xref: /linux/drivers/md/bcache/request.c (revision f58c91ce82cbb55a48fbc1a0cb7c84c0d0a4e1bd)
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14 
15 #include <linux/cgroup.h>
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include "blk-cgroup.h"
20 
21 #include <trace/events/bcache.h>
22 
23 #define CUTOFF_CACHE_ADD	95
24 #define CUTOFF_CACHE_READA	90
25 
26 struct kmem_cache *bch_search_cache;
27 
28 static void bch_data_insert_start(struct closure *);
29 
30 /* Cgroup interface */
31 
32 #ifdef CONFIG_CGROUP_BCACHE
33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34 
35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36 {
37 	struct cgroup_subsys_state *css;
38 	return cgroup &&
39 		(css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40 		? container_of(css, struct bch_cgroup, css)
41 		: &bcache_default_cgroup;
42 }
43 
44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45 {
46 	struct cgroup_subsys_state *css = bio->bi_css
47 		? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48 		: task_subsys_state(current, bcache_subsys_id);
49 
50 	return css
51 		? container_of(css, struct bch_cgroup, css)
52 		: &bcache_default_cgroup;
53 }
54 
55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56 			struct file *file,
57 			char __user *buf, size_t nbytes, loff_t *ppos)
58 {
59 	char tmp[1024];
60 	int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61 					  cgroup_to_bcache(cgrp)->cache_mode + 1);
62 
63 	if (len < 0)
64 		return len;
65 
66 	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67 }
68 
69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70 			    const char *buf)
71 {
72 	int v = bch_read_string_list(buf, bch_cache_modes);
73 	if (v < 0)
74 		return v;
75 
76 	cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77 	return 0;
78 }
79 
80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81 {
82 	return cgroup_to_bcache(cgrp)->verify;
83 }
84 
85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86 {
87 	cgroup_to_bcache(cgrp)->verify = val;
88 	return 0;
89 }
90 
91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92 {
93 	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94 	return atomic_read(&bcachecg->stats.cache_hits);
95 }
96 
97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98 {
99 	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100 	return atomic_read(&bcachecg->stats.cache_misses);
101 }
102 
103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104 					 struct cftype *cft)
105 {
106 	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107 	return atomic_read(&bcachecg->stats.cache_bypass_hits);
108 }
109 
110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111 					   struct cftype *cft)
112 {
113 	struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114 	return atomic_read(&bcachecg->stats.cache_bypass_misses);
115 }
116 
117 static struct cftype bch_files[] = {
118 	{
119 		.name		= "cache_mode",
120 		.read		= cache_mode_read,
121 		.write_string	= cache_mode_write,
122 	},
123 	{
124 		.name		= "verify",
125 		.read_u64	= bch_verify_read,
126 		.write_u64	= bch_verify_write,
127 	},
128 	{
129 		.name		= "cache_hits",
130 		.read_u64	= bch_cache_hits_read,
131 	},
132 	{
133 		.name		= "cache_misses",
134 		.read_u64	= bch_cache_misses_read,
135 	},
136 	{
137 		.name		= "cache_bypass_hits",
138 		.read_u64	= bch_cache_bypass_hits_read,
139 	},
140 	{
141 		.name		= "cache_bypass_misses",
142 		.read_u64	= bch_cache_bypass_misses_read,
143 	},
144 	{ }	/* terminate */
145 };
146 
147 static void init_bch_cgroup(struct bch_cgroup *cg)
148 {
149 	cg->cache_mode = -1;
150 }
151 
152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153 {
154 	struct bch_cgroup *cg;
155 
156 	cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157 	if (!cg)
158 		return ERR_PTR(-ENOMEM);
159 	init_bch_cgroup(cg);
160 	return &cg->css;
161 }
162 
163 static void bcachecg_destroy(struct cgroup *cgroup)
164 {
165 	struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166 	free_css_id(&bcache_subsys, &cg->css);
167 	kfree(cg);
168 }
169 
170 struct cgroup_subsys bcache_subsys = {
171 	.create		= bcachecg_create,
172 	.destroy	= bcachecg_destroy,
173 	.subsys_id	= bcache_subsys_id,
174 	.name		= "bcache",
175 	.module		= THIS_MODULE,
176 };
177 EXPORT_SYMBOL_GPL(bcache_subsys);
178 #endif
179 
180 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
181 {
182 #ifdef CONFIG_CGROUP_BCACHE
183 	int r = bch_bio_to_cgroup(bio)->cache_mode;
184 	if (r >= 0)
185 		return r;
186 #endif
187 	return BDEV_CACHE_MODE(&dc->sb);
188 }
189 
190 static bool verify(struct cached_dev *dc, struct bio *bio)
191 {
192 #ifdef CONFIG_CGROUP_BCACHE
193 	if (bch_bio_to_cgroup(bio)->verify)
194 		return true;
195 #endif
196 	return dc->verify;
197 }
198 
199 static void bio_csum(struct bio *bio, struct bkey *k)
200 {
201 	struct bio_vec *bv;
202 	uint64_t csum = 0;
203 	int i;
204 
205 	bio_for_each_segment(bv, bio, i) {
206 		void *d = kmap(bv->bv_page) + bv->bv_offset;
207 		csum = bch_crc64_update(csum, d, bv->bv_len);
208 		kunmap(bv->bv_page);
209 	}
210 
211 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
212 }
213 
214 /* Insert data into cache */
215 
216 static void bch_data_insert_keys(struct closure *cl)
217 {
218 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
219 	atomic_t *journal_ref = NULL;
220 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
221 	int ret;
222 
223 	/*
224 	 * If we're looping, might already be waiting on
225 	 * another journal write - can't wait on more than one journal write at
226 	 * a time
227 	 *
228 	 * XXX: this looks wrong
229 	 */
230 #if 0
231 	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
232 		closure_sync(&s->cl);
233 #endif
234 
235 	if (!op->replace)
236 		journal_ref = bch_journal(op->c, &op->insert_keys,
237 					  op->flush_journal ? cl : NULL);
238 
239 	ret = bch_btree_insert(op->c, &op->insert_keys,
240 			       journal_ref, replace_key);
241 	if (ret == -ESRCH) {
242 		op->replace_collision = true;
243 	} else if (ret) {
244 		op->error		= -ENOMEM;
245 		op->insert_data_done	= true;
246 	}
247 
248 	if (journal_ref)
249 		atomic_dec_bug(journal_ref);
250 
251 	if (!op->insert_data_done)
252 		continue_at(cl, bch_data_insert_start, bcache_wq);
253 
254 	bch_keylist_free(&op->insert_keys);
255 	closure_return(cl);
256 }
257 
258 static void bch_data_invalidate(struct closure *cl)
259 {
260 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
261 	struct bio *bio = op->bio;
262 
263 	pr_debug("invalidating %i sectors from %llu",
264 		 bio_sectors(bio), (uint64_t) bio->bi_sector);
265 
266 	while (bio_sectors(bio)) {
267 		unsigned sectors = min(bio_sectors(bio),
268 				       1U << (KEY_SIZE_BITS - 1));
269 
270 		if (bch_keylist_realloc(&op->insert_keys, 0, op->c))
271 			goto out;
272 
273 		bio->bi_sector	+= sectors;
274 		bio->bi_size	-= sectors << 9;
275 
276 		bch_keylist_add(&op->insert_keys,
277 				&KEY(op->inode, bio->bi_sector, sectors));
278 	}
279 
280 	op->insert_data_done = true;
281 	bio_put(bio);
282 out:
283 	continue_at(cl, bch_data_insert_keys, bcache_wq);
284 }
285 
286 static void bch_data_insert_error(struct closure *cl)
287 {
288 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
289 
290 	/*
291 	 * Our data write just errored, which means we've got a bunch of keys to
292 	 * insert that point to data that wasn't succesfully written.
293 	 *
294 	 * We don't have to insert those keys but we still have to invalidate
295 	 * that region of the cache - so, if we just strip off all the pointers
296 	 * from the keys we'll accomplish just that.
297 	 */
298 
299 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
300 
301 	while (src != op->insert_keys.top) {
302 		struct bkey *n = bkey_next(src);
303 
304 		SET_KEY_PTRS(src, 0);
305 		memmove(dst, src, bkey_bytes(src));
306 
307 		dst = bkey_next(dst);
308 		src = n;
309 	}
310 
311 	op->insert_keys.top = dst;
312 
313 	bch_data_insert_keys(cl);
314 }
315 
316 static void bch_data_insert_endio(struct bio *bio, int error)
317 {
318 	struct closure *cl = bio->bi_private;
319 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
320 
321 	if (error) {
322 		/* TODO: We could try to recover from this. */
323 		if (op->writeback)
324 			op->error = error;
325 		else if (!op->replace)
326 			set_closure_fn(cl, bch_data_insert_error, bcache_wq);
327 		else
328 			set_closure_fn(cl, NULL, NULL);
329 	}
330 
331 	bch_bbio_endio(op->c, bio, error, "writing data to cache");
332 }
333 
334 static void bch_data_insert_start(struct closure *cl)
335 {
336 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
337 	struct bio *bio = op->bio, *n;
338 
339 	if (op->bypass)
340 		return bch_data_invalidate(cl);
341 
342 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
343 		set_gc_sectors(op->c);
344 		wake_up_gc(op->c);
345 	}
346 
347 	/*
348 	 * Journal writes are marked REQ_FLUSH; if the original write was a
349 	 * flush, it'll wait on the journal write.
350 	 */
351 	bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
352 
353 	do {
354 		unsigned i;
355 		struct bkey *k;
356 		struct bio_set *split = op->c->bio_split;
357 
358 		/* 1 for the device pointer and 1 for the chksum */
359 		if (bch_keylist_realloc(&op->insert_keys,
360 					1 + (op->csum ? 1 : 0),
361 					op->c))
362 			continue_at(cl, bch_data_insert_keys, bcache_wq);
363 
364 		k = op->insert_keys.top;
365 		bkey_init(k);
366 		SET_KEY_INODE(k, op->inode);
367 		SET_KEY_OFFSET(k, bio->bi_sector);
368 
369 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
370 				       op->write_point, op->write_prio,
371 				       op->writeback))
372 			goto err;
373 
374 		n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
375 
376 		n->bi_end_io	= bch_data_insert_endio;
377 		n->bi_private	= cl;
378 
379 		if (op->writeback) {
380 			SET_KEY_DIRTY(k, true);
381 
382 			for (i = 0; i < KEY_PTRS(k); i++)
383 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
384 					    GC_MARK_DIRTY);
385 		}
386 
387 		SET_KEY_CSUM(k, op->csum);
388 		if (KEY_CSUM(k))
389 			bio_csum(n, k);
390 
391 		trace_bcache_cache_insert(k);
392 		bch_keylist_push(&op->insert_keys);
393 
394 		n->bi_rw |= REQ_WRITE;
395 		bch_submit_bbio(n, op->c, k, 0);
396 	} while (n != bio);
397 
398 	op->insert_data_done = true;
399 	continue_at(cl, bch_data_insert_keys, bcache_wq);
400 err:
401 	/* bch_alloc_sectors() blocks if s->writeback = true */
402 	BUG_ON(op->writeback);
403 
404 	/*
405 	 * But if it's not a writeback write we'd rather just bail out if
406 	 * there aren't any buckets ready to write to - it might take awhile and
407 	 * we might be starving btree writes for gc or something.
408 	 */
409 
410 	if (!op->replace) {
411 		/*
412 		 * Writethrough write: We can't complete the write until we've
413 		 * updated the index. But we don't want to delay the write while
414 		 * we wait for buckets to be freed up, so just invalidate the
415 		 * rest of the write.
416 		 */
417 		op->bypass = true;
418 		return bch_data_invalidate(cl);
419 	} else {
420 		/*
421 		 * From a cache miss, we can just insert the keys for the data
422 		 * we have written or bail out if we didn't do anything.
423 		 */
424 		op->insert_data_done = true;
425 		bio_put(bio);
426 
427 		if (!bch_keylist_empty(&op->insert_keys))
428 			continue_at(cl, bch_data_insert_keys, bcache_wq);
429 		else
430 			closure_return(cl);
431 	}
432 }
433 
434 /**
435  * bch_data_insert - stick some data in the cache
436  *
437  * This is the starting point for any data to end up in a cache device; it could
438  * be from a normal write, or a writeback write, or a write to a flash only
439  * volume - it's also used by the moving garbage collector to compact data in
440  * mostly empty buckets.
441  *
442  * It first writes the data to the cache, creating a list of keys to be inserted
443  * (if the data had to be fragmented there will be multiple keys); after the
444  * data is written it calls bch_journal, and after the keys have been added to
445  * the next journal write they're inserted into the btree.
446  *
447  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
448  * and op->inode is used for the key inode.
449  *
450  * If s->bypass is true, instead of inserting the data it invalidates the
451  * region of the cache represented by s->cache_bio and op->inode.
452  */
453 void bch_data_insert(struct closure *cl)
454 {
455 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
456 
457 	trace_bcache_write(op->bio, op->writeback, op->bypass);
458 
459 	bch_keylist_init(&op->insert_keys);
460 	bio_get(op->bio);
461 	bch_data_insert_start(cl);
462 }
463 
464 /* Congested? */
465 
466 unsigned bch_get_congested(struct cache_set *c)
467 {
468 	int i;
469 	long rand;
470 
471 	if (!c->congested_read_threshold_us &&
472 	    !c->congested_write_threshold_us)
473 		return 0;
474 
475 	i = (local_clock_us() - c->congested_last_us) / 1024;
476 	if (i < 0)
477 		return 0;
478 
479 	i += atomic_read(&c->congested);
480 	if (i >= 0)
481 		return 0;
482 
483 	i += CONGESTED_MAX;
484 
485 	if (i > 0)
486 		i = fract_exp_two(i, 6);
487 
488 	rand = get_random_int();
489 	i -= bitmap_weight(&rand, BITS_PER_LONG);
490 
491 	return i > 0 ? i : 1;
492 }
493 
494 static void add_sequential(struct task_struct *t)
495 {
496 	ewma_add(t->sequential_io_avg,
497 		 t->sequential_io, 8, 0);
498 
499 	t->sequential_io = 0;
500 }
501 
502 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
503 {
504 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
505 }
506 
507 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
508 {
509 	struct cache_set *c = dc->disk.c;
510 	unsigned mode = cache_mode(dc, bio);
511 	unsigned sectors, congested = bch_get_congested(c);
512 	struct task_struct *task = current;
513 	struct io *i;
514 
515 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
516 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
517 	    (bio->bi_rw & REQ_DISCARD))
518 		goto skip;
519 
520 	if (mode == CACHE_MODE_NONE ||
521 	    (mode == CACHE_MODE_WRITEAROUND &&
522 	     (bio->bi_rw & REQ_WRITE)))
523 		goto skip;
524 
525 	if (bio->bi_sector & (c->sb.block_size - 1) ||
526 	    bio_sectors(bio) & (c->sb.block_size - 1)) {
527 		pr_debug("skipping unaligned io");
528 		goto skip;
529 	}
530 
531 	if (bypass_torture_test(dc)) {
532 		if ((get_random_int() & 3) == 3)
533 			goto skip;
534 		else
535 			goto rescale;
536 	}
537 
538 	if (!congested && !dc->sequential_cutoff)
539 		goto rescale;
540 
541 	if (!congested &&
542 	    mode == CACHE_MODE_WRITEBACK &&
543 	    (bio->bi_rw & REQ_WRITE) &&
544 	    (bio->bi_rw & REQ_SYNC))
545 		goto rescale;
546 
547 	spin_lock(&dc->io_lock);
548 
549 	hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
550 		if (i->last == bio->bi_sector &&
551 		    time_before(jiffies, i->jiffies))
552 			goto found;
553 
554 	i = list_first_entry(&dc->io_lru, struct io, lru);
555 
556 	add_sequential(task);
557 	i->sequential = 0;
558 found:
559 	if (i->sequential + bio->bi_size > i->sequential)
560 		i->sequential	+= bio->bi_size;
561 
562 	i->last			 = bio_end_sector(bio);
563 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
564 	task->sequential_io	 = i->sequential;
565 
566 	hlist_del(&i->hash);
567 	hlist_add_head(&i->hash, iohash(dc, i->last));
568 	list_move_tail(&i->lru, &dc->io_lru);
569 
570 	spin_unlock(&dc->io_lock);
571 
572 	sectors = max(task->sequential_io,
573 		      task->sequential_io_avg) >> 9;
574 
575 	if (dc->sequential_cutoff &&
576 	    sectors >= dc->sequential_cutoff >> 9) {
577 		trace_bcache_bypass_sequential(bio);
578 		goto skip;
579 	}
580 
581 	if (congested && sectors >= congested) {
582 		trace_bcache_bypass_congested(bio);
583 		goto skip;
584 	}
585 
586 rescale:
587 	bch_rescale_priorities(c, bio_sectors(bio));
588 	return false;
589 skip:
590 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
591 	return true;
592 }
593 
594 /* Cache lookup */
595 
596 struct search {
597 	/* Stack frame for bio_complete */
598 	struct closure		cl;
599 
600 	struct bcache_device	*d;
601 
602 	struct bbio		bio;
603 	struct bio		*orig_bio;
604 	struct bio		*cache_miss;
605 
606 	unsigned		insert_bio_sectors;
607 
608 	unsigned		recoverable:1;
609 	unsigned		unaligned_bvec:1;
610 	unsigned		write:1;
611 	unsigned		read_dirty_data:1;
612 
613 	unsigned long		start_time;
614 
615 	struct btree_op		op;
616 	struct data_insert_op	iop;
617 };
618 
619 static void bch_cache_read_endio(struct bio *bio, int error)
620 {
621 	struct bbio *b = container_of(bio, struct bbio, bio);
622 	struct closure *cl = bio->bi_private;
623 	struct search *s = container_of(cl, struct search, cl);
624 
625 	/*
626 	 * If the bucket was reused while our bio was in flight, we might have
627 	 * read the wrong data. Set s->error but not error so it doesn't get
628 	 * counted against the cache device, but we'll still reread the data
629 	 * from the backing device.
630 	 */
631 
632 	if (error)
633 		s->iop.error = error;
634 	else if (ptr_stale(s->iop.c, &b->key, 0)) {
635 		atomic_long_inc(&s->iop.c->cache_read_races);
636 		s->iop.error = -EINTR;
637 	}
638 
639 	bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
640 }
641 
642 /*
643  * Read from a single key, handling the initial cache miss if the key starts in
644  * the middle of the bio
645  */
646 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
647 {
648 	struct search *s = container_of(op, struct search, op);
649 	struct bio *n, *bio = &s->bio.bio;
650 	struct bkey *bio_key;
651 	unsigned ptr;
652 
653 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_sector, 0)) <= 0)
654 		return MAP_CONTINUE;
655 
656 	if (KEY_INODE(k) != s->iop.inode ||
657 	    KEY_START(k) > bio->bi_sector) {
658 		unsigned bio_sectors = bio_sectors(bio);
659 		unsigned sectors = KEY_INODE(k) == s->iop.inode
660 			? min_t(uint64_t, INT_MAX,
661 				KEY_START(k) - bio->bi_sector)
662 			: INT_MAX;
663 
664 		int ret = s->d->cache_miss(b, s, bio, sectors);
665 		if (ret != MAP_CONTINUE)
666 			return ret;
667 
668 		/* if this was a complete miss we shouldn't get here */
669 		BUG_ON(bio_sectors <= sectors);
670 	}
671 
672 	if (!KEY_SIZE(k))
673 		return MAP_CONTINUE;
674 
675 	/* XXX: figure out best pointer - for multiple cache devices */
676 	ptr = 0;
677 
678 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
679 
680 	if (KEY_DIRTY(k))
681 		s->read_dirty_data = true;
682 
683 	n = bch_bio_split(bio, min_t(uint64_t, INT_MAX,
684 				     KEY_OFFSET(k) - bio->bi_sector),
685 			  GFP_NOIO, s->d->bio_split);
686 
687 	bio_key = &container_of(n, struct bbio, bio)->key;
688 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
689 
690 	bch_cut_front(&KEY(s->iop.inode, n->bi_sector, 0), bio_key);
691 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
692 
693 	n->bi_end_io	= bch_cache_read_endio;
694 	n->bi_private	= &s->cl;
695 
696 	/*
697 	 * The bucket we're reading from might be reused while our bio
698 	 * is in flight, and we could then end up reading the wrong
699 	 * data.
700 	 *
701 	 * We guard against this by checking (in cache_read_endio()) if
702 	 * the pointer is stale again; if so, we treat it as an error
703 	 * and reread from the backing device (but we don't pass that
704 	 * error up anywhere).
705 	 */
706 
707 	__bch_submit_bbio(n, b->c);
708 	return n == bio ? MAP_DONE : MAP_CONTINUE;
709 }
710 
711 static void cache_lookup(struct closure *cl)
712 {
713 	struct search *s = container_of(cl, struct search, iop.cl);
714 	struct bio *bio = &s->bio.bio;
715 
716 	int ret = bch_btree_map_keys(&s->op, s->iop.c,
717 				     &KEY(s->iop.inode, bio->bi_sector, 0),
718 				     cache_lookup_fn, MAP_END_KEY);
719 	if (ret == -EAGAIN)
720 		continue_at(cl, cache_lookup, bcache_wq);
721 
722 	closure_return(cl);
723 }
724 
725 /* Common code for the make_request functions */
726 
727 static void request_endio(struct bio *bio, int error)
728 {
729 	struct closure *cl = bio->bi_private;
730 
731 	if (error) {
732 		struct search *s = container_of(cl, struct search, cl);
733 		s->iop.error = error;
734 		/* Only cache read errors are recoverable */
735 		s->recoverable = false;
736 	}
737 
738 	bio_put(bio);
739 	closure_put(cl);
740 }
741 
742 static void bio_complete(struct search *s)
743 {
744 	if (s->orig_bio) {
745 		int cpu, rw = bio_data_dir(s->orig_bio);
746 		unsigned long duration = jiffies - s->start_time;
747 
748 		cpu = part_stat_lock();
749 		part_round_stats(cpu, &s->d->disk->part0);
750 		part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
751 		part_stat_unlock();
752 
753 		trace_bcache_request_end(s->d, s->orig_bio);
754 		bio_endio(s->orig_bio, s->iop.error);
755 		s->orig_bio = NULL;
756 	}
757 }
758 
759 static void do_bio_hook(struct search *s)
760 {
761 	struct bio *bio = &s->bio.bio;
762 	memcpy(bio, s->orig_bio, sizeof(struct bio));
763 
764 	bio->bi_end_io		= request_endio;
765 	bio->bi_private		= &s->cl;
766 	atomic_set(&bio->bi_cnt, 3);
767 }
768 
769 static void search_free(struct closure *cl)
770 {
771 	struct search *s = container_of(cl, struct search, cl);
772 	bio_complete(s);
773 
774 	if (s->iop.bio)
775 		bio_put(s->iop.bio);
776 
777 	if (s->unaligned_bvec)
778 		mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
779 
780 	closure_debug_destroy(cl);
781 	mempool_free(s, s->d->c->search);
782 }
783 
784 static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
785 {
786 	struct search *s;
787 	struct bio_vec *bv;
788 
789 	s = mempool_alloc(d->c->search, GFP_NOIO);
790 	memset(s, 0, offsetof(struct search, iop.insert_keys));
791 
792 	__closure_init(&s->cl, NULL);
793 
794 	s->iop.inode		= d->id;
795 	s->iop.c		= d->c;
796 	s->d			= d;
797 	s->op.lock		= -1;
798 	s->iop.write_point	= hash_long((unsigned long) current, 16);
799 	s->orig_bio		= bio;
800 	s->write		= (bio->bi_rw & REQ_WRITE) != 0;
801 	s->iop.flush_journal	= (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
802 	s->recoverable		= 1;
803 	s->start_time		= jiffies;
804 	do_bio_hook(s);
805 
806 	if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
807 		bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
808 		memcpy(bv, bio_iovec(bio),
809 		       sizeof(struct bio_vec) * bio_segments(bio));
810 
811 		s->bio.bio.bi_io_vec	= bv;
812 		s->unaligned_bvec	= 1;
813 	}
814 
815 	return s;
816 }
817 
818 /* Cached devices */
819 
820 static void cached_dev_bio_complete(struct closure *cl)
821 {
822 	struct search *s = container_of(cl, struct search, cl);
823 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
824 
825 	search_free(cl);
826 	cached_dev_put(dc);
827 }
828 
829 /* Process reads */
830 
831 static void cached_dev_cache_miss_done(struct closure *cl)
832 {
833 	struct search *s = container_of(cl, struct search, cl);
834 
835 	if (s->iop.replace_collision)
836 		bch_mark_cache_miss_collision(s->iop.c, s->d);
837 
838 	if (s->iop.bio) {
839 		int i;
840 		struct bio_vec *bv;
841 
842 		bio_for_each_segment_all(bv, s->iop.bio, i)
843 			__free_page(bv->bv_page);
844 	}
845 
846 	cached_dev_bio_complete(cl);
847 }
848 
849 static void cached_dev_read_error(struct closure *cl)
850 {
851 	struct search *s = container_of(cl, struct search, cl);
852 	struct bio *bio = &s->bio.bio;
853 	struct bio_vec *bv;
854 	int i;
855 
856 	if (s->recoverable) {
857 		/* Retry from the backing device: */
858 		trace_bcache_read_retry(s->orig_bio);
859 
860 		s->iop.error = 0;
861 		bv = s->bio.bio.bi_io_vec;
862 		do_bio_hook(s);
863 		s->bio.bio.bi_io_vec = bv;
864 
865 		if (!s->unaligned_bvec)
866 			bio_for_each_segment(bv, s->orig_bio, i)
867 				bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
868 		else
869 			memcpy(s->bio.bio.bi_io_vec,
870 			       bio_iovec(s->orig_bio),
871 			       sizeof(struct bio_vec) *
872 			       bio_segments(s->orig_bio));
873 
874 		/* XXX: invalidate cache */
875 
876 		closure_bio_submit(bio, cl, s->d);
877 	}
878 
879 	continue_at(cl, cached_dev_cache_miss_done, NULL);
880 }
881 
882 static void cached_dev_read_done(struct closure *cl)
883 {
884 	struct search *s = container_of(cl, struct search, cl);
885 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
886 
887 	/*
888 	 * We had a cache miss; cache_bio now contains data ready to be inserted
889 	 * into the cache.
890 	 *
891 	 * First, we copy the data we just read from cache_bio's bounce buffers
892 	 * to the buffers the original bio pointed to:
893 	 */
894 
895 	if (s->iop.bio) {
896 		bio_reset(s->iop.bio);
897 		s->iop.bio->bi_sector = s->cache_miss->bi_sector;
898 		s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
899 		s->iop.bio->bi_size = s->insert_bio_sectors << 9;
900 		bch_bio_map(s->iop.bio, NULL);
901 
902 		bio_copy_data(s->cache_miss, s->iop.bio);
903 
904 		bio_put(s->cache_miss);
905 		s->cache_miss = NULL;
906 	}
907 
908 	if (verify(dc, &s->bio.bio) && s->recoverable &&
909 	    !s->unaligned_bvec && !s->read_dirty_data)
910 		bch_data_verify(dc, s->orig_bio);
911 
912 	bio_complete(s);
913 
914 	if (s->iop.bio &&
915 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
916 		BUG_ON(!s->iop.replace);
917 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
918 	}
919 
920 	continue_at(cl, cached_dev_cache_miss_done, NULL);
921 }
922 
923 static void cached_dev_read_done_bh(struct closure *cl)
924 {
925 	struct search *s = container_of(cl, struct search, cl);
926 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
927 
928 	bch_mark_cache_accounting(s->iop.c, s->d,
929 				  !s->cache_miss, s->iop.bypass);
930 	trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
931 
932 	if (s->iop.error)
933 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
934 	else if (s->iop.bio || verify(dc, &s->bio.bio))
935 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
936 	else
937 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
938 }
939 
940 static int cached_dev_cache_miss(struct btree *b, struct search *s,
941 				 struct bio *bio, unsigned sectors)
942 {
943 	int ret = MAP_CONTINUE;
944 	unsigned reada = 0;
945 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
946 	struct bio *miss, *cache_bio;
947 
948 	if (s->cache_miss || s->iop.bypass) {
949 		miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
950 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
951 		goto out_submit;
952 	}
953 
954 	if (!(bio->bi_rw & REQ_RAHEAD) &&
955 	    !(bio->bi_rw & REQ_META) &&
956 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
957 		reada = min_t(sector_t, dc->readahead >> 9,
958 			      bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
959 
960 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
961 
962 	s->iop.replace_key = KEY(s->iop.inode,
963 				 bio->bi_sector + s->insert_bio_sectors,
964 				 s->insert_bio_sectors);
965 
966 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
967 	if (ret)
968 		return ret;
969 
970 	s->iop.replace = true;
971 
972 	miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
973 
974 	/* btree_search_recurse()'s btree iterator is no good anymore */
975 	ret = miss == bio ? MAP_DONE : -EINTR;
976 
977 	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
978 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
979 			dc->disk.bio_split);
980 	if (!cache_bio)
981 		goto out_submit;
982 
983 	cache_bio->bi_sector	= miss->bi_sector;
984 	cache_bio->bi_bdev	= miss->bi_bdev;
985 	cache_bio->bi_size	= s->insert_bio_sectors << 9;
986 
987 	cache_bio->bi_end_io	= request_endio;
988 	cache_bio->bi_private	= &s->cl;
989 
990 	bch_bio_map(cache_bio, NULL);
991 	if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
992 		goto out_put;
993 
994 	if (reada)
995 		bch_mark_cache_readahead(s->iop.c, s->d);
996 
997 	s->cache_miss	= miss;
998 	s->iop.bio	= cache_bio;
999 	bio_get(cache_bio);
1000 	closure_bio_submit(cache_bio, &s->cl, s->d);
1001 
1002 	return ret;
1003 out_put:
1004 	bio_put(cache_bio);
1005 out_submit:
1006 	miss->bi_end_io		= request_endio;
1007 	miss->bi_private	= &s->cl;
1008 	closure_bio_submit(miss, &s->cl, s->d);
1009 	return ret;
1010 }
1011 
1012 static void cached_dev_read(struct cached_dev *dc, struct search *s)
1013 {
1014 	struct closure *cl = &s->cl;
1015 
1016 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1017 	continue_at(cl, cached_dev_read_done_bh, NULL);
1018 }
1019 
1020 /* Process writes */
1021 
1022 static void cached_dev_write_complete(struct closure *cl)
1023 {
1024 	struct search *s = container_of(cl, struct search, cl);
1025 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1026 
1027 	up_read_non_owner(&dc->writeback_lock);
1028 	cached_dev_bio_complete(cl);
1029 }
1030 
1031 static void cached_dev_write(struct cached_dev *dc, struct search *s)
1032 {
1033 	struct closure *cl = &s->cl;
1034 	struct bio *bio = &s->bio.bio;
1035 	struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
1036 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
1037 
1038 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
1039 
1040 	down_read_non_owner(&dc->writeback_lock);
1041 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1042 		/*
1043 		 * We overlap with some dirty data undergoing background
1044 		 * writeback, force this write to writeback
1045 		 */
1046 		s->iop.bypass = false;
1047 		s->iop.writeback = true;
1048 	}
1049 
1050 	/*
1051 	 * Discards aren't _required_ to do anything, so skipping if
1052 	 * check_overlapping returned true is ok
1053 	 *
1054 	 * But check_overlapping drops dirty keys for which io hasn't started,
1055 	 * so we still want to call it.
1056 	 */
1057 	if (bio->bi_rw & REQ_DISCARD)
1058 		s->iop.bypass = true;
1059 
1060 	if (should_writeback(dc, s->orig_bio,
1061 			     cache_mode(dc, bio),
1062 			     s->iop.bypass)) {
1063 		s->iop.bypass = false;
1064 		s->iop.writeback = true;
1065 	}
1066 
1067 	if (s->iop.bypass) {
1068 		s->iop.bio = s->orig_bio;
1069 		bio_get(s->iop.bio);
1070 
1071 		if (!(bio->bi_rw & REQ_DISCARD) ||
1072 		    blk_queue_discard(bdev_get_queue(dc->bdev)))
1073 			closure_bio_submit(bio, cl, s->d);
1074 	} else if (s->iop.writeback) {
1075 		bch_writeback_add(dc);
1076 		s->iop.bio = bio;
1077 
1078 		if (bio->bi_rw & REQ_FLUSH) {
1079 			/* Also need to send a flush to the backing device */
1080 			struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1081 							     dc->disk.bio_split);
1082 
1083 			flush->bi_rw	= WRITE_FLUSH;
1084 			flush->bi_bdev	= bio->bi_bdev;
1085 			flush->bi_end_io = request_endio;
1086 			flush->bi_private = cl;
1087 
1088 			closure_bio_submit(flush, cl, s->d);
1089 		}
1090 	} else {
1091 		s->iop.bio = bio_clone_bioset(bio, GFP_NOIO,
1092 					      dc->disk.bio_split);
1093 
1094 		closure_bio_submit(bio, cl, s->d);
1095 	}
1096 
1097 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1098 	continue_at(cl, cached_dev_write_complete, NULL);
1099 }
1100 
1101 static void cached_dev_nodata(struct closure *cl)
1102 {
1103 	struct search *s = container_of(cl, struct search, cl);
1104 	struct bio *bio = &s->bio.bio;
1105 
1106 	if (s->iop.flush_journal)
1107 		bch_journal_meta(s->iop.c, cl);
1108 
1109 	/* If it's a flush, we send the flush to the backing device too */
1110 	closure_bio_submit(bio, cl, s->d);
1111 
1112 	continue_at(cl, cached_dev_bio_complete, NULL);
1113 }
1114 
1115 /* Cached devices - read & write stuff */
1116 
1117 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1118 {
1119 	struct search *s;
1120 	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1121 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1122 	int cpu, rw = bio_data_dir(bio);
1123 
1124 	cpu = part_stat_lock();
1125 	part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1126 	part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1127 	part_stat_unlock();
1128 
1129 	bio->bi_bdev = dc->bdev;
1130 	bio->bi_sector += dc->sb.data_offset;
1131 
1132 	if (cached_dev_get(dc)) {
1133 		s = search_alloc(bio, d);
1134 		trace_bcache_request_start(s->d, bio);
1135 
1136 		if (!bio->bi_size) {
1137 			/*
1138 			 * can't call bch_journal_meta from under
1139 			 * generic_make_request
1140 			 */
1141 			continue_at_nobarrier(&s->cl,
1142 					      cached_dev_nodata,
1143 					      bcache_wq);
1144 		} else {
1145 			s->iop.bypass = check_should_bypass(dc, bio);
1146 
1147 			if (rw)
1148 				cached_dev_write(dc, s);
1149 			else
1150 				cached_dev_read(dc, s);
1151 		}
1152 	} else {
1153 		if ((bio->bi_rw & REQ_DISCARD) &&
1154 		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1155 			bio_endio(bio, 0);
1156 		else
1157 			bch_generic_make_request(bio, &d->bio_split_hook);
1158 	}
1159 }
1160 
1161 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1162 			    unsigned int cmd, unsigned long arg)
1163 {
1164 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1165 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1166 }
1167 
1168 static int cached_dev_congested(void *data, int bits)
1169 {
1170 	struct bcache_device *d = data;
1171 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1172 	struct request_queue *q = bdev_get_queue(dc->bdev);
1173 	int ret = 0;
1174 
1175 	if (bdi_congested(&q->backing_dev_info, bits))
1176 		return 1;
1177 
1178 	if (cached_dev_get(dc)) {
1179 		unsigned i;
1180 		struct cache *ca;
1181 
1182 		for_each_cache(ca, d->c, i) {
1183 			q = bdev_get_queue(ca->bdev);
1184 			ret |= bdi_congested(&q->backing_dev_info, bits);
1185 		}
1186 
1187 		cached_dev_put(dc);
1188 	}
1189 
1190 	return ret;
1191 }
1192 
1193 void bch_cached_dev_request_init(struct cached_dev *dc)
1194 {
1195 	struct gendisk *g = dc->disk.disk;
1196 
1197 	g->queue->make_request_fn		= cached_dev_make_request;
1198 	g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1199 	dc->disk.cache_miss			= cached_dev_cache_miss;
1200 	dc->disk.ioctl				= cached_dev_ioctl;
1201 }
1202 
1203 /* Flash backed devices */
1204 
1205 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1206 				struct bio *bio, unsigned sectors)
1207 {
1208 	struct bio_vec *bv;
1209 	int i;
1210 
1211 	/* Zero fill bio */
1212 
1213 	bio_for_each_segment(bv, bio, i) {
1214 		unsigned j = min(bv->bv_len >> 9, sectors);
1215 
1216 		void *p = kmap(bv->bv_page);
1217 		memset(p + bv->bv_offset, 0, j << 9);
1218 		kunmap(bv->bv_page);
1219 
1220 		sectors	-= j;
1221 	}
1222 
1223 	bio_advance(bio, min(sectors << 9, bio->bi_size));
1224 
1225 	if (!bio->bi_size)
1226 		return MAP_DONE;
1227 
1228 	return MAP_CONTINUE;
1229 }
1230 
1231 static void flash_dev_nodata(struct closure *cl)
1232 {
1233 	struct search *s = container_of(cl, struct search, cl);
1234 
1235 	if (s->iop.flush_journal)
1236 		bch_journal_meta(s->iop.c, cl);
1237 
1238 	continue_at(cl, search_free, NULL);
1239 }
1240 
1241 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1242 {
1243 	struct search *s;
1244 	struct closure *cl;
1245 	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1246 	int cpu, rw = bio_data_dir(bio);
1247 
1248 	cpu = part_stat_lock();
1249 	part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1250 	part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1251 	part_stat_unlock();
1252 
1253 	s = search_alloc(bio, d);
1254 	cl = &s->cl;
1255 	bio = &s->bio.bio;
1256 
1257 	trace_bcache_request_start(s->d, bio);
1258 
1259 	if (!bio->bi_size) {
1260 		/*
1261 		 * can't call bch_journal_meta from under
1262 		 * generic_make_request
1263 		 */
1264 		continue_at_nobarrier(&s->cl,
1265 				      flash_dev_nodata,
1266 				      bcache_wq);
1267 	} else if (rw) {
1268 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1269 					&KEY(d->id, bio->bi_sector, 0),
1270 					&KEY(d->id, bio_end_sector(bio), 0));
1271 
1272 		s->iop.bypass		= (bio->bi_rw & REQ_DISCARD) != 0;
1273 		s->iop.writeback	= true;
1274 		s->iop.bio		= bio;
1275 
1276 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1277 	} else {
1278 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1279 	}
1280 
1281 	continue_at(cl, search_free, NULL);
1282 }
1283 
1284 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1285 			   unsigned int cmd, unsigned long arg)
1286 {
1287 	return -ENOTTY;
1288 }
1289 
1290 static int flash_dev_congested(void *data, int bits)
1291 {
1292 	struct bcache_device *d = data;
1293 	struct request_queue *q;
1294 	struct cache *ca;
1295 	unsigned i;
1296 	int ret = 0;
1297 
1298 	for_each_cache(ca, d->c, i) {
1299 		q = bdev_get_queue(ca->bdev);
1300 		ret |= bdi_congested(&q->backing_dev_info, bits);
1301 	}
1302 
1303 	return ret;
1304 }
1305 
1306 void bch_flash_dev_request_init(struct bcache_device *d)
1307 {
1308 	struct gendisk *g = d->disk;
1309 
1310 	g->queue->make_request_fn		= flash_dev_make_request;
1311 	g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1312 	d->cache_miss				= flash_dev_cache_miss;
1313 	d->ioctl				= flash_dev_ioctl;
1314 }
1315 
1316 void bch_request_exit(void)
1317 {
1318 #ifdef CONFIG_CGROUP_BCACHE
1319 	cgroup_unload_subsys(&bcache_subsys);
1320 #endif
1321 	if (bch_search_cache)
1322 		kmem_cache_destroy(bch_search_cache);
1323 }
1324 
1325 int __init bch_request_init(void)
1326 {
1327 	bch_search_cache = KMEM_CACHE(search, 0);
1328 	if (!bch_search_cache)
1329 		return -ENOMEM;
1330 
1331 #ifdef CONFIG_CGROUP_BCACHE
1332 	cgroup_load_subsys(&bcache_subsys);
1333 	init_bch_cgroup(&bcache_default_cgroup);
1334 
1335 	cgroup_add_cftypes(&bcache_subsys, bch_files);
1336 #endif
1337 	return 0;
1338 }
1339