1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/pagemap.h> 20 #include <linux/debugfs.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/workqueue.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/reboot.h> 27 #include <linux/sysfs.h> 28 29 unsigned int bch_cutoff_writeback; 30 unsigned int bch_cutoff_writeback_sync; 31 32 static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35 }; 36 37 static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40 }; 41 42 static struct kobject *bcache_kobj; 43 struct mutex bch_register_lock; 44 bool bcache_is_reboot; 45 LIST_HEAD(bch_cache_sets); 46 static LIST_HEAD(uncached_devices); 47 48 static int bcache_major; 49 static DEFINE_IDA(bcache_device_idx); 50 static wait_queue_head_t unregister_wait; 51 struct workqueue_struct *bcache_wq; 52 struct workqueue_struct *bch_flush_wq; 53 struct workqueue_struct *bch_journal_wq; 54 55 56 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 57 /* limitation of partitions number on single bcache device */ 58 #define BCACHE_MINORS 128 59 /* limitation of bcache devices number on single system */ 60 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 61 62 /* Superblock */ 63 64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 65 { 66 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 67 68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 69 if (bch_has_feature_large_bucket(sb)) { 70 unsigned int max, order; 71 72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 73 order = le16_to_cpu(s->bucket_size); 74 /* 75 * bcache tool will make sure the overflow won't 76 * happen, an error message here is enough. 77 */ 78 if (order > max) 79 pr_err("Bucket size (1 << %u) overflows\n", 80 order); 81 bucket_size = 1 << order; 82 } else if (bch_has_feature_obso_large_bucket(sb)) { 83 bucket_size += 84 le16_to_cpu(s->obso_bucket_size_hi) << 16; 85 } 86 } 87 88 return bucket_size; 89 } 90 91 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 92 struct cache_sb_disk *s) 93 { 94 const char *err; 95 unsigned int i; 96 97 sb->first_bucket= le16_to_cpu(s->first_bucket); 98 sb->nbuckets = le64_to_cpu(s->nbuckets); 99 sb->bucket_size = get_bucket_size(sb, s); 100 101 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 103 104 err = "Too many journal buckets"; 105 if (sb->keys > SB_JOURNAL_BUCKETS) 106 goto err; 107 108 err = "Too many buckets"; 109 if (sb->nbuckets > LONG_MAX) 110 goto err; 111 112 err = "Not enough buckets"; 113 if (sb->nbuckets < 1 << 7) 114 goto err; 115 116 err = "Bad block size (not power of 2)"; 117 if (!is_power_of_2(sb->block_size)) 118 goto err; 119 120 err = "Bad block size (larger than page size)"; 121 if (sb->block_size > PAGE_SECTORS) 122 goto err; 123 124 err = "Bad bucket size (not power of 2)"; 125 if (!is_power_of_2(sb->bucket_size)) 126 goto err; 127 128 err = "Bad bucket size (smaller than page size)"; 129 if (sb->bucket_size < PAGE_SECTORS) 130 goto err; 131 132 err = "Invalid superblock: device too small"; 133 if (get_capacity(bdev->bd_disk) < 134 sb->bucket_size * sb->nbuckets) 135 goto err; 136 137 err = "Bad UUID"; 138 if (bch_is_zero(sb->set_uuid, 16)) 139 goto err; 140 141 err = "Bad cache device number in set"; 142 if (!sb->nr_in_set || 143 sb->nr_in_set <= sb->nr_this_dev || 144 sb->nr_in_set > MAX_CACHES_PER_SET) 145 goto err; 146 147 err = "Journal buckets not sequential"; 148 for (i = 0; i < sb->keys; i++) 149 if (sb->d[i] != sb->first_bucket + i) 150 goto err; 151 152 err = "Too many journal buckets"; 153 if (sb->first_bucket + sb->keys > sb->nbuckets) 154 goto err; 155 156 err = "Invalid superblock: first bucket comes before end of super"; 157 if (sb->first_bucket * sb->bucket_size < 16) 158 goto err; 159 160 err = NULL; 161 err: 162 return err; 163 } 164 165 166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 167 struct cache_sb_disk **res) 168 { 169 const char *err; 170 struct cache_sb_disk *s; 171 struct page *page; 172 unsigned int i; 173 174 page = read_cache_page_gfp(bdev->bd_mapping, 175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 176 if (IS_ERR(page)) 177 return "IO error"; 178 s = page_address(page) + offset_in_page(SB_OFFSET); 179 180 sb->offset = le64_to_cpu(s->offset); 181 sb->version = le64_to_cpu(s->version); 182 183 memcpy(sb->magic, s->magic, 16); 184 memcpy(sb->uuid, s->uuid, 16); 185 memcpy(sb->set_uuid, s->set_uuid, 16); 186 memcpy(sb->label, s->label, SB_LABEL_SIZE); 187 188 sb->flags = le64_to_cpu(s->flags); 189 sb->seq = le64_to_cpu(s->seq); 190 sb->last_mount = le32_to_cpu(s->last_mount); 191 sb->keys = le16_to_cpu(s->keys); 192 193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 194 sb->d[i] = le64_to_cpu(s->d[i]); 195 196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 197 sb->version, sb->flags, sb->seq, sb->keys); 198 199 err = "Not a bcache superblock (bad offset)"; 200 if (sb->offset != SB_SECTOR) 201 goto err; 202 203 err = "Not a bcache superblock (bad magic)"; 204 if (memcmp(sb->magic, bcache_magic, 16)) 205 goto err; 206 207 err = "Bad checksum"; 208 if (s->csum != csum_set(s)) 209 goto err; 210 211 err = "Bad UUID"; 212 if (bch_is_zero(sb->uuid, 16)) 213 goto err; 214 215 sb->block_size = le16_to_cpu(s->block_size); 216 217 err = "Superblock block size smaller than device block size"; 218 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 219 goto err; 220 221 switch (sb->version) { 222 case BCACHE_SB_VERSION_BDEV: 223 sb->data_offset = BDEV_DATA_START_DEFAULT; 224 break; 225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 227 sb->data_offset = le64_to_cpu(s->data_offset); 228 229 err = "Bad data offset"; 230 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 231 goto err; 232 233 break; 234 case BCACHE_SB_VERSION_CDEV: 235 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 236 err = read_super_common(sb, bdev, s); 237 if (err) 238 goto err; 239 break; 240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 241 /* 242 * Feature bits are needed in read_super_common(), 243 * convert them firstly. 244 */ 245 sb->feature_compat = le64_to_cpu(s->feature_compat); 246 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 248 249 /* Check incompatible features */ 250 err = "Unsupported compatible feature found"; 251 if (bch_has_unknown_compat_features(sb)) 252 goto err; 253 254 err = "Unsupported read-only compatible feature found"; 255 if (bch_has_unknown_ro_compat_features(sb)) 256 goto err; 257 258 err = "Unsupported incompatible feature found"; 259 if (bch_has_unknown_incompat_features(sb)) 260 goto err; 261 262 err = read_super_common(sb, bdev, s); 263 if (err) 264 goto err; 265 break; 266 default: 267 err = "Unsupported superblock version"; 268 goto err; 269 } 270 271 sb->last_mount = (u32)ktime_get_real_seconds(); 272 *res = s; 273 return NULL; 274 err: 275 put_page(page); 276 return err; 277 } 278 279 static void write_bdev_super_endio(struct bio *bio) 280 { 281 struct cached_dev *dc = bio->bi_private; 282 283 if (bio->bi_status) 284 bch_count_backing_io_errors(dc, bio); 285 286 closure_put(&dc->sb_write); 287 } 288 289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 290 struct bio *bio) 291 { 292 unsigned int i; 293 294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 295 bio->bi_iter.bi_sector = SB_SECTOR; 296 bio_add_virt_nofail(bio, out, SB_SIZE); 297 298 out->offset = cpu_to_le64(sb->offset); 299 300 memcpy(out->uuid, sb->uuid, 16); 301 memcpy(out->set_uuid, sb->set_uuid, 16); 302 memcpy(out->label, sb->label, SB_LABEL_SIZE); 303 304 out->flags = cpu_to_le64(sb->flags); 305 out->seq = cpu_to_le64(sb->seq); 306 307 out->last_mount = cpu_to_le32(sb->last_mount); 308 out->first_bucket = cpu_to_le16(sb->first_bucket); 309 out->keys = cpu_to_le16(sb->keys); 310 311 for (i = 0; i < sb->keys; i++) 312 out->d[i] = cpu_to_le64(sb->d[i]); 313 314 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 315 out->feature_compat = cpu_to_le64(sb->feature_compat); 316 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 317 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 318 } 319 320 out->version = cpu_to_le64(sb->version); 321 out->csum = csum_set(out); 322 323 pr_debug("ver %llu, flags %llu, seq %llu\n", 324 sb->version, sb->flags, sb->seq); 325 326 submit_bio(bio); 327 } 328 329 static CLOSURE_CALLBACK(bch_write_bdev_super_unlock) 330 { 331 closure_type(dc, struct cached_dev, sb_write); 332 333 up(&dc->sb_write_mutex); 334 } 335 336 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 337 { 338 struct closure *cl = &dc->sb_write; 339 struct bio *bio = &dc->sb_bio; 340 341 down(&dc->sb_write_mutex); 342 closure_init(cl, parent); 343 344 bio_init(bio, dc->bdev, dc->sb_bv, 1, 0); 345 bio->bi_end_io = write_bdev_super_endio; 346 bio->bi_private = dc; 347 348 closure_get(cl); 349 /* I/O request sent to backing device */ 350 __write_super(&dc->sb, dc->sb_disk, bio); 351 352 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 353 } 354 355 static void write_super_endio(struct bio *bio) 356 { 357 struct cache *ca = bio->bi_private; 358 359 /* is_read = 0 */ 360 bch_count_io_errors(ca, bio->bi_status, 0, 361 "writing superblock"); 362 closure_put(&ca->set->sb_write); 363 } 364 365 static CLOSURE_CALLBACK(bcache_write_super_unlock) 366 { 367 closure_type(c, struct cache_set, sb_write); 368 369 up(&c->sb_write_mutex); 370 } 371 372 void bcache_write_super(struct cache_set *c) 373 { 374 struct closure *cl = &c->sb_write; 375 struct cache *ca = c->cache; 376 struct bio *bio = &ca->sb_bio; 377 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 378 379 down(&c->sb_write_mutex); 380 closure_init(cl, &c->cl); 381 382 ca->sb.seq++; 383 384 if (ca->sb.version < version) 385 ca->sb.version = version; 386 387 bio_init(bio, ca->bdev, ca->sb_bv, 1, 0); 388 bio->bi_end_io = write_super_endio; 389 bio->bi_private = ca; 390 391 closure_get(cl); 392 __write_super(&ca->sb, ca->sb_disk, bio); 393 394 closure_return_with_destructor(cl, bcache_write_super_unlock); 395 } 396 397 /* UUID io */ 398 399 static void uuid_endio(struct bio *bio) 400 { 401 struct closure *cl = bio->bi_private; 402 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 403 404 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 405 bch_bbio_free(bio, c); 406 closure_put(cl); 407 } 408 409 static CLOSURE_CALLBACK(uuid_io_unlock) 410 { 411 closure_type(c, struct cache_set, uuid_write); 412 413 up(&c->uuid_write_mutex); 414 } 415 416 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k, 417 struct closure *parent) 418 { 419 struct closure *cl = &c->uuid_write; 420 struct uuid_entry *u; 421 unsigned int i; 422 char buf[80]; 423 424 BUG_ON(!parent); 425 down(&c->uuid_write_mutex); 426 closure_init(cl, parent); 427 428 for (i = 0; i < KEY_PTRS(k); i++) { 429 struct bio *bio = bch_bbio_alloc(c); 430 431 bio->bi_opf = opf | REQ_SYNC | REQ_META; 432 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 433 434 bio->bi_end_io = uuid_endio; 435 bio->bi_private = cl; 436 bch_bio_map(bio, c->uuids); 437 438 bch_submit_bbio(bio, c, k, i); 439 440 if ((opf & REQ_OP_MASK) != REQ_OP_WRITE) 441 break; 442 } 443 444 bch_extent_to_text(buf, sizeof(buf), k); 445 pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ? 446 "wrote" : "read", buf); 447 448 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 449 if (!bch_is_zero(u->uuid, 16)) 450 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 451 u - c->uuids, u->uuid, u->label, 452 u->first_reg, u->last_reg, u->invalidated); 453 454 closure_return_with_destructor(cl, uuid_io_unlock); 455 } 456 457 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 458 { 459 struct bkey *k = &j->uuid_bucket; 460 461 if (__bch_btree_ptr_invalid(c, k)) 462 return "bad uuid pointer"; 463 464 bkey_copy(&c->uuid_bucket, k); 465 uuid_io(c, REQ_OP_READ, k, cl); 466 467 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 468 struct uuid_entry_v0 *u0 = (void *) c->uuids; 469 struct uuid_entry *u1 = (void *) c->uuids; 470 int i; 471 472 closure_sync(cl); 473 474 /* 475 * Since the new uuid entry is bigger than the old, we have to 476 * convert starting at the highest memory address and work down 477 * in order to do it in place 478 */ 479 480 for (i = c->nr_uuids - 1; 481 i >= 0; 482 --i) { 483 memcpy(u1[i].uuid, u0[i].uuid, 16); 484 memcpy(u1[i].label, u0[i].label, 32); 485 486 u1[i].first_reg = u0[i].first_reg; 487 u1[i].last_reg = u0[i].last_reg; 488 u1[i].invalidated = u0[i].invalidated; 489 490 u1[i].flags = 0; 491 u1[i].sectors = 0; 492 } 493 } 494 495 return NULL; 496 } 497 498 static int __uuid_write(struct cache_set *c) 499 { 500 BKEY_PADDED(key) k; 501 struct closure cl; 502 struct cache *ca = c->cache; 503 unsigned int size; 504 505 closure_init_stack(&cl); 506 lockdep_assert_held(&bch_register_lock); 507 508 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 509 return 1; 510 511 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 512 SET_KEY_SIZE(&k.key, size); 513 uuid_io(c, REQ_OP_WRITE, &k.key, &cl); 514 closure_sync(&cl); 515 516 /* Only one bucket used for uuid write */ 517 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 518 519 bkey_copy(&c->uuid_bucket, &k.key); 520 bkey_put(c, &k.key); 521 return 0; 522 } 523 524 int bch_uuid_write(struct cache_set *c) 525 { 526 int ret = __uuid_write(c); 527 528 if (!ret) 529 bch_journal_meta(c, NULL); 530 531 return ret; 532 } 533 534 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 535 { 536 struct uuid_entry *u; 537 538 for (u = c->uuids; 539 u < c->uuids + c->nr_uuids; u++) 540 if (!memcmp(u->uuid, uuid, 16)) 541 return u; 542 543 return NULL; 544 } 545 546 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 547 { 548 static const char zero_uuid[16] = { 0 }; 549 550 return uuid_find(c, zero_uuid); 551 } 552 553 /* 554 * Bucket priorities/gens: 555 * 556 * For each bucket, we store on disk its 557 * 8 bit gen 558 * 16 bit priority 559 * 560 * See alloc.c for an explanation of the gen. The priority is used to implement 561 * lru (and in the future other) cache replacement policies; for most purposes 562 * it's just an opaque integer. 563 * 564 * The gens and the priorities don't have a whole lot to do with each other, and 565 * it's actually the gens that must be written out at specific times - it's no 566 * big deal if the priorities don't get written, if we lose them we just reuse 567 * buckets in suboptimal order. 568 * 569 * On disk they're stored in a packed array, and in as many buckets are required 570 * to fit them all. The buckets we use to store them form a list; the journal 571 * header points to the first bucket, the first bucket points to the second 572 * bucket, et cetera. 573 * 574 * This code is used by the allocation code; periodically (whenever it runs out 575 * of buckets to allocate from) the allocation code will invalidate some 576 * buckets, but it can't use those buckets until their new gens are safely on 577 * disk. 578 */ 579 580 static void prio_endio(struct bio *bio) 581 { 582 struct cache *ca = bio->bi_private; 583 584 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 585 bch_bbio_free(bio, ca->set); 586 closure_put(&ca->prio); 587 } 588 589 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf) 590 { 591 struct closure *cl = &ca->prio; 592 struct bio *bio = bch_bbio_alloc(ca->set); 593 594 closure_init_stack(cl); 595 596 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 597 bio_set_dev(bio, ca->bdev); 598 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 599 600 bio->bi_end_io = prio_endio; 601 bio->bi_private = ca; 602 bio->bi_opf = opf | REQ_SYNC | REQ_META; 603 bch_bio_map(bio, ca->disk_buckets); 604 605 closure_bio_submit(ca->set, bio, &ca->prio); 606 closure_sync(cl); 607 } 608 609 int bch_prio_write(struct cache *ca, bool wait) 610 { 611 int i; 612 struct bucket *b; 613 struct closure cl; 614 615 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 616 fifo_used(&ca->free[RESERVE_PRIO]), 617 fifo_used(&ca->free[RESERVE_NONE]), 618 fifo_used(&ca->free_inc)); 619 620 /* 621 * Pre-check if there are enough free buckets. In the non-blocking 622 * scenario it's better to fail early rather than starting to allocate 623 * buckets and do a cleanup later in case of failure. 624 */ 625 if (!wait) { 626 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 627 fifo_used(&ca->free[RESERVE_NONE]); 628 if (prio_buckets(ca) > avail) 629 return -ENOMEM; 630 } 631 632 closure_init_stack(&cl); 633 634 lockdep_assert_held(&ca->set->bucket_lock); 635 636 ca->disk_buckets->seq++; 637 638 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 639 &ca->meta_sectors_written); 640 641 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 642 long bucket; 643 struct prio_set *p = ca->disk_buckets; 644 struct bucket_disk *d = p->data; 645 struct bucket_disk *end = d + prios_per_bucket(ca); 646 647 for (b = ca->buckets + i * prios_per_bucket(ca); 648 b < ca->buckets + ca->sb.nbuckets && d < end; 649 b++, d++) { 650 d->prio = cpu_to_le16(b->prio); 651 d->gen = b->gen; 652 } 653 654 p->next_bucket = ca->prio_buckets[i + 1]; 655 p->magic = pset_magic(&ca->sb); 656 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 657 658 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 659 BUG_ON(bucket == -1); 660 661 mutex_unlock(&ca->set->bucket_lock); 662 prio_io(ca, bucket, REQ_OP_WRITE); 663 mutex_lock(&ca->set->bucket_lock); 664 665 ca->prio_buckets[i] = bucket; 666 atomic_dec_bug(&ca->buckets[bucket].pin); 667 } 668 669 mutex_unlock(&ca->set->bucket_lock); 670 671 bch_journal_meta(ca->set, &cl); 672 closure_sync(&cl); 673 674 mutex_lock(&ca->set->bucket_lock); 675 676 /* 677 * Don't want the old priorities to get garbage collected until after we 678 * finish writing the new ones, and they're journalled 679 */ 680 for (i = 0; i < prio_buckets(ca); i++) { 681 if (ca->prio_last_buckets[i]) 682 __bch_bucket_free(ca, 683 &ca->buckets[ca->prio_last_buckets[i]]); 684 685 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 686 } 687 return 0; 688 } 689 690 static int prio_read(struct cache *ca, uint64_t bucket) 691 { 692 struct prio_set *p = ca->disk_buckets; 693 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 694 struct bucket *b; 695 unsigned int bucket_nr = 0; 696 int ret = -EIO; 697 698 for (b = ca->buckets; 699 b < ca->buckets + ca->sb.nbuckets; 700 b++, d++) { 701 if (d == end) { 702 ca->prio_buckets[bucket_nr] = bucket; 703 ca->prio_last_buckets[bucket_nr] = bucket; 704 bucket_nr++; 705 706 prio_io(ca, bucket, REQ_OP_READ); 707 708 if (p->csum != 709 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 710 pr_warn("bad csum reading priorities\n"); 711 goto out; 712 } 713 714 if (p->magic != pset_magic(&ca->sb)) { 715 pr_warn("bad magic reading priorities\n"); 716 goto out; 717 } 718 719 bucket = p->next_bucket; 720 d = p->data; 721 } 722 723 b->prio = le16_to_cpu(d->prio); 724 b->gen = b->last_gc = d->gen; 725 } 726 727 ret = 0; 728 out: 729 return ret; 730 } 731 732 /* Bcache device */ 733 734 static int open_dev(struct gendisk *disk, blk_mode_t mode) 735 { 736 struct bcache_device *d = disk->private_data; 737 738 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 739 return -ENXIO; 740 741 closure_get(&d->cl); 742 return 0; 743 } 744 745 static void release_dev(struct gendisk *b) 746 { 747 struct bcache_device *d = b->private_data; 748 749 closure_put(&d->cl); 750 } 751 752 static int ioctl_dev(struct block_device *b, blk_mode_t mode, 753 unsigned int cmd, unsigned long arg) 754 { 755 struct bcache_device *d = b->bd_disk->private_data; 756 757 return d->ioctl(d, mode, cmd, arg); 758 } 759 760 static const struct block_device_operations bcache_cached_ops = { 761 .submit_bio = cached_dev_submit_bio, 762 .open = open_dev, 763 .release = release_dev, 764 .ioctl = ioctl_dev, 765 .owner = THIS_MODULE, 766 }; 767 768 static const struct block_device_operations bcache_flash_ops = { 769 .submit_bio = flash_dev_submit_bio, 770 .open = open_dev, 771 .release = release_dev, 772 .ioctl = ioctl_dev, 773 .owner = THIS_MODULE, 774 }; 775 776 void bcache_device_stop(struct bcache_device *d) 777 { 778 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 779 /* 780 * closure_fn set to 781 * - cached device: cached_dev_flush() 782 * - flash dev: flash_dev_flush() 783 */ 784 closure_queue(&d->cl); 785 } 786 787 static void bcache_device_unlink(struct bcache_device *d) 788 { 789 lockdep_assert_held(&bch_register_lock); 790 791 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 792 struct cache *ca = d->c->cache; 793 794 sysfs_remove_link(&d->c->kobj, d->name); 795 sysfs_remove_link(&d->kobj, "cache"); 796 797 bd_unlink_disk_holder(ca->bdev, d->disk); 798 } 799 } 800 801 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 802 const char *name) 803 { 804 struct cache *ca = c->cache; 805 int ret; 806 807 bd_link_disk_holder(ca->bdev, d->disk); 808 809 snprintf(d->name, BCACHEDEVNAME_SIZE, 810 "%s%u", name, d->id); 811 812 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 813 if (ret < 0) 814 pr_err("Couldn't create device -> cache set symlink\n"); 815 816 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 817 if (ret < 0) 818 pr_err("Couldn't create cache set -> device symlink\n"); 819 820 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 821 } 822 823 static void bcache_device_detach(struct bcache_device *d) 824 { 825 lockdep_assert_held(&bch_register_lock); 826 827 atomic_dec(&d->c->attached_dev_nr); 828 829 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 830 struct uuid_entry *u = d->c->uuids + d->id; 831 832 SET_UUID_FLASH_ONLY(u, 0); 833 memcpy(u->uuid, invalid_uuid, 16); 834 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 835 bch_uuid_write(d->c); 836 } 837 838 bcache_device_unlink(d); 839 840 d->c->devices[d->id] = NULL; 841 closure_put(&d->c->caching); 842 d->c = NULL; 843 } 844 845 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 846 unsigned int id) 847 { 848 d->id = id; 849 d->c = c; 850 c->devices[id] = d; 851 852 if (id >= c->devices_max_used) 853 c->devices_max_used = id + 1; 854 855 closure_get(&c->caching); 856 } 857 858 static inline int first_minor_to_idx(int first_minor) 859 { 860 return (first_minor/BCACHE_MINORS); 861 } 862 863 static inline int idx_to_first_minor(int idx) 864 { 865 return (idx * BCACHE_MINORS); 866 } 867 868 static void bcache_device_free(struct bcache_device *d) 869 { 870 struct gendisk *disk = d->disk; 871 872 lockdep_assert_held(&bch_register_lock); 873 874 if (disk) 875 pr_info("%s stopped\n", disk->disk_name); 876 else 877 pr_err("bcache device (NULL gendisk) stopped\n"); 878 879 if (d->c) 880 bcache_device_detach(d); 881 882 if (disk) { 883 ida_free(&bcache_device_idx, 884 first_minor_to_idx(disk->first_minor)); 885 put_disk(disk); 886 } 887 888 bioset_exit(&d->bio_split); 889 kvfree(d->full_dirty_stripes); 890 kvfree(d->stripe_sectors_dirty); 891 892 closure_debug_destroy(&d->cl); 893 } 894 895 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 896 sector_t sectors, struct block_device *cached_bdev, 897 const struct block_device_operations *ops) 898 { 899 const size_t max_stripes = min_t(size_t, INT_MAX, 900 SIZE_MAX / sizeof(atomic_t)); 901 struct queue_limits lim = { 902 .max_hw_sectors = UINT_MAX, 903 .max_sectors = UINT_MAX, 904 .max_segment_size = UINT_MAX, 905 .max_segments = BIO_MAX_VECS, 906 .max_hw_discard_sectors = UINT_MAX, 907 .io_min = block_size, 908 .logical_block_size = block_size, 909 .physical_block_size = block_size, 910 .features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA, 911 }; 912 uint64_t n; 913 int idx; 914 915 if (cached_bdev) { 916 d->stripe_size = bdev_io_opt(cached_bdev) >> SECTOR_SHIFT; 917 lim.io_opt = umax(block_size, bdev_io_opt(cached_bdev)); 918 } 919 if (!d->stripe_size) 920 d->stripe_size = 1 << 31; 921 else if (d->stripe_size < BCH_MIN_STRIPE_SZ) 922 d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size); 923 924 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 925 if (!n || n > max_stripes) { 926 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 927 n); 928 return -ENOMEM; 929 } 930 d->nr_stripes = n; 931 932 n = d->nr_stripes * sizeof(atomic_t); 933 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 934 if (!d->stripe_sectors_dirty) 935 return -ENOMEM; 936 937 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 938 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 939 if (!d->full_dirty_stripes) 940 goto out_free_stripe_sectors_dirty; 941 942 idx = ida_alloc_max(&bcache_device_idx, BCACHE_DEVICE_IDX_MAX - 1, 943 GFP_KERNEL); 944 if (idx < 0) 945 goto out_free_full_dirty_stripes; 946 947 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 948 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 949 goto out_ida_remove; 950 951 if (lim.logical_block_size > PAGE_SIZE && cached_bdev) { 952 /* 953 * This should only happen with BCACHE_SB_VERSION_BDEV. 954 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 955 */ 956 pr_info("bcache%i: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 957 idx, lim.logical_block_size, 958 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 959 960 /* This also adjusts physical block size/min io size if needed */ 961 lim.logical_block_size = bdev_logical_block_size(cached_bdev); 962 } 963 964 d->disk = blk_alloc_disk(&lim, NUMA_NO_NODE); 965 if (IS_ERR(d->disk)) 966 goto out_bioset_exit; 967 968 set_capacity(d->disk, sectors); 969 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 970 971 d->disk->major = bcache_major; 972 d->disk->first_minor = idx_to_first_minor(idx); 973 d->disk->minors = BCACHE_MINORS; 974 d->disk->fops = ops; 975 d->disk->private_data = d; 976 return 0; 977 978 out_bioset_exit: 979 bioset_exit(&d->bio_split); 980 out_ida_remove: 981 ida_free(&bcache_device_idx, idx); 982 out_free_full_dirty_stripes: 983 kvfree(d->full_dirty_stripes); 984 out_free_stripe_sectors_dirty: 985 kvfree(d->stripe_sectors_dirty); 986 return -ENOMEM; 987 988 } 989 990 /* Cached device */ 991 992 static void calc_cached_dev_sectors(struct cache_set *c) 993 { 994 uint64_t sectors = 0; 995 struct cached_dev *dc; 996 997 list_for_each_entry(dc, &c->cached_devs, list) 998 sectors += bdev_nr_sectors(dc->bdev); 999 1000 c->cached_dev_sectors = sectors; 1001 } 1002 1003 #define BACKING_DEV_OFFLINE_TIMEOUT 5 1004 static int cached_dev_status_update(void *arg) 1005 { 1006 struct cached_dev *dc = arg; 1007 struct request_queue *q; 1008 1009 /* 1010 * If this delayed worker is stopping outside, directly quit here. 1011 * dc->io_disable might be set via sysfs interface, so check it 1012 * here too. 1013 */ 1014 while (!kthread_should_stop() && !dc->io_disable) { 1015 q = bdev_get_queue(dc->bdev); 1016 if (blk_queue_dying(q)) 1017 dc->offline_seconds++; 1018 else 1019 dc->offline_seconds = 0; 1020 1021 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1022 pr_err("%pg: device offline for %d seconds\n", 1023 dc->bdev, 1024 BACKING_DEV_OFFLINE_TIMEOUT); 1025 pr_err("%s: disable I/O request due to backing device offline\n", 1026 dc->disk.name); 1027 dc->io_disable = true; 1028 /* let others know earlier that io_disable is true */ 1029 smp_mb(); 1030 bcache_device_stop(&dc->disk); 1031 break; 1032 } 1033 schedule_timeout_interruptible(HZ); 1034 } 1035 1036 wait_for_kthread_stop(); 1037 return 0; 1038 } 1039 1040 1041 int bch_cached_dev_run(struct cached_dev *dc) 1042 { 1043 int ret = 0; 1044 struct bcache_device *d = &dc->disk; 1045 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1046 char *env[] = { 1047 "DRIVER=bcache", 1048 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1049 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1050 NULL, 1051 }; 1052 1053 if (dc->io_disable) { 1054 pr_err("I/O disabled on cached dev %pg\n", dc->bdev); 1055 ret = -EIO; 1056 goto out; 1057 } 1058 1059 if (atomic_xchg(&dc->running, 1)) { 1060 pr_info("cached dev %pg is running already\n", dc->bdev); 1061 ret = -EBUSY; 1062 goto out; 1063 } 1064 1065 if (!d->c && 1066 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1067 struct closure cl; 1068 1069 closure_init_stack(&cl); 1070 1071 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1072 bch_write_bdev_super(dc, &cl); 1073 closure_sync(&cl); 1074 } 1075 1076 ret = add_disk(d->disk); 1077 if (ret) 1078 goto out; 1079 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1080 /* 1081 * won't show up in the uevent file, use udevadm monitor -e instead 1082 * only class / kset properties are persistent 1083 */ 1084 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1085 1086 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1087 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1088 &d->kobj, "bcache")) { 1089 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1090 ret = -ENOMEM; 1091 goto out; 1092 } 1093 1094 dc->status_update_thread = kthread_run(cached_dev_status_update, 1095 dc, "bcache_status_update"); 1096 if (IS_ERR(dc->status_update_thread)) { 1097 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1098 } 1099 1100 out: 1101 kfree(env[1]); 1102 kfree(env[2]); 1103 kfree(buf); 1104 return ret; 1105 } 1106 1107 /* 1108 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1109 * work dc->writeback_rate_update is running. Wait until the routine 1110 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1111 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1112 * seconds, give up waiting here and continue to cancel it too. 1113 */ 1114 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1115 { 1116 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1117 1118 do { 1119 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1120 &dc->disk.flags)) 1121 break; 1122 time_out--; 1123 schedule_timeout_interruptible(1); 1124 } while (time_out > 0); 1125 1126 if (time_out == 0) 1127 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1128 1129 cancel_delayed_work_sync(&dc->writeback_rate_update); 1130 } 1131 1132 static void cached_dev_detach_finish(struct work_struct *w) 1133 { 1134 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1135 struct cache_set *c = dc->disk.c; 1136 1137 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1138 BUG_ON(refcount_read(&dc->count)); 1139 1140 1141 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1142 cancel_writeback_rate_update_dwork(dc); 1143 1144 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1145 kthread_stop(dc->writeback_thread); 1146 dc->writeback_thread = NULL; 1147 } 1148 1149 mutex_lock(&bch_register_lock); 1150 1151 bcache_device_detach(&dc->disk); 1152 list_move(&dc->list, &uncached_devices); 1153 calc_cached_dev_sectors(c); 1154 1155 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1156 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1157 1158 mutex_unlock(&bch_register_lock); 1159 1160 pr_info("Caching disabled for %pg\n", dc->bdev); 1161 1162 /* Drop ref we took in cached_dev_detach() */ 1163 closure_put(&dc->disk.cl); 1164 } 1165 1166 void bch_cached_dev_detach(struct cached_dev *dc) 1167 { 1168 lockdep_assert_held(&bch_register_lock); 1169 1170 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1171 return; 1172 1173 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1174 return; 1175 1176 /* 1177 * Block the device from being closed and freed until we're finished 1178 * detaching 1179 */ 1180 closure_get(&dc->disk.cl); 1181 1182 bch_writeback_queue(dc); 1183 1184 cached_dev_put(dc); 1185 } 1186 1187 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1188 uint8_t *set_uuid) 1189 { 1190 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1191 struct uuid_entry *u; 1192 struct cached_dev *exist_dc, *t; 1193 int ret = 0; 1194 1195 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1196 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1197 return -ENOENT; 1198 1199 if (dc->disk.c) { 1200 pr_err("Can't attach %pg: already attached\n", dc->bdev); 1201 return -EINVAL; 1202 } 1203 1204 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1205 pr_err("Can't attach %pg: shutting down\n", dc->bdev); 1206 return -EINVAL; 1207 } 1208 1209 if (dc->sb.block_size < c->cache->sb.block_size) { 1210 /* Will die */ 1211 pr_err("Couldn't attach %pg: block size less than set's block size\n", 1212 dc->bdev); 1213 return -EINVAL; 1214 } 1215 1216 /* Check whether already attached */ 1217 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1218 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1219 pr_err("Tried to attach %pg but duplicate UUID already attached\n", 1220 dc->bdev); 1221 1222 return -EINVAL; 1223 } 1224 } 1225 1226 u = uuid_find(c, dc->sb.uuid); 1227 1228 if (u && 1229 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1230 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1231 memcpy(u->uuid, invalid_uuid, 16); 1232 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1233 u = NULL; 1234 } 1235 1236 if (!u) { 1237 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1238 pr_err("Couldn't find uuid for %pg in set\n", dc->bdev); 1239 return -ENOENT; 1240 } 1241 1242 u = uuid_find_empty(c); 1243 if (!u) { 1244 pr_err("Not caching %pg, no room for UUID\n", dc->bdev); 1245 return -EINVAL; 1246 } 1247 } 1248 1249 /* 1250 * Deadlocks since we're called via sysfs... 1251 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1252 */ 1253 1254 if (bch_is_zero(u->uuid, 16)) { 1255 struct closure cl; 1256 1257 closure_init_stack(&cl); 1258 1259 memcpy(u->uuid, dc->sb.uuid, 16); 1260 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1261 u->first_reg = u->last_reg = rtime; 1262 bch_uuid_write(c); 1263 1264 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1265 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1266 1267 bch_write_bdev_super(dc, &cl); 1268 closure_sync(&cl); 1269 } else { 1270 u->last_reg = rtime; 1271 bch_uuid_write(c); 1272 } 1273 1274 bcache_device_attach(&dc->disk, c, u - c->uuids); 1275 list_move(&dc->list, &c->cached_devs); 1276 calc_cached_dev_sectors(c); 1277 1278 /* 1279 * dc->c must be set before dc->count != 0 - paired with the mb in 1280 * cached_dev_get() 1281 */ 1282 smp_wmb(); 1283 refcount_set(&dc->count, 1); 1284 1285 /* Block writeback thread, but spawn it */ 1286 down_write(&dc->writeback_lock); 1287 if (bch_cached_dev_writeback_start(dc)) { 1288 up_write(&dc->writeback_lock); 1289 pr_err("Couldn't start writeback facilities for %s\n", 1290 dc->disk.disk->disk_name); 1291 return -ENOMEM; 1292 } 1293 1294 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1295 atomic_set(&dc->has_dirty, 1); 1296 bch_writeback_queue(dc); 1297 } 1298 1299 bch_sectors_dirty_init(&dc->disk); 1300 1301 ret = bch_cached_dev_run(dc); 1302 if (ret && (ret != -EBUSY)) { 1303 up_write(&dc->writeback_lock); 1304 /* 1305 * bch_register_lock is held, bcache_device_stop() is not 1306 * able to be directly called. The kthread and kworker 1307 * created previously in bch_cached_dev_writeback_start() 1308 * have to be stopped manually here. 1309 */ 1310 kthread_stop(dc->writeback_thread); 1311 cancel_writeback_rate_update_dwork(dc); 1312 pr_err("Couldn't run cached device %pg\n", dc->bdev); 1313 return ret; 1314 } 1315 1316 bcache_device_link(&dc->disk, c, "bdev"); 1317 atomic_inc(&c->attached_dev_nr); 1318 1319 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1320 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1321 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1322 set_disk_ro(dc->disk.disk, 1); 1323 } 1324 1325 /* Allow the writeback thread to proceed */ 1326 up_write(&dc->writeback_lock); 1327 1328 pr_info("Caching %pg as %s on set %pU\n", 1329 dc->bdev, 1330 dc->disk.disk->disk_name, 1331 dc->disk.c->set_uuid); 1332 return 0; 1333 } 1334 1335 /* when dc->disk.kobj released */ 1336 void bch_cached_dev_release(struct kobject *kobj) 1337 { 1338 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1339 disk.kobj); 1340 kfree(dc); 1341 module_put(THIS_MODULE); 1342 } 1343 1344 static CLOSURE_CALLBACK(cached_dev_free) 1345 { 1346 closure_type(dc, struct cached_dev, disk.cl); 1347 1348 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1349 cancel_writeback_rate_update_dwork(dc); 1350 1351 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1352 kthread_stop(dc->writeback_thread); 1353 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1354 kthread_stop(dc->status_update_thread); 1355 1356 mutex_lock(&bch_register_lock); 1357 1358 if (atomic_read(&dc->running)) { 1359 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1360 del_gendisk(dc->disk.disk); 1361 } 1362 bcache_device_free(&dc->disk); 1363 list_del(&dc->list); 1364 1365 mutex_unlock(&bch_register_lock); 1366 1367 if (dc->sb_disk) 1368 put_page(virt_to_page(dc->sb_disk)); 1369 1370 if (dc->bdev_file) 1371 fput(dc->bdev_file); 1372 1373 wake_up(&unregister_wait); 1374 1375 kobject_put(&dc->disk.kobj); 1376 } 1377 1378 static CLOSURE_CALLBACK(cached_dev_flush) 1379 { 1380 closure_type(dc, struct cached_dev, disk.cl); 1381 struct bcache_device *d = &dc->disk; 1382 1383 mutex_lock(&bch_register_lock); 1384 bcache_device_unlink(d); 1385 mutex_unlock(&bch_register_lock); 1386 1387 bch_cache_accounting_destroy(&dc->accounting); 1388 kobject_del(&d->kobj); 1389 1390 continue_at(cl, cached_dev_free, system_wq); 1391 } 1392 1393 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1394 { 1395 int ret; 1396 struct io *io; 1397 struct request_queue *q = bdev_get_queue(dc->bdev); 1398 1399 __module_get(THIS_MODULE); 1400 INIT_LIST_HEAD(&dc->list); 1401 closure_init(&dc->disk.cl, NULL); 1402 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1403 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1404 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1405 sema_init(&dc->sb_write_mutex, 1); 1406 INIT_LIST_HEAD(&dc->io_lru); 1407 spin_lock_init(&dc->io_lock); 1408 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1409 1410 dc->sequential_cutoff = 4 << 20; 1411 1412 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1413 list_add(&io->lru, &dc->io_lru); 1414 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1415 } 1416 1417 if (bdev_io_opt(dc->bdev)) 1418 dc->partial_stripes_expensive = !!(q->limits.features & 1419 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE); 1420 1421 ret = bcache_device_init(&dc->disk, block_size, 1422 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1423 dc->bdev, &bcache_cached_ops); 1424 if (ret) 1425 return ret; 1426 1427 atomic_set(&dc->io_errors, 0); 1428 dc->io_disable = false; 1429 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1430 /* default to auto */ 1431 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1432 1433 bch_cached_dev_request_init(dc); 1434 bch_cached_dev_writeback_init(dc); 1435 return 0; 1436 } 1437 1438 /* Cached device - bcache superblock */ 1439 1440 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1441 struct file *bdev_file, 1442 struct cached_dev *dc) 1443 { 1444 const char *err = "cannot allocate memory"; 1445 struct cache_set *c; 1446 int ret = -ENOMEM; 1447 1448 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1449 dc->bdev_file = bdev_file; 1450 dc->bdev = file_bdev(bdev_file); 1451 dc->sb_disk = sb_disk; 1452 1453 if (cached_dev_init(dc, sb->block_size << 9)) 1454 goto err; 1455 1456 err = "error creating kobject"; 1457 if (kobject_add(&dc->disk.kobj, bdev_kobj(dc->bdev), "bcache")) 1458 goto err; 1459 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1460 goto err; 1461 1462 pr_info("registered backing device %pg\n", dc->bdev); 1463 1464 list_add(&dc->list, &uncached_devices); 1465 /* attach to a matched cache set if it exists */ 1466 list_for_each_entry(c, &bch_cache_sets, list) 1467 bch_cached_dev_attach(dc, c, NULL); 1468 1469 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1470 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1471 err = "failed to run cached device"; 1472 ret = bch_cached_dev_run(dc); 1473 if (ret) 1474 goto err; 1475 } 1476 1477 return 0; 1478 err: 1479 pr_notice("error %pg: %s\n", dc->bdev, err); 1480 bcache_device_stop(&dc->disk); 1481 return ret; 1482 } 1483 1484 /* Flash only volumes */ 1485 1486 /* When d->kobj released */ 1487 void bch_flash_dev_release(struct kobject *kobj) 1488 { 1489 struct bcache_device *d = container_of(kobj, struct bcache_device, 1490 kobj); 1491 kfree(d); 1492 } 1493 1494 static CLOSURE_CALLBACK(flash_dev_free) 1495 { 1496 closure_type(d, struct bcache_device, cl); 1497 1498 mutex_lock(&bch_register_lock); 1499 atomic_long_sub(bcache_dev_sectors_dirty(d), 1500 &d->c->flash_dev_dirty_sectors); 1501 del_gendisk(d->disk); 1502 bcache_device_free(d); 1503 mutex_unlock(&bch_register_lock); 1504 kobject_put(&d->kobj); 1505 } 1506 1507 static CLOSURE_CALLBACK(flash_dev_flush) 1508 { 1509 closure_type(d, struct bcache_device, cl); 1510 1511 mutex_lock(&bch_register_lock); 1512 bcache_device_unlink(d); 1513 mutex_unlock(&bch_register_lock); 1514 kobject_del(&d->kobj); 1515 continue_at(cl, flash_dev_free, system_wq); 1516 } 1517 1518 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1519 { 1520 int err = -ENOMEM; 1521 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1522 GFP_KERNEL); 1523 if (!d) 1524 goto err_ret; 1525 1526 closure_init(&d->cl, NULL); 1527 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1528 1529 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1530 1531 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1532 NULL, &bcache_flash_ops)) 1533 goto err; 1534 1535 bcache_device_attach(d, c, u - c->uuids); 1536 bch_sectors_dirty_init(d); 1537 bch_flash_dev_request_init(d); 1538 err = add_disk(d->disk); 1539 if (err) 1540 goto err; 1541 1542 err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"); 1543 if (err) 1544 goto err; 1545 1546 bcache_device_link(d, c, "volume"); 1547 1548 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1549 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1550 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1551 set_disk_ro(d->disk, 1); 1552 } 1553 1554 return 0; 1555 err: 1556 kobject_put(&d->kobj); 1557 err_ret: 1558 return err; 1559 } 1560 1561 static int flash_devs_run(struct cache_set *c) 1562 { 1563 int ret = 0; 1564 struct uuid_entry *u; 1565 1566 for (u = c->uuids; 1567 u < c->uuids + c->nr_uuids && !ret; 1568 u++) 1569 if (UUID_FLASH_ONLY(u)) 1570 ret = flash_dev_run(c, u); 1571 1572 return ret; 1573 } 1574 1575 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1576 { 1577 struct uuid_entry *u; 1578 1579 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1580 return -EINTR; 1581 1582 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1583 return -EPERM; 1584 1585 u = uuid_find_empty(c); 1586 if (!u) { 1587 pr_err("Can't create volume, no room for UUID\n"); 1588 return -EINVAL; 1589 } 1590 1591 get_random_bytes(u->uuid, 16); 1592 memset(u->label, 0, 32); 1593 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1594 1595 SET_UUID_FLASH_ONLY(u, 1); 1596 u->sectors = size >> 9; 1597 1598 bch_uuid_write(c); 1599 1600 return flash_dev_run(c, u); 1601 } 1602 1603 bool bch_cached_dev_error(struct cached_dev *dc) 1604 { 1605 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1606 return false; 1607 1608 dc->io_disable = true; 1609 /* make others know io_disable is true earlier */ 1610 smp_mb(); 1611 1612 pr_err("stop %s: too many IO errors on backing device %pg\n", 1613 dc->disk.disk->disk_name, dc->bdev); 1614 1615 bcache_device_stop(&dc->disk); 1616 return true; 1617 } 1618 1619 /* Cache set */ 1620 1621 __printf(2, 3) 1622 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1623 { 1624 struct va_format vaf; 1625 va_list args; 1626 1627 if (c->on_error != ON_ERROR_PANIC && 1628 test_bit(CACHE_SET_STOPPING, &c->flags)) 1629 return false; 1630 1631 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1632 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1633 1634 /* 1635 * XXX: we can be called from atomic context 1636 * acquire_console_sem(); 1637 */ 1638 1639 va_start(args, fmt); 1640 1641 vaf.fmt = fmt; 1642 vaf.va = &args; 1643 1644 pr_err("error on %pU: %pV, disabling caching\n", 1645 c->set_uuid, &vaf); 1646 1647 va_end(args); 1648 1649 if (c->on_error == ON_ERROR_PANIC) 1650 panic("panic forced after error\n"); 1651 1652 bch_cache_set_unregister(c); 1653 return true; 1654 } 1655 1656 /* When c->kobj released */ 1657 void bch_cache_set_release(struct kobject *kobj) 1658 { 1659 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1660 1661 kfree(c); 1662 module_put(THIS_MODULE); 1663 } 1664 1665 static CLOSURE_CALLBACK(cache_set_free) 1666 { 1667 closure_type(c, struct cache_set, cl); 1668 struct cache *ca; 1669 1670 debugfs_remove(c->debug); 1671 1672 bch_open_buckets_free(c); 1673 bch_btree_cache_free(c); 1674 bch_journal_free(c); 1675 1676 mutex_lock(&bch_register_lock); 1677 bch_bset_sort_state_free(&c->sort); 1678 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1679 1680 ca = c->cache; 1681 if (ca) { 1682 ca->set = NULL; 1683 c->cache = NULL; 1684 kobject_put(&ca->kobj); 1685 } 1686 1687 1688 if (c->moving_gc_wq) 1689 destroy_workqueue(c->moving_gc_wq); 1690 bioset_exit(&c->bio_split); 1691 mempool_exit(&c->fill_iter); 1692 mempool_exit(&c->bio_meta); 1693 mempool_exit(&c->search); 1694 kfree(c->devices); 1695 1696 list_del(&c->list); 1697 mutex_unlock(&bch_register_lock); 1698 1699 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1700 wake_up(&unregister_wait); 1701 1702 closure_debug_destroy(&c->cl); 1703 kobject_put(&c->kobj); 1704 } 1705 1706 static CLOSURE_CALLBACK(cache_set_flush) 1707 { 1708 closure_type(c, struct cache_set, caching); 1709 struct cache *ca = c->cache; 1710 struct btree *b; 1711 1712 bch_cache_accounting_destroy(&c->accounting); 1713 1714 kobject_put(&c->internal); 1715 kobject_del(&c->kobj); 1716 1717 if (!IS_ERR_OR_NULL(c->gc_thread)) 1718 kthread_stop(c->gc_thread); 1719 1720 if (!IS_ERR_OR_NULL(c->root)) 1721 list_add(&c->root->list, &c->btree_cache); 1722 1723 /* 1724 * Avoid flushing cached nodes if cache set is retiring 1725 * due to too many I/O errors detected. 1726 */ 1727 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1728 list_for_each_entry(b, &c->btree_cache, list) { 1729 mutex_lock(&b->write_lock); 1730 if (btree_node_dirty(b)) 1731 __bch_btree_node_write(b, NULL); 1732 mutex_unlock(&b->write_lock); 1733 } 1734 1735 if (ca->alloc_thread) 1736 kthread_stop(ca->alloc_thread); 1737 1738 if (c->journal.cur) { 1739 cancel_delayed_work_sync(&c->journal.work); 1740 /* flush last journal entry if needed */ 1741 c->journal.work.work.func(&c->journal.work.work); 1742 } 1743 1744 closure_return(cl); 1745 } 1746 1747 /* 1748 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1749 * cache set is unregistering due to too many I/O errors. In this condition, 1750 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1751 * value and whether the broken cache has dirty data: 1752 * 1753 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1754 * BCH_CACHED_STOP_AUTO 0 NO 1755 * BCH_CACHED_STOP_AUTO 1 YES 1756 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1757 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1758 * 1759 * The expected behavior is, if stop_when_cache_set_failed is configured to 1760 * "auto" via sysfs interface, the bcache device will not be stopped if the 1761 * backing device is clean on the broken cache device. 1762 */ 1763 static void conditional_stop_bcache_device(struct cache_set *c, 1764 struct bcache_device *d, 1765 struct cached_dev *dc) 1766 { 1767 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1768 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1769 d->disk->disk_name, c->set_uuid); 1770 bcache_device_stop(d); 1771 } else if (atomic_read(&dc->has_dirty)) { 1772 /* 1773 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1774 * and dc->has_dirty == 1 1775 */ 1776 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1777 d->disk->disk_name); 1778 /* 1779 * There might be a small time gap that cache set is 1780 * released but bcache device is not. Inside this time 1781 * gap, regular I/O requests will directly go into 1782 * backing device as no cache set attached to. This 1783 * behavior may also introduce potential inconsistence 1784 * data in writeback mode while cache is dirty. 1785 * Therefore before calling bcache_device_stop() due 1786 * to a broken cache device, dc->io_disable should be 1787 * explicitly set to true. 1788 */ 1789 dc->io_disable = true; 1790 /* make others know io_disable is true earlier */ 1791 smp_mb(); 1792 bcache_device_stop(d); 1793 } else { 1794 /* 1795 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1796 * and dc->has_dirty == 0 1797 */ 1798 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1799 d->disk->disk_name); 1800 } 1801 } 1802 1803 static CLOSURE_CALLBACK(__cache_set_unregister) 1804 { 1805 closure_type(c, struct cache_set, caching); 1806 struct cached_dev *dc; 1807 struct bcache_device *d; 1808 size_t i; 1809 1810 mutex_lock(&bch_register_lock); 1811 1812 for (i = 0; i < c->devices_max_used; i++) { 1813 d = c->devices[i]; 1814 if (!d) 1815 continue; 1816 1817 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1818 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1819 dc = container_of(d, struct cached_dev, disk); 1820 bch_cached_dev_detach(dc); 1821 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1822 conditional_stop_bcache_device(c, d, dc); 1823 } else { 1824 bcache_device_stop(d); 1825 } 1826 } 1827 1828 mutex_unlock(&bch_register_lock); 1829 1830 continue_at(cl, cache_set_flush, system_wq); 1831 } 1832 1833 void bch_cache_set_stop(struct cache_set *c) 1834 { 1835 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1836 /* closure_fn set to __cache_set_unregister() */ 1837 closure_queue(&c->caching); 1838 } 1839 1840 void bch_cache_set_unregister(struct cache_set *c) 1841 { 1842 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1843 bch_cache_set_stop(c); 1844 } 1845 1846 #define alloc_meta_bucket_pages(gfp, sb) \ 1847 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1848 1849 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1850 { 1851 int iter_size; 1852 struct cache *ca = container_of(sb, struct cache, sb); 1853 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1854 1855 if (!c) 1856 return NULL; 1857 1858 __module_get(THIS_MODULE); 1859 closure_init(&c->cl, NULL); 1860 set_closure_fn(&c->cl, cache_set_free, system_wq); 1861 1862 closure_init(&c->caching, &c->cl); 1863 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1864 1865 /* Maybe create continue_at_noreturn() and use it here? */ 1866 closure_set_stopped(&c->cl); 1867 closure_put(&c->cl); 1868 1869 kobject_init(&c->kobj, &bch_cache_set_ktype); 1870 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1871 1872 bch_cache_accounting_init(&c->accounting, &c->cl); 1873 1874 memcpy(c->set_uuid, sb->set_uuid, 16); 1875 1876 c->cache = ca; 1877 c->cache->set = c; 1878 c->bucket_bits = ilog2(sb->bucket_size); 1879 c->block_bits = ilog2(sb->block_size); 1880 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1881 c->devices_max_used = 0; 1882 atomic_set(&c->attached_dev_nr, 0); 1883 c->btree_pages = meta_bucket_pages(sb); 1884 if (c->btree_pages > BTREE_MAX_PAGES) 1885 c->btree_pages = max_t(int, c->btree_pages / 4, 1886 BTREE_MAX_PAGES); 1887 1888 sema_init(&c->sb_write_mutex, 1); 1889 mutex_init(&c->bucket_lock); 1890 init_waitqueue_head(&c->btree_cache_wait); 1891 spin_lock_init(&c->btree_cannibalize_lock); 1892 init_waitqueue_head(&c->bucket_wait); 1893 init_waitqueue_head(&c->gc_wait); 1894 sema_init(&c->uuid_write_mutex, 1); 1895 1896 spin_lock_init(&c->btree_gc_time.lock); 1897 spin_lock_init(&c->btree_split_time.lock); 1898 spin_lock_init(&c->btree_read_time.lock); 1899 1900 bch_moving_init_cache_set(c); 1901 1902 INIT_LIST_HEAD(&c->list); 1903 INIT_LIST_HEAD(&c->cached_devs); 1904 INIT_LIST_HEAD(&c->btree_cache); 1905 INIT_LIST_HEAD(&c->btree_cache_freeable); 1906 INIT_LIST_HEAD(&c->btree_cache_freed); 1907 INIT_LIST_HEAD(&c->data_buckets); 1908 1909 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size) * 1910 sizeof(struct btree_iter_set); 1911 1912 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1913 if (!c->devices) 1914 goto err; 1915 1916 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1917 goto err; 1918 1919 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1920 sizeof(struct bbio) + 1921 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1922 goto err; 1923 1924 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1925 goto err; 1926 1927 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1928 BIOSET_NEED_RESCUER)) 1929 goto err; 1930 1931 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1932 if (!c->uuids) 1933 goto err; 1934 1935 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1936 if (!c->moving_gc_wq) 1937 goto err; 1938 1939 if (bch_journal_alloc(c)) 1940 goto err; 1941 1942 if (bch_btree_cache_alloc(c)) 1943 goto err; 1944 1945 if (bch_open_buckets_alloc(c)) 1946 goto err; 1947 1948 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1949 goto err; 1950 1951 c->congested_read_threshold_us = 2000; 1952 c->congested_write_threshold_us = 20000; 1953 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1954 c->idle_max_writeback_rate_enabled = 1; 1955 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1956 1957 return c; 1958 err: 1959 bch_cache_set_unregister(c); 1960 return NULL; 1961 } 1962 1963 static int run_cache_set(struct cache_set *c) 1964 { 1965 const char *err = "cannot allocate memory"; 1966 struct cached_dev *dc, *t; 1967 struct cache *ca = c->cache; 1968 struct closure cl; 1969 LIST_HEAD(journal); 1970 struct journal_replay *l; 1971 1972 closure_init_stack(&cl); 1973 1974 c->nbuckets = ca->sb.nbuckets; 1975 set_gc_sectors(c); 1976 1977 if (CACHE_SYNC(&c->cache->sb)) { 1978 struct bkey *k; 1979 struct jset *j; 1980 1981 err = "cannot allocate memory for journal"; 1982 if (bch_journal_read(c, &journal)) 1983 goto err; 1984 1985 pr_debug("btree_journal_read() done\n"); 1986 1987 err = "no journal entries found"; 1988 if (list_empty(&journal)) 1989 goto err; 1990 1991 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1992 1993 err = "IO error reading priorities"; 1994 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 1995 goto err; 1996 1997 /* 1998 * If prio_read() fails it'll call cache_set_error and we'll 1999 * tear everything down right away, but if we perhaps checked 2000 * sooner we could avoid journal replay. 2001 */ 2002 2003 k = &j->btree_root; 2004 2005 err = "bad btree root"; 2006 if (__bch_btree_ptr_invalid(c, k)) 2007 goto err; 2008 2009 err = "error reading btree root"; 2010 c->root = bch_btree_node_get(c, NULL, k, 2011 j->btree_level, 2012 true, NULL); 2013 if (IS_ERR(c->root)) 2014 goto err; 2015 2016 list_del_init(&c->root->list); 2017 rw_unlock(true, c->root); 2018 2019 err = uuid_read(c, j, &cl); 2020 if (err) 2021 goto err; 2022 2023 err = "error in recovery"; 2024 if (bch_btree_check(c)) 2025 goto err; 2026 2027 bch_journal_mark(c, &journal); 2028 bch_initial_gc_finish(c); 2029 pr_debug("btree_check() done\n"); 2030 2031 /* 2032 * bcache_journal_next() can't happen sooner, or 2033 * btree_gc_finish() will give spurious errors about last_gc > 2034 * gc_gen - this is a hack but oh well. 2035 */ 2036 bch_journal_next(&c->journal); 2037 2038 err = "error starting allocator thread"; 2039 if (bch_cache_allocator_start(ca)) 2040 goto err; 2041 2042 /* 2043 * First place it's safe to allocate: btree_check() and 2044 * btree_gc_finish() have to run before we have buckets to 2045 * allocate, and bch_bucket_alloc_set() might cause a journal 2046 * entry to be written so bcache_journal_next() has to be called 2047 * first. 2048 * 2049 * If the uuids were in the old format we have to rewrite them 2050 * before the next journal entry is written: 2051 */ 2052 if (j->version < BCACHE_JSET_VERSION_UUID) 2053 __uuid_write(c); 2054 2055 err = "bcache: replay journal failed"; 2056 if (bch_journal_replay(c, &journal)) 2057 goto err; 2058 } else { 2059 unsigned int j; 2060 2061 pr_notice("invalidating existing data\n"); 2062 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2063 2, SB_JOURNAL_BUCKETS); 2064 2065 for (j = 0; j < ca->sb.keys; j++) 2066 ca->sb.d[j] = ca->sb.first_bucket + j; 2067 2068 bch_initial_gc_finish(c); 2069 2070 err = "error starting allocator thread"; 2071 if (bch_cache_allocator_start(ca)) 2072 goto err; 2073 2074 mutex_lock(&c->bucket_lock); 2075 bch_prio_write(ca, true); 2076 mutex_unlock(&c->bucket_lock); 2077 2078 err = "cannot allocate new UUID bucket"; 2079 if (__uuid_write(c)) 2080 goto err; 2081 2082 err = "cannot allocate new btree root"; 2083 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2084 if (IS_ERR(c->root)) 2085 goto err; 2086 2087 mutex_lock(&c->root->write_lock); 2088 bkey_copy_key(&c->root->key, &MAX_KEY); 2089 bch_btree_node_write(c->root, &cl); 2090 mutex_unlock(&c->root->write_lock); 2091 2092 bch_btree_set_root(c->root); 2093 rw_unlock(true, c->root); 2094 2095 /* 2096 * We don't want to write the first journal entry until 2097 * everything is set up - fortunately journal entries won't be 2098 * written until the SET_CACHE_SYNC() here: 2099 */ 2100 SET_CACHE_SYNC(&c->cache->sb, true); 2101 2102 bch_journal_next(&c->journal); 2103 bch_journal_meta(c, &cl); 2104 } 2105 2106 err = "error starting gc thread"; 2107 if (bch_gc_thread_start(c)) 2108 goto err; 2109 2110 closure_sync(&cl); 2111 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2112 bcache_write_super(c); 2113 2114 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2115 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2116 2117 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2118 bch_cached_dev_attach(dc, c, NULL); 2119 2120 flash_devs_run(c); 2121 2122 bch_journal_space_reserve(&c->journal); 2123 set_bit(CACHE_SET_RUNNING, &c->flags); 2124 return 0; 2125 err: 2126 while (!list_empty(&journal)) { 2127 l = list_first_entry(&journal, struct journal_replay, list); 2128 list_del(&l->list); 2129 kfree(l); 2130 } 2131 2132 closure_sync(&cl); 2133 2134 bch_cache_set_error(c, "%s", err); 2135 2136 return -EIO; 2137 } 2138 2139 static const char *register_cache_set(struct cache *ca) 2140 { 2141 char buf[12]; 2142 const char *err = "cannot allocate memory"; 2143 struct cache_set *c; 2144 2145 list_for_each_entry(c, &bch_cache_sets, list) 2146 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2147 if (c->cache) 2148 return "duplicate cache set member"; 2149 2150 goto found; 2151 } 2152 2153 c = bch_cache_set_alloc(&ca->sb); 2154 if (!c) 2155 return err; 2156 2157 err = "error creating kobject"; 2158 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2159 kobject_add(&c->internal, &c->kobj, "internal")) 2160 goto err; 2161 2162 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2163 goto err; 2164 2165 bch_debug_init_cache_set(c); 2166 2167 list_add(&c->list, &bch_cache_sets); 2168 found: 2169 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2170 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2171 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2172 goto err; 2173 2174 kobject_get(&ca->kobj); 2175 ca->set = c; 2176 ca->set->cache = ca; 2177 2178 err = "failed to run cache set"; 2179 if (run_cache_set(c) < 0) 2180 goto err; 2181 2182 return NULL; 2183 err: 2184 bch_cache_set_unregister(c); 2185 return err; 2186 } 2187 2188 /* Cache device */ 2189 2190 /* When ca->kobj released */ 2191 void bch_cache_release(struct kobject *kobj) 2192 { 2193 struct cache *ca = container_of(kobj, struct cache, kobj); 2194 unsigned int i; 2195 2196 if (ca->set) { 2197 BUG_ON(ca->set->cache != ca); 2198 ca->set->cache = NULL; 2199 } 2200 2201 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2202 kfree(ca->prio_buckets); 2203 vfree(ca->buckets); 2204 2205 free_heap(&ca->heap); 2206 free_fifo(&ca->free_inc); 2207 2208 for (i = 0; i < RESERVE_NR; i++) 2209 free_fifo(&ca->free[i]); 2210 2211 if (ca->sb_disk) 2212 put_page(virt_to_page(ca->sb_disk)); 2213 2214 if (ca->bdev_file) 2215 fput(ca->bdev_file); 2216 2217 kfree(ca); 2218 module_put(THIS_MODULE); 2219 } 2220 2221 static int cache_alloc(struct cache *ca) 2222 { 2223 size_t free; 2224 size_t btree_buckets; 2225 struct bucket *b; 2226 int ret = -ENOMEM; 2227 const char *err = NULL; 2228 2229 __module_get(THIS_MODULE); 2230 kobject_init(&ca->kobj, &bch_cache_ktype); 2231 2232 bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0); 2233 2234 /* 2235 * when ca->sb.njournal_buckets is not zero, journal exists, 2236 * and in bch_journal_replay(), tree node may split, 2237 * so bucket of RESERVE_BTREE type is needed, 2238 * the worst situation is all journal buckets are valid journal, 2239 * and all the keys need to replay, 2240 * so the number of RESERVE_BTREE type buckets should be as much 2241 * as journal buckets 2242 */ 2243 btree_buckets = ca->sb.njournal_buckets ?: 8; 2244 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2245 if (!free) { 2246 ret = -EPERM; 2247 err = "ca->sb.nbuckets is too small"; 2248 goto err_free; 2249 } 2250 2251 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2252 GFP_KERNEL)) { 2253 err = "ca->free[RESERVE_BTREE] alloc failed"; 2254 goto err_btree_alloc; 2255 } 2256 2257 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2258 GFP_KERNEL)) { 2259 err = "ca->free[RESERVE_PRIO] alloc failed"; 2260 goto err_prio_alloc; 2261 } 2262 2263 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2264 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2265 goto err_movinggc_alloc; 2266 } 2267 2268 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2269 err = "ca->free[RESERVE_NONE] alloc failed"; 2270 goto err_none_alloc; 2271 } 2272 2273 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2274 err = "ca->free_inc alloc failed"; 2275 goto err_free_inc_alloc; 2276 } 2277 2278 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2279 err = "ca->heap alloc failed"; 2280 goto err_heap_alloc; 2281 } 2282 2283 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2284 ca->sb.nbuckets)); 2285 if (!ca->buckets) { 2286 err = "ca->buckets alloc failed"; 2287 goto err_buckets_alloc; 2288 } 2289 2290 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2291 prio_buckets(ca), 2), 2292 GFP_KERNEL); 2293 if (!ca->prio_buckets) { 2294 err = "ca->prio_buckets alloc failed"; 2295 goto err_prio_buckets_alloc; 2296 } 2297 2298 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2299 if (!ca->disk_buckets) { 2300 err = "ca->disk_buckets alloc failed"; 2301 goto err_disk_buckets_alloc; 2302 } 2303 2304 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2305 2306 for_each_bucket(b, ca) 2307 atomic_set(&b->pin, 0); 2308 return 0; 2309 2310 err_disk_buckets_alloc: 2311 kfree(ca->prio_buckets); 2312 err_prio_buckets_alloc: 2313 vfree(ca->buckets); 2314 err_buckets_alloc: 2315 free_heap(&ca->heap); 2316 err_heap_alloc: 2317 free_fifo(&ca->free_inc); 2318 err_free_inc_alloc: 2319 free_fifo(&ca->free[RESERVE_NONE]); 2320 err_none_alloc: 2321 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2322 err_movinggc_alloc: 2323 free_fifo(&ca->free[RESERVE_PRIO]); 2324 err_prio_alloc: 2325 free_fifo(&ca->free[RESERVE_BTREE]); 2326 err_btree_alloc: 2327 err_free: 2328 module_put(THIS_MODULE); 2329 if (err) 2330 pr_notice("error %pg: %s\n", ca->bdev, err); 2331 return ret; 2332 } 2333 2334 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2335 struct file *bdev_file, 2336 struct cache *ca) 2337 { 2338 const char *err = NULL; /* must be set for any error case */ 2339 int ret = 0; 2340 2341 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2342 ca->bdev_file = bdev_file; 2343 ca->bdev = file_bdev(bdev_file); 2344 ca->sb_disk = sb_disk; 2345 2346 if (bdev_max_discard_sectors(file_bdev(bdev_file))) 2347 ca->discard = CACHE_DISCARD(&ca->sb); 2348 2349 ret = cache_alloc(ca); 2350 if (ret != 0) { 2351 if (ret == -ENOMEM) 2352 err = "cache_alloc(): -ENOMEM"; 2353 else if (ret == -EPERM) 2354 err = "cache_alloc(): cache device is too small"; 2355 else 2356 err = "cache_alloc(): unknown error"; 2357 pr_notice("error %pg: %s\n", file_bdev(bdev_file), err); 2358 /* 2359 * If we failed here, it means ca->kobj is not initialized yet, 2360 * kobject_put() won't be called and there is no chance to 2361 * call fput() to bdev in bch_cache_release(). So 2362 * we explicitly call fput() on the block device here. 2363 */ 2364 fput(bdev_file); 2365 return ret; 2366 } 2367 2368 if (kobject_add(&ca->kobj, bdev_kobj(file_bdev(bdev_file)), "bcache")) { 2369 pr_notice("error %pg: error calling kobject_add\n", 2370 file_bdev(bdev_file)); 2371 ret = -ENOMEM; 2372 goto out; 2373 } 2374 2375 mutex_lock(&bch_register_lock); 2376 err = register_cache_set(ca); 2377 mutex_unlock(&bch_register_lock); 2378 2379 if (err) { 2380 ret = -ENODEV; 2381 goto out; 2382 } 2383 2384 pr_info("registered cache device %pg\n", file_bdev(ca->bdev_file)); 2385 2386 out: 2387 kobject_put(&ca->kobj); 2388 return ret; 2389 } 2390 2391 /* Global interfaces/init */ 2392 2393 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2394 const char *buffer, size_t size); 2395 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2396 struct kobj_attribute *attr, 2397 const char *buffer, size_t size); 2398 2399 kobj_attribute_write(register, register_bcache); 2400 kobj_attribute_write(register_quiet, register_bcache); 2401 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2402 2403 static bool bch_is_open_backing(dev_t dev) 2404 { 2405 struct cache_set *c, *tc; 2406 struct cached_dev *dc, *t; 2407 2408 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2409 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2410 if (dc->bdev->bd_dev == dev) 2411 return true; 2412 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2413 if (dc->bdev->bd_dev == dev) 2414 return true; 2415 return false; 2416 } 2417 2418 static bool bch_is_open_cache(dev_t dev) 2419 { 2420 struct cache_set *c, *tc; 2421 2422 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2423 struct cache *ca = c->cache; 2424 2425 if (ca->bdev->bd_dev == dev) 2426 return true; 2427 } 2428 2429 return false; 2430 } 2431 2432 static bool bch_is_open(dev_t dev) 2433 { 2434 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2435 } 2436 2437 struct async_reg_args { 2438 struct delayed_work reg_work; 2439 char *path; 2440 struct cache_sb *sb; 2441 struct cache_sb_disk *sb_disk; 2442 struct file *bdev_file; 2443 void *holder; 2444 }; 2445 2446 static void register_bdev_worker(struct work_struct *work) 2447 { 2448 int fail = false; 2449 struct async_reg_args *args = 2450 container_of(work, struct async_reg_args, reg_work.work); 2451 2452 mutex_lock(&bch_register_lock); 2453 if (register_bdev(args->sb, args->sb_disk, args->bdev_file, 2454 args->holder) < 0) 2455 fail = true; 2456 mutex_unlock(&bch_register_lock); 2457 2458 if (fail) 2459 pr_info("error %s: fail to register backing device\n", 2460 args->path); 2461 kfree(args->sb); 2462 kfree(args->path); 2463 kfree(args); 2464 module_put(THIS_MODULE); 2465 } 2466 2467 static void register_cache_worker(struct work_struct *work) 2468 { 2469 int fail = false; 2470 struct async_reg_args *args = 2471 container_of(work, struct async_reg_args, reg_work.work); 2472 2473 /* blkdev_put() will be called in bch_cache_release() */ 2474 if (register_cache(args->sb, args->sb_disk, args->bdev_file, 2475 args->holder)) 2476 fail = true; 2477 2478 if (fail) 2479 pr_info("error %s: fail to register cache device\n", 2480 args->path); 2481 kfree(args->sb); 2482 kfree(args->path); 2483 kfree(args); 2484 module_put(THIS_MODULE); 2485 } 2486 2487 static void register_device_async(struct async_reg_args *args) 2488 { 2489 if (SB_IS_BDEV(args->sb)) 2490 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2491 else 2492 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2493 2494 /* 10 jiffies is enough for a delay */ 2495 queue_delayed_work(system_wq, &args->reg_work, 10); 2496 } 2497 2498 static void *alloc_holder_object(struct cache_sb *sb) 2499 { 2500 if (SB_IS_BDEV(sb)) 2501 return kzalloc(sizeof(struct cached_dev), GFP_KERNEL); 2502 return kzalloc(sizeof(struct cache), GFP_KERNEL); 2503 } 2504 2505 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2506 const char *buffer, size_t size) 2507 { 2508 const char *err; 2509 char *path = NULL; 2510 struct cache_sb *sb; 2511 struct cache_sb_disk *sb_disk; 2512 struct file *bdev_file, *bdev_file2; 2513 void *holder = NULL; 2514 ssize_t ret; 2515 bool async_registration = false; 2516 bool quiet = false; 2517 2518 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2519 async_registration = true; 2520 #endif 2521 2522 ret = -EBUSY; 2523 err = "failed to reference bcache module"; 2524 if (!try_module_get(THIS_MODULE)) 2525 goto out; 2526 2527 /* For latest state of bcache_is_reboot */ 2528 smp_mb(); 2529 err = "bcache is in reboot"; 2530 if (bcache_is_reboot) 2531 goto out_module_put; 2532 2533 ret = -ENOMEM; 2534 err = "cannot allocate memory"; 2535 path = kstrndup(buffer, size, GFP_KERNEL); 2536 if (!path) 2537 goto out_module_put; 2538 2539 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2540 if (!sb) 2541 goto out_free_path; 2542 2543 ret = -EINVAL; 2544 err = "failed to open device"; 2545 bdev_file = bdev_file_open_by_path(strim(path), BLK_OPEN_READ, NULL, NULL); 2546 if (IS_ERR(bdev_file)) 2547 goto out_free_sb; 2548 2549 err = read_super(sb, file_bdev(bdev_file), &sb_disk); 2550 if (err) 2551 goto out_blkdev_put; 2552 2553 holder = alloc_holder_object(sb); 2554 if (!holder) { 2555 ret = -ENOMEM; 2556 err = "cannot allocate memory"; 2557 goto out_put_sb_page; 2558 } 2559 2560 /* Now reopen in exclusive mode with proper holder */ 2561 bdev_file2 = bdev_file_open_by_dev(file_bdev(bdev_file)->bd_dev, 2562 BLK_OPEN_READ | BLK_OPEN_WRITE, holder, NULL); 2563 fput(bdev_file); 2564 bdev_file = bdev_file2; 2565 if (IS_ERR(bdev_file)) { 2566 ret = PTR_ERR(bdev_file); 2567 bdev_file = NULL; 2568 if (ret == -EBUSY) { 2569 dev_t dev; 2570 2571 mutex_lock(&bch_register_lock); 2572 if (lookup_bdev(strim(path), &dev) == 0 && 2573 bch_is_open(dev)) 2574 err = "device already registered"; 2575 else 2576 err = "device busy"; 2577 mutex_unlock(&bch_register_lock); 2578 if (attr == &ksysfs_register_quiet) { 2579 quiet = true; 2580 ret = size; 2581 } 2582 } 2583 goto out_free_holder; 2584 } 2585 2586 err = "failed to register device"; 2587 2588 if (async_registration) { 2589 /* register in asynchronous way */ 2590 struct async_reg_args *args = 2591 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2592 2593 if (!args) { 2594 ret = -ENOMEM; 2595 err = "cannot allocate memory"; 2596 goto out_free_holder; 2597 } 2598 2599 args->path = path; 2600 args->sb = sb; 2601 args->sb_disk = sb_disk; 2602 args->bdev_file = bdev_file; 2603 args->holder = holder; 2604 register_device_async(args); 2605 /* No wait and returns to user space */ 2606 goto async_done; 2607 } 2608 2609 if (SB_IS_BDEV(sb)) { 2610 mutex_lock(&bch_register_lock); 2611 ret = register_bdev(sb, sb_disk, bdev_file, holder); 2612 mutex_unlock(&bch_register_lock); 2613 /* blkdev_put() will be called in cached_dev_free() */ 2614 if (ret < 0) 2615 goto out_free_sb; 2616 } else { 2617 /* blkdev_put() will be called in bch_cache_release() */ 2618 ret = register_cache(sb, sb_disk, bdev_file, holder); 2619 if (ret) 2620 goto out_free_sb; 2621 } 2622 2623 kfree(sb); 2624 kfree(path); 2625 module_put(THIS_MODULE); 2626 async_done: 2627 return size; 2628 2629 out_free_holder: 2630 kfree(holder); 2631 out_put_sb_page: 2632 put_page(virt_to_page(sb_disk)); 2633 out_blkdev_put: 2634 if (bdev_file) 2635 fput(bdev_file); 2636 out_free_sb: 2637 kfree(sb); 2638 out_free_path: 2639 kfree(path); 2640 path = NULL; 2641 out_module_put: 2642 module_put(THIS_MODULE); 2643 out: 2644 if (!quiet) 2645 pr_info("error %s: %s\n", path?path:"", err); 2646 return ret; 2647 } 2648 2649 2650 struct pdev { 2651 struct list_head list; 2652 struct cached_dev *dc; 2653 }; 2654 2655 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2656 struct kobj_attribute *attr, 2657 const char *buffer, 2658 size_t size) 2659 { 2660 LIST_HEAD(pending_devs); 2661 ssize_t ret = size; 2662 struct cached_dev *dc, *tdc; 2663 struct pdev *pdev, *tpdev; 2664 struct cache_set *c, *tc; 2665 2666 mutex_lock(&bch_register_lock); 2667 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2668 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2669 if (!pdev) 2670 break; 2671 pdev->dc = dc; 2672 list_add(&pdev->list, &pending_devs); 2673 } 2674 2675 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2676 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2677 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2678 char *set_uuid = c->set_uuid; 2679 2680 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2681 list_del(&pdev->list); 2682 kfree(pdev); 2683 break; 2684 } 2685 } 2686 } 2687 mutex_unlock(&bch_register_lock); 2688 2689 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2690 pr_info("delete pdev %p\n", pdev); 2691 list_del(&pdev->list); 2692 bcache_device_stop(&pdev->dc->disk); 2693 kfree(pdev); 2694 } 2695 2696 return ret; 2697 } 2698 2699 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2700 { 2701 if (bcache_is_reboot) 2702 return NOTIFY_DONE; 2703 2704 if (code == SYS_DOWN || 2705 code == SYS_HALT || 2706 code == SYS_POWER_OFF) { 2707 DEFINE_WAIT(wait); 2708 unsigned long start = jiffies; 2709 bool stopped = false; 2710 2711 struct cache_set *c, *tc; 2712 struct cached_dev *dc, *tdc; 2713 2714 mutex_lock(&bch_register_lock); 2715 2716 if (bcache_is_reboot) 2717 goto out; 2718 2719 /* New registration is rejected since now */ 2720 bcache_is_reboot = true; 2721 /* 2722 * Make registering caller (if there is) on other CPU 2723 * core know bcache_is_reboot set to true earlier 2724 */ 2725 smp_mb(); 2726 2727 if (list_empty(&bch_cache_sets) && 2728 list_empty(&uncached_devices)) 2729 goto out; 2730 2731 mutex_unlock(&bch_register_lock); 2732 2733 pr_info("Stopping all devices:\n"); 2734 2735 /* 2736 * The reason bch_register_lock is not held to call 2737 * bch_cache_set_stop() and bcache_device_stop() is to 2738 * avoid potential deadlock during reboot, because cache 2739 * set or bcache device stopping process will acquire 2740 * bch_register_lock too. 2741 * 2742 * We are safe here because bcache_is_reboot sets to 2743 * true already, register_bcache() will reject new 2744 * registration now. bcache_is_reboot also makes sure 2745 * bcache_reboot() won't be re-entered on by other thread, 2746 * so there is no race in following list iteration by 2747 * list_for_each_entry_safe(). 2748 */ 2749 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2750 bch_cache_set_stop(c); 2751 2752 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2753 bcache_device_stop(&dc->disk); 2754 2755 2756 /* 2757 * Give an early chance for other kthreads and 2758 * kworkers to stop themselves 2759 */ 2760 schedule(); 2761 2762 /* What's a condition variable? */ 2763 while (1) { 2764 long timeout = start + 10 * HZ - jiffies; 2765 2766 mutex_lock(&bch_register_lock); 2767 stopped = list_empty(&bch_cache_sets) && 2768 list_empty(&uncached_devices); 2769 2770 if (timeout < 0 || stopped) 2771 break; 2772 2773 prepare_to_wait(&unregister_wait, &wait, 2774 TASK_UNINTERRUPTIBLE); 2775 2776 mutex_unlock(&bch_register_lock); 2777 schedule_timeout(timeout); 2778 } 2779 2780 finish_wait(&unregister_wait, &wait); 2781 2782 if (stopped) 2783 pr_info("All devices stopped\n"); 2784 else 2785 pr_notice("Timeout waiting for devices to be closed\n"); 2786 out: 2787 mutex_unlock(&bch_register_lock); 2788 } 2789 2790 return NOTIFY_DONE; 2791 } 2792 2793 static struct notifier_block reboot = { 2794 .notifier_call = bcache_reboot, 2795 .priority = INT_MAX, /* before any real devices */ 2796 }; 2797 2798 static void bcache_exit(void) 2799 { 2800 bch_debug_exit(); 2801 bch_request_exit(); 2802 if (bcache_kobj) 2803 kobject_put(bcache_kobj); 2804 if (bcache_wq) 2805 destroy_workqueue(bcache_wq); 2806 if (bch_journal_wq) 2807 destroy_workqueue(bch_journal_wq); 2808 if (bch_flush_wq) 2809 destroy_workqueue(bch_flush_wq); 2810 bch_btree_exit(); 2811 2812 if (bcache_major) 2813 unregister_blkdev(bcache_major, "bcache"); 2814 unregister_reboot_notifier(&reboot); 2815 mutex_destroy(&bch_register_lock); 2816 } 2817 2818 /* Check and fixup module parameters */ 2819 static void check_module_parameters(void) 2820 { 2821 if (bch_cutoff_writeback_sync == 0) 2822 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2823 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2824 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2825 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2826 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2827 } 2828 2829 if (bch_cutoff_writeback == 0) 2830 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2831 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2832 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2833 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2834 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2835 } 2836 2837 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2838 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2839 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2840 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2841 } 2842 } 2843 2844 static int __init bcache_init(void) 2845 { 2846 static const struct attribute *files[] = { 2847 &ksysfs_register.attr, 2848 &ksysfs_register_quiet.attr, 2849 &ksysfs_pendings_cleanup.attr, 2850 NULL 2851 }; 2852 2853 check_module_parameters(); 2854 2855 mutex_init(&bch_register_lock); 2856 init_waitqueue_head(&unregister_wait); 2857 register_reboot_notifier(&reboot); 2858 2859 bcache_major = register_blkdev(0, "bcache"); 2860 if (bcache_major < 0) { 2861 unregister_reboot_notifier(&reboot); 2862 mutex_destroy(&bch_register_lock); 2863 return bcache_major; 2864 } 2865 2866 if (bch_btree_init()) 2867 goto err; 2868 2869 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2870 if (!bcache_wq) 2871 goto err; 2872 2873 /* 2874 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: 2875 * 2876 * 1. It used `system_wq` before which also does no memory reclaim. 2877 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and 2878 * reduced throughput can be observed. 2879 * 2880 * We still want to user our own queue to not congest the `system_wq`. 2881 */ 2882 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0); 2883 if (!bch_flush_wq) 2884 goto err; 2885 2886 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2887 if (!bch_journal_wq) 2888 goto err; 2889 2890 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2891 if (!bcache_kobj) 2892 goto err; 2893 2894 if (bch_request_init() || 2895 sysfs_create_files(bcache_kobj, files)) 2896 goto err; 2897 2898 bch_debug_init(); 2899 2900 bcache_is_reboot = false; 2901 2902 return 0; 2903 err: 2904 bcache_exit(); 2905 return -ENOMEM; 2906 } 2907 2908 /* 2909 * Module hooks 2910 */ 2911 module_exit(bcache_exit); 2912 module_init(bcache_init); 2913 2914 module_param(bch_cutoff_writeback, uint, 0); 2915 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2916 2917 module_param(bch_cutoff_writeback_sync, uint, 0); 2918 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2919 2920 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2921 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2922 MODULE_LICENSE("GPL"); 2923