1 /* 2 * Main bcache entry point - handle a read or a write request and decide what to 3 * do with it; the make_request functions are called by the block layer. 4 * 5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcache.h" 10 #include "btree.h" 11 #include "debug.h" 12 #include "request.h" 13 #include "writeback.h" 14 15 #include <linux/module.h> 16 #include <linux/hash.h> 17 #include <linux/random.h> 18 #include <linux/backing-dev.h> 19 20 #include <trace/events/bcache.h> 21 22 #define CUTOFF_CACHE_ADD 95 23 #define CUTOFF_CACHE_READA 90 24 25 struct kmem_cache *bch_search_cache; 26 27 static void bch_data_insert_start(struct closure *); 28 29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) 30 { 31 return BDEV_CACHE_MODE(&dc->sb); 32 } 33 34 static bool verify(struct cached_dev *dc, struct bio *bio) 35 { 36 return dc->verify; 37 } 38 39 static void bio_csum(struct bio *bio, struct bkey *k) 40 { 41 struct bio_vec bv; 42 struct bvec_iter iter; 43 uint64_t csum = 0; 44 45 bio_for_each_segment(bv, bio, iter) { 46 void *d = kmap(bv.bv_page) + bv.bv_offset; 47 csum = bch_crc64_update(csum, d, bv.bv_len); 48 kunmap(bv.bv_page); 49 } 50 51 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 52 } 53 54 /* Insert data into cache */ 55 56 static void bch_data_insert_keys(struct closure *cl) 57 { 58 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 59 atomic_t *journal_ref = NULL; 60 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 61 int ret; 62 63 /* 64 * If we're looping, might already be waiting on 65 * another journal write - can't wait on more than one journal write at 66 * a time 67 * 68 * XXX: this looks wrong 69 */ 70 #if 0 71 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) 72 closure_sync(&s->cl); 73 #endif 74 75 if (!op->replace) 76 journal_ref = bch_journal(op->c, &op->insert_keys, 77 op->flush_journal ? cl : NULL); 78 79 ret = bch_btree_insert(op->c, &op->insert_keys, 80 journal_ref, replace_key); 81 if (ret == -ESRCH) { 82 op->replace_collision = true; 83 } else if (ret) { 84 op->error = -ENOMEM; 85 op->insert_data_done = true; 86 } 87 88 if (journal_ref) 89 atomic_dec_bug(journal_ref); 90 91 if (!op->insert_data_done) { 92 continue_at(cl, bch_data_insert_start, op->wq); 93 return; 94 } 95 96 bch_keylist_free(&op->insert_keys); 97 closure_return(cl); 98 } 99 100 static int bch_keylist_realloc(struct keylist *l, unsigned u64s, 101 struct cache_set *c) 102 { 103 size_t oldsize = bch_keylist_nkeys(l); 104 size_t newsize = oldsize + u64s; 105 106 /* 107 * The journalling code doesn't handle the case where the keys to insert 108 * is bigger than an empty write: If we just return -ENOMEM here, 109 * bio_insert() and bio_invalidate() will insert the keys created so far 110 * and finish the rest when the keylist is empty. 111 */ 112 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 113 return -ENOMEM; 114 115 return __bch_keylist_realloc(l, u64s); 116 } 117 118 static void bch_data_invalidate(struct closure *cl) 119 { 120 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 121 struct bio *bio = op->bio; 122 123 pr_debug("invalidating %i sectors from %llu", 124 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 125 126 while (bio_sectors(bio)) { 127 unsigned sectors = min(bio_sectors(bio), 128 1U << (KEY_SIZE_BITS - 1)); 129 130 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 131 goto out; 132 133 bio->bi_iter.bi_sector += sectors; 134 bio->bi_iter.bi_size -= sectors << 9; 135 136 bch_keylist_add(&op->insert_keys, 137 &KEY(op->inode, bio->bi_iter.bi_sector, sectors)); 138 } 139 140 op->insert_data_done = true; 141 bio_put(bio); 142 out: 143 continue_at(cl, bch_data_insert_keys, op->wq); 144 } 145 146 static void bch_data_insert_error(struct closure *cl) 147 { 148 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 149 150 /* 151 * Our data write just errored, which means we've got a bunch of keys to 152 * insert that point to data that wasn't succesfully written. 153 * 154 * We don't have to insert those keys but we still have to invalidate 155 * that region of the cache - so, if we just strip off all the pointers 156 * from the keys we'll accomplish just that. 157 */ 158 159 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 160 161 while (src != op->insert_keys.top) { 162 struct bkey *n = bkey_next(src); 163 164 SET_KEY_PTRS(src, 0); 165 memmove(dst, src, bkey_bytes(src)); 166 167 dst = bkey_next(dst); 168 src = n; 169 } 170 171 op->insert_keys.top = dst; 172 173 bch_data_insert_keys(cl); 174 } 175 176 static void bch_data_insert_endio(struct bio *bio) 177 { 178 struct closure *cl = bio->bi_private; 179 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 180 181 if (bio->bi_error) { 182 /* TODO: We could try to recover from this. */ 183 if (op->writeback) 184 op->error = bio->bi_error; 185 else if (!op->replace) 186 set_closure_fn(cl, bch_data_insert_error, op->wq); 187 else 188 set_closure_fn(cl, NULL, NULL); 189 } 190 191 bch_bbio_endio(op->c, bio, bio->bi_error, "writing data to cache"); 192 } 193 194 static void bch_data_insert_start(struct closure *cl) 195 { 196 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 197 struct bio *bio = op->bio, *n; 198 199 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) 200 wake_up_gc(op->c); 201 202 if (op->bypass) 203 return bch_data_invalidate(cl); 204 205 /* 206 * Journal writes are marked REQ_PREFLUSH; if the original write was a 207 * flush, it'll wait on the journal write. 208 */ 209 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); 210 211 do { 212 unsigned i; 213 struct bkey *k; 214 struct bio_set *split = op->c->bio_split; 215 216 /* 1 for the device pointer and 1 for the chksum */ 217 if (bch_keylist_realloc(&op->insert_keys, 218 3 + (op->csum ? 1 : 0), 219 op->c)) { 220 continue_at(cl, bch_data_insert_keys, op->wq); 221 return; 222 } 223 224 k = op->insert_keys.top; 225 bkey_init(k); 226 SET_KEY_INODE(k, op->inode); 227 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 228 229 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 230 op->write_point, op->write_prio, 231 op->writeback)) 232 goto err; 233 234 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 235 236 n->bi_end_io = bch_data_insert_endio; 237 n->bi_private = cl; 238 239 if (op->writeback) { 240 SET_KEY_DIRTY(k, true); 241 242 for (i = 0; i < KEY_PTRS(k); i++) 243 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 244 GC_MARK_DIRTY); 245 } 246 247 SET_KEY_CSUM(k, op->csum); 248 if (KEY_CSUM(k)) 249 bio_csum(n, k); 250 251 trace_bcache_cache_insert(k); 252 bch_keylist_push(&op->insert_keys); 253 254 bio_set_op_attrs(n, REQ_OP_WRITE, 0); 255 bch_submit_bbio(n, op->c, k, 0); 256 } while (n != bio); 257 258 op->insert_data_done = true; 259 continue_at(cl, bch_data_insert_keys, op->wq); 260 return; 261 err: 262 /* bch_alloc_sectors() blocks if s->writeback = true */ 263 BUG_ON(op->writeback); 264 265 /* 266 * But if it's not a writeback write we'd rather just bail out if 267 * there aren't any buckets ready to write to - it might take awhile and 268 * we might be starving btree writes for gc or something. 269 */ 270 271 if (!op->replace) { 272 /* 273 * Writethrough write: We can't complete the write until we've 274 * updated the index. But we don't want to delay the write while 275 * we wait for buckets to be freed up, so just invalidate the 276 * rest of the write. 277 */ 278 op->bypass = true; 279 return bch_data_invalidate(cl); 280 } else { 281 /* 282 * From a cache miss, we can just insert the keys for the data 283 * we have written or bail out if we didn't do anything. 284 */ 285 op->insert_data_done = true; 286 bio_put(bio); 287 288 if (!bch_keylist_empty(&op->insert_keys)) 289 continue_at(cl, bch_data_insert_keys, op->wq); 290 else 291 closure_return(cl); 292 } 293 } 294 295 /** 296 * bch_data_insert - stick some data in the cache 297 * 298 * This is the starting point for any data to end up in a cache device; it could 299 * be from a normal write, or a writeback write, or a write to a flash only 300 * volume - it's also used by the moving garbage collector to compact data in 301 * mostly empty buckets. 302 * 303 * It first writes the data to the cache, creating a list of keys to be inserted 304 * (if the data had to be fragmented there will be multiple keys); after the 305 * data is written it calls bch_journal, and after the keys have been added to 306 * the next journal write they're inserted into the btree. 307 * 308 * It inserts the data in s->cache_bio; bi_sector is used for the key offset, 309 * and op->inode is used for the key inode. 310 * 311 * If s->bypass is true, instead of inserting the data it invalidates the 312 * region of the cache represented by s->cache_bio and op->inode. 313 */ 314 void bch_data_insert(struct closure *cl) 315 { 316 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 317 318 trace_bcache_write(op->c, op->inode, op->bio, 319 op->writeback, op->bypass); 320 321 bch_keylist_init(&op->insert_keys); 322 bio_get(op->bio); 323 bch_data_insert_start(cl); 324 } 325 326 /* Congested? */ 327 328 unsigned bch_get_congested(struct cache_set *c) 329 { 330 int i; 331 long rand; 332 333 if (!c->congested_read_threshold_us && 334 !c->congested_write_threshold_us) 335 return 0; 336 337 i = (local_clock_us() - c->congested_last_us) / 1024; 338 if (i < 0) 339 return 0; 340 341 i += atomic_read(&c->congested); 342 if (i >= 0) 343 return 0; 344 345 i += CONGESTED_MAX; 346 347 if (i > 0) 348 i = fract_exp_two(i, 6); 349 350 rand = get_random_int(); 351 i -= bitmap_weight(&rand, BITS_PER_LONG); 352 353 return i > 0 ? i : 1; 354 } 355 356 static void add_sequential(struct task_struct *t) 357 { 358 ewma_add(t->sequential_io_avg, 359 t->sequential_io, 8, 0); 360 361 t->sequential_io = 0; 362 } 363 364 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 365 { 366 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 367 } 368 369 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 370 { 371 struct cache_set *c = dc->disk.c; 372 unsigned mode = cache_mode(dc, bio); 373 unsigned sectors, congested = bch_get_congested(c); 374 struct task_struct *task = current; 375 struct io *i; 376 377 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 378 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 379 (bio_op(bio) == REQ_OP_DISCARD)) 380 goto skip; 381 382 if (mode == CACHE_MODE_NONE || 383 (mode == CACHE_MODE_WRITEAROUND && 384 op_is_write(bio_op(bio)))) 385 goto skip; 386 387 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 388 bio_sectors(bio) & (c->sb.block_size - 1)) { 389 pr_debug("skipping unaligned io"); 390 goto skip; 391 } 392 393 if (bypass_torture_test(dc)) { 394 if ((get_random_int() & 3) == 3) 395 goto skip; 396 else 397 goto rescale; 398 } 399 400 if (!congested && !dc->sequential_cutoff) 401 goto rescale; 402 403 if (!congested && 404 mode == CACHE_MODE_WRITEBACK && 405 op_is_write(bio->bi_opf) && 406 op_is_sync(bio->bi_opf)) 407 goto rescale; 408 409 spin_lock(&dc->io_lock); 410 411 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 412 if (i->last == bio->bi_iter.bi_sector && 413 time_before(jiffies, i->jiffies)) 414 goto found; 415 416 i = list_first_entry(&dc->io_lru, struct io, lru); 417 418 add_sequential(task); 419 i->sequential = 0; 420 found: 421 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 422 i->sequential += bio->bi_iter.bi_size; 423 424 i->last = bio_end_sector(bio); 425 i->jiffies = jiffies + msecs_to_jiffies(5000); 426 task->sequential_io = i->sequential; 427 428 hlist_del(&i->hash); 429 hlist_add_head(&i->hash, iohash(dc, i->last)); 430 list_move_tail(&i->lru, &dc->io_lru); 431 432 spin_unlock(&dc->io_lock); 433 434 sectors = max(task->sequential_io, 435 task->sequential_io_avg) >> 9; 436 437 if (dc->sequential_cutoff && 438 sectors >= dc->sequential_cutoff >> 9) { 439 trace_bcache_bypass_sequential(bio); 440 goto skip; 441 } 442 443 if (congested && sectors >= congested) { 444 trace_bcache_bypass_congested(bio); 445 goto skip; 446 } 447 448 rescale: 449 bch_rescale_priorities(c, bio_sectors(bio)); 450 return false; 451 skip: 452 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 453 return true; 454 } 455 456 /* Cache lookup */ 457 458 struct search { 459 /* Stack frame for bio_complete */ 460 struct closure cl; 461 462 struct bbio bio; 463 struct bio *orig_bio; 464 struct bio *cache_miss; 465 struct bcache_device *d; 466 467 unsigned insert_bio_sectors; 468 unsigned recoverable:1; 469 unsigned write:1; 470 unsigned read_dirty_data:1; 471 472 unsigned long start_time; 473 474 struct btree_op op; 475 struct data_insert_op iop; 476 }; 477 478 static void bch_cache_read_endio(struct bio *bio) 479 { 480 struct bbio *b = container_of(bio, struct bbio, bio); 481 struct closure *cl = bio->bi_private; 482 struct search *s = container_of(cl, struct search, cl); 483 484 /* 485 * If the bucket was reused while our bio was in flight, we might have 486 * read the wrong data. Set s->error but not error so it doesn't get 487 * counted against the cache device, but we'll still reread the data 488 * from the backing device. 489 */ 490 491 if (bio->bi_error) 492 s->iop.error = bio->bi_error; 493 else if (!KEY_DIRTY(&b->key) && 494 ptr_stale(s->iop.c, &b->key, 0)) { 495 atomic_long_inc(&s->iop.c->cache_read_races); 496 s->iop.error = -EINTR; 497 } 498 499 bch_bbio_endio(s->iop.c, bio, bio->bi_error, "reading from cache"); 500 } 501 502 /* 503 * Read from a single key, handling the initial cache miss if the key starts in 504 * the middle of the bio 505 */ 506 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 507 { 508 struct search *s = container_of(op, struct search, op); 509 struct bio *n, *bio = &s->bio.bio; 510 struct bkey *bio_key; 511 unsigned ptr; 512 513 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 514 return MAP_CONTINUE; 515 516 if (KEY_INODE(k) != s->iop.inode || 517 KEY_START(k) > bio->bi_iter.bi_sector) { 518 unsigned bio_sectors = bio_sectors(bio); 519 unsigned sectors = KEY_INODE(k) == s->iop.inode 520 ? min_t(uint64_t, INT_MAX, 521 KEY_START(k) - bio->bi_iter.bi_sector) 522 : INT_MAX; 523 524 int ret = s->d->cache_miss(b, s, bio, sectors); 525 if (ret != MAP_CONTINUE) 526 return ret; 527 528 /* if this was a complete miss we shouldn't get here */ 529 BUG_ON(bio_sectors <= sectors); 530 } 531 532 if (!KEY_SIZE(k)) 533 return MAP_CONTINUE; 534 535 /* XXX: figure out best pointer - for multiple cache devices */ 536 ptr = 0; 537 538 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 539 540 if (KEY_DIRTY(k)) 541 s->read_dirty_data = true; 542 543 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 544 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 545 GFP_NOIO, s->d->bio_split); 546 547 bio_key = &container_of(n, struct bbio, bio)->key; 548 bch_bkey_copy_single_ptr(bio_key, k, ptr); 549 550 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 551 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 552 553 n->bi_end_io = bch_cache_read_endio; 554 n->bi_private = &s->cl; 555 556 /* 557 * The bucket we're reading from might be reused while our bio 558 * is in flight, and we could then end up reading the wrong 559 * data. 560 * 561 * We guard against this by checking (in cache_read_endio()) if 562 * the pointer is stale again; if so, we treat it as an error 563 * and reread from the backing device (but we don't pass that 564 * error up anywhere). 565 */ 566 567 __bch_submit_bbio(n, b->c); 568 return n == bio ? MAP_DONE : MAP_CONTINUE; 569 } 570 571 static void cache_lookup(struct closure *cl) 572 { 573 struct search *s = container_of(cl, struct search, iop.cl); 574 struct bio *bio = &s->bio.bio; 575 int ret; 576 577 bch_btree_op_init(&s->op, -1); 578 579 ret = bch_btree_map_keys(&s->op, s->iop.c, 580 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 581 cache_lookup_fn, MAP_END_KEY); 582 if (ret == -EAGAIN) { 583 continue_at(cl, cache_lookup, bcache_wq); 584 return; 585 } 586 587 closure_return(cl); 588 } 589 590 /* Common code for the make_request functions */ 591 592 static void request_endio(struct bio *bio) 593 { 594 struct closure *cl = bio->bi_private; 595 596 if (bio->bi_error) { 597 struct search *s = container_of(cl, struct search, cl); 598 s->iop.error = bio->bi_error; 599 /* Only cache read errors are recoverable */ 600 s->recoverable = false; 601 } 602 603 bio_put(bio); 604 closure_put(cl); 605 } 606 607 static void bio_complete(struct search *s) 608 { 609 if (s->orig_bio) { 610 generic_end_io_acct(bio_data_dir(s->orig_bio), 611 &s->d->disk->part0, s->start_time); 612 613 trace_bcache_request_end(s->d, s->orig_bio); 614 s->orig_bio->bi_error = s->iop.error; 615 bio_endio(s->orig_bio); 616 s->orig_bio = NULL; 617 } 618 } 619 620 static void do_bio_hook(struct search *s, struct bio *orig_bio) 621 { 622 struct bio *bio = &s->bio.bio; 623 624 bio_init(bio, NULL, 0); 625 __bio_clone_fast(bio, orig_bio); 626 bio->bi_end_io = request_endio; 627 bio->bi_private = &s->cl; 628 629 bio_cnt_set(bio, 3); 630 } 631 632 static void search_free(struct closure *cl) 633 { 634 struct search *s = container_of(cl, struct search, cl); 635 bio_complete(s); 636 637 if (s->iop.bio) 638 bio_put(s->iop.bio); 639 640 closure_debug_destroy(cl); 641 mempool_free(s, s->d->c->search); 642 } 643 644 static inline struct search *search_alloc(struct bio *bio, 645 struct bcache_device *d) 646 { 647 struct search *s; 648 649 s = mempool_alloc(d->c->search, GFP_NOIO); 650 651 closure_init(&s->cl, NULL); 652 do_bio_hook(s, bio); 653 654 s->orig_bio = bio; 655 s->cache_miss = NULL; 656 s->d = d; 657 s->recoverable = 1; 658 s->write = op_is_write(bio_op(bio)); 659 s->read_dirty_data = 0; 660 s->start_time = jiffies; 661 662 s->iop.c = d->c; 663 s->iop.bio = NULL; 664 s->iop.inode = d->id; 665 s->iop.write_point = hash_long((unsigned long) current, 16); 666 s->iop.write_prio = 0; 667 s->iop.error = 0; 668 s->iop.flags = 0; 669 s->iop.flush_journal = op_is_flush(bio->bi_opf); 670 s->iop.wq = bcache_wq; 671 672 return s; 673 } 674 675 /* Cached devices */ 676 677 static void cached_dev_bio_complete(struct closure *cl) 678 { 679 struct search *s = container_of(cl, struct search, cl); 680 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 681 682 search_free(cl); 683 cached_dev_put(dc); 684 } 685 686 /* Process reads */ 687 688 static void cached_dev_cache_miss_done(struct closure *cl) 689 { 690 struct search *s = container_of(cl, struct search, cl); 691 692 if (s->iop.replace_collision) 693 bch_mark_cache_miss_collision(s->iop.c, s->d); 694 695 if (s->iop.bio) 696 bio_free_pages(s->iop.bio); 697 698 cached_dev_bio_complete(cl); 699 } 700 701 static void cached_dev_read_error(struct closure *cl) 702 { 703 struct search *s = container_of(cl, struct search, cl); 704 struct bio *bio = &s->bio.bio; 705 706 if (s->recoverable) { 707 /* Retry from the backing device: */ 708 trace_bcache_read_retry(s->orig_bio); 709 710 s->iop.error = 0; 711 do_bio_hook(s, s->orig_bio); 712 713 /* XXX: invalidate cache */ 714 715 closure_bio_submit(bio, cl); 716 } 717 718 continue_at(cl, cached_dev_cache_miss_done, NULL); 719 } 720 721 static void cached_dev_read_done(struct closure *cl) 722 { 723 struct search *s = container_of(cl, struct search, cl); 724 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 725 726 /* 727 * We had a cache miss; cache_bio now contains data ready to be inserted 728 * into the cache. 729 * 730 * First, we copy the data we just read from cache_bio's bounce buffers 731 * to the buffers the original bio pointed to: 732 */ 733 734 if (s->iop.bio) { 735 bio_reset(s->iop.bio); 736 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector; 737 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev; 738 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 739 bch_bio_map(s->iop.bio, NULL); 740 741 bio_copy_data(s->cache_miss, s->iop.bio); 742 743 bio_put(s->cache_miss); 744 s->cache_miss = NULL; 745 } 746 747 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data) 748 bch_data_verify(dc, s->orig_bio); 749 750 bio_complete(s); 751 752 if (s->iop.bio && 753 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 754 BUG_ON(!s->iop.replace); 755 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 756 } 757 758 continue_at(cl, cached_dev_cache_miss_done, NULL); 759 } 760 761 static void cached_dev_read_done_bh(struct closure *cl) 762 { 763 struct search *s = container_of(cl, struct search, cl); 764 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 765 766 bch_mark_cache_accounting(s->iop.c, s->d, 767 !s->cache_miss, s->iop.bypass); 768 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass); 769 770 if (s->iop.error) 771 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 772 else if (s->iop.bio || verify(dc, &s->bio.bio)) 773 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 774 else 775 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 776 } 777 778 static int cached_dev_cache_miss(struct btree *b, struct search *s, 779 struct bio *bio, unsigned sectors) 780 { 781 int ret = MAP_CONTINUE; 782 unsigned reada = 0; 783 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 784 struct bio *miss, *cache_bio; 785 786 if (s->cache_miss || s->iop.bypass) { 787 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 788 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 789 goto out_submit; 790 } 791 792 if (!(bio->bi_opf & REQ_RAHEAD) && 793 !(bio->bi_opf & REQ_META) && 794 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 795 reada = min_t(sector_t, dc->readahead >> 9, 796 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio)); 797 798 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 799 800 s->iop.replace_key = KEY(s->iop.inode, 801 bio->bi_iter.bi_sector + s->insert_bio_sectors, 802 s->insert_bio_sectors); 803 804 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 805 if (ret) 806 return ret; 807 808 s->iop.replace = true; 809 810 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 811 812 /* btree_search_recurse()'s btree iterator is no good anymore */ 813 ret = miss == bio ? MAP_DONE : -EINTR; 814 815 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 816 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 817 dc->disk.bio_split); 818 if (!cache_bio) 819 goto out_submit; 820 821 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 822 cache_bio->bi_bdev = miss->bi_bdev; 823 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 824 825 cache_bio->bi_end_io = request_endio; 826 cache_bio->bi_private = &s->cl; 827 828 bch_bio_map(cache_bio, NULL); 829 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 830 goto out_put; 831 832 if (reada) 833 bch_mark_cache_readahead(s->iop.c, s->d); 834 835 s->cache_miss = miss; 836 s->iop.bio = cache_bio; 837 bio_get(cache_bio); 838 closure_bio_submit(cache_bio, &s->cl); 839 840 return ret; 841 out_put: 842 bio_put(cache_bio); 843 out_submit: 844 miss->bi_end_io = request_endio; 845 miss->bi_private = &s->cl; 846 closure_bio_submit(miss, &s->cl); 847 return ret; 848 } 849 850 static void cached_dev_read(struct cached_dev *dc, struct search *s) 851 { 852 struct closure *cl = &s->cl; 853 854 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 855 continue_at(cl, cached_dev_read_done_bh, NULL); 856 } 857 858 /* Process writes */ 859 860 static void cached_dev_write_complete(struct closure *cl) 861 { 862 struct search *s = container_of(cl, struct search, cl); 863 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 864 865 up_read_non_owner(&dc->writeback_lock); 866 cached_dev_bio_complete(cl); 867 } 868 869 static void cached_dev_write(struct cached_dev *dc, struct search *s) 870 { 871 struct closure *cl = &s->cl; 872 struct bio *bio = &s->bio.bio; 873 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 874 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 875 876 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 877 878 down_read_non_owner(&dc->writeback_lock); 879 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 880 /* 881 * We overlap with some dirty data undergoing background 882 * writeback, force this write to writeback 883 */ 884 s->iop.bypass = false; 885 s->iop.writeback = true; 886 } 887 888 /* 889 * Discards aren't _required_ to do anything, so skipping if 890 * check_overlapping returned true is ok 891 * 892 * But check_overlapping drops dirty keys for which io hasn't started, 893 * so we still want to call it. 894 */ 895 if (bio_op(bio) == REQ_OP_DISCARD) 896 s->iop.bypass = true; 897 898 if (should_writeback(dc, s->orig_bio, 899 cache_mode(dc, bio), 900 s->iop.bypass)) { 901 s->iop.bypass = false; 902 s->iop.writeback = true; 903 } 904 905 if (s->iop.bypass) { 906 s->iop.bio = s->orig_bio; 907 bio_get(s->iop.bio); 908 909 if ((bio_op(bio) != REQ_OP_DISCARD) || 910 blk_queue_discard(bdev_get_queue(dc->bdev))) 911 closure_bio_submit(bio, cl); 912 } else if (s->iop.writeback) { 913 bch_writeback_add(dc); 914 s->iop.bio = bio; 915 916 if (bio->bi_opf & REQ_PREFLUSH) { 917 /* Also need to send a flush to the backing device */ 918 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0, 919 dc->disk.bio_split); 920 921 flush->bi_bdev = bio->bi_bdev; 922 flush->bi_end_io = request_endio; 923 flush->bi_private = cl; 924 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 925 926 closure_bio_submit(flush, cl); 927 } 928 } else { 929 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split); 930 931 closure_bio_submit(bio, cl); 932 } 933 934 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 935 continue_at(cl, cached_dev_write_complete, NULL); 936 } 937 938 static void cached_dev_nodata(struct closure *cl) 939 { 940 struct search *s = container_of(cl, struct search, cl); 941 struct bio *bio = &s->bio.bio; 942 943 if (s->iop.flush_journal) 944 bch_journal_meta(s->iop.c, cl); 945 946 /* If it's a flush, we send the flush to the backing device too */ 947 closure_bio_submit(bio, cl); 948 949 continue_at(cl, cached_dev_bio_complete, NULL); 950 } 951 952 /* Cached devices - read & write stuff */ 953 954 static blk_qc_t cached_dev_make_request(struct request_queue *q, 955 struct bio *bio) 956 { 957 struct search *s; 958 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 959 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 960 int rw = bio_data_dir(bio); 961 962 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0); 963 964 bio->bi_bdev = dc->bdev; 965 bio->bi_iter.bi_sector += dc->sb.data_offset; 966 967 if (cached_dev_get(dc)) { 968 s = search_alloc(bio, d); 969 trace_bcache_request_start(s->d, bio); 970 971 if (!bio->bi_iter.bi_size) { 972 /* 973 * can't call bch_journal_meta from under 974 * generic_make_request 975 */ 976 continue_at_nobarrier(&s->cl, 977 cached_dev_nodata, 978 bcache_wq); 979 } else { 980 s->iop.bypass = check_should_bypass(dc, bio); 981 982 if (rw) 983 cached_dev_write(dc, s); 984 else 985 cached_dev_read(dc, s); 986 } 987 } else { 988 if ((bio_op(bio) == REQ_OP_DISCARD) && 989 !blk_queue_discard(bdev_get_queue(dc->bdev))) 990 bio_endio(bio); 991 else 992 generic_make_request(bio); 993 } 994 995 return BLK_QC_T_NONE; 996 } 997 998 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 999 unsigned int cmd, unsigned long arg) 1000 { 1001 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1002 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1003 } 1004 1005 static int cached_dev_congested(void *data, int bits) 1006 { 1007 struct bcache_device *d = data; 1008 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1009 struct request_queue *q = bdev_get_queue(dc->bdev); 1010 int ret = 0; 1011 1012 if (bdi_congested(q->backing_dev_info, bits)) 1013 return 1; 1014 1015 if (cached_dev_get(dc)) { 1016 unsigned i; 1017 struct cache *ca; 1018 1019 for_each_cache(ca, d->c, i) { 1020 q = bdev_get_queue(ca->bdev); 1021 ret |= bdi_congested(q->backing_dev_info, bits); 1022 } 1023 1024 cached_dev_put(dc); 1025 } 1026 1027 return ret; 1028 } 1029 1030 void bch_cached_dev_request_init(struct cached_dev *dc) 1031 { 1032 struct gendisk *g = dc->disk.disk; 1033 1034 g->queue->make_request_fn = cached_dev_make_request; 1035 g->queue->backing_dev_info->congested_fn = cached_dev_congested; 1036 dc->disk.cache_miss = cached_dev_cache_miss; 1037 dc->disk.ioctl = cached_dev_ioctl; 1038 } 1039 1040 /* Flash backed devices */ 1041 1042 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1043 struct bio *bio, unsigned sectors) 1044 { 1045 unsigned bytes = min(sectors, bio_sectors(bio)) << 9; 1046 1047 swap(bio->bi_iter.bi_size, bytes); 1048 zero_fill_bio(bio); 1049 swap(bio->bi_iter.bi_size, bytes); 1050 1051 bio_advance(bio, bytes); 1052 1053 if (!bio->bi_iter.bi_size) 1054 return MAP_DONE; 1055 1056 return MAP_CONTINUE; 1057 } 1058 1059 static void flash_dev_nodata(struct closure *cl) 1060 { 1061 struct search *s = container_of(cl, struct search, cl); 1062 1063 if (s->iop.flush_journal) 1064 bch_journal_meta(s->iop.c, cl); 1065 1066 continue_at(cl, search_free, NULL); 1067 } 1068 1069 static blk_qc_t flash_dev_make_request(struct request_queue *q, 1070 struct bio *bio) 1071 { 1072 struct search *s; 1073 struct closure *cl; 1074 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 1075 int rw = bio_data_dir(bio); 1076 1077 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0); 1078 1079 s = search_alloc(bio, d); 1080 cl = &s->cl; 1081 bio = &s->bio.bio; 1082 1083 trace_bcache_request_start(s->d, bio); 1084 1085 if (!bio->bi_iter.bi_size) { 1086 /* 1087 * can't call bch_journal_meta from under 1088 * generic_make_request 1089 */ 1090 continue_at_nobarrier(&s->cl, 1091 flash_dev_nodata, 1092 bcache_wq); 1093 return BLK_QC_T_NONE; 1094 } else if (rw) { 1095 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1096 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1097 &KEY(d->id, bio_end_sector(bio), 0)); 1098 1099 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0; 1100 s->iop.writeback = true; 1101 s->iop.bio = bio; 1102 1103 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1104 } else { 1105 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1106 } 1107 1108 continue_at(cl, search_free, NULL); 1109 return BLK_QC_T_NONE; 1110 } 1111 1112 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1113 unsigned int cmd, unsigned long arg) 1114 { 1115 return -ENOTTY; 1116 } 1117 1118 static int flash_dev_congested(void *data, int bits) 1119 { 1120 struct bcache_device *d = data; 1121 struct request_queue *q; 1122 struct cache *ca; 1123 unsigned i; 1124 int ret = 0; 1125 1126 for_each_cache(ca, d->c, i) { 1127 q = bdev_get_queue(ca->bdev); 1128 ret |= bdi_congested(q->backing_dev_info, bits); 1129 } 1130 1131 return ret; 1132 } 1133 1134 void bch_flash_dev_request_init(struct bcache_device *d) 1135 { 1136 struct gendisk *g = d->disk; 1137 1138 g->queue->make_request_fn = flash_dev_make_request; 1139 g->queue->backing_dev_info->congested_fn = flash_dev_congested; 1140 d->cache_miss = flash_dev_cache_miss; 1141 d->ioctl = flash_dev_ioctl; 1142 } 1143 1144 void bch_request_exit(void) 1145 { 1146 if (bch_search_cache) 1147 kmem_cache_destroy(bch_search_cache); 1148 } 1149 1150 int __init bch_request_init(void) 1151 { 1152 bch_search_cache = KMEM_CACHE(search, 0); 1153 if (!bch_search_cache) 1154 return -ENOMEM; 1155 1156 return 0; 1157 } 1158