xref: /linux/drivers/md/bcache/super.c (revision 0427612cddef07568ba80596a02089181092783d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 
17 #include <linux/blkdev.h>
18 #include <linux/buffer_head.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/reboot.h>
26 #include <linux/sysfs.h>
27 
28 MODULE_LICENSE("GPL");
29 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
30 
31 static const char bcache_magic[] = {
32 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
33 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
34 };
35 
36 static const char invalid_uuid[] = {
37 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
38 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
39 };
40 
41 static struct kobject *bcache_kobj;
42 struct mutex bch_register_lock;
43 LIST_HEAD(bch_cache_sets);
44 static LIST_HEAD(uncached_devices);
45 
46 static int bcache_major;
47 static DEFINE_IDA(bcache_device_idx);
48 static wait_queue_head_t unregister_wait;
49 struct workqueue_struct *bcache_wq;
50 struct workqueue_struct *bch_journal_wq;
51 
52 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
53 /* limitation of partitions number on single bcache device */
54 #define BCACHE_MINORS		128
55 /* limitation of bcache devices number on single system */
56 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
57 
58 /* Superblock */
59 
60 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
61 			      struct page **res)
62 {
63 	const char *err;
64 	struct cache_sb *s;
65 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
66 	unsigned int i;
67 
68 	if (!bh)
69 		return "IO error";
70 
71 	s = (struct cache_sb *) bh->b_data;
72 
73 	sb->offset		= le64_to_cpu(s->offset);
74 	sb->version		= le64_to_cpu(s->version);
75 
76 	memcpy(sb->magic,	s->magic, 16);
77 	memcpy(sb->uuid,	s->uuid, 16);
78 	memcpy(sb->set_uuid,	s->set_uuid, 16);
79 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
80 
81 	sb->flags		= le64_to_cpu(s->flags);
82 	sb->seq			= le64_to_cpu(s->seq);
83 	sb->last_mount		= le32_to_cpu(s->last_mount);
84 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
85 	sb->keys		= le16_to_cpu(s->keys);
86 
87 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
88 		sb->d[i] = le64_to_cpu(s->d[i]);
89 
90 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
91 		 sb->version, sb->flags, sb->seq, sb->keys);
92 
93 	err = "Not a bcache superblock";
94 	if (sb->offset != SB_SECTOR)
95 		goto err;
96 
97 	if (memcmp(sb->magic, bcache_magic, 16))
98 		goto err;
99 
100 	err = "Too many journal buckets";
101 	if (sb->keys > SB_JOURNAL_BUCKETS)
102 		goto err;
103 
104 	err = "Bad checksum";
105 	if (s->csum != csum_set(s))
106 		goto err;
107 
108 	err = "Bad UUID";
109 	if (bch_is_zero(sb->uuid, 16))
110 		goto err;
111 
112 	sb->block_size	= le16_to_cpu(s->block_size);
113 
114 	err = "Superblock block size smaller than device block size";
115 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
116 		goto err;
117 
118 	switch (sb->version) {
119 	case BCACHE_SB_VERSION_BDEV:
120 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
121 		break;
122 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
123 		sb->data_offset	= le64_to_cpu(s->data_offset);
124 
125 		err = "Bad data offset";
126 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
127 			goto err;
128 
129 		break;
130 	case BCACHE_SB_VERSION_CDEV:
131 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
132 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
133 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
134 
135 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
136 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
137 
138 		err = "Too many buckets";
139 		if (sb->nbuckets > LONG_MAX)
140 			goto err;
141 
142 		err = "Not enough buckets";
143 		if (sb->nbuckets < 1 << 7)
144 			goto err;
145 
146 		err = "Bad block/bucket size";
147 		if (!is_power_of_2(sb->block_size) ||
148 		    sb->block_size > PAGE_SECTORS ||
149 		    !is_power_of_2(sb->bucket_size) ||
150 		    sb->bucket_size < PAGE_SECTORS)
151 			goto err;
152 
153 		err = "Invalid superblock: device too small";
154 		if (get_capacity(bdev->bd_disk) <
155 		    sb->bucket_size * sb->nbuckets)
156 			goto err;
157 
158 		err = "Bad UUID";
159 		if (bch_is_zero(sb->set_uuid, 16))
160 			goto err;
161 
162 		err = "Bad cache device number in set";
163 		if (!sb->nr_in_set ||
164 		    sb->nr_in_set <= sb->nr_this_dev ||
165 		    sb->nr_in_set > MAX_CACHES_PER_SET)
166 			goto err;
167 
168 		err = "Journal buckets not sequential";
169 		for (i = 0; i < sb->keys; i++)
170 			if (sb->d[i] != sb->first_bucket + i)
171 				goto err;
172 
173 		err = "Too many journal buckets";
174 		if (sb->first_bucket + sb->keys > sb->nbuckets)
175 			goto err;
176 
177 		err = "Invalid superblock: first bucket comes before end of super";
178 		if (sb->first_bucket * sb->bucket_size < 16)
179 			goto err;
180 
181 		break;
182 	default:
183 		err = "Unsupported superblock version";
184 		goto err;
185 	}
186 
187 	sb->last_mount = (u32)ktime_get_real_seconds();
188 	err = NULL;
189 
190 	get_page(bh->b_page);
191 	*res = bh->b_page;
192 err:
193 	put_bh(bh);
194 	return err;
195 }
196 
197 static void write_bdev_super_endio(struct bio *bio)
198 {
199 	struct cached_dev *dc = bio->bi_private;
200 	/* XXX: error checking */
201 
202 	closure_put(&dc->sb_write);
203 }
204 
205 static void __write_super(struct cache_sb *sb, struct bio *bio)
206 {
207 	struct cache_sb *out = page_address(bio_first_page_all(bio));
208 	unsigned int i;
209 
210 	bio->bi_iter.bi_sector	= SB_SECTOR;
211 	bio->bi_iter.bi_size	= SB_SIZE;
212 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
213 	bch_bio_map(bio, NULL);
214 
215 	out->offset		= cpu_to_le64(sb->offset);
216 	out->version		= cpu_to_le64(sb->version);
217 
218 	memcpy(out->uuid,	sb->uuid, 16);
219 	memcpy(out->set_uuid,	sb->set_uuid, 16);
220 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
221 
222 	out->flags		= cpu_to_le64(sb->flags);
223 	out->seq		= cpu_to_le64(sb->seq);
224 
225 	out->last_mount		= cpu_to_le32(sb->last_mount);
226 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
227 	out->keys		= cpu_to_le16(sb->keys);
228 
229 	for (i = 0; i < sb->keys; i++)
230 		out->d[i] = cpu_to_le64(sb->d[i]);
231 
232 	out->csum = csum_set(out);
233 
234 	pr_debug("ver %llu, flags %llu, seq %llu",
235 		 sb->version, sb->flags, sb->seq);
236 
237 	submit_bio(bio);
238 }
239 
240 static void bch_write_bdev_super_unlock(struct closure *cl)
241 {
242 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
243 
244 	up(&dc->sb_write_mutex);
245 }
246 
247 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
248 {
249 	struct closure *cl = &dc->sb_write;
250 	struct bio *bio = &dc->sb_bio;
251 
252 	down(&dc->sb_write_mutex);
253 	closure_init(cl, parent);
254 
255 	bio_reset(bio);
256 	bio_set_dev(bio, dc->bdev);
257 	bio->bi_end_io	= write_bdev_super_endio;
258 	bio->bi_private = dc;
259 
260 	closure_get(cl);
261 	/* I/O request sent to backing device */
262 	__write_super(&dc->sb, bio);
263 
264 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
265 }
266 
267 static void write_super_endio(struct bio *bio)
268 {
269 	struct cache *ca = bio->bi_private;
270 
271 	/* is_read = 0 */
272 	bch_count_io_errors(ca, bio->bi_status, 0,
273 			    "writing superblock");
274 	closure_put(&ca->set->sb_write);
275 }
276 
277 static void bcache_write_super_unlock(struct closure *cl)
278 {
279 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
280 
281 	up(&c->sb_write_mutex);
282 }
283 
284 void bcache_write_super(struct cache_set *c)
285 {
286 	struct closure *cl = &c->sb_write;
287 	struct cache *ca;
288 	unsigned int i;
289 
290 	down(&c->sb_write_mutex);
291 	closure_init(cl, &c->cl);
292 
293 	c->sb.seq++;
294 
295 	for_each_cache(ca, c, i) {
296 		struct bio *bio = &ca->sb_bio;
297 
298 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
299 		ca->sb.seq		= c->sb.seq;
300 		ca->sb.last_mount	= c->sb.last_mount;
301 
302 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
303 
304 		bio_reset(bio);
305 		bio_set_dev(bio, ca->bdev);
306 		bio->bi_end_io	= write_super_endio;
307 		bio->bi_private = ca;
308 
309 		closure_get(cl);
310 		__write_super(&ca->sb, bio);
311 	}
312 
313 	closure_return_with_destructor(cl, bcache_write_super_unlock);
314 }
315 
316 /* UUID io */
317 
318 static void uuid_endio(struct bio *bio)
319 {
320 	struct closure *cl = bio->bi_private;
321 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
322 
323 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
324 	bch_bbio_free(bio, c);
325 	closure_put(cl);
326 }
327 
328 static void uuid_io_unlock(struct closure *cl)
329 {
330 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
331 
332 	up(&c->uuid_write_mutex);
333 }
334 
335 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
336 		    struct bkey *k, struct closure *parent)
337 {
338 	struct closure *cl = &c->uuid_write;
339 	struct uuid_entry *u;
340 	unsigned int i;
341 	char buf[80];
342 
343 	BUG_ON(!parent);
344 	down(&c->uuid_write_mutex);
345 	closure_init(cl, parent);
346 
347 	for (i = 0; i < KEY_PTRS(k); i++) {
348 		struct bio *bio = bch_bbio_alloc(c);
349 
350 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
351 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
352 
353 		bio->bi_end_io	= uuid_endio;
354 		bio->bi_private = cl;
355 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
356 		bch_bio_map(bio, c->uuids);
357 
358 		bch_submit_bbio(bio, c, k, i);
359 
360 		if (op != REQ_OP_WRITE)
361 			break;
362 	}
363 
364 	bch_extent_to_text(buf, sizeof(buf), k);
365 	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
366 
367 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368 		if (!bch_is_zero(u->uuid, 16))
369 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370 				 u - c->uuids, u->uuid, u->label,
371 				 u->first_reg, u->last_reg, u->invalidated);
372 
373 	closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375 
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378 	struct bkey *k = &j->uuid_bucket;
379 
380 	if (__bch_btree_ptr_invalid(c, k))
381 		return "bad uuid pointer";
382 
383 	bkey_copy(&c->uuid_bucket, k);
384 	uuid_io(c, REQ_OP_READ, 0, k, cl);
385 
386 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
388 		struct uuid_entry	*u1 = (void *) c->uuids;
389 		int i;
390 
391 		closure_sync(cl);
392 
393 		/*
394 		 * Since the new uuid entry is bigger than the old, we have to
395 		 * convert starting at the highest memory address and work down
396 		 * in order to do it in place
397 		 */
398 
399 		for (i = c->nr_uuids - 1;
400 		     i >= 0;
401 		     --i) {
402 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
403 			memcpy(u1[i].label,	u0[i].label, 32);
404 
405 			u1[i].first_reg		= u0[i].first_reg;
406 			u1[i].last_reg		= u0[i].last_reg;
407 			u1[i].invalidated	= u0[i].invalidated;
408 
409 			u1[i].flags	= 0;
410 			u1[i].sectors	= 0;
411 		}
412 	}
413 
414 	return NULL;
415 }
416 
417 static int __uuid_write(struct cache_set *c)
418 {
419 	BKEY_PADDED(key) k;
420 	struct closure cl;
421 	struct cache *ca;
422 
423 	closure_init_stack(&cl);
424 	lockdep_assert_held(&bch_register_lock);
425 
426 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
427 		return 1;
428 
429 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
430 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
431 	closure_sync(&cl);
432 
433 	/* Only one bucket used for uuid write */
434 	ca = PTR_CACHE(c, &k.key, 0);
435 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
436 
437 	bkey_copy(&c->uuid_bucket, &k.key);
438 	bkey_put(c, &k.key);
439 	return 0;
440 }
441 
442 int bch_uuid_write(struct cache_set *c)
443 {
444 	int ret = __uuid_write(c);
445 
446 	if (!ret)
447 		bch_journal_meta(c, NULL);
448 
449 	return ret;
450 }
451 
452 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
453 {
454 	struct uuid_entry *u;
455 
456 	for (u = c->uuids;
457 	     u < c->uuids + c->nr_uuids; u++)
458 		if (!memcmp(u->uuid, uuid, 16))
459 			return u;
460 
461 	return NULL;
462 }
463 
464 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
465 {
466 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
467 
468 	return uuid_find(c, zero_uuid);
469 }
470 
471 /*
472  * Bucket priorities/gens:
473  *
474  * For each bucket, we store on disk its
475  *   8 bit gen
476  *  16 bit priority
477  *
478  * See alloc.c for an explanation of the gen. The priority is used to implement
479  * lru (and in the future other) cache replacement policies; for most purposes
480  * it's just an opaque integer.
481  *
482  * The gens and the priorities don't have a whole lot to do with each other, and
483  * it's actually the gens that must be written out at specific times - it's no
484  * big deal if the priorities don't get written, if we lose them we just reuse
485  * buckets in suboptimal order.
486  *
487  * On disk they're stored in a packed array, and in as many buckets are required
488  * to fit them all. The buckets we use to store them form a list; the journal
489  * header points to the first bucket, the first bucket points to the second
490  * bucket, et cetera.
491  *
492  * This code is used by the allocation code; periodically (whenever it runs out
493  * of buckets to allocate from) the allocation code will invalidate some
494  * buckets, but it can't use those buckets until their new gens are safely on
495  * disk.
496  */
497 
498 static void prio_endio(struct bio *bio)
499 {
500 	struct cache *ca = bio->bi_private;
501 
502 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
503 	bch_bbio_free(bio, ca->set);
504 	closure_put(&ca->prio);
505 }
506 
507 static void prio_io(struct cache *ca, uint64_t bucket, int op,
508 		    unsigned long op_flags)
509 {
510 	struct closure *cl = &ca->prio;
511 	struct bio *bio = bch_bbio_alloc(ca->set);
512 
513 	closure_init_stack(cl);
514 
515 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
516 	bio_set_dev(bio, ca->bdev);
517 	bio->bi_iter.bi_size	= bucket_bytes(ca);
518 
519 	bio->bi_end_io	= prio_endio;
520 	bio->bi_private = ca;
521 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
522 	bch_bio_map(bio, ca->disk_buckets);
523 
524 	closure_bio_submit(ca->set, bio, &ca->prio);
525 	closure_sync(cl);
526 }
527 
528 void bch_prio_write(struct cache *ca)
529 {
530 	int i;
531 	struct bucket *b;
532 	struct closure cl;
533 
534 	closure_init_stack(&cl);
535 
536 	lockdep_assert_held(&ca->set->bucket_lock);
537 
538 	ca->disk_buckets->seq++;
539 
540 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
541 			&ca->meta_sectors_written);
542 
543 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
544 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
545 
546 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
547 		long bucket;
548 		struct prio_set *p = ca->disk_buckets;
549 		struct bucket_disk *d = p->data;
550 		struct bucket_disk *end = d + prios_per_bucket(ca);
551 
552 		for (b = ca->buckets + i * prios_per_bucket(ca);
553 		     b < ca->buckets + ca->sb.nbuckets && d < end;
554 		     b++, d++) {
555 			d->prio = cpu_to_le16(b->prio);
556 			d->gen = b->gen;
557 		}
558 
559 		p->next_bucket	= ca->prio_buckets[i + 1];
560 		p->magic	= pset_magic(&ca->sb);
561 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
562 
563 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
564 		BUG_ON(bucket == -1);
565 
566 		mutex_unlock(&ca->set->bucket_lock);
567 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
568 		mutex_lock(&ca->set->bucket_lock);
569 
570 		ca->prio_buckets[i] = bucket;
571 		atomic_dec_bug(&ca->buckets[bucket].pin);
572 	}
573 
574 	mutex_unlock(&ca->set->bucket_lock);
575 
576 	bch_journal_meta(ca->set, &cl);
577 	closure_sync(&cl);
578 
579 	mutex_lock(&ca->set->bucket_lock);
580 
581 	/*
582 	 * Don't want the old priorities to get garbage collected until after we
583 	 * finish writing the new ones, and they're journalled
584 	 */
585 	for (i = 0; i < prio_buckets(ca); i++) {
586 		if (ca->prio_last_buckets[i])
587 			__bch_bucket_free(ca,
588 				&ca->buckets[ca->prio_last_buckets[i]]);
589 
590 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
591 	}
592 }
593 
594 static void prio_read(struct cache *ca, uint64_t bucket)
595 {
596 	struct prio_set *p = ca->disk_buckets;
597 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
598 	struct bucket *b;
599 	unsigned int bucket_nr = 0;
600 
601 	for (b = ca->buckets;
602 	     b < ca->buckets + ca->sb.nbuckets;
603 	     b++, d++) {
604 		if (d == end) {
605 			ca->prio_buckets[bucket_nr] = bucket;
606 			ca->prio_last_buckets[bucket_nr] = bucket;
607 			bucket_nr++;
608 
609 			prio_io(ca, bucket, REQ_OP_READ, 0);
610 
611 			if (p->csum !=
612 			    bch_crc64(&p->magic, bucket_bytes(ca) - 8))
613 				pr_warn("bad csum reading priorities");
614 
615 			if (p->magic != pset_magic(&ca->sb))
616 				pr_warn("bad magic reading priorities");
617 
618 			bucket = p->next_bucket;
619 			d = p->data;
620 		}
621 
622 		b->prio = le16_to_cpu(d->prio);
623 		b->gen = b->last_gc = d->gen;
624 	}
625 }
626 
627 /* Bcache device */
628 
629 static int open_dev(struct block_device *b, fmode_t mode)
630 {
631 	struct bcache_device *d = b->bd_disk->private_data;
632 
633 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
634 		return -ENXIO;
635 
636 	closure_get(&d->cl);
637 	return 0;
638 }
639 
640 static void release_dev(struct gendisk *b, fmode_t mode)
641 {
642 	struct bcache_device *d = b->private_data;
643 
644 	closure_put(&d->cl);
645 }
646 
647 static int ioctl_dev(struct block_device *b, fmode_t mode,
648 		     unsigned int cmd, unsigned long arg)
649 {
650 	struct bcache_device *d = b->bd_disk->private_data;
651 
652 	return d->ioctl(d, mode, cmd, arg);
653 }
654 
655 static const struct block_device_operations bcache_ops = {
656 	.open		= open_dev,
657 	.release	= release_dev,
658 	.ioctl		= ioctl_dev,
659 	.owner		= THIS_MODULE,
660 };
661 
662 void bcache_device_stop(struct bcache_device *d)
663 {
664 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
665 		closure_queue(&d->cl);
666 }
667 
668 static void bcache_device_unlink(struct bcache_device *d)
669 {
670 	lockdep_assert_held(&bch_register_lock);
671 
672 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
673 		unsigned int i;
674 		struct cache *ca;
675 
676 		sysfs_remove_link(&d->c->kobj, d->name);
677 		sysfs_remove_link(&d->kobj, "cache");
678 
679 		for_each_cache(ca, d->c, i)
680 			bd_unlink_disk_holder(ca->bdev, d->disk);
681 	}
682 }
683 
684 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
685 			       const char *name)
686 {
687 	unsigned int i;
688 	struct cache *ca;
689 
690 	for_each_cache(ca, d->c, i)
691 		bd_link_disk_holder(ca->bdev, d->disk);
692 
693 	snprintf(d->name, BCACHEDEVNAME_SIZE,
694 		 "%s%u", name, d->id);
695 
696 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
697 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
698 	     "Couldn't create device <-> cache set symlinks");
699 
700 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
701 }
702 
703 static void bcache_device_detach(struct bcache_device *d)
704 {
705 	lockdep_assert_held(&bch_register_lock);
706 
707 	atomic_dec(&d->c->attached_dev_nr);
708 
709 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
710 		struct uuid_entry *u = d->c->uuids + d->id;
711 
712 		SET_UUID_FLASH_ONLY(u, 0);
713 		memcpy(u->uuid, invalid_uuid, 16);
714 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
715 		bch_uuid_write(d->c);
716 	}
717 
718 	bcache_device_unlink(d);
719 
720 	d->c->devices[d->id] = NULL;
721 	closure_put(&d->c->caching);
722 	d->c = NULL;
723 }
724 
725 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
726 				 unsigned int id)
727 {
728 	d->id = id;
729 	d->c = c;
730 	c->devices[id] = d;
731 
732 	if (id >= c->devices_max_used)
733 		c->devices_max_used = id + 1;
734 
735 	closure_get(&c->caching);
736 }
737 
738 static inline int first_minor_to_idx(int first_minor)
739 {
740 	return (first_minor/BCACHE_MINORS);
741 }
742 
743 static inline int idx_to_first_minor(int idx)
744 {
745 	return (idx * BCACHE_MINORS);
746 }
747 
748 static void bcache_device_free(struct bcache_device *d)
749 {
750 	lockdep_assert_held(&bch_register_lock);
751 
752 	pr_info("%s stopped", d->disk->disk_name);
753 
754 	if (d->c)
755 		bcache_device_detach(d);
756 	if (d->disk && d->disk->flags & GENHD_FL_UP)
757 		del_gendisk(d->disk);
758 	if (d->disk && d->disk->queue)
759 		blk_cleanup_queue(d->disk->queue);
760 	if (d->disk) {
761 		ida_simple_remove(&bcache_device_idx,
762 				  first_minor_to_idx(d->disk->first_minor));
763 		put_disk(d->disk);
764 	}
765 
766 	bioset_exit(&d->bio_split);
767 	kvfree(d->full_dirty_stripes);
768 	kvfree(d->stripe_sectors_dirty);
769 
770 	closure_debug_destroy(&d->cl);
771 }
772 
773 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
774 			      sector_t sectors)
775 {
776 	struct request_queue *q;
777 	const size_t max_stripes = min_t(size_t, INT_MAX,
778 					 SIZE_MAX / sizeof(atomic_t));
779 	size_t n;
780 	int idx;
781 
782 	if (!d->stripe_size)
783 		d->stripe_size = 1 << 31;
784 
785 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
786 
787 	if (!d->nr_stripes || d->nr_stripes > max_stripes) {
788 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
789 			(unsigned int)d->nr_stripes);
790 		return -ENOMEM;
791 	}
792 
793 	n = d->nr_stripes * sizeof(atomic_t);
794 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
795 	if (!d->stripe_sectors_dirty)
796 		return -ENOMEM;
797 
798 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
799 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
800 	if (!d->full_dirty_stripes)
801 		return -ENOMEM;
802 
803 	idx = ida_simple_get(&bcache_device_idx, 0,
804 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
805 	if (idx < 0)
806 		return idx;
807 
808 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
809 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
810 		goto err;
811 
812 	d->disk = alloc_disk(BCACHE_MINORS);
813 	if (!d->disk)
814 		goto err;
815 
816 	set_capacity(d->disk, sectors);
817 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
818 
819 	d->disk->major		= bcache_major;
820 	d->disk->first_minor	= idx_to_first_minor(idx);
821 	d->disk->fops		= &bcache_ops;
822 	d->disk->private_data	= d;
823 
824 	q = blk_alloc_queue(GFP_KERNEL);
825 	if (!q)
826 		return -ENOMEM;
827 
828 	blk_queue_make_request(q, NULL);
829 	d->disk->queue			= q;
830 	q->queuedata			= d;
831 	q->backing_dev_info->congested_data = d;
832 	q->limits.max_hw_sectors	= UINT_MAX;
833 	q->limits.max_sectors		= UINT_MAX;
834 	q->limits.max_segment_size	= UINT_MAX;
835 	q->limits.max_segments		= BIO_MAX_PAGES;
836 	blk_queue_max_discard_sectors(q, UINT_MAX);
837 	q->limits.discard_granularity	= 512;
838 	q->limits.io_min		= block_size;
839 	q->limits.logical_block_size	= block_size;
840 	q->limits.physical_block_size	= block_size;
841 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
842 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
843 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
844 
845 	blk_queue_write_cache(q, true, true);
846 
847 	return 0;
848 
849 err:
850 	ida_simple_remove(&bcache_device_idx, idx);
851 	return -ENOMEM;
852 
853 }
854 
855 /* Cached device */
856 
857 static void calc_cached_dev_sectors(struct cache_set *c)
858 {
859 	uint64_t sectors = 0;
860 	struct cached_dev *dc;
861 
862 	list_for_each_entry(dc, &c->cached_devs, list)
863 		sectors += bdev_sectors(dc->bdev);
864 
865 	c->cached_dev_sectors = sectors;
866 }
867 
868 #define BACKING_DEV_OFFLINE_TIMEOUT 5
869 static int cached_dev_status_update(void *arg)
870 {
871 	struct cached_dev *dc = arg;
872 	struct request_queue *q;
873 
874 	/*
875 	 * If this delayed worker is stopping outside, directly quit here.
876 	 * dc->io_disable might be set via sysfs interface, so check it
877 	 * here too.
878 	 */
879 	while (!kthread_should_stop() && !dc->io_disable) {
880 		q = bdev_get_queue(dc->bdev);
881 		if (blk_queue_dying(q))
882 			dc->offline_seconds++;
883 		else
884 			dc->offline_seconds = 0;
885 
886 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
887 			pr_err("%s: device offline for %d seconds",
888 			       dc->backing_dev_name,
889 			       BACKING_DEV_OFFLINE_TIMEOUT);
890 			pr_err("%s: disable I/O request due to backing "
891 			       "device offline", dc->disk.name);
892 			dc->io_disable = true;
893 			/* let others know earlier that io_disable is true */
894 			smp_mb();
895 			bcache_device_stop(&dc->disk);
896 			break;
897 		}
898 		schedule_timeout_interruptible(HZ);
899 	}
900 
901 	wait_for_kthread_stop();
902 	return 0;
903 }
904 
905 
906 void bch_cached_dev_run(struct cached_dev *dc)
907 {
908 	struct bcache_device *d = &dc->disk;
909 	char buf[SB_LABEL_SIZE + 1];
910 	char *env[] = {
911 		"DRIVER=bcache",
912 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
913 		NULL,
914 		NULL,
915 	};
916 
917 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
918 	buf[SB_LABEL_SIZE] = '\0';
919 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
920 
921 	if (atomic_xchg(&dc->running, 1)) {
922 		kfree(env[1]);
923 		kfree(env[2]);
924 		return;
925 	}
926 
927 	if (!d->c &&
928 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
929 		struct closure cl;
930 
931 		closure_init_stack(&cl);
932 
933 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
934 		bch_write_bdev_super(dc, &cl);
935 		closure_sync(&cl);
936 	}
937 
938 	add_disk(d->disk);
939 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
940 	/*
941 	 * won't show up in the uevent file, use udevadm monitor -e instead
942 	 * only class / kset properties are persistent
943 	 */
944 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
945 	kfree(env[1]);
946 	kfree(env[2]);
947 
948 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
949 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
950 		pr_debug("error creating sysfs link");
951 
952 	dc->status_update_thread = kthread_run(cached_dev_status_update,
953 					       dc, "bcache_status_update");
954 	if (IS_ERR(dc->status_update_thread)) {
955 		pr_warn("failed to create bcache_status_update kthread, "
956 			"continue to run without monitoring backing "
957 			"device status");
958 	}
959 }
960 
961 /*
962  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
963  * work dc->writeback_rate_update is running. Wait until the routine
964  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
965  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
966  * seconds, give up waiting here and continue to cancel it too.
967  */
968 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
969 {
970 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
971 
972 	do {
973 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
974 			      &dc->disk.flags))
975 			break;
976 		time_out--;
977 		schedule_timeout_interruptible(1);
978 	} while (time_out > 0);
979 
980 	if (time_out == 0)
981 		pr_warn("give up waiting for dc->writeback_write_update to quit");
982 
983 	cancel_delayed_work_sync(&dc->writeback_rate_update);
984 }
985 
986 static void cached_dev_detach_finish(struct work_struct *w)
987 {
988 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
989 	struct closure cl;
990 
991 	closure_init_stack(&cl);
992 
993 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
994 	BUG_ON(refcount_read(&dc->count));
995 
996 	mutex_lock(&bch_register_lock);
997 
998 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
999 		cancel_writeback_rate_update_dwork(dc);
1000 
1001 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1002 		kthread_stop(dc->writeback_thread);
1003 		dc->writeback_thread = NULL;
1004 	}
1005 
1006 	memset(&dc->sb.set_uuid, 0, 16);
1007 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1008 
1009 	bch_write_bdev_super(dc, &cl);
1010 	closure_sync(&cl);
1011 
1012 	calc_cached_dev_sectors(dc->disk.c);
1013 	bcache_device_detach(&dc->disk);
1014 	list_move(&dc->list, &uncached_devices);
1015 
1016 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1017 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1018 
1019 	mutex_unlock(&bch_register_lock);
1020 
1021 	pr_info("Caching disabled for %s", dc->backing_dev_name);
1022 
1023 	/* Drop ref we took in cached_dev_detach() */
1024 	closure_put(&dc->disk.cl);
1025 }
1026 
1027 void bch_cached_dev_detach(struct cached_dev *dc)
1028 {
1029 	lockdep_assert_held(&bch_register_lock);
1030 
1031 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1032 		return;
1033 
1034 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1035 		return;
1036 
1037 	/*
1038 	 * Block the device from being closed and freed until we're finished
1039 	 * detaching
1040 	 */
1041 	closure_get(&dc->disk.cl);
1042 
1043 	bch_writeback_queue(dc);
1044 
1045 	cached_dev_put(dc);
1046 }
1047 
1048 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1049 			  uint8_t *set_uuid)
1050 {
1051 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1052 	struct uuid_entry *u;
1053 	struct cached_dev *exist_dc, *t;
1054 
1055 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1056 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1057 		return -ENOENT;
1058 
1059 	if (dc->disk.c) {
1060 		pr_err("Can't attach %s: already attached",
1061 		       dc->backing_dev_name);
1062 		return -EINVAL;
1063 	}
1064 
1065 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1066 		pr_err("Can't attach %s: shutting down",
1067 		       dc->backing_dev_name);
1068 		return -EINVAL;
1069 	}
1070 
1071 	if (dc->sb.block_size < c->sb.block_size) {
1072 		/* Will die */
1073 		pr_err("Couldn't attach %s: block size less than set's block size",
1074 		       dc->backing_dev_name);
1075 		return -EINVAL;
1076 	}
1077 
1078 	/* Check whether already attached */
1079 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1080 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1081 			pr_err("Tried to attach %s but duplicate UUID already attached",
1082 				dc->backing_dev_name);
1083 
1084 			return -EINVAL;
1085 		}
1086 	}
1087 
1088 	u = uuid_find(c, dc->sb.uuid);
1089 
1090 	if (u &&
1091 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1092 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1093 		memcpy(u->uuid, invalid_uuid, 16);
1094 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1095 		u = NULL;
1096 	}
1097 
1098 	if (!u) {
1099 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1100 			pr_err("Couldn't find uuid for %s in set",
1101 			       dc->backing_dev_name);
1102 			return -ENOENT;
1103 		}
1104 
1105 		u = uuid_find_empty(c);
1106 		if (!u) {
1107 			pr_err("Not caching %s, no room for UUID",
1108 			       dc->backing_dev_name);
1109 			return -EINVAL;
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * Deadlocks since we're called via sysfs...
1115 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1116 	 */
1117 
1118 	if (bch_is_zero(u->uuid, 16)) {
1119 		struct closure cl;
1120 
1121 		closure_init_stack(&cl);
1122 
1123 		memcpy(u->uuid, dc->sb.uuid, 16);
1124 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1125 		u->first_reg = u->last_reg = rtime;
1126 		bch_uuid_write(c);
1127 
1128 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1129 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1130 
1131 		bch_write_bdev_super(dc, &cl);
1132 		closure_sync(&cl);
1133 	} else {
1134 		u->last_reg = rtime;
1135 		bch_uuid_write(c);
1136 	}
1137 
1138 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1139 	list_move(&dc->list, &c->cached_devs);
1140 	calc_cached_dev_sectors(c);
1141 
1142 	/*
1143 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1144 	 * cached_dev_get()
1145 	 */
1146 	smp_wmb();
1147 	refcount_set(&dc->count, 1);
1148 
1149 	/* Block writeback thread, but spawn it */
1150 	down_write(&dc->writeback_lock);
1151 	if (bch_cached_dev_writeback_start(dc)) {
1152 		up_write(&dc->writeback_lock);
1153 		return -ENOMEM;
1154 	}
1155 
1156 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1157 		atomic_set(&dc->has_dirty, 1);
1158 		bch_writeback_queue(dc);
1159 	}
1160 
1161 	bch_sectors_dirty_init(&dc->disk);
1162 
1163 	bch_cached_dev_run(dc);
1164 	bcache_device_link(&dc->disk, c, "bdev");
1165 	atomic_inc(&c->attached_dev_nr);
1166 
1167 	/* Allow the writeback thread to proceed */
1168 	up_write(&dc->writeback_lock);
1169 
1170 	pr_info("Caching %s as %s on set %pU",
1171 		dc->backing_dev_name,
1172 		dc->disk.disk->disk_name,
1173 		dc->disk.c->sb.set_uuid);
1174 	return 0;
1175 }
1176 
1177 void bch_cached_dev_release(struct kobject *kobj)
1178 {
1179 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1180 					     disk.kobj);
1181 	kfree(dc);
1182 	module_put(THIS_MODULE);
1183 }
1184 
1185 static void cached_dev_free(struct closure *cl)
1186 {
1187 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1188 
1189 	mutex_lock(&bch_register_lock);
1190 
1191 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1192 		cancel_writeback_rate_update_dwork(dc);
1193 
1194 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1195 		kthread_stop(dc->writeback_thread);
1196 	if (dc->writeback_write_wq)
1197 		destroy_workqueue(dc->writeback_write_wq);
1198 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1199 		kthread_stop(dc->status_update_thread);
1200 
1201 	if (atomic_read(&dc->running))
1202 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1203 	bcache_device_free(&dc->disk);
1204 	list_del(&dc->list);
1205 
1206 	mutex_unlock(&bch_register_lock);
1207 
1208 	if (!IS_ERR_OR_NULL(dc->bdev))
1209 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1210 
1211 	wake_up(&unregister_wait);
1212 
1213 	kobject_put(&dc->disk.kobj);
1214 }
1215 
1216 static void cached_dev_flush(struct closure *cl)
1217 {
1218 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1219 	struct bcache_device *d = &dc->disk;
1220 
1221 	mutex_lock(&bch_register_lock);
1222 	bcache_device_unlink(d);
1223 	mutex_unlock(&bch_register_lock);
1224 
1225 	bch_cache_accounting_destroy(&dc->accounting);
1226 	kobject_del(&d->kobj);
1227 
1228 	continue_at(cl, cached_dev_free, system_wq);
1229 }
1230 
1231 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1232 {
1233 	int ret;
1234 	struct io *io;
1235 	struct request_queue *q = bdev_get_queue(dc->bdev);
1236 
1237 	__module_get(THIS_MODULE);
1238 	INIT_LIST_HEAD(&dc->list);
1239 	closure_init(&dc->disk.cl, NULL);
1240 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1241 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1242 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1243 	sema_init(&dc->sb_write_mutex, 1);
1244 	INIT_LIST_HEAD(&dc->io_lru);
1245 	spin_lock_init(&dc->io_lock);
1246 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1247 
1248 	dc->sequential_cutoff		= 4 << 20;
1249 
1250 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1251 		list_add(&io->lru, &dc->io_lru);
1252 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1253 	}
1254 
1255 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1256 
1257 	if (dc->disk.stripe_size)
1258 		dc->partial_stripes_expensive =
1259 			q->limits.raid_partial_stripes_expensive;
1260 
1261 	ret = bcache_device_init(&dc->disk, block_size,
1262 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1263 	if (ret)
1264 		return ret;
1265 
1266 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1267 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1268 		    q->backing_dev_info->ra_pages);
1269 
1270 	atomic_set(&dc->io_errors, 0);
1271 	dc->io_disable = false;
1272 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1273 	/* default to auto */
1274 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1275 
1276 	bch_cached_dev_request_init(dc);
1277 	bch_cached_dev_writeback_init(dc);
1278 	return 0;
1279 }
1280 
1281 /* Cached device - bcache superblock */
1282 
1283 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1284 				 struct block_device *bdev,
1285 				 struct cached_dev *dc)
1286 {
1287 	const char *err = "cannot allocate memory";
1288 	struct cache_set *c;
1289 
1290 	bdevname(bdev, dc->backing_dev_name);
1291 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1292 	dc->bdev = bdev;
1293 	dc->bdev->bd_holder = dc;
1294 
1295 	bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1296 	bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1297 	get_page(sb_page);
1298 
1299 
1300 	if (cached_dev_init(dc, sb->block_size << 9))
1301 		goto err;
1302 
1303 	err = "error creating kobject";
1304 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1305 			"bcache"))
1306 		goto err;
1307 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1308 		goto err;
1309 
1310 	pr_info("registered backing device %s", dc->backing_dev_name);
1311 
1312 	list_add(&dc->list, &uncached_devices);
1313 	/* attach to a matched cache set if it exists */
1314 	list_for_each_entry(c, &bch_cache_sets, list)
1315 		bch_cached_dev_attach(dc, c, NULL);
1316 
1317 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1318 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1319 		bch_cached_dev_run(dc);
1320 
1321 	return;
1322 err:
1323 	pr_notice("error %s: %s", dc->backing_dev_name, err);
1324 	bcache_device_stop(&dc->disk);
1325 }
1326 
1327 /* Flash only volumes */
1328 
1329 void bch_flash_dev_release(struct kobject *kobj)
1330 {
1331 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1332 					       kobj);
1333 	kfree(d);
1334 }
1335 
1336 static void flash_dev_free(struct closure *cl)
1337 {
1338 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1339 
1340 	mutex_lock(&bch_register_lock);
1341 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1342 			&d->c->flash_dev_dirty_sectors);
1343 	bcache_device_free(d);
1344 	mutex_unlock(&bch_register_lock);
1345 	kobject_put(&d->kobj);
1346 }
1347 
1348 static void flash_dev_flush(struct closure *cl)
1349 {
1350 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1351 
1352 	mutex_lock(&bch_register_lock);
1353 	bcache_device_unlink(d);
1354 	mutex_unlock(&bch_register_lock);
1355 	kobject_del(&d->kobj);
1356 	continue_at(cl, flash_dev_free, system_wq);
1357 }
1358 
1359 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1360 {
1361 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1362 					  GFP_KERNEL);
1363 	if (!d)
1364 		return -ENOMEM;
1365 
1366 	closure_init(&d->cl, NULL);
1367 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1368 
1369 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1370 
1371 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1372 		goto err;
1373 
1374 	bcache_device_attach(d, c, u - c->uuids);
1375 	bch_sectors_dirty_init(d);
1376 	bch_flash_dev_request_init(d);
1377 	add_disk(d->disk);
1378 
1379 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1380 		goto err;
1381 
1382 	bcache_device_link(d, c, "volume");
1383 
1384 	return 0;
1385 err:
1386 	kobject_put(&d->kobj);
1387 	return -ENOMEM;
1388 }
1389 
1390 static int flash_devs_run(struct cache_set *c)
1391 {
1392 	int ret = 0;
1393 	struct uuid_entry *u;
1394 
1395 	for (u = c->uuids;
1396 	     u < c->uuids + c->nr_uuids && !ret;
1397 	     u++)
1398 		if (UUID_FLASH_ONLY(u))
1399 			ret = flash_dev_run(c, u);
1400 
1401 	return ret;
1402 }
1403 
1404 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1405 {
1406 	struct uuid_entry *u;
1407 
1408 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1409 		return -EINTR;
1410 
1411 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1412 		return -EPERM;
1413 
1414 	u = uuid_find_empty(c);
1415 	if (!u) {
1416 		pr_err("Can't create volume, no room for UUID");
1417 		return -EINVAL;
1418 	}
1419 
1420 	get_random_bytes(u->uuid, 16);
1421 	memset(u->label, 0, 32);
1422 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1423 
1424 	SET_UUID_FLASH_ONLY(u, 1);
1425 	u->sectors = size >> 9;
1426 
1427 	bch_uuid_write(c);
1428 
1429 	return flash_dev_run(c, u);
1430 }
1431 
1432 bool bch_cached_dev_error(struct cached_dev *dc)
1433 {
1434 	struct cache_set *c;
1435 
1436 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1437 		return false;
1438 
1439 	dc->io_disable = true;
1440 	/* make others know io_disable is true earlier */
1441 	smp_mb();
1442 
1443 	pr_err("stop %s: too many IO errors on backing device %s\n",
1444 		dc->disk.disk->disk_name, dc->backing_dev_name);
1445 
1446 	/*
1447 	 * If the cached device is still attached to a cache set,
1448 	 * even dc->io_disable is true and no more I/O requests
1449 	 * accepted, cache device internal I/O (writeback scan or
1450 	 * garbage collection) may still prevent bcache device from
1451 	 * being stopped. So here CACHE_SET_IO_DISABLE should be
1452 	 * set to c->flags too, to make the internal I/O to cache
1453 	 * device rejected and stopped immediately.
1454 	 * If c is NULL, that means the bcache device is not attached
1455 	 * to any cache set, then no CACHE_SET_IO_DISABLE bit to set.
1456 	 */
1457 	c = dc->disk.c;
1458 	if (c && test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1459 		pr_info("CACHE_SET_IO_DISABLE already set");
1460 
1461 	bcache_device_stop(&dc->disk);
1462 	return true;
1463 }
1464 
1465 /* Cache set */
1466 
1467 __printf(2, 3)
1468 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1469 {
1470 	va_list args;
1471 
1472 	if (c->on_error != ON_ERROR_PANIC &&
1473 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1474 		return false;
1475 
1476 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1477 		pr_info("CACHE_SET_IO_DISABLE already set");
1478 
1479 	/*
1480 	 * XXX: we can be called from atomic context
1481 	 * acquire_console_sem();
1482 	 */
1483 
1484 	pr_err("bcache: error on %pU: ", c->sb.set_uuid);
1485 
1486 	va_start(args, fmt);
1487 	vprintk(fmt, args);
1488 	va_end(args);
1489 
1490 	pr_err(", disabling caching\n");
1491 
1492 	if (c->on_error == ON_ERROR_PANIC)
1493 		panic("panic forced after error\n");
1494 
1495 	bch_cache_set_unregister(c);
1496 	return true;
1497 }
1498 
1499 void bch_cache_set_release(struct kobject *kobj)
1500 {
1501 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1502 
1503 	kfree(c);
1504 	module_put(THIS_MODULE);
1505 }
1506 
1507 static void cache_set_free(struct closure *cl)
1508 {
1509 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1510 	struct cache *ca;
1511 	unsigned int i;
1512 
1513 	if (!IS_ERR_OR_NULL(c->debug))
1514 		debugfs_remove(c->debug);
1515 
1516 	bch_open_buckets_free(c);
1517 	bch_btree_cache_free(c);
1518 	bch_journal_free(c);
1519 
1520 	for_each_cache(ca, c, i)
1521 		if (ca) {
1522 			ca->set = NULL;
1523 			c->cache[ca->sb.nr_this_dev] = NULL;
1524 			kobject_put(&ca->kobj);
1525 		}
1526 
1527 	bch_bset_sort_state_free(&c->sort);
1528 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1529 
1530 	if (c->moving_gc_wq)
1531 		destroy_workqueue(c->moving_gc_wq);
1532 	bioset_exit(&c->bio_split);
1533 	mempool_exit(&c->fill_iter);
1534 	mempool_exit(&c->bio_meta);
1535 	mempool_exit(&c->search);
1536 	kfree(c->devices);
1537 
1538 	mutex_lock(&bch_register_lock);
1539 	list_del(&c->list);
1540 	mutex_unlock(&bch_register_lock);
1541 
1542 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1543 	wake_up(&unregister_wait);
1544 
1545 	closure_debug_destroy(&c->cl);
1546 	kobject_put(&c->kobj);
1547 }
1548 
1549 static void cache_set_flush(struct closure *cl)
1550 {
1551 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1552 	struct cache *ca;
1553 	struct btree *b;
1554 	unsigned int i;
1555 
1556 	bch_cache_accounting_destroy(&c->accounting);
1557 
1558 	kobject_put(&c->internal);
1559 	kobject_del(&c->kobj);
1560 
1561 	if (c->gc_thread)
1562 		kthread_stop(c->gc_thread);
1563 
1564 	if (!IS_ERR_OR_NULL(c->root))
1565 		list_add(&c->root->list, &c->btree_cache);
1566 
1567 	/* Should skip this if we're unregistering because of an error */
1568 	list_for_each_entry(b, &c->btree_cache, list) {
1569 		mutex_lock(&b->write_lock);
1570 		if (btree_node_dirty(b))
1571 			__bch_btree_node_write(b, NULL);
1572 		mutex_unlock(&b->write_lock);
1573 	}
1574 
1575 	for_each_cache(ca, c, i)
1576 		if (ca->alloc_thread)
1577 			kthread_stop(ca->alloc_thread);
1578 
1579 	if (c->journal.cur) {
1580 		cancel_delayed_work_sync(&c->journal.work);
1581 		/* flush last journal entry if needed */
1582 		c->journal.work.work.func(&c->journal.work.work);
1583 	}
1584 
1585 	closure_return(cl);
1586 }
1587 
1588 /*
1589  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1590  * cache set is unregistering due to too many I/O errors. In this condition,
1591  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1592  * value and whether the broken cache has dirty data:
1593  *
1594  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1595  *  BCH_CACHED_STOP_AUTO               0               NO
1596  *  BCH_CACHED_STOP_AUTO               1               YES
1597  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1598  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1599  *
1600  * The expected behavior is, if stop_when_cache_set_failed is configured to
1601  * "auto" via sysfs interface, the bcache device will not be stopped if the
1602  * backing device is clean on the broken cache device.
1603  */
1604 static void conditional_stop_bcache_device(struct cache_set *c,
1605 					   struct bcache_device *d,
1606 					   struct cached_dev *dc)
1607 {
1608 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1609 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1610 			d->disk->disk_name, c->sb.set_uuid);
1611 		bcache_device_stop(d);
1612 	} else if (atomic_read(&dc->has_dirty)) {
1613 		/*
1614 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1615 		 * and dc->has_dirty == 1
1616 		 */
1617 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1618 			d->disk->disk_name);
1619 			/*
1620 			 * There might be a small time gap that cache set is
1621 			 * released but bcache device is not. Inside this time
1622 			 * gap, regular I/O requests will directly go into
1623 			 * backing device as no cache set attached to. This
1624 			 * behavior may also introduce potential inconsistence
1625 			 * data in writeback mode while cache is dirty.
1626 			 * Therefore before calling bcache_device_stop() due
1627 			 * to a broken cache device, dc->io_disable should be
1628 			 * explicitly set to true.
1629 			 */
1630 			dc->io_disable = true;
1631 			/* make others know io_disable is true earlier */
1632 			smp_mb();
1633 			bcache_device_stop(d);
1634 	} else {
1635 		/*
1636 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1637 		 * and dc->has_dirty == 0
1638 		 */
1639 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1640 			d->disk->disk_name);
1641 	}
1642 }
1643 
1644 static void __cache_set_unregister(struct closure *cl)
1645 {
1646 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1647 	struct cached_dev *dc;
1648 	struct bcache_device *d;
1649 	size_t i;
1650 
1651 	mutex_lock(&bch_register_lock);
1652 
1653 	for (i = 0; i < c->devices_max_used; i++) {
1654 		d = c->devices[i];
1655 		if (!d)
1656 			continue;
1657 
1658 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1659 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1660 			dc = container_of(d, struct cached_dev, disk);
1661 			bch_cached_dev_detach(dc);
1662 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1663 				conditional_stop_bcache_device(c, d, dc);
1664 		} else {
1665 			bcache_device_stop(d);
1666 		}
1667 	}
1668 
1669 	mutex_unlock(&bch_register_lock);
1670 
1671 	continue_at(cl, cache_set_flush, system_wq);
1672 }
1673 
1674 void bch_cache_set_stop(struct cache_set *c)
1675 {
1676 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1677 		closure_queue(&c->caching);
1678 }
1679 
1680 void bch_cache_set_unregister(struct cache_set *c)
1681 {
1682 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1683 	bch_cache_set_stop(c);
1684 }
1685 
1686 #define alloc_bucket_pages(gfp, c)			\
1687 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1688 
1689 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1690 {
1691 	int iter_size;
1692 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1693 
1694 	if (!c)
1695 		return NULL;
1696 
1697 	__module_get(THIS_MODULE);
1698 	closure_init(&c->cl, NULL);
1699 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1700 
1701 	closure_init(&c->caching, &c->cl);
1702 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1703 
1704 	/* Maybe create continue_at_noreturn() and use it here? */
1705 	closure_set_stopped(&c->cl);
1706 	closure_put(&c->cl);
1707 
1708 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1709 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1710 
1711 	bch_cache_accounting_init(&c->accounting, &c->cl);
1712 
1713 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1714 	c->sb.block_size	= sb->block_size;
1715 	c->sb.bucket_size	= sb->bucket_size;
1716 	c->sb.nr_in_set		= sb->nr_in_set;
1717 	c->sb.last_mount	= sb->last_mount;
1718 	c->bucket_bits		= ilog2(sb->bucket_size);
1719 	c->block_bits		= ilog2(sb->block_size);
1720 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1721 	c->devices_max_used	= 0;
1722 	atomic_set(&c->attached_dev_nr, 0);
1723 	c->btree_pages		= bucket_pages(c);
1724 	if (c->btree_pages > BTREE_MAX_PAGES)
1725 		c->btree_pages = max_t(int, c->btree_pages / 4,
1726 				       BTREE_MAX_PAGES);
1727 
1728 	sema_init(&c->sb_write_mutex, 1);
1729 	mutex_init(&c->bucket_lock);
1730 	init_waitqueue_head(&c->btree_cache_wait);
1731 	init_waitqueue_head(&c->bucket_wait);
1732 	init_waitqueue_head(&c->gc_wait);
1733 	sema_init(&c->uuid_write_mutex, 1);
1734 
1735 	spin_lock_init(&c->btree_gc_time.lock);
1736 	spin_lock_init(&c->btree_split_time.lock);
1737 	spin_lock_init(&c->btree_read_time.lock);
1738 
1739 	bch_moving_init_cache_set(c);
1740 
1741 	INIT_LIST_HEAD(&c->list);
1742 	INIT_LIST_HEAD(&c->cached_devs);
1743 	INIT_LIST_HEAD(&c->btree_cache);
1744 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1745 	INIT_LIST_HEAD(&c->btree_cache_freed);
1746 	INIT_LIST_HEAD(&c->data_buckets);
1747 
1748 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1749 		sizeof(struct btree_iter_set);
1750 
1751 	if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1752 	    mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1753 	    mempool_init_kmalloc_pool(&c->bio_meta, 2,
1754 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1755 				bucket_pages(c)) ||
1756 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1757 	    bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1758 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1759 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1760 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1761 						WQ_MEM_RECLAIM, 0)) ||
1762 	    bch_journal_alloc(c) ||
1763 	    bch_btree_cache_alloc(c) ||
1764 	    bch_open_buckets_alloc(c) ||
1765 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1766 		goto err;
1767 
1768 	c->congested_read_threshold_us	= 2000;
1769 	c->congested_write_threshold_us	= 20000;
1770 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1771 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1772 
1773 	return c;
1774 err:
1775 	bch_cache_set_unregister(c);
1776 	return NULL;
1777 }
1778 
1779 static void run_cache_set(struct cache_set *c)
1780 {
1781 	const char *err = "cannot allocate memory";
1782 	struct cached_dev *dc, *t;
1783 	struct cache *ca;
1784 	struct closure cl;
1785 	unsigned int i;
1786 
1787 	closure_init_stack(&cl);
1788 
1789 	for_each_cache(ca, c, i)
1790 		c->nbuckets += ca->sb.nbuckets;
1791 	set_gc_sectors(c);
1792 
1793 	if (CACHE_SYNC(&c->sb)) {
1794 		LIST_HEAD(journal);
1795 		struct bkey *k;
1796 		struct jset *j;
1797 
1798 		err = "cannot allocate memory for journal";
1799 		if (bch_journal_read(c, &journal))
1800 			goto err;
1801 
1802 		pr_debug("btree_journal_read() done");
1803 
1804 		err = "no journal entries found";
1805 		if (list_empty(&journal))
1806 			goto err;
1807 
1808 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1809 
1810 		err = "IO error reading priorities";
1811 		for_each_cache(ca, c, i)
1812 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1813 
1814 		/*
1815 		 * If prio_read() fails it'll call cache_set_error and we'll
1816 		 * tear everything down right away, but if we perhaps checked
1817 		 * sooner we could avoid journal replay.
1818 		 */
1819 
1820 		k = &j->btree_root;
1821 
1822 		err = "bad btree root";
1823 		if (__bch_btree_ptr_invalid(c, k))
1824 			goto err;
1825 
1826 		err = "error reading btree root";
1827 		c->root = bch_btree_node_get(c, NULL, k,
1828 					     j->btree_level,
1829 					     true, NULL);
1830 		if (IS_ERR_OR_NULL(c->root))
1831 			goto err;
1832 
1833 		list_del_init(&c->root->list);
1834 		rw_unlock(true, c->root);
1835 
1836 		err = uuid_read(c, j, &cl);
1837 		if (err)
1838 			goto err;
1839 
1840 		err = "error in recovery";
1841 		if (bch_btree_check(c))
1842 			goto err;
1843 
1844 		bch_journal_mark(c, &journal);
1845 		bch_initial_gc_finish(c);
1846 		pr_debug("btree_check() done");
1847 
1848 		/*
1849 		 * bcache_journal_next() can't happen sooner, or
1850 		 * btree_gc_finish() will give spurious errors about last_gc >
1851 		 * gc_gen - this is a hack but oh well.
1852 		 */
1853 		bch_journal_next(&c->journal);
1854 
1855 		err = "error starting allocator thread";
1856 		for_each_cache(ca, c, i)
1857 			if (bch_cache_allocator_start(ca))
1858 				goto err;
1859 
1860 		/*
1861 		 * First place it's safe to allocate: btree_check() and
1862 		 * btree_gc_finish() have to run before we have buckets to
1863 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1864 		 * entry to be written so bcache_journal_next() has to be called
1865 		 * first.
1866 		 *
1867 		 * If the uuids were in the old format we have to rewrite them
1868 		 * before the next journal entry is written:
1869 		 */
1870 		if (j->version < BCACHE_JSET_VERSION_UUID)
1871 			__uuid_write(c);
1872 
1873 		bch_journal_replay(c, &journal);
1874 	} else {
1875 		pr_notice("invalidating existing data");
1876 
1877 		for_each_cache(ca, c, i) {
1878 			unsigned int j;
1879 
1880 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1881 					      2, SB_JOURNAL_BUCKETS);
1882 
1883 			for (j = 0; j < ca->sb.keys; j++)
1884 				ca->sb.d[j] = ca->sb.first_bucket + j;
1885 		}
1886 
1887 		bch_initial_gc_finish(c);
1888 
1889 		err = "error starting allocator thread";
1890 		for_each_cache(ca, c, i)
1891 			if (bch_cache_allocator_start(ca))
1892 				goto err;
1893 
1894 		mutex_lock(&c->bucket_lock);
1895 		for_each_cache(ca, c, i)
1896 			bch_prio_write(ca);
1897 		mutex_unlock(&c->bucket_lock);
1898 
1899 		err = "cannot allocate new UUID bucket";
1900 		if (__uuid_write(c))
1901 			goto err;
1902 
1903 		err = "cannot allocate new btree root";
1904 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1905 		if (IS_ERR_OR_NULL(c->root))
1906 			goto err;
1907 
1908 		mutex_lock(&c->root->write_lock);
1909 		bkey_copy_key(&c->root->key, &MAX_KEY);
1910 		bch_btree_node_write(c->root, &cl);
1911 		mutex_unlock(&c->root->write_lock);
1912 
1913 		bch_btree_set_root(c->root);
1914 		rw_unlock(true, c->root);
1915 
1916 		/*
1917 		 * We don't want to write the first journal entry until
1918 		 * everything is set up - fortunately journal entries won't be
1919 		 * written until the SET_CACHE_SYNC() here:
1920 		 */
1921 		SET_CACHE_SYNC(&c->sb, true);
1922 
1923 		bch_journal_next(&c->journal);
1924 		bch_journal_meta(c, &cl);
1925 	}
1926 
1927 	err = "error starting gc thread";
1928 	if (bch_gc_thread_start(c))
1929 		goto err;
1930 
1931 	closure_sync(&cl);
1932 	c->sb.last_mount = (u32)ktime_get_real_seconds();
1933 	bcache_write_super(c);
1934 
1935 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1936 		bch_cached_dev_attach(dc, c, NULL);
1937 
1938 	flash_devs_run(c);
1939 
1940 	set_bit(CACHE_SET_RUNNING, &c->flags);
1941 	return;
1942 err:
1943 	closure_sync(&cl);
1944 	/* XXX: test this, it's broken */
1945 	bch_cache_set_error(c, "%s", err);
1946 }
1947 
1948 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1949 {
1950 	return ca->sb.block_size	== c->sb.block_size &&
1951 		ca->sb.bucket_size	== c->sb.bucket_size &&
1952 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1953 }
1954 
1955 static const char *register_cache_set(struct cache *ca)
1956 {
1957 	char buf[12];
1958 	const char *err = "cannot allocate memory";
1959 	struct cache_set *c;
1960 
1961 	list_for_each_entry(c, &bch_cache_sets, list)
1962 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1963 			if (c->cache[ca->sb.nr_this_dev])
1964 				return "duplicate cache set member";
1965 
1966 			if (!can_attach_cache(ca, c))
1967 				return "cache sb does not match set";
1968 
1969 			if (!CACHE_SYNC(&ca->sb))
1970 				SET_CACHE_SYNC(&c->sb, false);
1971 
1972 			goto found;
1973 		}
1974 
1975 	c = bch_cache_set_alloc(&ca->sb);
1976 	if (!c)
1977 		return err;
1978 
1979 	err = "error creating kobject";
1980 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1981 	    kobject_add(&c->internal, &c->kobj, "internal"))
1982 		goto err;
1983 
1984 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1985 		goto err;
1986 
1987 	bch_debug_init_cache_set(c);
1988 
1989 	list_add(&c->list, &bch_cache_sets);
1990 found:
1991 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1992 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1993 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1994 		goto err;
1995 
1996 	if (ca->sb.seq > c->sb.seq) {
1997 		c->sb.version		= ca->sb.version;
1998 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1999 		c->sb.flags             = ca->sb.flags;
2000 		c->sb.seq		= ca->sb.seq;
2001 		pr_debug("set version = %llu", c->sb.version);
2002 	}
2003 
2004 	kobject_get(&ca->kobj);
2005 	ca->set = c;
2006 	ca->set->cache[ca->sb.nr_this_dev] = ca;
2007 	c->cache_by_alloc[c->caches_loaded++] = ca;
2008 
2009 	if (c->caches_loaded == c->sb.nr_in_set)
2010 		run_cache_set(c);
2011 
2012 	return NULL;
2013 err:
2014 	bch_cache_set_unregister(c);
2015 	return err;
2016 }
2017 
2018 /* Cache device */
2019 
2020 void bch_cache_release(struct kobject *kobj)
2021 {
2022 	struct cache *ca = container_of(kobj, struct cache, kobj);
2023 	unsigned int i;
2024 
2025 	if (ca->set) {
2026 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2027 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
2028 	}
2029 
2030 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2031 	kfree(ca->prio_buckets);
2032 	vfree(ca->buckets);
2033 
2034 	free_heap(&ca->heap);
2035 	free_fifo(&ca->free_inc);
2036 
2037 	for (i = 0; i < RESERVE_NR; i++)
2038 		free_fifo(&ca->free[i]);
2039 
2040 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2041 		put_page(bio_first_page_all(&ca->sb_bio));
2042 
2043 	if (!IS_ERR_OR_NULL(ca->bdev))
2044 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2045 
2046 	kfree(ca);
2047 	module_put(THIS_MODULE);
2048 }
2049 
2050 static int cache_alloc(struct cache *ca)
2051 {
2052 	size_t free;
2053 	size_t btree_buckets;
2054 	struct bucket *b;
2055 	int ret = -ENOMEM;
2056 	const char *err = NULL;
2057 
2058 	__module_get(THIS_MODULE);
2059 	kobject_init(&ca->kobj, &bch_cache_ktype);
2060 
2061 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2062 
2063 	/*
2064 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2065 	 * and in bch_journal_replay(), tree node may split,
2066 	 * so bucket of RESERVE_BTREE type is needed,
2067 	 * the worst situation is all journal buckets are valid journal,
2068 	 * and all the keys need to replay,
2069 	 * so the number of  RESERVE_BTREE type buckets should be as much
2070 	 * as journal buckets
2071 	 */
2072 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2073 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2074 	if (!free) {
2075 		ret = -EPERM;
2076 		err = "ca->sb.nbuckets is too small";
2077 		goto err_free;
2078 	}
2079 
2080 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2081 						GFP_KERNEL)) {
2082 		err = "ca->free[RESERVE_BTREE] alloc failed";
2083 		goto err_btree_alloc;
2084 	}
2085 
2086 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2087 							GFP_KERNEL)) {
2088 		err = "ca->free[RESERVE_PRIO] alloc failed";
2089 		goto err_prio_alloc;
2090 	}
2091 
2092 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2093 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2094 		goto err_movinggc_alloc;
2095 	}
2096 
2097 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2098 		err = "ca->free[RESERVE_NONE] alloc failed";
2099 		goto err_none_alloc;
2100 	}
2101 
2102 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2103 		err = "ca->free_inc alloc failed";
2104 		goto err_free_inc_alloc;
2105 	}
2106 
2107 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2108 		err = "ca->heap alloc failed";
2109 		goto err_heap_alloc;
2110 	}
2111 
2112 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2113 			      ca->sb.nbuckets));
2114 	if (!ca->buckets) {
2115 		err = "ca->buckets alloc failed";
2116 		goto err_buckets_alloc;
2117 	}
2118 
2119 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2120 				   prio_buckets(ca), 2),
2121 				   GFP_KERNEL);
2122 	if (!ca->prio_buckets) {
2123 		err = "ca->prio_buckets alloc failed";
2124 		goto err_prio_buckets_alloc;
2125 	}
2126 
2127 	ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2128 	if (!ca->disk_buckets) {
2129 		err = "ca->disk_buckets alloc failed";
2130 		goto err_disk_buckets_alloc;
2131 	}
2132 
2133 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2134 
2135 	for_each_bucket(b, ca)
2136 		atomic_set(&b->pin, 0);
2137 	return 0;
2138 
2139 err_disk_buckets_alloc:
2140 	kfree(ca->prio_buckets);
2141 err_prio_buckets_alloc:
2142 	vfree(ca->buckets);
2143 err_buckets_alloc:
2144 	free_heap(&ca->heap);
2145 err_heap_alloc:
2146 	free_fifo(&ca->free_inc);
2147 err_free_inc_alloc:
2148 	free_fifo(&ca->free[RESERVE_NONE]);
2149 err_none_alloc:
2150 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2151 err_movinggc_alloc:
2152 	free_fifo(&ca->free[RESERVE_PRIO]);
2153 err_prio_alloc:
2154 	free_fifo(&ca->free[RESERVE_BTREE]);
2155 err_btree_alloc:
2156 err_free:
2157 	module_put(THIS_MODULE);
2158 	if (err)
2159 		pr_notice("error %s: %s", ca->cache_dev_name, err);
2160 	return ret;
2161 }
2162 
2163 static int register_cache(struct cache_sb *sb, struct page *sb_page,
2164 				struct block_device *bdev, struct cache *ca)
2165 {
2166 	const char *err = NULL; /* must be set for any error case */
2167 	int ret = 0;
2168 
2169 	bdevname(bdev, ca->cache_dev_name);
2170 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2171 	ca->bdev = bdev;
2172 	ca->bdev->bd_holder = ca;
2173 
2174 	bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2175 	bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2176 	get_page(sb_page);
2177 
2178 	if (blk_queue_discard(bdev_get_queue(bdev)))
2179 		ca->discard = CACHE_DISCARD(&ca->sb);
2180 
2181 	ret = cache_alloc(ca);
2182 	if (ret != 0) {
2183 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2184 		if (ret == -ENOMEM)
2185 			err = "cache_alloc(): -ENOMEM";
2186 		else if (ret == -EPERM)
2187 			err = "cache_alloc(): cache device is too small";
2188 		else
2189 			err = "cache_alloc(): unknown error";
2190 		goto err;
2191 	}
2192 
2193 	if (kobject_add(&ca->kobj,
2194 			&part_to_dev(bdev->bd_part)->kobj,
2195 			"bcache")) {
2196 		err = "error calling kobject_add";
2197 		ret = -ENOMEM;
2198 		goto out;
2199 	}
2200 
2201 	mutex_lock(&bch_register_lock);
2202 	err = register_cache_set(ca);
2203 	mutex_unlock(&bch_register_lock);
2204 
2205 	if (err) {
2206 		ret = -ENODEV;
2207 		goto out;
2208 	}
2209 
2210 	pr_info("registered cache device %s", ca->cache_dev_name);
2211 
2212 out:
2213 	kobject_put(&ca->kobj);
2214 
2215 err:
2216 	if (err)
2217 		pr_notice("error %s: %s", ca->cache_dev_name, err);
2218 
2219 	return ret;
2220 }
2221 
2222 /* Global interfaces/init */
2223 
2224 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2225 			       const char *buffer, size_t size);
2226 
2227 kobj_attribute_write(register,		register_bcache);
2228 kobj_attribute_write(register_quiet,	register_bcache);
2229 
2230 static bool bch_is_open_backing(struct block_device *bdev)
2231 {
2232 	struct cache_set *c, *tc;
2233 	struct cached_dev *dc, *t;
2234 
2235 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2236 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2237 			if (dc->bdev == bdev)
2238 				return true;
2239 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2240 		if (dc->bdev == bdev)
2241 			return true;
2242 	return false;
2243 }
2244 
2245 static bool bch_is_open_cache(struct block_device *bdev)
2246 {
2247 	struct cache_set *c, *tc;
2248 	struct cache *ca;
2249 	unsigned int i;
2250 
2251 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2252 		for_each_cache(ca, c, i)
2253 			if (ca->bdev == bdev)
2254 				return true;
2255 	return false;
2256 }
2257 
2258 static bool bch_is_open(struct block_device *bdev)
2259 {
2260 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2261 }
2262 
2263 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2264 			       const char *buffer, size_t size)
2265 {
2266 	ssize_t ret = size;
2267 	const char *err = "cannot allocate memory";
2268 	char *path = NULL;
2269 	struct cache_sb *sb = NULL;
2270 	struct block_device *bdev = NULL;
2271 	struct page *sb_page = NULL;
2272 
2273 	if (!try_module_get(THIS_MODULE))
2274 		return -EBUSY;
2275 
2276 	path = kstrndup(buffer, size, GFP_KERNEL);
2277 	if (!path)
2278 		goto err;
2279 
2280 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2281 	if (!sb)
2282 		goto err;
2283 
2284 	err = "failed to open device";
2285 	bdev = blkdev_get_by_path(strim(path),
2286 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2287 				  sb);
2288 	if (IS_ERR(bdev)) {
2289 		if (bdev == ERR_PTR(-EBUSY)) {
2290 			bdev = lookup_bdev(strim(path));
2291 			mutex_lock(&bch_register_lock);
2292 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2293 				err = "device already registered";
2294 			else
2295 				err = "device busy";
2296 			mutex_unlock(&bch_register_lock);
2297 			if (!IS_ERR(bdev))
2298 				bdput(bdev);
2299 			if (attr == &ksysfs_register_quiet)
2300 				goto out;
2301 		}
2302 		goto err;
2303 	}
2304 
2305 	err = "failed to set blocksize";
2306 	if (set_blocksize(bdev, 4096))
2307 		goto err_close;
2308 
2309 	err = read_super(sb, bdev, &sb_page);
2310 	if (err)
2311 		goto err_close;
2312 
2313 	err = "failed to register device";
2314 	if (SB_IS_BDEV(sb)) {
2315 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2316 
2317 		if (!dc)
2318 			goto err_close;
2319 
2320 		mutex_lock(&bch_register_lock);
2321 		register_bdev(sb, sb_page, bdev, dc);
2322 		mutex_unlock(&bch_register_lock);
2323 	} else {
2324 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2325 
2326 		if (!ca)
2327 			goto err_close;
2328 
2329 		if (register_cache(sb, sb_page, bdev, ca) != 0)
2330 			goto err;
2331 	}
2332 out:
2333 	if (sb_page)
2334 		put_page(sb_page);
2335 	kfree(sb);
2336 	kfree(path);
2337 	module_put(THIS_MODULE);
2338 	return ret;
2339 
2340 err_close:
2341 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2342 err:
2343 	pr_info("error %s: %s", path, err);
2344 	ret = -EINVAL;
2345 	goto out;
2346 }
2347 
2348 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2349 {
2350 	if (code == SYS_DOWN ||
2351 	    code == SYS_HALT ||
2352 	    code == SYS_POWER_OFF) {
2353 		DEFINE_WAIT(wait);
2354 		unsigned long start = jiffies;
2355 		bool stopped = false;
2356 
2357 		struct cache_set *c, *tc;
2358 		struct cached_dev *dc, *tdc;
2359 
2360 		mutex_lock(&bch_register_lock);
2361 
2362 		if (list_empty(&bch_cache_sets) &&
2363 		    list_empty(&uncached_devices))
2364 			goto out;
2365 
2366 		pr_info("Stopping all devices:");
2367 
2368 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2369 			bch_cache_set_stop(c);
2370 
2371 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2372 			bcache_device_stop(&dc->disk);
2373 
2374 		/* What's a condition variable? */
2375 		while (1) {
2376 			long timeout = start + 2 * HZ - jiffies;
2377 
2378 			stopped = list_empty(&bch_cache_sets) &&
2379 				list_empty(&uncached_devices);
2380 
2381 			if (timeout < 0 || stopped)
2382 				break;
2383 
2384 			prepare_to_wait(&unregister_wait, &wait,
2385 					TASK_UNINTERRUPTIBLE);
2386 
2387 			mutex_unlock(&bch_register_lock);
2388 			schedule_timeout(timeout);
2389 			mutex_lock(&bch_register_lock);
2390 		}
2391 
2392 		finish_wait(&unregister_wait, &wait);
2393 
2394 		if (stopped)
2395 			pr_info("All devices stopped");
2396 		else
2397 			pr_notice("Timeout waiting for devices to be closed");
2398 out:
2399 		mutex_unlock(&bch_register_lock);
2400 	}
2401 
2402 	return NOTIFY_DONE;
2403 }
2404 
2405 static struct notifier_block reboot = {
2406 	.notifier_call	= bcache_reboot,
2407 	.priority	= INT_MAX, /* before any real devices */
2408 };
2409 
2410 static void bcache_exit(void)
2411 {
2412 	bch_debug_exit();
2413 	bch_request_exit();
2414 	if (bcache_kobj)
2415 		kobject_put(bcache_kobj);
2416 	if (bcache_wq)
2417 		destroy_workqueue(bcache_wq);
2418 	if (bch_journal_wq)
2419 		destroy_workqueue(bch_journal_wq);
2420 
2421 	if (bcache_major)
2422 		unregister_blkdev(bcache_major, "bcache");
2423 	unregister_reboot_notifier(&reboot);
2424 	mutex_destroy(&bch_register_lock);
2425 }
2426 
2427 static int __init bcache_init(void)
2428 {
2429 	static const struct attribute *files[] = {
2430 		&ksysfs_register.attr,
2431 		&ksysfs_register_quiet.attr,
2432 		NULL
2433 	};
2434 
2435 	mutex_init(&bch_register_lock);
2436 	init_waitqueue_head(&unregister_wait);
2437 	register_reboot_notifier(&reboot);
2438 
2439 	bcache_major = register_blkdev(0, "bcache");
2440 	if (bcache_major < 0) {
2441 		unregister_reboot_notifier(&reboot);
2442 		mutex_destroy(&bch_register_lock);
2443 		return bcache_major;
2444 	}
2445 
2446 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2447 	if (!bcache_wq)
2448 		goto err;
2449 
2450 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2451 	if (!bch_journal_wq)
2452 		goto err;
2453 
2454 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2455 	if (!bcache_kobj)
2456 		goto err;
2457 
2458 	if (bch_request_init() ||
2459 	    sysfs_create_files(bcache_kobj, files))
2460 		goto err;
2461 
2462 	bch_debug_init();
2463 	closure_debug_init();
2464 
2465 	return 0;
2466 err:
2467 	bcache_exit();
2468 	return -ENOMEM;
2469 }
2470 
2471 module_exit(bcache_exit);
2472 module_init(bcache_init);
2473