_for_each_entry_safe().
2764 		 */
2765 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2766 			bch_cache_set_stop(c);
2767 
2768 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2769 			bcache_device_stop(&dc->disk);
2770 
2771 
2772 		/*
2773 		 * Give an early chance for other kthreads and
2774 		 * kworkers to stop themselves
2775 		 */
2776 		schedule();
2777 
2778 		/* What's a condition variable? */
2779 		while (1) {
2780 			long timeout = start + 10 * HZ - jiffies;
2781 
2782 			mutex_lock(&bch_register_lock);
2783 			stopped = list_empty(&bch_cache_sets) &&
2784 				list_empty(&uncached_devices);
2785 
2786 			if (timeout < 0 || stopped)
2787 				break;
2788 
2789 			prepare_to_wait(&unregister_wait, &wait,
2790 					TASK_UNINTERRUPTIBLE);
2791 
2792 			mutex_unlock(&bch_register_lock);
2793 			schedule_timeout(timeout);
2794 		}
2795 
2796 		finish_wait(&unregister_wait, &wait);
2797 
2798 		if (stopped)
2799 			pr_info("All devices stopped\n");
2800 		else
2801 			pr_notice("Timeout waiting for devices to be closed\n");
2802 out:
2803 		mutex_unlock(&bch_register_lock);
2804 	}
2805 
2806 	return NOTIFY_DONE;
2807 }
2808 
2809 static struct notifier_block reboot = {
2810 	.notifier_call	= bcache_reboot,
2811 	.priority	= INT_MAX, /* before any real devices */
2812 };
2813 
2814 static void bcache_exit(void)
2815 {
2816 	bch_debug_exit();
2817 	bch_request_exit();
2818 	if (bcache_kobj)
2819 		kobject_put(bcache_kobj);
2820 	if (bcache_wq)
2821 		destroy_workqueue(bcache_wq);
2822 	if (bch_journal_wq)
2823 		destroy_workqueue(bch_journal_wq);
2824 
2825 	if (bcache_major)
2826 		unregister_blkdev(bcache_major, "bcache");
2827 	unregister_reboot_notifier(&reboot);
2828 	mutex_destroy(&bch_register_lock);
2829 }
2830 
2831 /* Check and fixup module parameters */
2832 static void check_module_parameters(void)
2833 {
2834 	if (bch_cutoff_writeback_sync == 0)
2835 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2836 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2837 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2838 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2839 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2840 	}
2841 
2842 	if (bch_cutoff_writeback == 0)
2843 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2844 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2845 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2846 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2847 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2848 	}
2849 
2850 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2851 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2852 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2853 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2854 	}
2855 }
2856 
2857 static int __init bcache_init(void)
2858 {
2859 	static const struct attribute *files[] = {
2860 		&ksysfs_register.attr,
2861 		&ksysfs_register_quiet.attr,
2862 		&ksysfs_pendings_cleanup.attr,
2863 		NULL
2864 	};
2865 
2866 	check_module_parameters();
2867 
2868 	mutex_init(&bch_register_lock);
2869 	init_waitqueue_head(&unregister_wait);
2870 	register_reboot_notifier(&reboot);
2871 
2872 	bcache_major = register_blkdev(0, "bcache");
2873 	if (bcache_major < 0) {
2874 		unregister_reboot_notifier(&reboot);
2875 		mutex_destroy(&bch_register_lock);
2876 		return bcache_major;
2877 	}
2878 
2879 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2880 	if (!bcache_wq)
2881 		goto err;
2882 
2883 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2884 	if (!bch_journal_wq)
2885 		goto err;
2886 
2887 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2888 	if (!bcache_kobj)
2889 		goto err;
2890 
2891 	if (bch_request_init() ||
2892 	    sysfs_create_files(bcache_kobj, files))
2893 		goto err;
2894 
2895 	bch_debug_init();
2896 	closure_debug_init();
2897 
2898 	bcache_is_reboot = false;
2899 
2900 	return 0;
2901 err:
2902 	bcache_exit();
2903 	return -ENOMEM;
2904 }
2905 
2906 /*
2907  * Module hooks
2908  */
2909 module_exit(bcache_exit);
2910 module_init(bcache_init);
2911 
2912 module_param(bch_cutoff_writeback, uint, 0);
2913 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2914 
2915 module_param(bch_cutoff_writeback_sync, uint, 0);
2916 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2917 
2918 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2919 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2920 MODULE_LICENSE("GPL");
2921