1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/pagemap.h>
20 #include <linux/debugfs.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31
32 static const char bcache_magic[] = {
33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36
37 static const char invalid_uuid[] = {
38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54
55
56 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS 128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
61
62 /* Superblock */
63
get_bucket_size(struct cache_sb * sb,struct cache_sb_disk * s)64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66 unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67
68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69 if (bch_has_feature_large_bucket(sb)) {
70 unsigned int max, order;
71
72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73 order = le16_to_cpu(s->bucket_size);
74 /*
75 * bcache tool will make sure the overflow won't
76 * happen, an error message here is enough.
77 */
78 if (order > max)
79 pr_err("Bucket size (1 << %u) overflows\n",
80 order);
81 bucket_size = 1 << order;
82 } else if (bch_has_feature_obso_large_bucket(sb)) {
83 bucket_size +=
84 le16_to_cpu(s->obso_bucket_size_hi) << 16;
85 }
86 }
87
88 return bucket_size;
89 }
90
read_super_common(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk * s)91 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
92 struct cache_sb_disk *s)
93 {
94 const char *err;
95 unsigned int i;
96
97 sb->first_bucket= le16_to_cpu(s->first_bucket);
98 sb->nbuckets = le64_to_cpu(s->nbuckets);
99 sb->bucket_size = get_bucket_size(sb, s);
100
101 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
103
104 err = "Too many journal buckets";
105 if (sb->keys > SB_JOURNAL_BUCKETS)
106 goto err;
107
108 err = "Too many buckets";
109 if (sb->nbuckets > LONG_MAX)
110 goto err;
111
112 err = "Not enough buckets";
113 if (sb->nbuckets < 1 << 7)
114 goto err;
115
116 err = "Bad block size (not power of 2)";
117 if (!is_power_of_2(sb->block_size))
118 goto err;
119
120 err = "Bad block size (larger than page size)";
121 if (sb->block_size > PAGE_SECTORS)
122 goto err;
123
124 err = "Bad bucket size (not power of 2)";
125 if (!is_power_of_2(sb->bucket_size))
126 goto err;
127
128 err = "Bad bucket size (smaller than page size)";
129 if (sb->bucket_size < PAGE_SECTORS)
130 goto err;
131
132 err = "Invalid superblock: device too small";
133 if (get_capacity(bdev->bd_disk) <
134 sb->bucket_size * sb->nbuckets)
135 goto err;
136
137 err = "Bad UUID";
138 if (bch_is_zero(sb->set_uuid, 16))
139 goto err;
140
141 err = "Bad cache device number in set";
142 if (!sb->nr_in_set ||
143 sb->nr_in_set <= sb->nr_this_dev ||
144 sb->nr_in_set > MAX_CACHES_PER_SET)
145 goto err;
146
147 err = "Journal buckets not sequential";
148 for (i = 0; i < sb->keys; i++)
149 if (sb->d[i] != sb->first_bucket + i)
150 goto err;
151
152 err = "Too many journal buckets";
153 if (sb->first_bucket + sb->keys > sb->nbuckets)
154 goto err;
155
156 err = "Invalid superblock: first bucket comes before end of super";
157 if (sb->first_bucket * sb->bucket_size < 16)
158 goto err;
159
160 err = NULL;
161 err:
162 return err;
163 }
164
165
read_super(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk ** res)166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167 struct cache_sb_disk **res)
168 {
169 const char *err;
170 struct cache_sb_disk *s;
171 struct page *page;
172 unsigned int i;
173
174 page = read_cache_page_gfp(bdev->bd_mapping,
175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176 if (IS_ERR(page))
177 return "IO error";
178 s = page_address(page) + offset_in_page(SB_OFFSET);
179
180 sb->offset = le64_to_cpu(s->offset);
181 sb->version = le64_to_cpu(s->version);
182
183 memcpy(sb->magic, s->magic, 16);
184 memcpy(sb->uuid, s->uuid, 16);
185 memcpy(sb->set_uuid, s->set_uuid, 16);
186 memcpy(sb->label, s->label, SB_LABEL_SIZE);
187
188 sb->flags = le64_to_cpu(s->flags);
189 sb->seq = le64_to_cpu(s->seq);
190 sb->last_mount = le32_to_cpu(s->last_mount);
191 sb->keys = le16_to_cpu(s->keys);
192
193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194 sb->d[i] = le64_to_cpu(s->d[i]);
195
196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197 sb->version, sb->flags, sb->seq, sb->keys);
198
199 err = "Not a bcache superblock (bad offset)";
200 if (sb->offset != SB_SECTOR)
201 goto err;
202
203 err = "Not a bcache superblock (bad magic)";
204 if (memcmp(sb->magic, bcache_magic, 16))
205 goto err;
206
207 err = "Bad checksum";
208 if (s->csum != csum_set(s))
209 goto err;
210
211 err = "Bad UUID";
212 if (bch_is_zero(sb->uuid, 16))
213 goto err;
214
215 sb->block_size = le16_to_cpu(s->block_size);
216
217 err = "Superblock block size smaller than device block size";
218 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219 goto err;
220
221 switch (sb->version) {
222 case BCACHE_SB_VERSION_BDEV:
223 sb->data_offset = BDEV_DATA_START_DEFAULT;
224 break;
225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227 sb->data_offset = le64_to_cpu(s->data_offset);
228
229 err = "Bad data offset";
230 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231 goto err;
232
233 break;
234 case BCACHE_SB_VERSION_CDEV:
235 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236 err = read_super_common(sb, bdev, s);
237 if (err)
238 goto err;
239 break;
240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241 /*
242 * Feature bits are needed in read_super_common(),
243 * convert them firstly.
244 */
245 sb->feature_compat = le64_to_cpu(s->feature_compat);
246 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248
249 /* Check incompatible features */
250 err = "Unsupported compatible feature found";
251 if (bch_has_unknown_compat_features(sb))
252 goto err;
253
254 err = "Unsupported read-only compatible feature found";
255 if (bch_has_unknown_ro_compat_features(sb))
256 goto err;
257
258 err = "Unsupported incompatible feature found";
259 if (bch_has_unknown_incompat_features(sb))
260 goto err;
261
262 err = read_super_common(sb, bdev, s);
263 if (err)
264 goto err;
265 break;
266 default:
267 err = "Unsupported superblock version";
268 goto err;
269 }
270
271 sb->last_mount = (u32)ktime_get_real_seconds();
272 *res = s;
273 return NULL;
274 err:
275 put_page(page);
276 return err;
277 }
278
write_bdev_super_endio(struct bio * bio)279 static void write_bdev_super_endio(struct bio *bio)
280 {
281 struct cached_dev *dc = bio->bi_private;
282
283 if (bio->bi_status)
284 bch_count_backing_io_errors(dc, bio);
285
286 closure_put(&dc->sb_write);
287 }
288
__write_super(struct cache_sb * sb,struct cache_sb_disk * out,struct bio * bio)289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290 struct bio *bio)
291 {
292 unsigned int i;
293
294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295 bio->bi_iter.bi_sector = SB_SECTOR;
296 __bio_add_page(bio, virt_to_page(out), SB_SIZE,
297 offset_in_page(out));
298
299 out->offset = cpu_to_le64(sb->offset);
300
301 memcpy(out->uuid, sb->uuid, 16);
302 memcpy(out->set_uuid, sb->set_uuid, 16);
303 memcpy(out->label, sb->label, SB_LABEL_SIZE);
304
305 out->flags = cpu_to_le64(sb->flags);
306 out->seq = cpu_to_le64(sb->seq);
307
308 out->last_mount = cpu_to_le32(sb->last_mount);
309 out->first_bucket = cpu_to_le16(sb->first_bucket);
310 out->keys = cpu_to_le16(sb->keys);
311
312 for (i = 0; i < sb->keys; i++)
313 out->d[i] = cpu_to_le64(sb->d[i]);
314
315 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316 out->feature_compat = cpu_to_le64(sb->feature_compat);
317 out->feature_incompat = cpu_to_le64(sb->feature_incompat);
318 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319 }
320
321 out->version = cpu_to_le64(sb->version);
322 out->csum = csum_set(out);
323
324 pr_debug("ver %llu, flags %llu, seq %llu\n",
325 sb->version, sb->flags, sb->seq);
326
327 submit_bio(bio);
328 }
329
CLOSURE_CALLBACK(bch_write_bdev_super_unlock)330 static CLOSURE_CALLBACK(bch_write_bdev_super_unlock)
331 {
332 closure_type(dc, struct cached_dev, sb_write);
333
334 up(&dc->sb_write_mutex);
335 }
336
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338 {
339 struct closure *cl = &dc->sb_write;
340 struct bio *bio = &dc->sb_bio;
341
342 down(&dc->sb_write_mutex);
343 closure_init(cl, parent);
344
345 bio_init(bio, dc->bdev, dc->sb_bv, 1, 0);
346 bio->bi_end_io = write_bdev_super_endio;
347 bio->bi_private = dc;
348
349 closure_get(cl);
350 /* I/O request sent to backing device */
351 __write_super(&dc->sb, dc->sb_disk, bio);
352
353 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
354 }
355
write_super_endio(struct bio * bio)356 static void write_super_endio(struct bio *bio)
357 {
358 struct cache *ca = bio->bi_private;
359
360 /* is_read = 0 */
361 bch_count_io_errors(ca, bio->bi_status, 0,
362 "writing superblock");
363 closure_put(&ca->set->sb_write);
364 }
365
CLOSURE_CALLBACK(bcache_write_super_unlock)366 static CLOSURE_CALLBACK(bcache_write_super_unlock)
367 {
368 closure_type(c, struct cache_set, sb_write);
369
370 up(&c->sb_write_mutex);
371 }
372
bcache_write_super(struct cache_set * c)373 void bcache_write_super(struct cache_set *c)
374 {
375 struct closure *cl = &c->sb_write;
376 struct cache *ca = c->cache;
377 struct bio *bio = &ca->sb_bio;
378 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
379
380 down(&c->sb_write_mutex);
381 closure_init(cl, &c->cl);
382
383 ca->sb.seq++;
384
385 if (ca->sb.version < version)
386 ca->sb.version = version;
387
388 bio_init(bio, ca->bdev, ca->sb_bv, 1, 0);
389 bio->bi_end_io = write_super_endio;
390 bio->bi_private = ca;
391
392 closure_get(cl);
393 __write_super(&ca->sb, ca->sb_disk, bio);
394
395 closure_return_with_destructor(cl, bcache_write_super_unlock);
396 }
397
398 /* UUID io */
399
uuid_endio(struct bio * bio)400 static void uuid_endio(struct bio *bio)
401 {
402 struct closure *cl = bio->bi_private;
403 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
404
405 cache_set_err_on(bio->bi_status, c, "accessing uuids");
406 bch_bbio_free(bio, c);
407 closure_put(cl);
408 }
409
CLOSURE_CALLBACK(uuid_io_unlock)410 static CLOSURE_CALLBACK(uuid_io_unlock)
411 {
412 closure_type(c, struct cache_set, uuid_write);
413
414 up(&c->uuid_write_mutex);
415 }
416
uuid_io(struct cache_set * c,blk_opf_t opf,struct bkey * k,struct closure * parent)417 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k,
418 struct closure *parent)
419 {
420 struct closure *cl = &c->uuid_write;
421 struct uuid_entry *u;
422 unsigned int i;
423 char buf[80];
424
425 BUG_ON(!parent);
426 down(&c->uuid_write_mutex);
427 closure_init(cl, parent);
428
429 for (i = 0; i < KEY_PTRS(k); i++) {
430 struct bio *bio = bch_bbio_alloc(c);
431
432 bio->bi_opf = opf | REQ_SYNC | REQ_META;
433 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
434
435 bio->bi_end_io = uuid_endio;
436 bio->bi_private = cl;
437 bch_bio_map(bio, c->uuids);
438
439 bch_submit_bbio(bio, c, k, i);
440
441 if ((opf & REQ_OP_MASK) != REQ_OP_WRITE)
442 break;
443 }
444
445 bch_extent_to_text(buf, sizeof(buf), k);
446 pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ?
447 "wrote" : "read", buf);
448
449 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
450 if (!bch_is_zero(u->uuid, 16))
451 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
452 u - c->uuids, u->uuid, u->label,
453 u->first_reg, u->last_reg, u->invalidated);
454
455 closure_return_with_destructor(cl, uuid_io_unlock);
456 }
457
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)458 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
459 {
460 struct bkey *k = &j->uuid_bucket;
461
462 if (__bch_btree_ptr_invalid(c, k))
463 return "bad uuid pointer";
464
465 bkey_copy(&c->uuid_bucket, k);
466 uuid_io(c, REQ_OP_READ, k, cl);
467
468 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
469 struct uuid_entry_v0 *u0 = (void *) c->uuids;
470 struct uuid_entry *u1 = (void *) c->uuids;
471 int i;
472
473 closure_sync(cl);
474
475 /*
476 * Since the new uuid entry is bigger than the old, we have to
477 * convert starting at the highest memory address and work down
478 * in order to do it in place
479 */
480
481 for (i = c->nr_uuids - 1;
482 i >= 0;
483 --i) {
484 memcpy(u1[i].uuid, u0[i].uuid, 16);
485 memcpy(u1[i].label, u0[i].label, 32);
486
487 u1[i].first_reg = u0[i].first_reg;
488 u1[i].last_reg = u0[i].last_reg;
489 u1[i].invalidated = u0[i].invalidated;
490
491 u1[i].flags = 0;
492 u1[i].sectors = 0;
493 }
494 }
495
496 return NULL;
497 }
498
__uuid_write(struct cache_set * c)499 static int __uuid_write(struct cache_set *c)
500 {
501 BKEY_PADDED(key) k;
502 struct closure cl;
503 struct cache *ca = c->cache;
504 unsigned int size;
505
506 closure_init_stack(&cl);
507 lockdep_assert_held(&bch_register_lock);
508
509 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
510 return 1;
511
512 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
513 SET_KEY_SIZE(&k.key, size);
514 uuid_io(c, REQ_OP_WRITE, &k.key, &cl);
515 closure_sync(&cl);
516
517 /* Only one bucket used for uuid write */
518 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
519
520 bkey_copy(&c->uuid_bucket, &k.key);
521 bkey_put(c, &k.key);
522 return 0;
523 }
524
bch_uuid_write(struct cache_set * c)525 int bch_uuid_write(struct cache_set *c)
526 {
527 int ret = __uuid_write(c);
528
529 if (!ret)
530 bch_journal_meta(c, NULL);
531
532 return ret;
533 }
534
uuid_find(struct cache_set * c,const char * uuid)535 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
536 {
537 struct uuid_entry *u;
538
539 for (u = c->uuids;
540 u < c->uuids + c->nr_uuids; u++)
541 if (!memcmp(u->uuid, uuid, 16))
542 return u;
543
544 return NULL;
545 }
546
uuid_find_empty(struct cache_set * c)547 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
548 {
549 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
550
551 return uuid_find(c, zero_uuid);
552 }
553
554 /*
555 * Bucket priorities/gens:
556 *
557 * For each bucket, we store on disk its
558 * 8 bit gen
559 * 16 bit priority
560 *
561 * See alloc.c for an explanation of the gen. The priority is used to implement
562 * lru (and in the future other) cache replacement policies; for most purposes
563 * it's just an opaque integer.
564 *
565 * The gens and the priorities don't have a whole lot to do with each other, and
566 * it's actually the gens that must be written out at specific times - it's no
567 * big deal if the priorities don't get written, if we lose them we just reuse
568 * buckets in suboptimal order.
569 *
570 * On disk they're stored in a packed array, and in as many buckets are required
571 * to fit them all. The buckets we use to store them form a list; the journal
572 * header points to the first bucket, the first bucket points to the second
573 * bucket, et cetera.
574 *
575 * This code is used by the allocation code; periodically (whenever it runs out
576 * of buckets to allocate from) the allocation code will invalidate some
577 * buckets, but it can't use those buckets until their new gens are safely on
578 * disk.
579 */
580
prio_endio(struct bio * bio)581 static void prio_endio(struct bio *bio)
582 {
583 struct cache *ca = bio->bi_private;
584
585 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
586 bch_bbio_free(bio, ca->set);
587 closure_put(&ca->prio);
588 }
589
prio_io(struct cache * ca,uint64_t bucket,blk_opf_t opf)590 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf)
591 {
592 struct closure *cl = &ca->prio;
593 struct bio *bio = bch_bbio_alloc(ca->set);
594
595 closure_init_stack(cl);
596
597 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
598 bio_set_dev(bio, ca->bdev);
599 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb);
600
601 bio->bi_end_io = prio_endio;
602 bio->bi_private = ca;
603 bio->bi_opf = opf | REQ_SYNC | REQ_META;
604 bch_bio_map(bio, ca->disk_buckets);
605
606 closure_bio_submit(ca->set, bio, &ca->prio);
607 closure_sync(cl);
608 }
609
bch_prio_write(struct cache * ca,bool wait)610 int bch_prio_write(struct cache *ca, bool wait)
611 {
612 int i;
613 struct bucket *b;
614 struct closure cl;
615
616 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
617 fifo_used(&ca->free[RESERVE_PRIO]),
618 fifo_used(&ca->free[RESERVE_NONE]),
619 fifo_used(&ca->free_inc));
620
621 /*
622 * Pre-check if there are enough free buckets. In the non-blocking
623 * scenario it's better to fail early rather than starting to allocate
624 * buckets and do a cleanup later in case of failure.
625 */
626 if (!wait) {
627 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
628 fifo_used(&ca->free[RESERVE_NONE]);
629 if (prio_buckets(ca) > avail)
630 return -ENOMEM;
631 }
632
633 closure_init_stack(&cl);
634
635 lockdep_assert_held(&ca->set->bucket_lock);
636
637 ca->disk_buckets->seq++;
638
639 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
640 &ca->meta_sectors_written);
641
642 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
643 long bucket;
644 struct prio_set *p = ca->disk_buckets;
645 struct bucket_disk *d = p->data;
646 struct bucket_disk *end = d + prios_per_bucket(ca);
647
648 for (b = ca->buckets + i * prios_per_bucket(ca);
649 b < ca->buckets + ca->sb.nbuckets && d < end;
650 b++, d++) {
651 d->prio = cpu_to_le16(b->prio);
652 d->gen = b->gen;
653 }
654
655 p->next_bucket = ca->prio_buckets[i + 1];
656 p->magic = pset_magic(&ca->sb);
657 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
658
659 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
660 BUG_ON(bucket == -1);
661
662 mutex_unlock(&ca->set->bucket_lock);
663 prio_io(ca, bucket, REQ_OP_WRITE);
664 mutex_lock(&ca->set->bucket_lock);
665
666 ca->prio_buckets[i] = bucket;
667 atomic_dec_bug(&ca->buckets[bucket].pin);
668 }
669
670 mutex_unlock(&ca->set->bucket_lock);
671
672 bch_journal_meta(ca->set, &cl);
673 closure_sync(&cl);
674
675 mutex_lock(&ca->set->bucket_lock);
676
677 /*
678 * Don't want the old priorities to get garbage collected until after we
679 * finish writing the new ones, and they're journalled
680 */
681 for (i = 0; i < prio_buckets(ca); i++) {
682 if (ca->prio_last_buckets[i])
683 __bch_bucket_free(ca,
684 &ca->buckets[ca->prio_last_buckets[i]]);
685
686 ca->prio_last_buckets[i] = ca->prio_buckets[i];
687 }
688 return 0;
689 }
690
prio_read(struct cache * ca,uint64_t bucket)691 static int prio_read(struct cache *ca, uint64_t bucket)
692 {
693 struct prio_set *p = ca->disk_buckets;
694 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
695 struct bucket *b;
696 unsigned int bucket_nr = 0;
697 int ret = -EIO;
698
699 for (b = ca->buckets;
700 b < ca->buckets + ca->sb.nbuckets;
701 b++, d++) {
702 if (d == end) {
703 ca->prio_buckets[bucket_nr] = bucket;
704 ca->prio_last_buckets[bucket_nr] = bucket;
705 bucket_nr++;
706
707 prio_io(ca, bucket, REQ_OP_READ);
708
709 if (p->csum !=
710 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
711 pr_warn("bad csum reading priorities\n");
712 goto out;
713 }
714
715 if (p->magic != pset_magic(&ca->sb)) {
716 pr_warn("bad magic reading priorities\n");
717 goto out;
718 }
719
720 bucket = p->next_bucket;
721 d = p->data;
722 }
723
724 b->prio = le16_to_cpu(d->prio);
725 b->gen = b->last_gc = d->gen;
726 }
727
728 ret = 0;
729 out:
730 return ret;
731 }
732
733 /* Bcache device */
734
open_dev(struct gendisk * disk,blk_mode_t mode)735 static int open_dev(struct gendisk *disk, blk_mode_t mode)
736 {
737 struct bcache_device *d = disk->private_data;
738
739 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
740 return -ENXIO;
741
742 closure_get(&d->cl);
743 return 0;
744 }
745
release_dev(struct gendisk * b)746 static void release_dev(struct gendisk *b)
747 {
748 struct bcache_device *d = b->private_data;
749
750 closure_put(&d->cl);
751 }
752
ioctl_dev(struct block_device * b,blk_mode_t mode,unsigned int cmd,unsigned long arg)753 static int ioctl_dev(struct block_device *b, blk_mode_t mode,
754 unsigned int cmd, unsigned long arg)
755 {
756 struct bcache_device *d = b->bd_disk->private_data;
757
758 return d->ioctl(d, mode, cmd, arg);
759 }
760
761 static const struct block_device_operations bcache_cached_ops = {
762 .submit_bio = cached_dev_submit_bio,
763 .open = open_dev,
764 .release = release_dev,
765 .ioctl = ioctl_dev,
766 .owner = THIS_MODULE,
767 };
768
769 static const struct block_device_operations bcache_flash_ops = {
770 .submit_bio = flash_dev_submit_bio,
771 .open = open_dev,
772 .release = release_dev,
773 .ioctl = ioctl_dev,
774 .owner = THIS_MODULE,
775 };
776
bcache_device_stop(struct bcache_device * d)777 void bcache_device_stop(struct bcache_device *d)
778 {
779 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
780 /*
781 * closure_fn set to
782 * - cached device: cached_dev_flush()
783 * - flash dev: flash_dev_flush()
784 */
785 closure_queue(&d->cl);
786 }
787
bcache_device_unlink(struct bcache_device * d)788 static void bcache_device_unlink(struct bcache_device *d)
789 {
790 lockdep_assert_held(&bch_register_lock);
791
792 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
793 struct cache *ca = d->c->cache;
794
795 sysfs_remove_link(&d->c->kobj, d->name);
796 sysfs_remove_link(&d->kobj, "cache");
797
798 bd_unlink_disk_holder(ca->bdev, d->disk);
799 }
800 }
801
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)802 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
803 const char *name)
804 {
805 struct cache *ca = c->cache;
806 int ret;
807
808 bd_link_disk_holder(ca->bdev, d->disk);
809
810 snprintf(d->name, BCACHEDEVNAME_SIZE,
811 "%s%u", name, d->id);
812
813 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
814 if (ret < 0)
815 pr_err("Couldn't create device -> cache set symlink\n");
816
817 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
818 if (ret < 0)
819 pr_err("Couldn't create cache set -> device symlink\n");
820
821 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
822 }
823
bcache_device_detach(struct bcache_device * d)824 static void bcache_device_detach(struct bcache_device *d)
825 {
826 lockdep_assert_held(&bch_register_lock);
827
828 atomic_dec(&d->c->attached_dev_nr);
829
830 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
831 struct uuid_entry *u = d->c->uuids + d->id;
832
833 SET_UUID_FLASH_ONLY(u, 0);
834 memcpy(u->uuid, invalid_uuid, 16);
835 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
836 bch_uuid_write(d->c);
837 }
838
839 bcache_device_unlink(d);
840
841 d->c->devices[d->id] = NULL;
842 closure_put(&d->c->caching);
843 d->c = NULL;
844 }
845
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)846 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
847 unsigned int id)
848 {
849 d->id = id;
850 d->c = c;
851 c->devices[id] = d;
852
853 if (id >= c->devices_max_used)
854 c->devices_max_used = id + 1;
855
856 closure_get(&c->caching);
857 }
858
first_minor_to_idx(int first_minor)859 static inline int first_minor_to_idx(int first_minor)
860 {
861 return (first_minor/BCACHE_MINORS);
862 }
863
idx_to_first_minor(int idx)864 static inline int idx_to_first_minor(int idx)
865 {
866 return (idx * BCACHE_MINORS);
867 }
868
bcache_device_free(struct bcache_device * d)869 static void bcache_device_free(struct bcache_device *d)
870 {
871 struct gendisk *disk = d->disk;
872
873 lockdep_assert_held(&bch_register_lock);
874
875 if (disk)
876 pr_info("%s stopped\n", disk->disk_name);
877 else
878 pr_err("bcache device (NULL gendisk) stopped\n");
879
880 if (d->c)
881 bcache_device_detach(d);
882
883 if (disk) {
884 ida_free(&bcache_device_idx,
885 first_minor_to_idx(disk->first_minor));
886 put_disk(disk);
887 }
888
889 bioset_exit(&d->bio_split);
890 kvfree(d->full_dirty_stripes);
891 kvfree(d->stripe_sectors_dirty);
892
893 closure_debug_destroy(&d->cl);
894 }
895
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors,struct block_device * cached_bdev,const struct block_device_operations * ops)896 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
897 sector_t sectors, struct block_device *cached_bdev,
898 const struct block_device_operations *ops)
899 {
900 const size_t max_stripes = min_t(size_t, INT_MAX,
901 SIZE_MAX / sizeof(atomic_t));
902 struct queue_limits lim = {
903 .max_hw_sectors = UINT_MAX,
904 .max_sectors = UINT_MAX,
905 .max_segment_size = UINT_MAX,
906 .max_segments = BIO_MAX_VECS,
907 .max_hw_discard_sectors = UINT_MAX,
908 .io_min = block_size,
909 .logical_block_size = block_size,
910 .physical_block_size = block_size,
911 .features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA,
912 };
913 uint64_t n;
914 int idx;
915
916 if (cached_bdev) {
917 d->stripe_size = bdev_io_opt(cached_bdev) >> SECTOR_SHIFT;
918 lim.io_opt = umax(block_size, bdev_io_opt(cached_bdev));
919 }
920 if (!d->stripe_size)
921 d->stripe_size = 1 << 31;
922 else if (d->stripe_size < BCH_MIN_STRIPE_SZ)
923 d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size);
924
925 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
926 if (!n || n > max_stripes) {
927 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
928 n);
929 return -ENOMEM;
930 }
931 d->nr_stripes = n;
932
933 n = d->nr_stripes * sizeof(atomic_t);
934 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
935 if (!d->stripe_sectors_dirty)
936 return -ENOMEM;
937
938 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
939 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
940 if (!d->full_dirty_stripes)
941 goto out_free_stripe_sectors_dirty;
942
943 idx = ida_alloc_max(&bcache_device_idx, BCACHE_DEVICE_IDX_MAX - 1,
944 GFP_KERNEL);
945 if (idx < 0)
946 goto out_free_full_dirty_stripes;
947
948 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
949 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
950 goto out_ida_remove;
951
952 if (lim.logical_block_size > PAGE_SIZE && cached_bdev) {
953 /*
954 * This should only happen with BCACHE_SB_VERSION_BDEV.
955 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
956 */
957 pr_info("bcache%i: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
958 idx, lim.logical_block_size,
959 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
960
961 /* This also adjusts physical block size/min io size if needed */
962 lim.logical_block_size = bdev_logical_block_size(cached_bdev);
963 }
964
965 d->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
966 if (IS_ERR(d->disk))
967 goto out_bioset_exit;
968
969 set_capacity(d->disk, sectors);
970 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
971
972 d->disk->major = bcache_major;
973 d->disk->first_minor = idx_to_first_minor(idx);
974 d->disk->minors = BCACHE_MINORS;
975 d->disk->fops = ops;
976 d->disk->private_data = d;
977 return 0;
978
979 out_bioset_exit:
980 bioset_exit(&d->bio_split);
981 out_ida_remove:
982 ida_free(&bcache_device_idx, idx);
983 out_free_full_dirty_stripes:
984 kvfree(d->full_dirty_stripes);
985 out_free_stripe_sectors_dirty:
986 kvfree(d->stripe_sectors_dirty);
987 return -ENOMEM;
988
989 }
990
991 /* Cached device */
992
calc_cached_dev_sectors(struct cache_set * c)993 static void calc_cached_dev_sectors(struct cache_set *c)
994 {
995 uint64_t sectors = 0;
996 struct cached_dev *dc;
997
998 list_for_each_entry(dc, &c->cached_devs, list)
999 sectors += bdev_nr_sectors(dc->bdev);
1000
1001 c->cached_dev_sectors = sectors;
1002 }
1003
1004 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)1005 static int cached_dev_status_update(void *arg)
1006 {
1007 struct cached_dev *dc = arg;
1008 struct request_queue *q;
1009
1010 /*
1011 * If this delayed worker is stopping outside, directly quit here.
1012 * dc->io_disable might be set via sysfs interface, so check it
1013 * here too.
1014 */
1015 while (!kthread_should_stop() && !dc->io_disable) {
1016 q = bdev_get_queue(dc->bdev);
1017 if (blk_queue_dying(q))
1018 dc->offline_seconds++;
1019 else
1020 dc->offline_seconds = 0;
1021
1022 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1023 pr_err("%pg: device offline for %d seconds\n",
1024 dc->bdev,
1025 BACKING_DEV_OFFLINE_TIMEOUT);
1026 pr_err("%s: disable I/O request due to backing device offline\n",
1027 dc->disk.name);
1028 dc->io_disable = true;
1029 /* let others know earlier that io_disable is true */
1030 smp_mb();
1031 bcache_device_stop(&dc->disk);
1032 break;
1033 }
1034 schedule_timeout_interruptible(HZ);
1035 }
1036
1037 wait_for_kthread_stop();
1038 return 0;
1039 }
1040
1041
bch_cached_dev_run(struct cached_dev * dc)1042 int bch_cached_dev_run(struct cached_dev *dc)
1043 {
1044 int ret = 0;
1045 struct bcache_device *d = &dc->disk;
1046 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1047 char *env[] = {
1048 "DRIVER=bcache",
1049 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1050 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1051 NULL,
1052 };
1053
1054 if (dc->io_disable) {
1055 pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
1056 ret = -EIO;
1057 goto out;
1058 }
1059
1060 if (atomic_xchg(&dc->running, 1)) {
1061 pr_info("cached dev %pg is running already\n", dc->bdev);
1062 ret = -EBUSY;
1063 goto out;
1064 }
1065
1066 if (!d->c &&
1067 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1068 struct closure cl;
1069
1070 closure_init_stack(&cl);
1071
1072 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1073 bch_write_bdev_super(dc, &cl);
1074 closure_sync(&cl);
1075 }
1076
1077 ret = add_disk(d->disk);
1078 if (ret)
1079 goto out;
1080 bd_link_disk_holder(dc->bdev, dc->disk.disk);
1081 /*
1082 * won't show up in the uevent file, use udevadm monitor -e instead
1083 * only class / kset properties are persistent
1084 */
1085 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1086
1087 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1088 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1089 &d->kobj, "bcache")) {
1090 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1091 ret = -ENOMEM;
1092 goto out;
1093 }
1094
1095 dc->status_update_thread = kthread_run(cached_dev_status_update,
1096 dc, "bcache_status_update");
1097 if (IS_ERR(dc->status_update_thread)) {
1098 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1099 }
1100
1101 out:
1102 kfree(env[1]);
1103 kfree(env[2]);
1104 kfree(buf);
1105 return ret;
1106 }
1107
1108 /*
1109 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1110 * work dc->writeback_rate_update is running. Wait until the routine
1111 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1112 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1113 * seconds, give up waiting here and continue to cancel it too.
1114 */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1115 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1116 {
1117 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1118
1119 do {
1120 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1121 &dc->disk.flags))
1122 break;
1123 time_out--;
1124 schedule_timeout_interruptible(1);
1125 } while (time_out > 0);
1126
1127 if (time_out == 0)
1128 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1129
1130 cancel_delayed_work_sync(&dc->writeback_rate_update);
1131 }
1132
cached_dev_detach_finish(struct work_struct * w)1133 static void cached_dev_detach_finish(struct work_struct *w)
1134 {
1135 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1136 struct cache_set *c = dc->disk.c;
1137
1138 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1139 BUG_ON(refcount_read(&dc->count));
1140
1141
1142 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1143 cancel_writeback_rate_update_dwork(dc);
1144
1145 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1146 kthread_stop(dc->writeback_thread);
1147 dc->writeback_thread = NULL;
1148 }
1149
1150 mutex_lock(&bch_register_lock);
1151
1152 bcache_device_detach(&dc->disk);
1153 list_move(&dc->list, &uncached_devices);
1154 calc_cached_dev_sectors(c);
1155
1156 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1157 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1158
1159 mutex_unlock(&bch_register_lock);
1160
1161 pr_info("Caching disabled for %pg\n", dc->bdev);
1162
1163 /* Drop ref we took in cached_dev_detach() */
1164 closure_put(&dc->disk.cl);
1165 }
1166
bch_cached_dev_detach(struct cached_dev * dc)1167 void bch_cached_dev_detach(struct cached_dev *dc)
1168 {
1169 lockdep_assert_held(&bch_register_lock);
1170
1171 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1172 return;
1173
1174 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1175 return;
1176
1177 /*
1178 * Block the device from being closed and freed until we're finished
1179 * detaching
1180 */
1181 closure_get(&dc->disk.cl);
1182
1183 bch_writeback_queue(dc);
1184
1185 cached_dev_put(dc);
1186 }
1187
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1188 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1189 uint8_t *set_uuid)
1190 {
1191 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1192 struct uuid_entry *u;
1193 struct cached_dev *exist_dc, *t;
1194 int ret = 0;
1195
1196 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1197 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1198 return -ENOENT;
1199
1200 if (dc->disk.c) {
1201 pr_err("Can't attach %pg: already attached\n", dc->bdev);
1202 return -EINVAL;
1203 }
1204
1205 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1206 pr_err("Can't attach %pg: shutting down\n", dc->bdev);
1207 return -EINVAL;
1208 }
1209
1210 if (dc->sb.block_size < c->cache->sb.block_size) {
1211 /* Will die */
1212 pr_err("Couldn't attach %pg: block size less than set's block size\n",
1213 dc->bdev);
1214 return -EINVAL;
1215 }
1216
1217 /* Check whether already attached */
1218 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1219 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1220 pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1221 dc->bdev);
1222
1223 return -EINVAL;
1224 }
1225 }
1226
1227 u = uuid_find(c, dc->sb.uuid);
1228
1229 if (u &&
1230 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1231 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1232 memcpy(u->uuid, invalid_uuid, 16);
1233 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1234 u = NULL;
1235 }
1236
1237 if (!u) {
1238 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1239 pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
1240 return -ENOENT;
1241 }
1242
1243 u = uuid_find_empty(c);
1244 if (!u) {
1245 pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
1246 return -EINVAL;
1247 }
1248 }
1249
1250 /*
1251 * Deadlocks since we're called via sysfs...
1252 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1253 */
1254
1255 if (bch_is_zero(u->uuid, 16)) {
1256 struct closure cl;
1257
1258 closure_init_stack(&cl);
1259
1260 memcpy(u->uuid, dc->sb.uuid, 16);
1261 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1262 u->first_reg = u->last_reg = rtime;
1263 bch_uuid_write(c);
1264
1265 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1266 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1267
1268 bch_write_bdev_super(dc, &cl);
1269 closure_sync(&cl);
1270 } else {
1271 u->last_reg = rtime;
1272 bch_uuid_write(c);
1273 }
1274
1275 bcache_device_attach(&dc->disk, c, u - c->uuids);
1276 list_move(&dc->list, &c->cached_devs);
1277 calc_cached_dev_sectors(c);
1278
1279 /*
1280 * dc->c must be set before dc->count != 0 - paired with the mb in
1281 * cached_dev_get()
1282 */
1283 smp_wmb();
1284 refcount_set(&dc->count, 1);
1285
1286 /* Block writeback thread, but spawn it */
1287 down_write(&dc->writeback_lock);
1288 if (bch_cached_dev_writeback_start(dc)) {
1289 up_write(&dc->writeback_lock);
1290 pr_err("Couldn't start writeback facilities for %s\n",
1291 dc->disk.disk->disk_name);
1292 return -ENOMEM;
1293 }
1294
1295 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1296 atomic_set(&dc->has_dirty, 1);
1297 bch_writeback_queue(dc);
1298 }
1299
1300 bch_sectors_dirty_init(&dc->disk);
1301
1302 ret = bch_cached_dev_run(dc);
1303 if (ret && (ret != -EBUSY)) {
1304 up_write(&dc->writeback_lock);
1305 /*
1306 * bch_register_lock is held, bcache_device_stop() is not
1307 * able to be directly called. The kthread and kworker
1308 * created previously in bch_cached_dev_writeback_start()
1309 * have to be stopped manually here.
1310 */
1311 kthread_stop(dc->writeback_thread);
1312 cancel_writeback_rate_update_dwork(dc);
1313 pr_err("Couldn't run cached device %pg\n", dc->bdev);
1314 return ret;
1315 }
1316
1317 bcache_device_link(&dc->disk, c, "bdev");
1318 atomic_inc(&c->attached_dev_nr);
1319
1320 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1321 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1322 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1323 set_disk_ro(dc->disk.disk, 1);
1324 }
1325
1326 /* Allow the writeback thread to proceed */
1327 up_write(&dc->writeback_lock);
1328
1329 pr_info("Caching %pg as %s on set %pU\n",
1330 dc->bdev,
1331 dc->disk.disk->disk_name,
1332 dc->disk.c->set_uuid);
1333 return 0;
1334 }
1335
1336 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1337 void bch_cached_dev_release(struct kobject *kobj)
1338 {
1339 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1340 disk.kobj);
1341 kfree(dc);
1342 module_put(THIS_MODULE);
1343 }
1344
CLOSURE_CALLBACK(cached_dev_free)1345 static CLOSURE_CALLBACK(cached_dev_free)
1346 {
1347 closure_type(dc, struct cached_dev, disk.cl);
1348
1349 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1350 cancel_writeback_rate_update_dwork(dc);
1351
1352 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1353 kthread_stop(dc->writeback_thread);
1354 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1355 kthread_stop(dc->status_update_thread);
1356
1357 mutex_lock(&bch_register_lock);
1358
1359 if (atomic_read(&dc->running)) {
1360 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1361 del_gendisk(dc->disk.disk);
1362 }
1363 bcache_device_free(&dc->disk);
1364 list_del(&dc->list);
1365
1366 mutex_unlock(&bch_register_lock);
1367
1368 if (dc->sb_disk)
1369 put_page(virt_to_page(dc->sb_disk));
1370
1371 if (dc->bdev_file)
1372 fput(dc->bdev_file);
1373
1374 wake_up(&unregister_wait);
1375
1376 kobject_put(&dc->disk.kobj);
1377 }
1378
CLOSURE_CALLBACK(cached_dev_flush)1379 static CLOSURE_CALLBACK(cached_dev_flush)
1380 {
1381 closure_type(dc, struct cached_dev, disk.cl);
1382 struct bcache_device *d = &dc->disk;
1383
1384 mutex_lock(&bch_register_lock);
1385 bcache_device_unlink(d);
1386 mutex_unlock(&bch_register_lock);
1387
1388 bch_cache_accounting_destroy(&dc->accounting);
1389 kobject_del(&d->kobj);
1390
1391 continue_at(cl, cached_dev_free, system_wq);
1392 }
1393
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1394 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1395 {
1396 int ret;
1397 struct io *io;
1398 struct request_queue *q = bdev_get_queue(dc->bdev);
1399
1400 __module_get(THIS_MODULE);
1401 INIT_LIST_HEAD(&dc->list);
1402 closure_init(&dc->disk.cl, NULL);
1403 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1404 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1405 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1406 sema_init(&dc->sb_write_mutex, 1);
1407 INIT_LIST_HEAD(&dc->io_lru);
1408 spin_lock_init(&dc->io_lock);
1409 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1410
1411 dc->sequential_cutoff = 4 << 20;
1412
1413 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1414 list_add(&io->lru, &dc->io_lru);
1415 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1416 }
1417
1418 if (bdev_io_opt(dc->bdev))
1419 dc->partial_stripes_expensive = !!(q->limits.features &
1420 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE);
1421
1422 ret = bcache_device_init(&dc->disk, block_size,
1423 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1424 dc->bdev, &bcache_cached_ops);
1425 if (ret)
1426 return ret;
1427
1428 atomic_set(&dc->io_errors, 0);
1429 dc->io_disable = false;
1430 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1431 /* default to auto */
1432 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1433
1434 bch_cached_dev_request_init(dc);
1435 bch_cached_dev_writeback_init(dc);
1436 return 0;
1437 }
1438
1439 /* Cached device - bcache superblock */
1440
register_bdev(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct file * bdev_file,struct cached_dev * dc)1441 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1442 struct file *bdev_file,
1443 struct cached_dev *dc)
1444 {
1445 const char *err = "cannot allocate memory";
1446 struct cache_set *c;
1447 int ret = -ENOMEM;
1448
1449 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1450 dc->bdev_file = bdev_file;
1451 dc->bdev = file_bdev(bdev_file);
1452 dc->sb_disk = sb_disk;
1453
1454 if (cached_dev_init(dc, sb->block_size << 9))
1455 goto err;
1456
1457 err = "error creating kobject";
1458 if (kobject_add(&dc->disk.kobj, bdev_kobj(dc->bdev), "bcache"))
1459 goto err;
1460 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1461 goto err;
1462
1463 pr_info("registered backing device %pg\n", dc->bdev);
1464
1465 list_add(&dc->list, &uncached_devices);
1466 /* attach to a matched cache set if it exists */
1467 list_for_each_entry(c, &bch_cache_sets, list)
1468 bch_cached_dev_attach(dc, c, NULL);
1469
1470 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1471 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1472 err = "failed to run cached device";
1473 ret = bch_cached_dev_run(dc);
1474 if (ret)
1475 goto err;
1476 }
1477
1478 return 0;
1479 err:
1480 pr_notice("error %pg: %s\n", dc->bdev, err);
1481 bcache_device_stop(&dc->disk);
1482 return ret;
1483 }
1484
1485 /* Flash only volumes */
1486
1487 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1488 void bch_flash_dev_release(struct kobject *kobj)
1489 {
1490 struct bcache_device *d = container_of(kobj, struct bcache_device,
1491 kobj);
1492 kfree(d);
1493 }
1494
CLOSURE_CALLBACK(flash_dev_free)1495 static CLOSURE_CALLBACK(flash_dev_free)
1496 {
1497 closure_type(d, struct bcache_device, cl);
1498
1499 mutex_lock(&bch_register_lock);
1500 atomic_long_sub(bcache_dev_sectors_dirty(d),
1501 &d->c->flash_dev_dirty_sectors);
1502 del_gendisk(d->disk);
1503 bcache_device_free(d);
1504 mutex_unlock(&bch_register_lock);
1505 kobject_put(&d->kobj);
1506 }
1507
CLOSURE_CALLBACK(flash_dev_flush)1508 static CLOSURE_CALLBACK(flash_dev_flush)
1509 {
1510 closure_type(d, struct bcache_device, cl);
1511
1512 mutex_lock(&bch_register_lock);
1513 bcache_device_unlink(d);
1514 mutex_unlock(&bch_register_lock);
1515 kobject_del(&d->kobj);
1516 continue_at(cl, flash_dev_free, system_wq);
1517 }
1518
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1519 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1520 {
1521 int err = -ENOMEM;
1522 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1523 GFP_KERNEL);
1524 if (!d)
1525 goto err_ret;
1526
1527 closure_init(&d->cl, NULL);
1528 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1529
1530 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1531
1532 if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1533 NULL, &bcache_flash_ops))
1534 goto err;
1535
1536 bcache_device_attach(d, c, u - c->uuids);
1537 bch_sectors_dirty_init(d);
1538 bch_flash_dev_request_init(d);
1539 err = add_disk(d->disk);
1540 if (err)
1541 goto err;
1542
1543 err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache");
1544 if (err)
1545 goto err;
1546
1547 bcache_device_link(d, c, "volume");
1548
1549 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1550 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1551 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1552 set_disk_ro(d->disk, 1);
1553 }
1554
1555 return 0;
1556 err:
1557 kobject_put(&d->kobj);
1558 err_ret:
1559 return err;
1560 }
1561
flash_devs_run(struct cache_set * c)1562 static int flash_devs_run(struct cache_set *c)
1563 {
1564 int ret = 0;
1565 struct uuid_entry *u;
1566
1567 for (u = c->uuids;
1568 u < c->uuids + c->nr_uuids && !ret;
1569 u++)
1570 if (UUID_FLASH_ONLY(u))
1571 ret = flash_dev_run(c, u);
1572
1573 return ret;
1574 }
1575
bch_flash_dev_create(struct cache_set * c,uint64_t size)1576 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1577 {
1578 struct uuid_entry *u;
1579
1580 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1581 return -EINTR;
1582
1583 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1584 return -EPERM;
1585
1586 u = uuid_find_empty(c);
1587 if (!u) {
1588 pr_err("Can't create volume, no room for UUID\n");
1589 return -EINVAL;
1590 }
1591
1592 get_random_bytes(u->uuid, 16);
1593 memset(u->label, 0, 32);
1594 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1595
1596 SET_UUID_FLASH_ONLY(u, 1);
1597 u->sectors = size >> 9;
1598
1599 bch_uuid_write(c);
1600
1601 return flash_dev_run(c, u);
1602 }
1603
bch_cached_dev_error(struct cached_dev * dc)1604 bool bch_cached_dev_error(struct cached_dev *dc)
1605 {
1606 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1607 return false;
1608
1609 dc->io_disable = true;
1610 /* make others know io_disable is true earlier */
1611 smp_mb();
1612
1613 pr_err("stop %s: too many IO errors on backing device %pg\n",
1614 dc->disk.disk->disk_name, dc->bdev);
1615
1616 bcache_device_stop(&dc->disk);
1617 return true;
1618 }
1619
1620 /* Cache set */
1621
1622 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1623 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1624 {
1625 struct va_format vaf;
1626 va_list args;
1627
1628 if (c->on_error != ON_ERROR_PANIC &&
1629 test_bit(CACHE_SET_STOPPING, &c->flags))
1630 return false;
1631
1632 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1633 pr_info("CACHE_SET_IO_DISABLE already set\n");
1634
1635 /*
1636 * XXX: we can be called from atomic context
1637 * acquire_console_sem();
1638 */
1639
1640 va_start(args, fmt);
1641
1642 vaf.fmt = fmt;
1643 vaf.va = &args;
1644
1645 pr_err("error on %pU: %pV, disabling caching\n",
1646 c->set_uuid, &vaf);
1647
1648 va_end(args);
1649
1650 if (c->on_error == ON_ERROR_PANIC)
1651 panic("panic forced after error\n");
1652
1653 bch_cache_set_unregister(c);
1654 return true;
1655 }
1656
1657 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1658 void bch_cache_set_release(struct kobject *kobj)
1659 {
1660 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1661
1662 kfree(c);
1663 module_put(THIS_MODULE);
1664 }
1665
CLOSURE_CALLBACK(cache_set_free)1666 static CLOSURE_CALLBACK(cache_set_free)
1667 {
1668 closure_type(c, struct cache_set, cl);
1669 struct cache *ca;
1670
1671 debugfs_remove(c->debug);
1672
1673 bch_open_buckets_free(c);
1674 bch_btree_cache_free(c);
1675 bch_journal_free(c);
1676
1677 mutex_lock(&bch_register_lock);
1678 bch_bset_sort_state_free(&c->sort);
1679 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1680
1681 ca = c->cache;
1682 if (ca) {
1683 ca->set = NULL;
1684 c->cache = NULL;
1685 kobject_put(&ca->kobj);
1686 }
1687
1688
1689 if (c->moving_gc_wq)
1690 destroy_workqueue(c->moving_gc_wq);
1691 bioset_exit(&c->bio_split);
1692 mempool_exit(&c->fill_iter);
1693 mempool_exit(&c->bio_meta);
1694 mempool_exit(&c->search);
1695 kfree(c->devices);
1696
1697 list_del(&c->list);
1698 mutex_unlock(&bch_register_lock);
1699
1700 pr_info("Cache set %pU unregistered\n", c->set_uuid);
1701 wake_up(&unregister_wait);
1702
1703 closure_debug_destroy(&c->cl);
1704 kobject_put(&c->kobj);
1705 }
1706
CLOSURE_CALLBACK(cache_set_flush)1707 static CLOSURE_CALLBACK(cache_set_flush)
1708 {
1709 closure_type(c, struct cache_set, caching);
1710 struct cache *ca = c->cache;
1711 struct btree *b;
1712
1713 bch_cache_accounting_destroy(&c->accounting);
1714
1715 kobject_put(&c->internal);
1716 kobject_del(&c->kobj);
1717
1718 if (!IS_ERR_OR_NULL(c->gc_thread))
1719 kthread_stop(c->gc_thread);
1720
1721 if (!IS_ERR_OR_NULL(c->root))
1722 list_add(&c->root->list, &c->btree_cache);
1723
1724 /*
1725 * Avoid flushing cached nodes if cache set is retiring
1726 * due to too many I/O errors detected.
1727 */
1728 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1729 list_for_each_entry(b, &c->btree_cache, list) {
1730 mutex_lock(&b->write_lock);
1731 if (btree_node_dirty(b))
1732 __bch_btree_node_write(b, NULL);
1733 mutex_unlock(&b->write_lock);
1734 }
1735
1736 if (ca->alloc_thread)
1737 kthread_stop(ca->alloc_thread);
1738
1739 if (c->journal.cur) {
1740 cancel_delayed_work_sync(&c->journal.work);
1741 /* flush last journal entry if needed */
1742 c->journal.work.work.func(&c->journal.work.work);
1743 }
1744
1745 closure_return(cl);
1746 }
1747
1748 /*
1749 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1750 * cache set is unregistering due to too many I/O errors. In this condition,
1751 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1752 * value and whether the broken cache has dirty data:
1753 *
1754 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1755 * BCH_CACHED_STOP_AUTO 0 NO
1756 * BCH_CACHED_STOP_AUTO 1 YES
1757 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1758 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1759 *
1760 * The expected behavior is, if stop_when_cache_set_failed is configured to
1761 * "auto" via sysfs interface, the bcache device will not be stopped if the
1762 * backing device is clean on the broken cache device.
1763 */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1764 static void conditional_stop_bcache_device(struct cache_set *c,
1765 struct bcache_device *d,
1766 struct cached_dev *dc)
1767 {
1768 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1769 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1770 d->disk->disk_name, c->set_uuid);
1771 bcache_device_stop(d);
1772 } else if (atomic_read(&dc->has_dirty)) {
1773 /*
1774 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1775 * and dc->has_dirty == 1
1776 */
1777 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1778 d->disk->disk_name);
1779 /*
1780 * There might be a small time gap that cache set is
1781 * released but bcache device is not. Inside this time
1782 * gap, regular I/O requests will directly go into
1783 * backing device as no cache set attached to. This
1784 * behavior may also introduce potential inconsistence
1785 * data in writeback mode while cache is dirty.
1786 * Therefore before calling bcache_device_stop() due
1787 * to a broken cache device, dc->io_disable should be
1788 * explicitly set to true.
1789 */
1790 dc->io_disable = true;
1791 /* make others know io_disable is true earlier */
1792 smp_mb();
1793 bcache_device_stop(d);
1794 } else {
1795 /*
1796 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1797 * and dc->has_dirty == 0
1798 */
1799 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1800 d->disk->disk_name);
1801 }
1802 }
1803
CLOSURE_CALLBACK(__cache_set_unregister)1804 static CLOSURE_CALLBACK(__cache_set_unregister)
1805 {
1806 closure_type(c, struct cache_set, caching);
1807 struct cached_dev *dc;
1808 struct bcache_device *d;
1809 size_t i;
1810
1811 mutex_lock(&bch_register_lock);
1812
1813 for (i = 0; i < c->devices_max_used; i++) {
1814 d = c->devices[i];
1815 if (!d)
1816 continue;
1817
1818 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1819 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1820 dc = container_of(d, struct cached_dev, disk);
1821 bch_cached_dev_detach(dc);
1822 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1823 conditional_stop_bcache_device(c, d, dc);
1824 } else {
1825 bcache_device_stop(d);
1826 }
1827 }
1828
1829 mutex_unlock(&bch_register_lock);
1830
1831 continue_at(cl, cache_set_flush, system_wq);
1832 }
1833
bch_cache_set_stop(struct cache_set * c)1834 void bch_cache_set_stop(struct cache_set *c)
1835 {
1836 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1837 /* closure_fn set to __cache_set_unregister() */
1838 closure_queue(&c->caching);
1839 }
1840
bch_cache_set_unregister(struct cache_set * c)1841 void bch_cache_set_unregister(struct cache_set *c)
1842 {
1843 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1844 bch_cache_set_stop(c);
1845 }
1846
1847 #define alloc_meta_bucket_pages(gfp, sb) \
1848 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1849
bch_cache_set_alloc(struct cache_sb * sb)1850 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1851 {
1852 int iter_size;
1853 struct cache *ca = container_of(sb, struct cache, sb);
1854 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1855
1856 if (!c)
1857 return NULL;
1858
1859 __module_get(THIS_MODULE);
1860 closure_init(&c->cl, NULL);
1861 set_closure_fn(&c->cl, cache_set_free, system_wq);
1862
1863 closure_init(&c->caching, &c->cl);
1864 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1865
1866 /* Maybe create continue_at_noreturn() and use it here? */
1867 closure_set_stopped(&c->cl);
1868 closure_put(&c->cl);
1869
1870 kobject_init(&c->kobj, &bch_cache_set_ktype);
1871 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1872
1873 bch_cache_accounting_init(&c->accounting, &c->cl);
1874
1875 memcpy(c->set_uuid, sb->set_uuid, 16);
1876
1877 c->cache = ca;
1878 c->cache->set = c;
1879 c->bucket_bits = ilog2(sb->bucket_size);
1880 c->block_bits = ilog2(sb->block_size);
1881 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1882 c->devices_max_used = 0;
1883 atomic_set(&c->attached_dev_nr, 0);
1884 c->btree_pages = meta_bucket_pages(sb);
1885 if (c->btree_pages > BTREE_MAX_PAGES)
1886 c->btree_pages = max_t(int, c->btree_pages / 4,
1887 BTREE_MAX_PAGES);
1888
1889 sema_init(&c->sb_write_mutex, 1);
1890 mutex_init(&c->bucket_lock);
1891 init_waitqueue_head(&c->btree_cache_wait);
1892 spin_lock_init(&c->btree_cannibalize_lock);
1893 init_waitqueue_head(&c->bucket_wait);
1894 init_waitqueue_head(&c->gc_wait);
1895 sema_init(&c->uuid_write_mutex, 1);
1896
1897 spin_lock_init(&c->btree_gc_time.lock);
1898 spin_lock_init(&c->btree_split_time.lock);
1899 spin_lock_init(&c->btree_read_time.lock);
1900
1901 bch_moving_init_cache_set(c);
1902
1903 INIT_LIST_HEAD(&c->list);
1904 INIT_LIST_HEAD(&c->cached_devs);
1905 INIT_LIST_HEAD(&c->btree_cache);
1906 INIT_LIST_HEAD(&c->btree_cache_freeable);
1907 INIT_LIST_HEAD(&c->btree_cache_freed);
1908 INIT_LIST_HEAD(&c->data_buckets);
1909
1910 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size) *
1911 sizeof(struct btree_iter_set);
1912
1913 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1914 if (!c->devices)
1915 goto err;
1916
1917 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1918 goto err;
1919
1920 if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1921 sizeof(struct bbio) +
1922 sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1923 goto err;
1924
1925 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1926 goto err;
1927
1928 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1929 BIOSET_NEED_RESCUER))
1930 goto err;
1931
1932 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1933 if (!c->uuids)
1934 goto err;
1935
1936 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1937 if (!c->moving_gc_wq)
1938 goto err;
1939
1940 if (bch_journal_alloc(c))
1941 goto err;
1942
1943 if (bch_btree_cache_alloc(c))
1944 goto err;
1945
1946 if (bch_open_buckets_alloc(c))
1947 goto err;
1948
1949 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1950 goto err;
1951
1952 c->congested_read_threshold_us = 2000;
1953 c->congested_write_threshold_us = 20000;
1954 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1955 c->idle_max_writeback_rate_enabled = 1;
1956 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1957
1958 return c;
1959 err:
1960 bch_cache_set_unregister(c);
1961 return NULL;
1962 }
1963
run_cache_set(struct cache_set * c)1964 static int run_cache_set(struct cache_set *c)
1965 {
1966 const char *err = "cannot allocate memory";
1967 struct cached_dev *dc, *t;
1968 struct cache *ca = c->cache;
1969 struct closure cl;
1970 LIST_HEAD(journal);
1971 struct journal_replay *l;
1972
1973 closure_init_stack(&cl);
1974
1975 c->nbuckets = ca->sb.nbuckets;
1976 set_gc_sectors(c);
1977
1978 if (CACHE_SYNC(&c->cache->sb)) {
1979 struct bkey *k;
1980 struct jset *j;
1981
1982 err = "cannot allocate memory for journal";
1983 if (bch_journal_read(c, &journal))
1984 goto err;
1985
1986 pr_debug("btree_journal_read() done\n");
1987
1988 err = "no journal entries found";
1989 if (list_empty(&journal))
1990 goto err;
1991
1992 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1993
1994 err = "IO error reading priorities";
1995 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1996 goto err;
1997
1998 /*
1999 * If prio_read() fails it'll call cache_set_error and we'll
2000 * tear everything down right away, but if we perhaps checked
2001 * sooner we could avoid journal replay.
2002 */
2003
2004 k = &j->btree_root;
2005
2006 err = "bad btree root";
2007 if (__bch_btree_ptr_invalid(c, k))
2008 goto err;
2009
2010 err = "error reading btree root";
2011 c->root = bch_btree_node_get(c, NULL, k,
2012 j->btree_level,
2013 true, NULL);
2014 if (IS_ERR(c->root))
2015 goto err;
2016
2017 list_del_init(&c->root->list);
2018 rw_unlock(true, c->root);
2019
2020 err = uuid_read(c, j, &cl);
2021 if (err)
2022 goto err;
2023
2024 err = "error in recovery";
2025 if (bch_btree_check(c))
2026 goto err;
2027
2028 bch_journal_mark(c, &journal);
2029 bch_initial_gc_finish(c);
2030 pr_debug("btree_check() done\n");
2031
2032 /*
2033 * bcache_journal_next() can't happen sooner, or
2034 * btree_gc_finish() will give spurious errors about last_gc >
2035 * gc_gen - this is a hack but oh well.
2036 */
2037 bch_journal_next(&c->journal);
2038
2039 err = "error starting allocator thread";
2040 if (bch_cache_allocator_start(ca))
2041 goto err;
2042
2043 /*
2044 * First place it's safe to allocate: btree_check() and
2045 * btree_gc_finish() have to run before we have buckets to
2046 * allocate, and bch_bucket_alloc_set() might cause a journal
2047 * entry to be written so bcache_journal_next() has to be called
2048 * first.
2049 *
2050 * If the uuids were in the old format we have to rewrite them
2051 * before the next journal entry is written:
2052 */
2053 if (j->version < BCACHE_JSET_VERSION_UUID)
2054 __uuid_write(c);
2055
2056 err = "bcache: replay journal failed";
2057 if (bch_journal_replay(c, &journal))
2058 goto err;
2059 } else {
2060 unsigned int j;
2061
2062 pr_notice("invalidating existing data\n");
2063 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2064 2, SB_JOURNAL_BUCKETS);
2065
2066 for (j = 0; j < ca->sb.keys; j++)
2067 ca->sb.d[j] = ca->sb.first_bucket + j;
2068
2069 bch_initial_gc_finish(c);
2070
2071 err = "error starting allocator thread";
2072 if (bch_cache_allocator_start(ca))
2073 goto err;
2074
2075 mutex_lock(&c->bucket_lock);
2076 bch_prio_write(ca, true);
2077 mutex_unlock(&c->bucket_lock);
2078
2079 err = "cannot allocate new UUID bucket";
2080 if (__uuid_write(c))
2081 goto err;
2082
2083 err = "cannot allocate new btree root";
2084 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2085 if (IS_ERR(c->root))
2086 goto err;
2087
2088 mutex_lock(&c->root->write_lock);
2089 bkey_copy_key(&c->root->key, &MAX_KEY);
2090 bch_btree_node_write(c->root, &cl);
2091 mutex_unlock(&c->root->write_lock);
2092
2093 bch_btree_set_root(c->root);
2094 rw_unlock(true, c->root);
2095
2096 /*
2097 * We don't want to write the first journal entry until
2098 * everything is set up - fortunately journal entries won't be
2099 * written until the SET_CACHE_SYNC() here:
2100 */
2101 SET_CACHE_SYNC(&c->cache->sb, true);
2102
2103 bch_journal_next(&c->journal);
2104 bch_journal_meta(c, &cl);
2105 }
2106
2107 err = "error starting gc thread";
2108 if (bch_gc_thread_start(c))
2109 goto err;
2110
2111 closure_sync(&cl);
2112 c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2113 bcache_write_super(c);
2114
2115 if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2116 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2117
2118 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2119 bch_cached_dev_attach(dc, c, NULL);
2120
2121 flash_devs_run(c);
2122
2123 bch_journal_space_reserve(&c->journal);
2124 set_bit(CACHE_SET_RUNNING, &c->flags);
2125 return 0;
2126 err:
2127 while (!list_empty(&journal)) {
2128 l = list_first_entry(&journal, struct journal_replay, list);
2129 list_del(&l->list);
2130 kfree(l);
2131 }
2132
2133 closure_sync(&cl);
2134
2135 bch_cache_set_error(c, "%s", err);
2136
2137 return -EIO;
2138 }
2139
register_cache_set(struct cache * ca)2140 static const char *register_cache_set(struct cache *ca)
2141 {
2142 char buf[12];
2143 const char *err = "cannot allocate memory";
2144 struct cache_set *c;
2145
2146 list_for_each_entry(c, &bch_cache_sets, list)
2147 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2148 if (c->cache)
2149 return "duplicate cache set member";
2150
2151 goto found;
2152 }
2153
2154 c = bch_cache_set_alloc(&ca->sb);
2155 if (!c)
2156 return err;
2157
2158 err = "error creating kobject";
2159 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2160 kobject_add(&c->internal, &c->kobj, "internal"))
2161 goto err;
2162
2163 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2164 goto err;
2165
2166 bch_debug_init_cache_set(c);
2167
2168 list_add(&c->list, &bch_cache_sets);
2169 found:
2170 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2171 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2172 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2173 goto err;
2174
2175 kobject_get(&ca->kobj);
2176 ca->set = c;
2177 ca->set->cache = ca;
2178
2179 err = "failed to run cache set";
2180 if (run_cache_set(c) < 0)
2181 goto err;
2182
2183 return NULL;
2184 err:
2185 bch_cache_set_unregister(c);
2186 return err;
2187 }
2188
2189 /* Cache device */
2190
2191 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2192 void bch_cache_release(struct kobject *kobj)
2193 {
2194 struct cache *ca = container_of(kobj, struct cache, kobj);
2195 unsigned int i;
2196
2197 if (ca->set) {
2198 BUG_ON(ca->set->cache != ca);
2199 ca->set->cache = NULL;
2200 }
2201
2202 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2203 kfree(ca->prio_buckets);
2204 vfree(ca->buckets);
2205
2206 free_heap(&ca->heap);
2207 free_fifo(&ca->free_inc);
2208
2209 for (i = 0; i < RESERVE_NR; i++)
2210 free_fifo(&ca->free[i]);
2211
2212 if (ca->sb_disk)
2213 put_page(virt_to_page(ca->sb_disk));
2214
2215 if (ca->bdev_file)
2216 fput(ca->bdev_file);
2217
2218 kfree(ca);
2219 module_put(THIS_MODULE);
2220 }
2221
cache_alloc(struct cache * ca)2222 static int cache_alloc(struct cache *ca)
2223 {
2224 size_t free;
2225 size_t btree_buckets;
2226 struct bucket *b;
2227 int ret = -ENOMEM;
2228 const char *err = NULL;
2229
2230 __module_get(THIS_MODULE);
2231 kobject_init(&ca->kobj, &bch_cache_ktype);
2232
2233 bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0);
2234
2235 /*
2236 * when ca->sb.njournal_buckets is not zero, journal exists,
2237 * and in bch_journal_replay(), tree node may split,
2238 * so bucket of RESERVE_BTREE type is needed,
2239 * the worst situation is all journal buckets are valid journal,
2240 * and all the keys need to replay,
2241 * so the number of RESERVE_BTREE type buckets should be as much
2242 * as journal buckets
2243 */
2244 btree_buckets = ca->sb.njournal_buckets ?: 8;
2245 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2246 if (!free) {
2247 ret = -EPERM;
2248 err = "ca->sb.nbuckets is too small";
2249 goto err_free;
2250 }
2251
2252 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2253 GFP_KERNEL)) {
2254 err = "ca->free[RESERVE_BTREE] alloc failed";
2255 goto err_btree_alloc;
2256 }
2257
2258 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2259 GFP_KERNEL)) {
2260 err = "ca->free[RESERVE_PRIO] alloc failed";
2261 goto err_prio_alloc;
2262 }
2263
2264 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2265 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2266 goto err_movinggc_alloc;
2267 }
2268
2269 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2270 err = "ca->free[RESERVE_NONE] alloc failed";
2271 goto err_none_alloc;
2272 }
2273
2274 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2275 err = "ca->free_inc alloc failed";
2276 goto err_free_inc_alloc;
2277 }
2278
2279 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2280 err = "ca->heap alloc failed";
2281 goto err_heap_alloc;
2282 }
2283
2284 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2285 ca->sb.nbuckets));
2286 if (!ca->buckets) {
2287 err = "ca->buckets alloc failed";
2288 goto err_buckets_alloc;
2289 }
2290
2291 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2292 prio_buckets(ca), 2),
2293 GFP_KERNEL);
2294 if (!ca->prio_buckets) {
2295 err = "ca->prio_buckets alloc failed";
2296 goto err_prio_buckets_alloc;
2297 }
2298
2299 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2300 if (!ca->disk_buckets) {
2301 err = "ca->disk_buckets alloc failed";
2302 goto err_disk_buckets_alloc;
2303 }
2304
2305 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2306
2307 for_each_bucket(b, ca)
2308 atomic_set(&b->pin, 0);
2309 return 0;
2310
2311 err_disk_buckets_alloc:
2312 kfree(ca->prio_buckets);
2313 err_prio_buckets_alloc:
2314 vfree(ca->buckets);
2315 err_buckets_alloc:
2316 free_heap(&ca->heap);
2317 err_heap_alloc:
2318 free_fifo(&ca->free_inc);
2319 err_free_inc_alloc:
2320 free_fifo(&ca->free[RESERVE_NONE]);
2321 err_none_alloc:
2322 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2323 err_movinggc_alloc:
2324 free_fifo(&ca->free[RESERVE_PRIO]);
2325 err_prio_alloc:
2326 free_fifo(&ca->free[RESERVE_BTREE]);
2327 err_btree_alloc:
2328 err_free:
2329 module_put(THIS_MODULE);
2330 if (err)
2331 pr_notice("error %pg: %s\n", ca->bdev, err);
2332 return ret;
2333 }
2334
register_cache(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct file * bdev_file,struct cache * ca)2335 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2336 struct file *bdev_file,
2337 struct cache *ca)
2338 {
2339 const char *err = NULL; /* must be set for any error case */
2340 int ret = 0;
2341
2342 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2343 ca->bdev_file = bdev_file;
2344 ca->bdev = file_bdev(bdev_file);
2345 ca->sb_disk = sb_disk;
2346
2347 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
2348 ca->discard = CACHE_DISCARD(&ca->sb);
2349
2350 ret = cache_alloc(ca);
2351 if (ret != 0) {
2352 if (ret == -ENOMEM)
2353 err = "cache_alloc(): -ENOMEM";
2354 else if (ret == -EPERM)
2355 err = "cache_alloc(): cache device is too small";
2356 else
2357 err = "cache_alloc(): unknown error";
2358 pr_notice("error %pg: %s\n", file_bdev(bdev_file), err);
2359 /*
2360 * If we failed here, it means ca->kobj is not initialized yet,
2361 * kobject_put() won't be called and there is no chance to
2362 * call fput() to bdev in bch_cache_release(). So
2363 * we explicitly call fput() on the block device here.
2364 */
2365 fput(bdev_file);
2366 return ret;
2367 }
2368
2369 if (kobject_add(&ca->kobj, bdev_kobj(file_bdev(bdev_file)), "bcache")) {
2370 pr_notice("error %pg: error calling kobject_add\n",
2371 file_bdev(bdev_file));
2372 ret = -ENOMEM;
2373 goto out;
2374 }
2375
2376 mutex_lock(&bch_register_lock);
2377 err = register_cache_set(ca);
2378 mutex_unlock(&bch_register_lock);
2379
2380 if (err) {
2381 ret = -ENODEV;
2382 goto out;
2383 }
2384
2385 pr_info("registered cache device %pg\n", file_bdev(ca->bdev_file));
2386
2387 out:
2388 kobject_put(&ca->kobj);
2389 return ret;
2390 }
2391
2392 /* Global interfaces/init */
2393
2394 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2395 const char *buffer, size_t size);
2396 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2397 struct kobj_attribute *attr,
2398 const char *buffer, size_t size);
2399
2400 kobj_attribute_write(register, register_bcache);
2401 kobj_attribute_write(register_quiet, register_bcache);
2402 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2403
bch_is_open_backing(dev_t dev)2404 static bool bch_is_open_backing(dev_t dev)
2405 {
2406 struct cache_set *c, *tc;
2407 struct cached_dev *dc, *t;
2408
2409 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2410 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2411 if (dc->bdev->bd_dev == dev)
2412 return true;
2413 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2414 if (dc->bdev->bd_dev == dev)
2415 return true;
2416 return false;
2417 }
2418
bch_is_open_cache(dev_t dev)2419 static bool bch_is_open_cache(dev_t dev)
2420 {
2421 struct cache_set *c, *tc;
2422
2423 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2424 struct cache *ca = c->cache;
2425
2426 if (ca->bdev->bd_dev == dev)
2427 return true;
2428 }
2429
2430 return false;
2431 }
2432
bch_is_open(dev_t dev)2433 static bool bch_is_open(dev_t dev)
2434 {
2435 return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2436 }
2437
2438 struct async_reg_args {
2439 struct delayed_work reg_work;
2440 char *path;
2441 struct cache_sb *sb;
2442 struct cache_sb_disk *sb_disk;
2443 struct file *bdev_file;
2444 void *holder;
2445 };
2446
register_bdev_worker(struct work_struct * work)2447 static void register_bdev_worker(struct work_struct *work)
2448 {
2449 int fail = false;
2450 struct async_reg_args *args =
2451 container_of(work, struct async_reg_args, reg_work.work);
2452
2453 mutex_lock(&bch_register_lock);
2454 if (register_bdev(args->sb, args->sb_disk, args->bdev_file,
2455 args->holder) < 0)
2456 fail = true;
2457 mutex_unlock(&bch_register_lock);
2458
2459 if (fail)
2460 pr_info("error %s: fail to register backing device\n",
2461 args->path);
2462 kfree(args->sb);
2463 kfree(args->path);
2464 kfree(args);
2465 module_put(THIS_MODULE);
2466 }
2467
register_cache_worker(struct work_struct * work)2468 static void register_cache_worker(struct work_struct *work)
2469 {
2470 int fail = false;
2471 struct async_reg_args *args =
2472 container_of(work, struct async_reg_args, reg_work.work);
2473
2474 /* blkdev_put() will be called in bch_cache_release() */
2475 if (register_cache(args->sb, args->sb_disk, args->bdev_file,
2476 args->holder))
2477 fail = true;
2478
2479 if (fail)
2480 pr_info("error %s: fail to register cache device\n",
2481 args->path);
2482 kfree(args->sb);
2483 kfree(args->path);
2484 kfree(args);
2485 module_put(THIS_MODULE);
2486 }
2487
register_device_async(struct async_reg_args * args)2488 static void register_device_async(struct async_reg_args *args)
2489 {
2490 if (SB_IS_BDEV(args->sb))
2491 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2492 else
2493 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2494
2495 /* 10 jiffies is enough for a delay */
2496 queue_delayed_work(system_wq, &args->reg_work, 10);
2497 }
2498
alloc_holder_object(struct cache_sb * sb)2499 static void *alloc_holder_object(struct cache_sb *sb)
2500 {
2501 if (SB_IS_BDEV(sb))
2502 return kzalloc(sizeof(struct cached_dev), GFP_KERNEL);
2503 return kzalloc(sizeof(struct cache), GFP_KERNEL);
2504 }
2505
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2506 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2507 const char *buffer, size_t size)
2508 {
2509 const char *err;
2510 char *path = NULL;
2511 struct cache_sb *sb;
2512 struct cache_sb_disk *sb_disk;
2513 struct file *bdev_file, *bdev_file2;
2514 void *holder = NULL;
2515 ssize_t ret;
2516 bool async_registration = false;
2517 bool quiet = false;
2518
2519 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2520 async_registration = true;
2521 #endif
2522
2523 ret = -EBUSY;
2524 err = "failed to reference bcache module";
2525 if (!try_module_get(THIS_MODULE))
2526 goto out;
2527
2528 /* For latest state of bcache_is_reboot */
2529 smp_mb();
2530 err = "bcache is in reboot";
2531 if (bcache_is_reboot)
2532 goto out_module_put;
2533
2534 ret = -ENOMEM;
2535 err = "cannot allocate memory";
2536 path = kstrndup(buffer, size, GFP_KERNEL);
2537 if (!path)
2538 goto out_module_put;
2539
2540 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2541 if (!sb)
2542 goto out_free_path;
2543
2544 ret = -EINVAL;
2545 err = "failed to open device";
2546 bdev_file = bdev_file_open_by_path(strim(path), BLK_OPEN_READ, NULL, NULL);
2547 if (IS_ERR(bdev_file))
2548 goto out_free_sb;
2549
2550 err = read_super(sb, file_bdev(bdev_file), &sb_disk);
2551 if (err)
2552 goto out_blkdev_put;
2553
2554 holder = alloc_holder_object(sb);
2555 if (!holder) {
2556 ret = -ENOMEM;
2557 err = "cannot allocate memory";
2558 goto out_put_sb_page;
2559 }
2560
2561 /* Now reopen in exclusive mode with proper holder */
2562 bdev_file2 = bdev_file_open_by_dev(file_bdev(bdev_file)->bd_dev,
2563 BLK_OPEN_READ | BLK_OPEN_WRITE, holder, NULL);
2564 fput(bdev_file);
2565 bdev_file = bdev_file2;
2566 if (IS_ERR(bdev_file)) {
2567 ret = PTR_ERR(bdev_file);
2568 bdev_file = NULL;
2569 if (ret == -EBUSY) {
2570 dev_t dev;
2571
2572 mutex_lock(&bch_register_lock);
2573 if (lookup_bdev(strim(path), &dev) == 0 &&
2574 bch_is_open(dev))
2575 err = "device already registered";
2576 else
2577 err = "device busy";
2578 mutex_unlock(&bch_register_lock);
2579 if (attr == &ksysfs_register_quiet) {
2580 quiet = true;
2581 ret = size;
2582 }
2583 }
2584 goto out_free_holder;
2585 }
2586
2587 err = "failed to register device";
2588
2589 if (async_registration) {
2590 /* register in asynchronous way */
2591 struct async_reg_args *args =
2592 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2593
2594 if (!args) {
2595 ret = -ENOMEM;
2596 err = "cannot allocate memory";
2597 goto out_free_holder;
2598 }
2599
2600 args->path = path;
2601 args->sb = sb;
2602 args->sb_disk = sb_disk;
2603 args->bdev_file = bdev_file;
2604 args->holder = holder;
2605 register_device_async(args);
2606 /* No wait and returns to user space */
2607 goto async_done;
2608 }
2609
2610 if (SB_IS_BDEV(sb)) {
2611 mutex_lock(&bch_register_lock);
2612 ret = register_bdev(sb, sb_disk, bdev_file, holder);
2613 mutex_unlock(&bch_register_lock);
2614 /* blkdev_put() will be called in cached_dev_free() */
2615 if (ret < 0)
2616 goto out_free_sb;
2617 } else {
2618 /* blkdev_put() will be called in bch_cache_release() */
2619 ret = register_cache(sb, sb_disk, bdev_file, holder);
2620 if (ret)
2621 goto out_free_sb;
2622 }
2623
2624 kfree(sb);
2625 kfree(path);
2626 module_put(THIS_MODULE);
2627 async_done:
2628 return size;
2629
2630 out_free_holder:
2631 kfree(holder);
2632 out_put_sb_page:
2633 put_page(virt_to_page(sb_disk));
2634 out_blkdev_put:
2635 if (bdev_file)
2636 fput(bdev_file);
2637 out_free_sb:
2638 kfree(sb);
2639 out_free_path:
2640 kfree(path);
2641 path = NULL;
2642 out_module_put:
2643 module_put(THIS_MODULE);
2644 out:
2645 if (!quiet)
2646 pr_info("error %s: %s\n", path?path:"", err);
2647 return ret;
2648 }
2649
2650
2651 struct pdev {
2652 struct list_head list;
2653 struct cached_dev *dc;
2654 };
2655
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2656 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2657 struct kobj_attribute *attr,
2658 const char *buffer,
2659 size_t size)
2660 {
2661 LIST_HEAD(pending_devs);
2662 ssize_t ret = size;
2663 struct cached_dev *dc, *tdc;
2664 struct pdev *pdev, *tpdev;
2665 struct cache_set *c, *tc;
2666
2667 mutex_lock(&bch_register_lock);
2668 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2669 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2670 if (!pdev)
2671 break;
2672 pdev->dc = dc;
2673 list_add(&pdev->list, &pending_devs);
2674 }
2675
2676 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2677 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2678 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2679 char *set_uuid = c->set_uuid;
2680
2681 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2682 list_del(&pdev->list);
2683 kfree(pdev);
2684 break;
2685 }
2686 }
2687 }
2688 mutex_unlock(&bch_register_lock);
2689
2690 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2691 pr_info("delete pdev %p\n", pdev);
2692 list_del(&pdev->list);
2693 bcache_device_stop(&pdev->dc->disk);
2694 kfree(pdev);
2695 }
2696
2697 return ret;
2698 }
2699
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2700 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2701 {
2702 if (bcache_is_reboot)
2703 return NOTIFY_DONE;
2704
2705 if (code == SYS_DOWN ||
2706 code == SYS_HALT ||
2707 code == SYS_POWER_OFF) {
2708 DEFINE_WAIT(wait);
2709 unsigned long start = jiffies;
2710 bool stopped = false;
2711
2712 struct cache_set *c, *tc;
2713 struct cached_dev *dc, *tdc;
2714
2715 mutex_lock(&bch_register_lock);
2716
2717 if (bcache_is_reboot)
2718 goto out;
2719
2720 /* New registration is rejected since now */
2721 bcache_is_reboot = true;
2722 /*
2723 * Make registering caller (if there is) on other CPU
2724 * core know bcache_is_reboot set to true earlier
2725 */
2726 smp_mb();
2727
2728 if (list_empty(&bch_cache_sets) &&
2729 list_empty(&uncached_devices))
2730 goto out;
2731
2732 mutex_unlock(&bch_register_lock);
2733
2734 pr_info("Stopping all devices:\n");
2735
2736 /*
2737 * The reason bch_register_lock is not held to call
2738 * bch_cache_set_stop() and bcache_device_stop() is to
2739 * avoid potential deadlock during reboot, because cache
2740 * set or bcache device stopping process will acquire
2741 * bch_register_lock too.
2742 *
2743 * We are safe here because bcache_is_reboot sets to
2744 * true already, register_bcache() will reject new
2745 * registration now. bcache_is_reboot also makes sure
2746 * bcache_reboot() won't be re-entered on by other thread,
2747 * so there is no race in following list iteration by
2748 * list_for_each_entry_safe().
2749 */
2750 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2751 bch_cache_set_stop(c);
2752
2753 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2754 bcache_device_stop(&dc->disk);
2755
2756
2757 /*
2758 * Give an early chance for other kthreads and
2759 * kworkers to stop themselves
2760 */
2761 schedule();
2762
2763 /* What's a condition variable? */
2764 while (1) {
2765 long timeout = start + 10 * HZ - jiffies;
2766
2767 mutex_lock(&bch_register_lock);
2768 stopped = list_empty(&bch_cache_sets) &&
2769 list_empty(&uncached_devices);
2770
2771 if (timeout < 0 || stopped)
2772 break;
2773
2774 prepare_to_wait(&unregister_wait, &wait,
2775 TASK_UNINTERRUPTIBLE);
2776
2777 mutex_unlock(&bch_register_lock);
2778 schedule_timeout(timeout);
2779 }
2780
2781 finish_wait(&unregister_wait, &wait);
2782
2783 if (stopped)
2784 pr_info("All devices stopped\n");
2785 else
2786 pr_notice("Timeout waiting for devices to be closed\n");
2787 out:
2788 mutex_unlock(&bch_register_lock);
2789 }
2790
2791 return NOTIFY_DONE;
2792 }
2793
2794 static struct notifier_block reboot = {
2795 .notifier_call = bcache_reboot,
2796 .priority = INT_MAX, /* before any real devices */
2797 };
2798
bcache_exit(void)2799 static void bcache_exit(void)
2800 {
2801 bch_debug_exit();
2802 bch_request_exit();
2803 if (bcache_kobj)
2804 kobject_put(bcache_kobj);
2805 if (bcache_wq)
2806 destroy_workqueue(bcache_wq);
2807 if (bch_journal_wq)
2808 destroy_workqueue(bch_journal_wq);
2809 if (bch_flush_wq)
2810 destroy_workqueue(bch_flush_wq);
2811 bch_btree_exit();
2812
2813 if (bcache_major)
2814 unregister_blkdev(bcache_major, "bcache");
2815 unregister_reboot_notifier(&reboot);
2816 mutex_destroy(&bch_register_lock);
2817 }
2818
2819 /* Check and fixup module parameters */
check_module_parameters(void)2820 static void check_module_parameters(void)
2821 {
2822 if (bch_cutoff_writeback_sync == 0)
2823 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2824 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2825 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2826 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2827 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2828 }
2829
2830 if (bch_cutoff_writeback == 0)
2831 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2832 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2833 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2834 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2835 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2836 }
2837
2838 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2839 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2840 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2841 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2842 }
2843 }
2844
bcache_init(void)2845 static int __init bcache_init(void)
2846 {
2847 static const struct attribute *files[] = {
2848 &ksysfs_register.attr,
2849 &ksysfs_register_quiet.attr,
2850 &ksysfs_pendings_cleanup.attr,
2851 NULL
2852 };
2853
2854 check_module_parameters();
2855
2856 mutex_init(&bch_register_lock);
2857 init_waitqueue_head(&unregister_wait);
2858 register_reboot_notifier(&reboot);
2859
2860 bcache_major = register_blkdev(0, "bcache");
2861 if (bcache_major < 0) {
2862 unregister_reboot_notifier(&reboot);
2863 mutex_destroy(&bch_register_lock);
2864 return bcache_major;
2865 }
2866
2867 if (bch_btree_init())
2868 goto err;
2869
2870 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2871 if (!bcache_wq)
2872 goto err;
2873
2874 /*
2875 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2876 *
2877 * 1. It used `system_wq` before which also does no memory reclaim.
2878 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2879 * reduced throughput can be observed.
2880 *
2881 * We still want to user our own queue to not congest the `system_wq`.
2882 */
2883 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2884 if (!bch_flush_wq)
2885 goto err;
2886
2887 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2888 if (!bch_journal_wq)
2889 goto err;
2890
2891 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2892 if (!bcache_kobj)
2893 goto err;
2894
2895 if (bch_request_init() ||
2896 sysfs_create_files(bcache_kobj, files))
2897 goto err;
2898
2899 bch_debug_init();
2900
2901 bcache_is_reboot = false;
2902
2903 return 0;
2904 err:
2905 bcache_exit();
2906 return -ENOMEM;
2907 }
2908
2909 /*
2910 * Module hooks
2911 */
2912 module_exit(bcache_exit);
2913 module_init(bcache_init);
2914
2915 module_param(bch_cutoff_writeback, uint, 0);
2916 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2917
2918 module_param(bch_cutoff_writeback_sync, uint, 0);
2919 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2920
2921 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2922 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2923 MODULE_LICENSE("GPL");
2924