xref: /linux/drivers/md/bcache/request.c (revision e04e2b760ddbe3d7b283a05898c3a029085cd8cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20 
21 #include <trace/events/bcache.h>
22 
23 #define CUTOFF_CACHE_ADD	95
24 #define CUTOFF_CACHE_READA	90
25 
26 struct kmem_cache *bch_search_cache;
27 
28 static CLOSURE_CALLBACK(bch_data_insert_start);
29 
30 static unsigned int cache_mode(struct cached_dev *dc)
31 {
32 	return BDEV_CACHE_MODE(&dc->sb);
33 }
34 
35 static bool verify(struct cached_dev *dc)
36 {
37 	return dc->verify;
38 }
39 
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42 	struct bio_vec bv;
43 	struct bvec_iter iter;
44 	uint64_t csum = 0;
45 
46 	bio_for_each_segment(bv, bio, iter) {
47 		void *d = bvec_kmap_local(&bv);
48 
49 		csum = crc64_be(csum, d, bv.bv_len);
50 		kunmap_local(d);
51 	}
52 
53 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54 }
55 
56 /* Insert data into cache */
57 
58 static CLOSURE_CALLBACK(bch_data_insert_keys)
59 {
60 	closure_type(op, struct data_insert_op, cl);
61 	atomic_t *journal_ref = NULL;
62 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63 	int ret;
64 
65 	if (!op->replace)
66 		journal_ref = bch_journal(op->c, &op->insert_keys,
67 					  op->flush_journal ? cl : NULL);
68 
69 	ret = bch_btree_insert(op->c, &op->insert_keys,
70 			       journal_ref, replace_key);
71 	if (ret == -ESRCH) {
72 		op->replace_collision = true;
73 	} else if (ret) {
74 		op->status		= BLK_STS_RESOURCE;
75 		op->insert_data_done	= true;
76 	}
77 
78 	if (journal_ref)
79 		atomic_dec_bug(journal_ref);
80 
81 	if (!op->insert_data_done) {
82 		continue_at(cl, bch_data_insert_start, op->wq);
83 		return;
84 	}
85 
86 	bch_keylist_free(&op->insert_keys);
87 	closure_return(cl);
88 }
89 
90 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
91 			       struct cache_set *c)
92 {
93 	size_t oldsize = bch_keylist_nkeys(l);
94 	size_t newsize = oldsize + u64s;
95 
96 	/*
97 	 * The journalling code doesn't handle the case where the keys to insert
98 	 * is bigger than an empty write: If we just return -ENOMEM here,
99 	 * bch_data_insert_keys() will insert the keys created so far
100 	 * and finish the rest when the keylist is empty.
101 	 */
102 	if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
103 		return -ENOMEM;
104 
105 	return __bch_keylist_realloc(l, u64s);
106 }
107 
108 static void bch_data_invalidate(struct closure *cl)
109 {
110 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
111 	struct bio *bio = op->bio;
112 
113 	pr_debug("invalidating %i sectors from %llu\n",
114 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
115 
116 	while (bio_sectors(bio)) {
117 		unsigned int sectors = min(bio_sectors(bio),
118 				       1U << (KEY_SIZE_BITS - 1));
119 
120 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
121 			goto out;
122 
123 		bio->bi_iter.bi_sector	+= sectors;
124 		bio->bi_iter.bi_size	-= sectors << 9;
125 
126 		bch_keylist_add(&op->insert_keys,
127 				&KEY(op->inode,
128 				     bio->bi_iter.bi_sector,
129 				     sectors));
130 	}
131 
132 	op->insert_data_done = true;
133 	/* get in bch_data_insert() */
134 	bio_put(bio);
135 out:
136 	continue_at(cl, bch_data_insert_keys, op->wq);
137 }
138 
139 static CLOSURE_CALLBACK(bch_data_insert_error)
140 {
141 	closure_type(op, struct data_insert_op, cl);
142 
143 	/*
144 	 * Our data write just errored, which means we've got a bunch of keys to
145 	 * insert that point to data that wasn't successfully written.
146 	 *
147 	 * We don't have to insert those keys but we still have to invalidate
148 	 * that region of the cache - so, if we just strip off all the pointers
149 	 * from the keys we'll accomplish just that.
150 	 */
151 
152 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
153 
154 	while (src != op->insert_keys.top) {
155 		struct bkey *n = bkey_next(src);
156 
157 		SET_KEY_PTRS(src, 0);
158 		memmove(dst, src, bkey_bytes(src));
159 
160 		dst = bkey_next(dst);
161 		src = n;
162 	}
163 
164 	op->insert_keys.top = dst;
165 
166 	bch_data_insert_keys(&cl->work);
167 }
168 
169 static void bch_data_insert_endio(struct bio *bio)
170 {
171 	struct closure *cl = bio->bi_private;
172 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
173 
174 	if (bio->bi_status) {
175 		/* TODO: We could try to recover from this. */
176 		if (op->writeback)
177 			op->status = bio->bi_status;
178 		else if (!op->replace)
179 			set_closure_fn(cl, bch_data_insert_error, op->wq);
180 		else
181 			set_closure_fn(cl, NULL, NULL);
182 	}
183 
184 	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
185 }
186 
187 static CLOSURE_CALLBACK(bch_data_insert_start)
188 {
189 	closure_type(op, struct data_insert_op, cl);
190 	struct bio *bio = op->bio, *n;
191 
192 	if (op->bypass)
193 		return bch_data_invalidate(cl);
194 
195 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
196 		wake_up_gc(op->c);
197 
198 	/*
199 	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
200 	 * flush, it'll wait on the journal write.
201 	 */
202 	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
203 
204 	do {
205 		unsigned int i;
206 		struct bkey *k;
207 		struct bio_set *split = &op->c->bio_split;
208 
209 		/* 1 for the device pointer and 1 for the chksum */
210 		if (bch_keylist_realloc(&op->insert_keys,
211 					3 + (op->csum ? 1 : 0),
212 					op->c)) {
213 			continue_at(cl, bch_data_insert_keys, op->wq);
214 			return;
215 		}
216 
217 		k = op->insert_keys.top;
218 		bkey_init(k);
219 		SET_KEY_INODE(k, op->inode);
220 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
221 
222 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
223 				       op->write_point, op->write_prio,
224 				       op->writeback))
225 			goto err;
226 
227 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
228 
229 		n->bi_end_io	= bch_data_insert_endio;
230 		n->bi_private	= cl;
231 
232 		if (op->writeback) {
233 			SET_KEY_DIRTY(k, true);
234 
235 			for (i = 0; i < KEY_PTRS(k); i++)
236 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
237 					    GC_MARK_DIRTY);
238 		}
239 
240 		SET_KEY_CSUM(k, op->csum);
241 		if (KEY_CSUM(k))
242 			bio_csum(n, k);
243 
244 		trace_bcache_cache_insert(k);
245 		bch_keylist_push(&op->insert_keys);
246 
247 		n->bi_opf = REQ_OP_WRITE;
248 		bch_submit_bbio(n, op->c, k, 0);
249 	} while (n != bio);
250 
251 	op->insert_data_done = true;
252 	continue_at(cl, bch_data_insert_keys, op->wq);
253 	return;
254 err:
255 	/* bch_alloc_sectors() blocks if s->writeback = true */
256 	BUG_ON(op->writeback);
257 
258 	/*
259 	 * But if it's not a writeback write we'd rather just bail out if
260 	 * there aren't any buckets ready to write to - it might take awhile and
261 	 * we might be starving btree writes for gc or something.
262 	 */
263 
264 	if (!op->replace) {
265 		/*
266 		 * Writethrough write: We can't complete the write until we've
267 		 * updated the index. But we don't want to delay the write while
268 		 * we wait for buckets to be freed up, so just invalidate the
269 		 * rest of the write.
270 		 */
271 		op->bypass = true;
272 		return bch_data_invalidate(cl);
273 	} else {
274 		/*
275 		 * From a cache miss, we can just insert the keys for the data
276 		 * we have written or bail out if we didn't do anything.
277 		 */
278 		op->insert_data_done = true;
279 		bio_put(bio);
280 
281 		if (!bch_keylist_empty(&op->insert_keys))
282 			continue_at(cl, bch_data_insert_keys, op->wq);
283 		else
284 			closure_return(cl);
285 	}
286 }
287 
288 /**
289  * bch_data_insert - stick some data in the cache
290  * @cl: closure pointer.
291  *
292  * This is the starting point for any data to end up in a cache device; it could
293  * be from a normal write, or a writeback write, or a write to a flash only
294  * volume - it's also used by the moving garbage collector to compact data in
295  * mostly empty buckets.
296  *
297  * It first writes the data to the cache, creating a list of keys to be inserted
298  * (if the data had to be fragmented there will be multiple keys); after the
299  * data is written it calls bch_journal, and after the keys have been added to
300  * the next journal write they're inserted into the btree.
301  *
302  * It inserts the data in op->bio; bi_sector is used for the key offset,
303  * and op->inode is used for the key inode.
304  *
305  * If op->bypass is true, instead of inserting the data it invalidates the
306  * region of the cache represented by op->bio and op->inode.
307  */
308 CLOSURE_CALLBACK(bch_data_insert)
309 {
310 	closure_type(op, struct data_insert_op, cl);
311 
312 	trace_bcache_write(op->c, op->inode, op->bio,
313 			   op->writeback, op->bypass);
314 
315 	bch_keylist_init(&op->insert_keys);
316 	bio_get(op->bio);
317 	bch_data_insert_start(&cl->work);
318 }
319 
320 /*
321  * Congested?  Return 0 (not congested) or the limit (in sectors)
322  * beyond which we should bypass the cache due to congestion.
323  */
324 unsigned int bch_get_congested(const struct cache_set *c)
325 {
326 	int i;
327 
328 	if (!c->congested_read_threshold_us &&
329 	    !c->congested_write_threshold_us)
330 		return 0;
331 
332 	i = (local_clock_us() - c->congested_last_us) / 1024;
333 	if (i < 0)
334 		return 0;
335 
336 	i += atomic_read(&c->congested);
337 	if (i >= 0)
338 		return 0;
339 
340 	i += CONGESTED_MAX;
341 
342 	if (i > 0)
343 		i = fract_exp_two(i, 6);
344 
345 	i -= hweight32(get_random_u32());
346 
347 	return i > 0 ? i : 1;
348 }
349 
350 static void add_sequential(struct task_struct *t)
351 {
352 	ewma_add(t->sequential_io_avg,
353 		 t->sequential_io, 8, 0);
354 
355 	t->sequential_io = 0;
356 }
357 
358 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
359 {
360 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
361 }
362 
363 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
364 {
365 	struct cache_set *c = dc->disk.c;
366 	unsigned int mode = cache_mode(dc);
367 	unsigned int sectors, congested;
368 	struct task_struct *task = current;
369 	struct io *i;
370 
371 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
372 	    (bio_op(bio) == REQ_OP_DISCARD))
373 		goto skip;
374 
375 	if (c->gc_stats.in_use > CUTOFF_CACHE_ADD) {
376 		/*
377 		 * If cached buckets are all clean now, 'true' will be
378 		 * returned and all requests will bypass the cache device.
379 		 * Then c->sectors_to_gc has no chance to be negative, and
380 		 * gc thread won't wake up and caching won't work forever.
381 		 * Here call force_wake_up_gc() to avoid such aftermath.
382 		 */
383 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_CLEAN &&
384 		    c->gc_mark_valid)
385 			force_wake_up_gc(c);
386 
387 		goto skip;
388 	}
389 
390 	if (mode == CACHE_MODE_NONE ||
391 	    (mode == CACHE_MODE_WRITEAROUND &&
392 	     op_is_write(bio_op(bio))))
393 		goto skip;
394 
395 	/*
396 	 * If the bio is for read-ahead or background IO, bypass it or
397 	 * not depends on the following situations,
398 	 * - If the IO is for meta data, always cache it and no bypass
399 	 * - If the IO is not meta data, check dc->cache_reada_policy,
400 	 *      BCH_CACHE_READA_ALL: cache it and not bypass
401 	 *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
402 	 * That is, read-ahead request for metadata always get cached
403 	 * (eg, for gfs2 or xfs).
404 	 */
405 	if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
406 		if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
407 		    (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
408 			goto skip;
409 	}
410 
411 	if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
412 	    bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
413 		pr_debug("skipping unaligned io\n");
414 		goto skip;
415 	}
416 
417 	if (bypass_torture_test(dc)) {
418 		if (get_random_u32_below(4) == 3)
419 			goto skip;
420 		else
421 			goto rescale;
422 	}
423 
424 	congested = bch_get_congested(c);
425 	if (!congested && !dc->sequential_cutoff)
426 		goto rescale;
427 
428 	spin_lock(&dc->io_lock);
429 
430 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
431 		if (i->last == bio->bi_iter.bi_sector &&
432 		    time_before(jiffies, i->jiffies))
433 			goto found;
434 
435 	i = list_first_entry(&dc->io_lru, struct io, lru);
436 
437 	add_sequential(task);
438 	i->sequential = 0;
439 found:
440 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
441 		i->sequential	+= bio->bi_iter.bi_size;
442 
443 	i->last			 = bio_end_sector(bio);
444 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
445 	task->sequential_io	 = i->sequential;
446 
447 	hlist_del(&i->hash);
448 	hlist_add_head(&i->hash, iohash(dc, i->last));
449 	list_move_tail(&i->lru, &dc->io_lru);
450 
451 	spin_unlock(&dc->io_lock);
452 
453 	sectors = max(task->sequential_io,
454 		      task->sequential_io_avg) >> 9;
455 
456 	if (dc->sequential_cutoff &&
457 	    sectors >= dc->sequential_cutoff >> 9) {
458 		trace_bcache_bypass_sequential(bio);
459 		goto skip;
460 	}
461 
462 	if (congested && sectors >= congested) {
463 		trace_bcache_bypass_congested(bio);
464 		goto skip;
465 	}
466 
467 rescale:
468 	bch_rescale_priorities(c, bio_sectors(bio));
469 	return false;
470 skip:
471 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
472 	return true;
473 }
474 
475 /* Cache lookup */
476 
477 struct search {
478 	/* Stack frame for bio_complete */
479 	struct closure		cl;
480 
481 	struct bbio		bio;
482 	struct bio		*orig_bio;
483 	struct bio		*cache_miss;
484 	struct bcache_device	*d;
485 
486 	unsigned int		insert_bio_sectors;
487 	unsigned int		recoverable:1;
488 	unsigned int		write:1;
489 	unsigned int		read_dirty_data:1;
490 	unsigned int		cache_missed:1;
491 
492 	struct block_device	*orig_bdev;
493 	unsigned long		start_time;
494 
495 	struct btree_op		op;
496 	struct data_insert_op	iop;
497 };
498 
499 static void bch_cache_read_endio(struct bio *bio)
500 {
501 	struct bbio *b = container_of(bio, struct bbio, bio);
502 	struct closure *cl = bio->bi_private;
503 	struct search *s = container_of(cl, struct search, cl);
504 
505 	/*
506 	 * If the bucket was reused while our bio was in flight, we might have
507 	 * read the wrong data. Set s->error but not error so it doesn't get
508 	 * counted against the cache device, but we'll still reread the data
509 	 * from the backing device.
510 	 */
511 
512 	if (bio->bi_status)
513 		s->iop.status = bio->bi_status;
514 	else if (!KEY_DIRTY(&b->key) &&
515 		 ptr_stale(s->iop.c, &b->key, 0)) {
516 		atomic_long_inc(&s->iop.c->cache_read_races);
517 		s->iop.status = BLK_STS_IOERR;
518 	}
519 
520 	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
521 }
522 
523 /*
524  * Read from a single key, handling the initial cache miss if the key starts in
525  * the middle of the bio
526  */
527 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
528 {
529 	struct search *s = container_of(op, struct search, op);
530 	struct bio *n, *bio = &s->bio.bio;
531 	struct bkey *bio_key;
532 	unsigned int ptr;
533 
534 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
535 		return MAP_CONTINUE;
536 
537 	if (KEY_INODE(k) != s->iop.inode ||
538 	    KEY_START(k) > bio->bi_iter.bi_sector) {
539 		unsigned int bio_sectors = bio_sectors(bio);
540 		unsigned int sectors = KEY_INODE(k) == s->iop.inode
541 			? min_t(uint64_t, INT_MAX,
542 				KEY_START(k) - bio->bi_iter.bi_sector)
543 			: INT_MAX;
544 		int ret = s->d->cache_miss(b, s, bio, sectors);
545 
546 		if (ret != MAP_CONTINUE)
547 			return ret;
548 
549 		/* if this was a complete miss we shouldn't get here */
550 		BUG_ON(bio_sectors <= sectors);
551 	}
552 
553 	if (!KEY_SIZE(k))
554 		return MAP_CONTINUE;
555 
556 	/* XXX: figure out best pointer - for multiple cache devices */
557 	ptr = 0;
558 
559 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
560 
561 	if (KEY_DIRTY(k))
562 		s->read_dirty_data = true;
563 
564 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
565 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
566 			   GFP_NOIO, &s->d->bio_split);
567 
568 	bio_key = &container_of(n, struct bbio, bio)->key;
569 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
570 
571 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
572 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
573 
574 	n->bi_end_io	= bch_cache_read_endio;
575 	n->bi_private	= &s->cl;
576 
577 	/*
578 	 * The bucket we're reading from might be reused while our bio
579 	 * is in flight, and we could then end up reading the wrong
580 	 * data.
581 	 *
582 	 * We guard against this by checking (in cache_read_endio()) if
583 	 * the pointer is stale again; if so, we treat it as an error
584 	 * and reread from the backing device (but we don't pass that
585 	 * error up anywhere).
586 	 */
587 
588 	__bch_submit_bbio(n, b->c);
589 	return n == bio ? MAP_DONE : MAP_CONTINUE;
590 }
591 
592 static CLOSURE_CALLBACK(cache_lookup)
593 {
594 	closure_type(s, struct search, iop.cl);
595 	struct bio *bio = &s->bio.bio;
596 	struct cached_dev *dc;
597 	int ret;
598 
599 	bch_btree_op_init(&s->op, -1);
600 
601 	ret = bch_btree_map_keys(&s->op, s->iop.c,
602 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
603 				 cache_lookup_fn, MAP_END_KEY);
604 	if (ret == -EAGAIN) {
605 		continue_at(cl, cache_lookup, bcache_wq);
606 		return;
607 	}
608 
609 	/*
610 	 * We might meet err when searching the btree, If that happens, we will
611 	 * get negative ret, in this scenario we should not recover data from
612 	 * backing device (when cache device is dirty) because we don't know
613 	 * whether bkeys the read request covered are all clean.
614 	 *
615 	 * And after that happened, s->iop.status is still its initial value
616 	 * before we submit s->bio.bio
617 	 */
618 	if (ret < 0) {
619 		BUG_ON(ret == -EINTR);
620 		if (s->d && s->d->c &&
621 				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
622 			dc = container_of(s->d, struct cached_dev, disk);
623 			if (dc && atomic_read(&dc->has_dirty))
624 				s->recoverable = false;
625 		}
626 		if (!s->iop.status)
627 			s->iop.status = BLK_STS_IOERR;
628 	}
629 
630 	closure_return(cl);
631 }
632 
633 /* Common code for the make_request functions */
634 
635 static void request_endio(struct bio *bio)
636 {
637 	struct closure *cl = bio->bi_private;
638 
639 	if (bio->bi_status) {
640 		struct search *s = container_of(cl, struct search, cl);
641 
642 		s->iop.status = bio->bi_status;
643 		/* Only cache read errors are recoverable */
644 		s->recoverable = false;
645 	}
646 
647 	bio_put(bio);
648 	closure_put(cl);
649 }
650 
651 static void backing_request_endio(struct bio *bio)
652 {
653 	struct closure *cl = bio->bi_private;
654 
655 	if (bio->bi_status) {
656 		struct search *s = container_of(cl, struct search, cl);
657 		struct cached_dev *dc = container_of(s->d,
658 						     struct cached_dev, disk);
659 		/*
660 		 * If a bio has REQ_PREFLUSH for writeback mode, it is
661 		 * speically assembled in cached_dev_write() for a non-zero
662 		 * write request which has REQ_PREFLUSH. we don't set
663 		 * s->iop.status by this failure, the status will be decided
664 		 * by result of bch_data_insert() operation.
665 		 */
666 		if (unlikely(s->iop.writeback &&
667 			     bio->bi_opf & REQ_PREFLUSH)) {
668 			pr_err("Can't flush %pg: returned bi_status %i\n",
669 				dc->bdev, bio->bi_status);
670 		} else {
671 			/* set to orig_bio->bi_status in bio_complete() */
672 			s->iop.status = bio->bi_status;
673 		}
674 		s->recoverable = false;
675 		/* should count I/O error for backing device here */
676 		bch_count_backing_io_errors(dc, bio);
677 	}
678 
679 	bio_put(bio);
680 	closure_put(cl);
681 }
682 
683 static void bio_complete(struct search *s)
684 {
685 	if (s->orig_bio) {
686 		/* Count on bcache device */
687 		bio_end_io_acct_remapped(s->orig_bio, s->start_time,
688 					 s->orig_bdev);
689 		trace_bcache_request_end(s->d, s->orig_bio);
690 		s->orig_bio->bi_status = s->iop.status;
691 		bio_endio(s->orig_bio);
692 		s->orig_bio = NULL;
693 	}
694 }
695 
696 static void do_bio_hook(struct search *s,
697 			struct bio *orig_bio,
698 			bio_end_io_t *end_io_fn)
699 {
700 	struct bio *bio = &s->bio.bio;
701 
702 	bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO);
703 	/*
704 	 * bi_end_io can be set separately somewhere else, e.g. the
705 	 * variants in,
706 	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
707 	 * - n->bi_end_io from cache_lookup_fn()
708 	 */
709 	bio->bi_end_io		= end_io_fn;
710 	bio->bi_private		= &s->cl;
711 
712 	bio_cnt_set(bio, 3);
713 }
714 
715 static CLOSURE_CALLBACK(search_free)
716 {
717 	closure_type(s, struct search, cl);
718 
719 	atomic_dec(&s->iop.c->search_inflight);
720 
721 	if (s->iop.bio)
722 		bio_put(s->iop.bio);
723 
724 	bio_complete(s);
725 	closure_debug_destroy(cl);
726 	mempool_free(s, &s->iop.c->search);
727 }
728 
729 static inline struct search *search_alloc(struct bio *bio,
730 		struct bcache_device *d, struct block_device *orig_bdev,
731 		unsigned long start_time)
732 {
733 	struct search *s;
734 
735 	s = mempool_alloc(&d->c->search, GFP_NOIO);
736 
737 	closure_init(&s->cl, NULL);
738 	do_bio_hook(s, bio, request_endio);
739 	atomic_inc(&d->c->search_inflight);
740 
741 	s->orig_bio		= bio;
742 	s->cache_miss		= NULL;
743 	s->cache_missed		= 0;
744 	s->d			= d;
745 	s->recoverable		= 1;
746 	s->write		= op_is_write(bio_op(bio));
747 	s->read_dirty_data	= 0;
748 	/* Count on the bcache device */
749 	s->orig_bdev		= orig_bdev;
750 	s->start_time		= start_time;
751 	s->iop.c		= d->c;
752 	s->iop.bio		= NULL;
753 	s->iop.inode		= d->id;
754 	s->iop.write_point	= hash_long((unsigned long) current, 16);
755 	s->iop.write_prio	= 0;
756 	s->iop.status		= 0;
757 	s->iop.flags		= 0;
758 	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
759 	s->iop.wq		= bcache_wq;
760 
761 	return s;
762 }
763 
764 /* Cached devices */
765 
766 static CLOSURE_CALLBACK(cached_dev_bio_complete)
767 {
768 	closure_type(s, struct search, cl);
769 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
770 
771 	cached_dev_put(dc);
772 	search_free(&cl->work);
773 }
774 
775 /* Process reads */
776 
777 static CLOSURE_CALLBACK(cached_dev_read_error_done)
778 {
779 	closure_type(s, struct search, cl);
780 
781 	if (s->iop.replace_collision)
782 		bch_mark_cache_miss_collision(s->iop.c, s->d);
783 
784 	if (s->iop.bio)
785 		bio_free_pages(s->iop.bio);
786 
787 	cached_dev_bio_complete(&cl->work);
788 }
789 
790 static CLOSURE_CALLBACK(cached_dev_read_error)
791 {
792 	closure_type(s, struct search, cl);
793 	struct bio *bio = &s->bio.bio;
794 
795 	/*
796 	 * If read request hit dirty data (s->read_dirty_data is true),
797 	 * then recovery a failed read request from cached device may
798 	 * get a stale data back. So read failure recovery is only
799 	 * permitted when read request hit clean data in cache device,
800 	 * or when cache read race happened.
801 	 */
802 	if (s->recoverable && !s->read_dirty_data) {
803 		/* Retry from the backing device: */
804 		trace_bcache_read_retry(s->orig_bio);
805 
806 		s->iop.status = 0;
807 		do_bio_hook(s, s->orig_bio, backing_request_endio);
808 
809 		/* XXX: invalidate cache */
810 
811 		/* I/O request sent to backing device */
812 		closure_bio_submit(s->iop.c, bio, cl);
813 	}
814 
815 	continue_at(cl, cached_dev_read_error_done, NULL);
816 }
817 
818 static CLOSURE_CALLBACK(cached_dev_cache_miss_done)
819 {
820 	closure_type(s, struct search, cl);
821 	struct bcache_device *d = s->d;
822 
823 	if (s->iop.replace_collision)
824 		bch_mark_cache_miss_collision(s->iop.c, s->d);
825 
826 	if (s->iop.bio)
827 		bio_free_pages(s->iop.bio);
828 
829 	cached_dev_bio_complete(&cl->work);
830 	closure_put(&d->cl);
831 }
832 
833 static CLOSURE_CALLBACK(cached_dev_read_done)
834 {
835 	closure_type(s, struct search, cl);
836 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
837 
838 	/*
839 	 * We had a cache miss; cache_bio now contains data ready to be inserted
840 	 * into the cache.
841 	 *
842 	 * First, we copy the data we just read from cache_bio's bounce buffers
843 	 * to the buffers the original bio pointed to:
844 	 */
845 
846 	if (s->iop.bio) {
847 		bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ);
848 		s->iop.bio->bi_iter.bi_sector =
849 			s->cache_miss->bi_iter.bi_sector;
850 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
851 		bio_clone_blkg_association(s->iop.bio, s->cache_miss);
852 		bch_bio_map(s->iop.bio, NULL);
853 
854 		bio_copy_data(s->cache_miss, s->iop.bio);
855 
856 		bio_put(s->cache_miss);
857 		s->cache_miss = NULL;
858 	}
859 
860 	if (verify(dc) && s->recoverable && !s->read_dirty_data)
861 		bch_data_verify(dc, s->orig_bio);
862 
863 	closure_get(&dc->disk.cl);
864 	bio_complete(s);
865 
866 	if (s->iop.bio &&
867 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
868 		BUG_ON(!s->iop.replace);
869 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
870 	}
871 
872 	continue_at(cl, cached_dev_cache_miss_done, NULL);
873 }
874 
875 static CLOSURE_CALLBACK(cached_dev_read_done_bh)
876 {
877 	closure_type(s, struct search, cl);
878 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
879 
880 	bch_mark_cache_accounting(s->iop.c, s->d,
881 				  !s->cache_missed, s->iop.bypass);
882 	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
883 
884 	if (s->iop.status)
885 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
886 	else if (s->iop.bio || verify(dc))
887 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
888 	else
889 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
890 }
891 
892 static int cached_dev_cache_miss(struct btree *b, struct search *s,
893 				 struct bio *bio, unsigned int sectors)
894 {
895 	int ret = MAP_CONTINUE;
896 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
897 	struct bio *miss, *cache_bio;
898 	unsigned int size_limit;
899 
900 	s->cache_missed = 1;
901 
902 	if (s->cache_miss || s->iop.bypass) {
903 		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
904 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
905 		goto out_submit;
906 	}
907 
908 	/* Limitation for valid replace key size and cache_bio bvecs number */
909 	size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
910 			   (1 << KEY_SIZE_BITS) - 1);
911 	s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
912 
913 	s->iop.replace_key = KEY(s->iop.inode,
914 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
915 				 s->insert_bio_sectors);
916 
917 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
918 	if (ret)
919 		return ret;
920 
921 	s->iop.replace = true;
922 
923 	miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
924 			      &s->d->bio_split);
925 
926 	/* btree_search_recurse()'s btree iterator is no good anymore */
927 	ret = miss == bio ? MAP_DONE : -EINTR;
928 
929 	cache_bio = bio_alloc_bioset(miss->bi_bdev,
930 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
931 			0, GFP_NOWAIT, &dc->disk.bio_split);
932 	if (!cache_bio)
933 		goto out_submit;
934 
935 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
936 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
937 
938 	cache_bio->bi_end_io	= backing_request_endio;
939 	cache_bio->bi_private	= &s->cl;
940 
941 	bch_bio_map(cache_bio, NULL);
942 	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
943 		goto out_put;
944 
945 	s->cache_miss	= miss;
946 	s->iop.bio	= cache_bio;
947 	bio_get(cache_bio);
948 	/* I/O request sent to backing device */
949 	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
950 
951 	return ret;
952 out_put:
953 	bio_put(cache_bio);
954 out_submit:
955 	miss->bi_end_io		= backing_request_endio;
956 	miss->bi_private	= &s->cl;
957 	/* I/O request sent to backing device */
958 	closure_bio_submit(s->iop.c, miss, &s->cl);
959 	return ret;
960 }
961 
962 static void cached_dev_read(struct cached_dev *dc, struct search *s)
963 {
964 	struct closure *cl = &s->cl;
965 
966 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
967 	continue_at(cl, cached_dev_read_done_bh, NULL);
968 }
969 
970 /* Process writes */
971 
972 static CLOSURE_CALLBACK(cached_dev_write_complete)
973 {
974 	closure_type(s, struct search, cl);
975 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
976 
977 	up_read_non_owner(&dc->writeback_lock);
978 	cached_dev_bio_complete(&cl->work);
979 }
980 
981 static void cached_dev_write(struct cached_dev *dc, struct search *s)
982 {
983 	struct closure *cl = &s->cl;
984 	struct bio *bio = &s->bio.bio;
985 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
986 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
987 
988 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
989 
990 	down_read_non_owner(&dc->writeback_lock);
991 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
992 		/*
993 		 * We overlap with some dirty data undergoing background
994 		 * writeback, force this write to writeback
995 		 */
996 		s->iop.bypass = false;
997 		s->iop.writeback = true;
998 	}
999 
1000 	/*
1001 	 * Discards aren't _required_ to do anything, so skipping if
1002 	 * check_overlapping returned true is ok
1003 	 *
1004 	 * But check_overlapping drops dirty keys for which io hasn't started,
1005 	 * so we still want to call it.
1006 	 */
1007 	if (bio_op(bio) == REQ_OP_DISCARD)
1008 		s->iop.bypass = true;
1009 
1010 	if (should_writeback(dc, s->orig_bio,
1011 			     cache_mode(dc),
1012 			     s->iop.bypass)) {
1013 		s->iop.bypass = false;
1014 		s->iop.writeback = true;
1015 	}
1016 
1017 	if (s->iop.bypass) {
1018 		s->iop.bio = s->orig_bio;
1019 		bio_get(s->iop.bio);
1020 
1021 		if (bio_op(bio) == REQ_OP_DISCARD &&
1022 		    !bdev_max_discard_sectors(dc->bdev))
1023 			goto insert_data;
1024 
1025 		/* I/O request sent to backing device */
1026 		bio->bi_end_io = backing_request_endio;
1027 		closure_bio_submit(s->iop.c, bio, cl);
1028 
1029 	} else if (s->iop.writeback) {
1030 		bch_writeback_add(dc);
1031 		s->iop.bio = bio;
1032 
1033 		if (bio->bi_opf & REQ_PREFLUSH) {
1034 			/*
1035 			 * Also need to send a flush to the backing
1036 			 * device.
1037 			 */
1038 			struct bio *flush;
1039 
1040 			flush = bio_alloc_bioset(bio->bi_bdev, 0,
1041 						 REQ_OP_WRITE | REQ_PREFLUSH,
1042 						 GFP_NOIO, &dc->disk.bio_split);
1043 			if (!flush) {
1044 				s->iop.status = BLK_STS_RESOURCE;
1045 				goto insert_data;
1046 			}
1047 			flush->bi_end_io = backing_request_endio;
1048 			flush->bi_private = cl;
1049 			/* I/O request sent to backing device */
1050 			closure_bio_submit(s->iop.c, flush, cl);
1051 		}
1052 	} else {
1053 		s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1054 					     &dc->disk.bio_split);
1055 		/* I/O request sent to backing device */
1056 		bio->bi_end_io = backing_request_endio;
1057 		closure_bio_submit(s->iop.c, bio, cl);
1058 	}
1059 
1060 insert_data:
1061 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1062 	continue_at(cl, cached_dev_write_complete, NULL);
1063 }
1064 
1065 static CLOSURE_CALLBACK(cached_dev_nodata)
1066 {
1067 	closure_type(s, struct search, cl);
1068 	struct bio *bio = &s->bio.bio;
1069 
1070 	if (s->iop.flush_journal)
1071 		bch_journal_meta(s->iop.c, cl);
1072 
1073 	/* If it's a flush, we send the flush to the backing device too */
1074 	bio->bi_end_io = backing_request_endio;
1075 	closure_bio_submit(s->iop.c, bio, cl);
1076 
1077 	continue_at(cl, cached_dev_bio_complete, NULL);
1078 }
1079 
1080 struct detached_dev_io_private {
1081 	struct bcache_device	*d;
1082 	unsigned long		start_time;
1083 	bio_end_io_t		*bi_end_io;
1084 	void			*bi_private;
1085 	struct block_device	*orig_bdev;
1086 };
1087 
1088 static void detached_dev_end_io(struct bio *bio)
1089 {
1090 	struct detached_dev_io_private *ddip;
1091 
1092 	ddip = bio->bi_private;
1093 	bio->bi_end_io = ddip->bi_end_io;
1094 	bio->bi_private = ddip->bi_private;
1095 
1096 	/* Count on the bcache device */
1097 	bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
1098 
1099 	if (bio->bi_status) {
1100 		struct cached_dev *dc = container_of(ddip->d,
1101 						     struct cached_dev, disk);
1102 		/* should count I/O error for backing device here */
1103 		bch_count_backing_io_errors(dc, bio);
1104 	}
1105 
1106 	kfree(ddip);
1107 	bio->bi_end_io(bio);
1108 }
1109 
1110 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
1111 		struct block_device *orig_bdev, unsigned long start_time)
1112 {
1113 	struct detached_dev_io_private *ddip;
1114 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1115 
1116 	/*
1117 	 * no need to call closure_get(&dc->disk.cl),
1118 	 * because upper layer had already opened bcache device,
1119 	 * which would call closure_get(&dc->disk.cl)
1120 	 */
1121 	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1122 	if (!ddip) {
1123 		bio->bi_status = BLK_STS_RESOURCE;
1124 		bio->bi_end_io(bio);
1125 		return;
1126 	}
1127 
1128 	ddip->d = d;
1129 	/* Count on the bcache device */
1130 	ddip->orig_bdev = orig_bdev;
1131 	ddip->start_time = start_time;
1132 	ddip->bi_end_io = bio->bi_end_io;
1133 	ddip->bi_private = bio->bi_private;
1134 	bio->bi_end_io = detached_dev_end_io;
1135 	bio->bi_private = ddip;
1136 
1137 	if ((bio_op(bio) == REQ_OP_DISCARD) &&
1138 	    !bdev_max_discard_sectors(dc->bdev))
1139 		bio->bi_end_io(bio);
1140 	else
1141 		submit_bio_noacct(bio);
1142 }
1143 
1144 static void quit_max_writeback_rate(struct cache_set *c,
1145 				    struct cached_dev *this_dc)
1146 {
1147 	int i;
1148 	struct bcache_device *d;
1149 	struct cached_dev *dc;
1150 
1151 	/*
1152 	 * mutex bch_register_lock may compete with other parallel requesters,
1153 	 * or attach/detach operations on other backing device. Waiting to
1154 	 * the mutex lock may increase I/O request latency for seconds or more.
1155 	 * To avoid such situation, if mutext_trylock() failed, only writeback
1156 	 * rate of current cached device is set to 1, and __update_write_back()
1157 	 * will decide writeback rate of other cached devices (remember now
1158 	 * c->idle_counter is 0 already).
1159 	 */
1160 	if (mutex_trylock(&bch_register_lock)) {
1161 		for (i = 0; i < c->devices_max_used; i++) {
1162 			if (!c->devices[i])
1163 				continue;
1164 
1165 			if (UUID_FLASH_ONLY(&c->uuids[i]))
1166 				continue;
1167 
1168 			d = c->devices[i];
1169 			dc = container_of(d, struct cached_dev, disk);
1170 			/*
1171 			 * set writeback rate to default minimum value,
1172 			 * then let update_writeback_rate() to decide the
1173 			 * upcoming rate.
1174 			 */
1175 			atomic_long_set(&dc->writeback_rate.rate, 1);
1176 		}
1177 		mutex_unlock(&bch_register_lock);
1178 	} else
1179 		atomic_long_set(&this_dc->writeback_rate.rate, 1);
1180 }
1181 
1182 /* Cached devices - read & write stuff */
1183 
1184 void cached_dev_submit_bio(struct bio *bio)
1185 {
1186 	struct search *s;
1187 	struct block_device *orig_bdev = bio->bi_bdev;
1188 	struct bcache_device *d = orig_bdev->bd_disk->private_data;
1189 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1190 	unsigned long start_time;
1191 	int rw = bio_data_dir(bio);
1192 
1193 	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1194 		     dc->io_disable)) {
1195 		bio->bi_status = BLK_STS_IOERR;
1196 		bio_endio(bio);
1197 		return;
1198 	}
1199 
1200 	if (likely(d->c)) {
1201 		if (atomic_read(&d->c->idle_counter))
1202 			atomic_set(&d->c->idle_counter, 0);
1203 		/*
1204 		 * If at_max_writeback_rate of cache set is true and new I/O
1205 		 * comes, quit max writeback rate of all cached devices
1206 		 * attached to this cache set, and set at_max_writeback_rate
1207 		 * to false.
1208 		 */
1209 		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1210 			atomic_set(&d->c->at_max_writeback_rate, 0);
1211 			quit_max_writeback_rate(d->c, dc);
1212 		}
1213 	}
1214 
1215 	start_time = bio_start_io_acct(bio);
1216 
1217 	bio_set_dev(bio, dc->bdev);
1218 	bio->bi_iter.bi_sector += dc->sb.data_offset;
1219 
1220 	if (cached_dev_get(dc)) {
1221 		s = search_alloc(bio, d, orig_bdev, start_time);
1222 		trace_bcache_request_start(s->d, bio);
1223 
1224 		if (!bio->bi_iter.bi_size) {
1225 			/*
1226 			 * can't call bch_journal_meta from under
1227 			 * submit_bio_noacct
1228 			 */
1229 			continue_at_nobarrier(&s->cl,
1230 					      cached_dev_nodata,
1231 					      bcache_wq);
1232 		} else {
1233 			s->iop.bypass = check_should_bypass(dc, bio);
1234 
1235 			if (rw)
1236 				cached_dev_write(dc, s);
1237 			else
1238 				cached_dev_read(dc, s);
1239 		}
1240 	} else
1241 		/* I/O request sent to backing device */
1242 		detached_dev_do_request(d, bio, orig_bdev, start_time);
1243 }
1244 
1245 static int cached_dev_ioctl(struct bcache_device *d, blk_mode_t mode,
1246 			    unsigned int cmd, unsigned long arg)
1247 {
1248 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1249 
1250 	if (dc->io_disable)
1251 		return -EIO;
1252 	if (!dc->bdev->bd_disk->fops->ioctl)
1253 		return -ENOTTY;
1254 	return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
1255 }
1256 
1257 void bch_cached_dev_request_init(struct cached_dev *dc)
1258 {
1259 	dc->disk.cache_miss			= cached_dev_cache_miss;
1260 	dc->disk.ioctl				= cached_dev_ioctl;
1261 }
1262 
1263 /* Flash backed devices */
1264 
1265 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1266 				struct bio *bio, unsigned int sectors)
1267 {
1268 	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1269 
1270 	swap(bio->bi_iter.bi_size, bytes);
1271 	zero_fill_bio(bio);
1272 	swap(bio->bi_iter.bi_size, bytes);
1273 
1274 	bio_advance(bio, bytes);
1275 
1276 	if (!bio->bi_iter.bi_size)
1277 		return MAP_DONE;
1278 
1279 	return MAP_CONTINUE;
1280 }
1281 
1282 static CLOSURE_CALLBACK(flash_dev_nodata)
1283 {
1284 	closure_type(s, struct search, cl);
1285 
1286 	if (s->iop.flush_journal)
1287 		bch_journal_meta(s->iop.c, cl);
1288 
1289 	continue_at(cl, search_free, NULL);
1290 }
1291 
1292 void flash_dev_submit_bio(struct bio *bio)
1293 {
1294 	struct search *s;
1295 	struct closure *cl;
1296 	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1297 
1298 	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1299 		bio->bi_status = BLK_STS_IOERR;
1300 		bio_endio(bio);
1301 		return;
1302 	}
1303 
1304 	s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
1305 	cl = &s->cl;
1306 	bio = &s->bio.bio;
1307 
1308 	trace_bcache_request_start(s->d, bio);
1309 
1310 	if (!bio->bi_iter.bi_size) {
1311 		/*
1312 		 * can't call bch_journal_meta from under submit_bio_noacct
1313 		 */
1314 		continue_at_nobarrier(&s->cl,
1315 				      flash_dev_nodata,
1316 				      bcache_wq);
1317 		return;
1318 	} else if (bio_data_dir(bio)) {
1319 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1320 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1321 					&KEY(d->id, bio_end_sector(bio), 0));
1322 
1323 		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1324 		s->iop.writeback	= true;
1325 		s->iop.bio		= bio;
1326 
1327 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1328 	} else {
1329 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1330 	}
1331 
1332 	continue_at(cl, search_free, NULL);
1333 }
1334 
1335 static int flash_dev_ioctl(struct bcache_device *d, blk_mode_t mode,
1336 			   unsigned int cmd, unsigned long arg)
1337 {
1338 	return -ENOTTY;
1339 }
1340 
1341 void bch_flash_dev_request_init(struct bcache_device *d)
1342 {
1343 	d->cache_miss				= flash_dev_cache_miss;
1344 	d->ioctl				= flash_dev_ioctl;
1345 }
1346 
1347 void bch_request_exit(void)
1348 {
1349 	kmem_cache_destroy(bch_search_cache);
1350 }
1351 
1352 int __init bch_request_init(void)
1353 {
1354 	bch_search_cache = KMEM_CACHE(search, 0);
1355 	if (!bch_search_cache)
1356 		return -ENOMEM;
1357 
1358 	return 0;
1359 }
1360