1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Main bcache entry point - handle a read or a write request and decide what to 4 * do with it; the make_request functions are called by the block layer. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "request.h" 14 #include "writeback.h" 15 16 #include <linux/module.h> 17 #include <linux/hash.h> 18 #include <linux/random.h> 19 #include <linux/backing-dev.h> 20 21 #include <trace/events/bcache.h> 22 23 #define CUTOFF_CACHE_ADD 95 24 #define CUTOFF_CACHE_READA 90 25 26 struct kmem_cache *bch_search_cache; 27 28 static void bch_data_insert_start(struct closure *); 29 30 static unsigned cache_mode(struct cached_dev *dc) 31 { 32 return BDEV_CACHE_MODE(&dc->sb); 33 } 34 35 static bool verify(struct cached_dev *dc) 36 { 37 return dc->verify; 38 } 39 40 static void bio_csum(struct bio *bio, struct bkey *k) 41 { 42 struct bio_vec bv; 43 struct bvec_iter iter; 44 uint64_t csum = 0; 45 46 bio_for_each_segment(bv, bio, iter) { 47 void *d = kmap(bv.bv_page) + bv.bv_offset; 48 csum = bch_crc64_update(csum, d, bv.bv_len); 49 kunmap(bv.bv_page); 50 } 51 52 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 53 } 54 55 /* Insert data into cache */ 56 57 static void bch_data_insert_keys(struct closure *cl) 58 { 59 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 60 atomic_t *journal_ref = NULL; 61 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 62 int ret; 63 64 /* 65 * If we're looping, might already be waiting on 66 * another journal write - can't wait on more than one journal write at 67 * a time 68 * 69 * XXX: this looks wrong 70 */ 71 #if 0 72 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) 73 closure_sync(&s->cl); 74 #endif 75 76 if (!op->replace) 77 journal_ref = bch_journal(op->c, &op->insert_keys, 78 op->flush_journal ? cl : NULL); 79 80 ret = bch_btree_insert(op->c, &op->insert_keys, 81 journal_ref, replace_key); 82 if (ret == -ESRCH) { 83 op->replace_collision = true; 84 } else if (ret) { 85 op->status = BLK_STS_RESOURCE; 86 op->insert_data_done = true; 87 } 88 89 if (journal_ref) 90 atomic_dec_bug(journal_ref); 91 92 if (!op->insert_data_done) { 93 continue_at(cl, bch_data_insert_start, op->wq); 94 return; 95 } 96 97 bch_keylist_free(&op->insert_keys); 98 closure_return(cl); 99 } 100 101 static int bch_keylist_realloc(struct keylist *l, unsigned u64s, 102 struct cache_set *c) 103 { 104 size_t oldsize = bch_keylist_nkeys(l); 105 size_t newsize = oldsize + u64s; 106 107 /* 108 * The journalling code doesn't handle the case where the keys to insert 109 * is bigger than an empty write: If we just return -ENOMEM here, 110 * bch_data_insert_keys() will insert the keys created so far 111 * and finish the rest when the keylist is empty. 112 */ 113 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 114 return -ENOMEM; 115 116 return __bch_keylist_realloc(l, u64s); 117 } 118 119 static void bch_data_invalidate(struct closure *cl) 120 { 121 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 122 struct bio *bio = op->bio; 123 124 pr_debug("invalidating %i sectors from %llu", 125 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 126 127 while (bio_sectors(bio)) { 128 unsigned sectors = min(bio_sectors(bio), 129 1U << (KEY_SIZE_BITS - 1)); 130 131 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 132 goto out; 133 134 bio->bi_iter.bi_sector += sectors; 135 bio->bi_iter.bi_size -= sectors << 9; 136 137 bch_keylist_add(&op->insert_keys, 138 &KEY(op->inode, bio->bi_iter.bi_sector, sectors)); 139 } 140 141 op->insert_data_done = true; 142 /* get in bch_data_insert() */ 143 bio_put(bio); 144 out: 145 continue_at(cl, bch_data_insert_keys, op->wq); 146 } 147 148 static void bch_data_insert_error(struct closure *cl) 149 { 150 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 151 152 /* 153 * Our data write just errored, which means we've got a bunch of keys to 154 * insert that point to data that wasn't succesfully written. 155 * 156 * We don't have to insert those keys but we still have to invalidate 157 * that region of the cache - so, if we just strip off all the pointers 158 * from the keys we'll accomplish just that. 159 */ 160 161 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 162 163 while (src != op->insert_keys.top) { 164 struct bkey *n = bkey_next(src); 165 166 SET_KEY_PTRS(src, 0); 167 memmove(dst, src, bkey_bytes(src)); 168 169 dst = bkey_next(dst); 170 src = n; 171 } 172 173 op->insert_keys.top = dst; 174 175 bch_data_insert_keys(cl); 176 } 177 178 static void bch_data_insert_endio(struct bio *bio) 179 { 180 struct closure *cl = bio->bi_private; 181 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 182 183 if (bio->bi_status) { 184 /* TODO: We could try to recover from this. */ 185 if (op->writeback) 186 op->status = bio->bi_status; 187 else if (!op->replace) 188 set_closure_fn(cl, bch_data_insert_error, op->wq); 189 else 190 set_closure_fn(cl, NULL, NULL); 191 } 192 193 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache"); 194 } 195 196 static void bch_data_insert_start(struct closure *cl) 197 { 198 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 199 struct bio *bio = op->bio, *n; 200 201 if (op->bypass) 202 return bch_data_invalidate(cl); 203 204 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) 205 wake_up_gc(op->c); 206 207 /* 208 * Journal writes are marked REQ_PREFLUSH; if the original write was a 209 * flush, it'll wait on the journal write. 210 */ 211 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); 212 213 do { 214 unsigned i; 215 struct bkey *k; 216 struct bio_set *split = &op->c->bio_split; 217 218 /* 1 for the device pointer and 1 for the chksum */ 219 if (bch_keylist_realloc(&op->insert_keys, 220 3 + (op->csum ? 1 : 0), 221 op->c)) { 222 continue_at(cl, bch_data_insert_keys, op->wq); 223 return; 224 } 225 226 k = op->insert_keys.top; 227 bkey_init(k); 228 SET_KEY_INODE(k, op->inode); 229 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 230 231 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 232 op->write_point, op->write_prio, 233 op->writeback)) 234 goto err; 235 236 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 237 238 n->bi_end_io = bch_data_insert_endio; 239 n->bi_private = cl; 240 241 if (op->writeback) { 242 SET_KEY_DIRTY(k, true); 243 244 for (i = 0; i < KEY_PTRS(k); i++) 245 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 246 GC_MARK_DIRTY); 247 } 248 249 SET_KEY_CSUM(k, op->csum); 250 if (KEY_CSUM(k)) 251 bio_csum(n, k); 252 253 trace_bcache_cache_insert(k); 254 bch_keylist_push(&op->insert_keys); 255 256 bio_set_op_attrs(n, REQ_OP_WRITE, 0); 257 bch_submit_bbio(n, op->c, k, 0); 258 } while (n != bio); 259 260 op->insert_data_done = true; 261 continue_at(cl, bch_data_insert_keys, op->wq); 262 return; 263 err: 264 /* bch_alloc_sectors() blocks if s->writeback = true */ 265 BUG_ON(op->writeback); 266 267 /* 268 * But if it's not a writeback write we'd rather just bail out if 269 * there aren't any buckets ready to write to - it might take awhile and 270 * we might be starving btree writes for gc or something. 271 */ 272 273 if (!op->replace) { 274 /* 275 * Writethrough write: We can't complete the write until we've 276 * updated the index. But we don't want to delay the write while 277 * we wait for buckets to be freed up, so just invalidate the 278 * rest of the write. 279 */ 280 op->bypass = true; 281 return bch_data_invalidate(cl); 282 } else { 283 /* 284 * From a cache miss, we can just insert the keys for the data 285 * we have written or bail out if we didn't do anything. 286 */ 287 op->insert_data_done = true; 288 bio_put(bio); 289 290 if (!bch_keylist_empty(&op->insert_keys)) 291 continue_at(cl, bch_data_insert_keys, op->wq); 292 else 293 closure_return(cl); 294 } 295 } 296 297 /** 298 * bch_data_insert - stick some data in the cache 299 * @cl: closure pointer. 300 * 301 * This is the starting point for any data to end up in a cache device; it could 302 * be from a normal write, or a writeback write, or a write to a flash only 303 * volume - it's also used by the moving garbage collector to compact data in 304 * mostly empty buckets. 305 * 306 * It first writes the data to the cache, creating a list of keys to be inserted 307 * (if the data had to be fragmented there will be multiple keys); after the 308 * data is written it calls bch_journal, and after the keys have been added to 309 * the next journal write they're inserted into the btree. 310 * 311 * It inserts the data in s->cache_bio; bi_sector is used for the key offset, 312 * and op->inode is used for the key inode. 313 * 314 * If s->bypass is true, instead of inserting the data it invalidates the 315 * region of the cache represented by s->cache_bio and op->inode. 316 */ 317 void bch_data_insert(struct closure *cl) 318 { 319 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 320 321 trace_bcache_write(op->c, op->inode, op->bio, 322 op->writeback, op->bypass); 323 324 bch_keylist_init(&op->insert_keys); 325 bio_get(op->bio); 326 bch_data_insert_start(cl); 327 } 328 329 /* Congested? */ 330 331 unsigned bch_get_congested(struct cache_set *c) 332 { 333 int i; 334 long rand; 335 336 if (!c->congested_read_threshold_us && 337 !c->congested_write_threshold_us) 338 return 0; 339 340 i = (local_clock_us() - c->congested_last_us) / 1024; 341 if (i < 0) 342 return 0; 343 344 i += atomic_read(&c->congested); 345 if (i >= 0) 346 return 0; 347 348 i += CONGESTED_MAX; 349 350 if (i > 0) 351 i = fract_exp_two(i, 6); 352 353 rand = get_random_int(); 354 i -= bitmap_weight(&rand, BITS_PER_LONG); 355 356 return i > 0 ? i : 1; 357 } 358 359 static void add_sequential(struct task_struct *t) 360 { 361 ewma_add(t->sequential_io_avg, 362 t->sequential_io, 8, 0); 363 364 t->sequential_io = 0; 365 } 366 367 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 368 { 369 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 370 } 371 372 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 373 { 374 struct cache_set *c = dc->disk.c; 375 unsigned mode = cache_mode(dc); 376 unsigned sectors, congested = bch_get_congested(c); 377 struct task_struct *task = current; 378 struct io *i; 379 380 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 381 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 382 (bio_op(bio) == REQ_OP_DISCARD)) 383 goto skip; 384 385 if (mode == CACHE_MODE_NONE || 386 (mode == CACHE_MODE_WRITEAROUND && 387 op_is_write(bio_op(bio)))) 388 goto skip; 389 390 /* 391 * Flag for bypass if the IO is for read-ahead or background, 392 * unless the read-ahead request is for metadata (eg, for gfs2). 393 */ 394 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) && 395 !(bio->bi_opf & REQ_META)) 396 goto skip; 397 398 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 399 bio_sectors(bio) & (c->sb.block_size - 1)) { 400 pr_debug("skipping unaligned io"); 401 goto skip; 402 } 403 404 if (bypass_torture_test(dc)) { 405 if ((get_random_int() & 3) == 3) 406 goto skip; 407 else 408 goto rescale; 409 } 410 411 if (!congested && !dc->sequential_cutoff) 412 goto rescale; 413 414 spin_lock(&dc->io_lock); 415 416 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 417 if (i->last == bio->bi_iter.bi_sector && 418 time_before(jiffies, i->jiffies)) 419 goto found; 420 421 i = list_first_entry(&dc->io_lru, struct io, lru); 422 423 add_sequential(task); 424 i->sequential = 0; 425 found: 426 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 427 i->sequential += bio->bi_iter.bi_size; 428 429 i->last = bio_end_sector(bio); 430 i->jiffies = jiffies + msecs_to_jiffies(5000); 431 task->sequential_io = i->sequential; 432 433 hlist_del(&i->hash); 434 hlist_add_head(&i->hash, iohash(dc, i->last)); 435 list_move_tail(&i->lru, &dc->io_lru); 436 437 spin_unlock(&dc->io_lock); 438 439 sectors = max(task->sequential_io, 440 task->sequential_io_avg) >> 9; 441 442 if (dc->sequential_cutoff && 443 sectors >= dc->sequential_cutoff >> 9) { 444 trace_bcache_bypass_sequential(bio); 445 goto skip; 446 } 447 448 if (congested && sectors >= congested) { 449 trace_bcache_bypass_congested(bio); 450 goto skip; 451 } 452 453 rescale: 454 bch_rescale_priorities(c, bio_sectors(bio)); 455 return false; 456 skip: 457 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 458 return true; 459 } 460 461 /* Cache lookup */ 462 463 struct search { 464 /* Stack frame for bio_complete */ 465 struct closure cl; 466 467 struct bbio bio; 468 struct bio *orig_bio; 469 struct bio *cache_miss; 470 struct bcache_device *d; 471 472 unsigned insert_bio_sectors; 473 unsigned recoverable:1; 474 unsigned write:1; 475 unsigned read_dirty_data:1; 476 unsigned cache_missed:1; 477 478 unsigned long start_time; 479 480 struct btree_op op; 481 struct data_insert_op iop; 482 }; 483 484 static void bch_cache_read_endio(struct bio *bio) 485 { 486 struct bbio *b = container_of(bio, struct bbio, bio); 487 struct closure *cl = bio->bi_private; 488 struct search *s = container_of(cl, struct search, cl); 489 490 /* 491 * If the bucket was reused while our bio was in flight, we might have 492 * read the wrong data. Set s->error but not error so it doesn't get 493 * counted against the cache device, but we'll still reread the data 494 * from the backing device. 495 */ 496 497 if (bio->bi_status) 498 s->iop.status = bio->bi_status; 499 else if (!KEY_DIRTY(&b->key) && 500 ptr_stale(s->iop.c, &b->key, 0)) { 501 atomic_long_inc(&s->iop.c->cache_read_races); 502 s->iop.status = BLK_STS_IOERR; 503 } 504 505 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache"); 506 } 507 508 /* 509 * Read from a single key, handling the initial cache miss if the key starts in 510 * the middle of the bio 511 */ 512 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 513 { 514 struct search *s = container_of(op, struct search, op); 515 struct bio *n, *bio = &s->bio.bio; 516 struct bkey *bio_key; 517 unsigned ptr; 518 519 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 520 return MAP_CONTINUE; 521 522 if (KEY_INODE(k) != s->iop.inode || 523 KEY_START(k) > bio->bi_iter.bi_sector) { 524 unsigned bio_sectors = bio_sectors(bio); 525 unsigned sectors = KEY_INODE(k) == s->iop.inode 526 ? min_t(uint64_t, INT_MAX, 527 KEY_START(k) - bio->bi_iter.bi_sector) 528 : INT_MAX; 529 530 int ret = s->d->cache_miss(b, s, bio, sectors); 531 if (ret != MAP_CONTINUE) 532 return ret; 533 534 /* if this was a complete miss we shouldn't get here */ 535 BUG_ON(bio_sectors <= sectors); 536 } 537 538 if (!KEY_SIZE(k)) 539 return MAP_CONTINUE; 540 541 /* XXX: figure out best pointer - for multiple cache devices */ 542 ptr = 0; 543 544 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 545 546 if (KEY_DIRTY(k)) 547 s->read_dirty_data = true; 548 549 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 550 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 551 GFP_NOIO, &s->d->bio_split); 552 553 bio_key = &container_of(n, struct bbio, bio)->key; 554 bch_bkey_copy_single_ptr(bio_key, k, ptr); 555 556 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 557 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 558 559 n->bi_end_io = bch_cache_read_endio; 560 n->bi_private = &s->cl; 561 562 /* 563 * The bucket we're reading from might be reused while our bio 564 * is in flight, and we could then end up reading the wrong 565 * data. 566 * 567 * We guard against this by checking (in cache_read_endio()) if 568 * the pointer is stale again; if so, we treat it as an error 569 * and reread from the backing device (but we don't pass that 570 * error up anywhere). 571 */ 572 573 __bch_submit_bbio(n, b->c); 574 return n == bio ? MAP_DONE : MAP_CONTINUE; 575 } 576 577 static void cache_lookup(struct closure *cl) 578 { 579 struct search *s = container_of(cl, struct search, iop.cl); 580 struct bio *bio = &s->bio.bio; 581 struct cached_dev *dc; 582 int ret; 583 584 bch_btree_op_init(&s->op, -1); 585 586 ret = bch_btree_map_keys(&s->op, s->iop.c, 587 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 588 cache_lookup_fn, MAP_END_KEY); 589 if (ret == -EAGAIN) { 590 continue_at(cl, cache_lookup, bcache_wq); 591 return; 592 } 593 594 /* 595 * We might meet err when searching the btree, If that happens, we will 596 * get negative ret, in this scenario we should not recover data from 597 * backing device (when cache device is dirty) because we don't know 598 * whether bkeys the read request covered are all clean. 599 * 600 * And after that happened, s->iop.status is still its initial value 601 * before we submit s->bio.bio 602 */ 603 if (ret < 0) { 604 BUG_ON(ret == -EINTR); 605 if (s->d && s->d->c && 606 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) { 607 dc = container_of(s->d, struct cached_dev, disk); 608 if (dc && atomic_read(&dc->has_dirty)) 609 s->recoverable = false; 610 } 611 if (!s->iop.status) 612 s->iop.status = BLK_STS_IOERR; 613 } 614 615 closure_return(cl); 616 } 617 618 /* Common code for the make_request functions */ 619 620 static void request_endio(struct bio *bio) 621 { 622 struct closure *cl = bio->bi_private; 623 624 if (bio->bi_status) { 625 struct search *s = container_of(cl, struct search, cl); 626 s->iop.status = bio->bi_status; 627 /* Only cache read errors are recoverable */ 628 s->recoverable = false; 629 } 630 631 bio_put(bio); 632 closure_put(cl); 633 } 634 635 static void backing_request_endio(struct bio *bio) 636 { 637 struct closure *cl = bio->bi_private; 638 639 if (bio->bi_status) { 640 struct search *s = container_of(cl, struct search, cl); 641 struct cached_dev *dc = container_of(s->d, 642 struct cached_dev, disk); 643 /* 644 * If a bio has REQ_PREFLUSH for writeback mode, it is 645 * speically assembled in cached_dev_write() for a non-zero 646 * write request which has REQ_PREFLUSH. we don't set 647 * s->iop.status by this failure, the status will be decided 648 * by result of bch_data_insert() operation. 649 */ 650 if (unlikely(s->iop.writeback && 651 bio->bi_opf & REQ_PREFLUSH)) { 652 pr_err("Can't flush %s: returned bi_status %i", 653 dc->backing_dev_name, bio->bi_status); 654 } else { 655 /* set to orig_bio->bi_status in bio_complete() */ 656 s->iop.status = bio->bi_status; 657 } 658 s->recoverable = false; 659 /* should count I/O error for backing device here */ 660 bch_count_backing_io_errors(dc, bio); 661 } 662 663 bio_put(bio); 664 closure_put(cl); 665 } 666 667 static void bio_complete(struct search *s) 668 { 669 if (s->orig_bio) { 670 generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio), 671 &s->d->disk->part0, s->start_time); 672 673 trace_bcache_request_end(s->d, s->orig_bio); 674 s->orig_bio->bi_status = s->iop.status; 675 bio_endio(s->orig_bio); 676 s->orig_bio = NULL; 677 } 678 } 679 680 static void do_bio_hook(struct search *s, 681 struct bio *orig_bio, 682 bio_end_io_t *end_io_fn) 683 { 684 struct bio *bio = &s->bio.bio; 685 686 bio_init(bio, NULL, 0); 687 __bio_clone_fast(bio, orig_bio); 688 /* 689 * bi_end_io can be set separately somewhere else, e.g. the 690 * variants in, 691 * - cache_bio->bi_end_io from cached_dev_cache_miss() 692 * - n->bi_end_io from cache_lookup_fn() 693 */ 694 bio->bi_end_io = end_io_fn; 695 bio->bi_private = &s->cl; 696 697 bio_cnt_set(bio, 3); 698 } 699 700 static void search_free(struct closure *cl) 701 { 702 struct search *s = container_of(cl, struct search, cl); 703 704 atomic_dec(&s->d->c->search_inflight); 705 706 if (s->iop.bio) 707 bio_put(s->iop.bio); 708 709 bio_complete(s); 710 closure_debug_destroy(cl); 711 mempool_free(s, &s->d->c->search); 712 } 713 714 static inline struct search *search_alloc(struct bio *bio, 715 struct bcache_device *d) 716 { 717 struct search *s; 718 719 s = mempool_alloc(&d->c->search, GFP_NOIO); 720 721 closure_init(&s->cl, NULL); 722 do_bio_hook(s, bio, request_endio); 723 atomic_inc(&d->c->search_inflight); 724 725 s->orig_bio = bio; 726 s->cache_miss = NULL; 727 s->cache_missed = 0; 728 s->d = d; 729 s->recoverable = 1; 730 s->write = op_is_write(bio_op(bio)); 731 s->read_dirty_data = 0; 732 s->start_time = jiffies; 733 734 s->iop.c = d->c; 735 s->iop.bio = NULL; 736 s->iop.inode = d->id; 737 s->iop.write_point = hash_long((unsigned long) current, 16); 738 s->iop.write_prio = 0; 739 s->iop.status = 0; 740 s->iop.flags = 0; 741 s->iop.flush_journal = op_is_flush(bio->bi_opf); 742 s->iop.wq = bcache_wq; 743 744 return s; 745 } 746 747 /* Cached devices */ 748 749 static void cached_dev_bio_complete(struct closure *cl) 750 { 751 struct search *s = container_of(cl, struct search, cl); 752 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 753 754 search_free(cl); 755 cached_dev_put(dc); 756 } 757 758 /* Process reads */ 759 760 static void cached_dev_cache_miss_done(struct closure *cl) 761 { 762 struct search *s = container_of(cl, struct search, cl); 763 764 if (s->iop.replace_collision) 765 bch_mark_cache_miss_collision(s->iop.c, s->d); 766 767 if (s->iop.bio) 768 bio_free_pages(s->iop.bio); 769 770 cached_dev_bio_complete(cl); 771 } 772 773 static void cached_dev_read_error(struct closure *cl) 774 { 775 struct search *s = container_of(cl, struct search, cl); 776 struct bio *bio = &s->bio.bio; 777 778 /* 779 * If read request hit dirty data (s->read_dirty_data is true), 780 * then recovery a failed read request from cached device may 781 * get a stale data back. So read failure recovery is only 782 * permitted when read request hit clean data in cache device, 783 * or when cache read race happened. 784 */ 785 if (s->recoverable && !s->read_dirty_data) { 786 /* Retry from the backing device: */ 787 trace_bcache_read_retry(s->orig_bio); 788 789 s->iop.status = 0; 790 do_bio_hook(s, s->orig_bio, backing_request_endio); 791 792 /* XXX: invalidate cache */ 793 794 /* I/O request sent to backing device */ 795 closure_bio_submit(s->iop.c, bio, cl); 796 } 797 798 continue_at(cl, cached_dev_cache_miss_done, NULL); 799 } 800 801 static void cached_dev_read_done(struct closure *cl) 802 { 803 struct search *s = container_of(cl, struct search, cl); 804 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 805 806 /* 807 * We had a cache miss; cache_bio now contains data ready to be inserted 808 * into the cache. 809 * 810 * First, we copy the data we just read from cache_bio's bounce buffers 811 * to the buffers the original bio pointed to: 812 */ 813 814 if (s->iop.bio) { 815 bio_reset(s->iop.bio); 816 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector; 817 bio_copy_dev(s->iop.bio, s->cache_miss); 818 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 819 bch_bio_map(s->iop.bio, NULL); 820 821 bio_copy_data(s->cache_miss, s->iop.bio); 822 823 bio_put(s->cache_miss); 824 s->cache_miss = NULL; 825 } 826 827 if (verify(dc) && s->recoverable && !s->read_dirty_data) 828 bch_data_verify(dc, s->orig_bio); 829 830 bio_complete(s); 831 832 if (s->iop.bio && 833 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 834 BUG_ON(!s->iop.replace); 835 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 836 } 837 838 continue_at(cl, cached_dev_cache_miss_done, NULL); 839 } 840 841 static void cached_dev_read_done_bh(struct closure *cl) 842 { 843 struct search *s = container_of(cl, struct search, cl); 844 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 845 846 bch_mark_cache_accounting(s->iop.c, s->d, 847 !s->cache_missed, s->iop.bypass); 848 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass); 849 850 if (s->iop.status) 851 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 852 else if (s->iop.bio || verify(dc)) 853 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 854 else 855 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 856 } 857 858 static int cached_dev_cache_miss(struct btree *b, struct search *s, 859 struct bio *bio, unsigned sectors) 860 { 861 int ret = MAP_CONTINUE; 862 unsigned reada = 0; 863 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 864 struct bio *miss, *cache_bio; 865 866 s->cache_missed = 1; 867 868 if (s->cache_miss || s->iop.bypass) { 869 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 870 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 871 goto out_submit; 872 } 873 874 if (!(bio->bi_opf & REQ_RAHEAD) && 875 !(bio->bi_opf & REQ_META) && 876 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 877 reada = min_t(sector_t, dc->readahead >> 9, 878 get_capacity(bio->bi_disk) - bio_end_sector(bio)); 879 880 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 881 882 s->iop.replace_key = KEY(s->iop.inode, 883 bio->bi_iter.bi_sector + s->insert_bio_sectors, 884 s->insert_bio_sectors); 885 886 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 887 if (ret) 888 return ret; 889 890 s->iop.replace = true; 891 892 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 893 894 /* btree_search_recurse()'s btree iterator is no good anymore */ 895 ret = miss == bio ? MAP_DONE : -EINTR; 896 897 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 898 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 899 &dc->disk.bio_split); 900 if (!cache_bio) 901 goto out_submit; 902 903 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 904 bio_copy_dev(cache_bio, miss); 905 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 906 907 cache_bio->bi_end_io = backing_request_endio; 908 cache_bio->bi_private = &s->cl; 909 910 bch_bio_map(cache_bio, NULL); 911 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 912 goto out_put; 913 914 if (reada) 915 bch_mark_cache_readahead(s->iop.c, s->d); 916 917 s->cache_miss = miss; 918 s->iop.bio = cache_bio; 919 bio_get(cache_bio); 920 /* I/O request sent to backing device */ 921 closure_bio_submit(s->iop.c, cache_bio, &s->cl); 922 923 return ret; 924 out_put: 925 bio_put(cache_bio); 926 out_submit: 927 miss->bi_end_io = backing_request_endio; 928 miss->bi_private = &s->cl; 929 /* I/O request sent to backing device */ 930 closure_bio_submit(s->iop.c, miss, &s->cl); 931 return ret; 932 } 933 934 static void cached_dev_read(struct cached_dev *dc, struct search *s) 935 { 936 struct closure *cl = &s->cl; 937 938 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 939 continue_at(cl, cached_dev_read_done_bh, NULL); 940 } 941 942 /* Process writes */ 943 944 static void cached_dev_write_complete(struct closure *cl) 945 { 946 struct search *s = container_of(cl, struct search, cl); 947 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 948 949 up_read_non_owner(&dc->writeback_lock); 950 cached_dev_bio_complete(cl); 951 } 952 953 static void cached_dev_write(struct cached_dev *dc, struct search *s) 954 { 955 struct closure *cl = &s->cl; 956 struct bio *bio = &s->bio.bio; 957 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 958 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 959 960 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 961 962 down_read_non_owner(&dc->writeback_lock); 963 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 964 /* 965 * We overlap with some dirty data undergoing background 966 * writeback, force this write to writeback 967 */ 968 s->iop.bypass = false; 969 s->iop.writeback = true; 970 } 971 972 /* 973 * Discards aren't _required_ to do anything, so skipping if 974 * check_overlapping returned true is ok 975 * 976 * But check_overlapping drops dirty keys for which io hasn't started, 977 * so we still want to call it. 978 */ 979 if (bio_op(bio) == REQ_OP_DISCARD) 980 s->iop.bypass = true; 981 982 if (should_writeback(dc, s->orig_bio, 983 cache_mode(dc), 984 s->iop.bypass)) { 985 s->iop.bypass = false; 986 s->iop.writeback = true; 987 } 988 989 if (s->iop.bypass) { 990 s->iop.bio = s->orig_bio; 991 bio_get(s->iop.bio); 992 993 if (bio_op(bio) == REQ_OP_DISCARD && 994 !blk_queue_discard(bdev_get_queue(dc->bdev))) 995 goto insert_data; 996 997 /* I/O request sent to backing device */ 998 bio->bi_end_io = backing_request_endio; 999 closure_bio_submit(s->iop.c, bio, cl); 1000 1001 } else if (s->iop.writeback) { 1002 bch_writeback_add(dc); 1003 s->iop.bio = bio; 1004 1005 if (bio->bi_opf & REQ_PREFLUSH) { 1006 /* 1007 * Also need to send a flush to the backing 1008 * device. 1009 */ 1010 struct bio *flush; 1011 1012 flush = bio_alloc_bioset(GFP_NOIO, 0, 1013 &dc->disk.bio_split); 1014 if (!flush) { 1015 s->iop.status = BLK_STS_RESOURCE; 1016 goto insert_data; 1017 } 1018 bio_copy_dev(flush, bio); 1019 flush->bi_end_io = backing_request_endio; 1020 flush->bi_private = cl; 1021 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1022 /* I/O request sent to backing device */ 1023 closure_bio_submit(s->iop.c, flush, cl); 1024 } 1025 } else { 1026 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split); 1027 /* I/O request sent to backing device */ 1028 bio->bi_end_io = backing_request_endio; 1029 closure_bio_submit(s->iop.c, bio, cl); 1030 } 1031 1032 insert_data: 1033 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1034 continue_at(cl, cached_dev_write_complete, NULL); 1035 } 1036 1037 static void cached_dev_nodata(struct closure *cl) 1038 { 1039 struct search *s = container_of(cl, struct search, cl); 1040 struct bio *bio = &s->bio.bio; 1041 1042 if (s->iop.flush_journal) 1043 bch_journal_meta(s->iop.c, cl); 1044 1045 /* If it's a flush, we send the flush to the backing device too */ 1046 bio->bi_end_io = backing_request_endio; 1047 closure_bio_submit(s->iop.c, bio, cl); 1048 1049 continue_at(cl, cached_dev_bio_complete, NULL); 1050 } 1051 1052 struct detached_dev_io_private { 1053 struct bcache_device *d; 1054 unsigned long start_time; 1055 bio_end_io_t *bi_end_io; 1056 void *bi_private; 1057 }; 1058 1059 static void detached_dev_end_io(struct bio *bio) 1060 { 1061 struct detached_dev_io_private *ddip; 1062 1063 ddip = bio->bi_private; 1064 bio->bi_end_io = ddip->bi_end_io; 1065 bio->bi_private = ddip->bi_private; 1066 1067 generic_end_io_acct(ddip->d->disk->queue, bio_op(bio), 1068 &ddip->d->disk->part0, ddip->start_time); 1069 1070 if (bio->bi_status) { 1071 struct cached_dev *dc = container_of(ddip->d, 1072 struct cached_dev, disk); 1073 /* should count I/O error for backing device here */ 1074 bch_count_backing_io_errors(dc, bio); 1075 } 1076 1077 kfree(ddip); 1078 bio->bi_end_io(bio); 1079 } 1080 1081 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio) 1082 { 1083 struct detached_dev_io_private *ddip; 1084 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1085 1086 /* 1087 * no need to call closure_get(&dc->disk.cl), 1088 * because upper layer had already opened bcache device, 1089 * which would call closure_get(&dc->disk.cl) 1090 */ 1091 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO); 1092 ddip->d = d; 1093 ddip->start_time = jiffies; 1094 ddip->bi_end_io = bio->bi_end_io; 1095 ddip->bi_private = bio->bi_private; 1096 bio->bi_end_io = detached_dev_end_io; 1097 bio->bi_private = ddip; 1098 1099 if ((bio_op(bio) == REQ_OP_DISCARD) && 1100 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1101 bio->bi_end_io(bio); 1102 else 1103 generic_make_request(bio); 1104 } 1105 1106 static void quit_max_writeback_rate(struct cache_set *c, 1107 struct cached_dev *this_dc) 1108 { 1109 int i; 1110 struct bcache_device *d; 1111 struct cached_dev *dc; 1112 1113 /* 1114 * mutex bch_register_lock may compete with other parallel requesters, 1115 * or attach/detach operations on other backing device. Waiting to 1116 * the mutex lock may increase I/O request latency for seconds or more. 1117 * To avoid such situation, if mutext_trylock() failed, only writeback 1118 * rate of current cached device is set to 1, and __update_write_back() 1119 * will decide writeback rate of other cached devices (remember now 1120 * c->idle_counter is 0 already). 1121 */ 1122 if (mutex_trylock(&bch_register_lock)) { 1123 for (i = 0; i < c->devices_max_used; i++) { 1124 if (!c->devices[i]) 1125 continue; 1126 1127 if (UUID_FLASH_ONLY(&c->uuids[i])) 1128 continue; 1129 1130 d = c->devices[i]; 1131 dc = container_of(d, struct cached_dev, disk); 1132 /* 1133 * set writeback rate to default minimum value, 1134 * then let update_writeback_rate() to decide the 1135 * upcoming rate. 1136 */ 1137 atomic_long_set(&dc->writeback_rate.rate, 1); 1138 } 1139 mutex_unlock(&bch_register_lock); 1140 } else 1141 atomic_long_set(&this_dc->writeback_rate.rate, 1); 1142 } 1143 1144 /* Cached devices - read & write stuff */ 1145 1146 static blk_qc_t cached_dev_make_request(struct request_queue *q, 1147 struct bio *bio) 1148 { 1149 struct search *s; 1150 struct bcache_device *d = bio->bi_disk->private_data; 1151 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1152 int rw = bio_data_dir(bio); 1153 1154 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) || 1155 dc->io_disable)) { 1156 bio->bi_status = BLK_STS_IOERR; 1157 bio_endio(bio); 1158 return BLK_QC_T_NONE; 1159 } 1160 1161 if (likely(d->c)) { 1162 if (atomic_read(&d->c->idle_counter)) 1163 atomic_set(&d->c->idle_counter, 0); 1164 /* 1165 * If at_max_writeback_rate of cache set is true and new I/O 1166 * comes, quit max writeback rate of all cached devices 1167 * attached to this cache set, and set at_max_writeback_rate 1168 * to false. 1169 */ 1170 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) { 1171 atomic_set(&d->c->at_max_writeback_rate, 0); 1172 quit_max_writeback_rate(d->c, dc); 1173 } 1174 } 1175 1176 generic_start_io_acct(q, 1177 bio_op(bio), 1178 bio_sectors(bio), 1179 &d->disk->part0); 1180 1181 bio_set_dev(bio, dc->bdev); 1182 bio->bi_iter.bi_sector += dc->sb.data_offset; 1183 1184 if (cached_dev_get(dc)) { 1185 s = search_alloc(bio, d); 1186 trace_bcache_request_start(s->d, bio); 1187 1188 if (!bio->bi_iter.bi_size) { 1189 /* 1190 * can't call bch_journal_meta from under 1191 * generic_make_request 1192 */ 1193 continue_at_nobarrier(&s->cl, 1194 cached_dev_nodata, 1195 bcache_wq); 1196 } else { 1197 s->iop.bypass = check_should_bypass(dc, bio); 1198 1199 if (rw) 1200 cached_dev_write(dc, s); 1201 else 1202 cached_dev_read(dc, s); 1203 } 1204 } else 1205 /* I/O request sent to backing device */ 1206 detached_dev_do_request(d, bio); 1207 1208 return BLK_QC_T_NONE; 1209 } 1210 1211 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 1212 unsigned int cmd, unsigned long arg) 1213 { 1214 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1215 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1216 } 1217 1218 static int cached_dev_congested(void *data, int bits) 1219 { 1220 struct bcache_device *d = data; 1221 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1222 struct request_queue *q = bdev_get_queue(dc->bdev); 1223 int ret = 0; 1224 1225 if (bdi_congested(q->backing_dev_info, bits)) 1226 return 1; 1227 1228 if (cached_dev_get(dc)) { 1229 unsigned i; 1230 struct cache *ca; 1231 1232 for_each_cache(ca, d->c, i) { 1233 q = bdev_get_queue(ca->bdev); 1234 ret |= bdi_congested(q->backing_dev_info, bits); 1235 } 1236 1237 cached_dev_put(dc); 1238 } 1239 1240 return ret; 1241 } 1242 1243 void bch_cached_dev_request_init(struct cached_dev *dc) 1244 { 1245 struct gendisk *g = dc->disk.disk; 1246 1247 g->queue->make_request_fn = cached_dev_make_request; 1248 g->queue->backing_dev_info->congested_fn = cached_dev_congested; 1249 dc->disk.cache_miss = cached_dev_cache_miss; 1250 dc->disk.ioctl = cached_dev_ioctl; 1251 } 1252 1253 /* Flash backed devices */ 1254 1255 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1256 struct bio *bio, unsigned sectors) 1257 { 1258 unsigned bytes = min(sectors, bio_sectors(bio)) << 9; 1259 1260 swap(bio->bi_iter.bi_size, bytes); 1261 zero_fill_bio(bio); 1262 swap(bio->bi_iter.bi_size, bytes); 1263 1264 bio_advance(bio, bytes); 1265 1266 if (!bio->bi_iter.bi_size) 1267 return MAP_DONE; 1268 1269 return MAP_CONTINUE; 1270 } 1271 1272 static void flash_dev_nodata(struct closure *cl) 1273 { 1274 struct search *s = container_of(cl, struct search, cl); 1275 1276 if (s->iop.flush_journal) 1277 bch_journal_meta(s->iop.c, cl); 1278 1279 continue_at(cl, search_free, NULL); 1280 } 1281 1282 static blk_qc_t flash_dev_make_request(struct request_queue *q, 1283 struct bio *bio) 1284 { 1285 struct search *s; 1286 struct closure *cl; 1287 struct bcache_device *d = bio->bi_disk->private_data; 1288 1289 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) { 1290 bio->bi_status = BLK_STS_IOERR; 1291 bio_endio(bio); 1292 return BLK_QC_T_NONE; 1293 } 1294 1295 generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0); 1296 1297 s = search_alloc(bio, d); 1298 cl = &s->cl; 1299 bio = &s->bio.bio; 1300 1301 trace_bcache_request_start(s->d, bio); 1302 1303 if (!bio->bi_iter.bi_size) { 1304 /* 1305 * can't call bch_journal_meta from under 1306 * generic_make_request 1307 */ 1308 continue_at_nobarrier(&s->cl, 1309 flash_dev_nodata, 1310 bcache_wq); 1311 return BLK_QC_T_NONE; 1312 } else if (bio_data_dir(bio)) { 1313 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1314 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1315 &KEY(d->id, bio_end_sector(bio), 0)); 1316 1317 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0; 1318 s->iop.writeback = true; 1319 s->iop.bio = bio; 1320 1321 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1322 } else { 1323 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1324 } 1325 1326 continue_at(cl, search_free, NULL); 1327 return BLK_QC_T_NONE; 1328 } 1329 1330 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1331 unsigned int cmd, unsigned long arg) 1332 { 1333 return -ENOTTY; 1334 } 1335 1336 static int flash_dev_congested(void *data, int bits) 1337 { 1338 struct bcache_device *d = data; 1339 struct request_queue *q; 1340 struct cache *ca; 1341 unsigned i; 1342 int ret = 0; 1343 1344 for_each_cache(ca, d->c, i) { 1345 q = bdev_get_queue(ca->bdev); 1346 ret |= bdi_congested(q->backing_dev_info, bits); 1347 } 1348 1349 return ret; 1350 } 1351 1352 void bch_flash_dev_request_init(struct bcache_device *d) 1353 { 1354 struct gendisk *g = d->disk; 1355 1356 g->queue->make_request_fn = flash_dev_make_request; 1357 g->queue->backing_dev_info->congested_fn = flash_dev_congested; 1358 d->cache_miss = flash_dev_cache_miss; 1359 d->ioctl = flash_dev_ioctl; 1360 } 1361 1362 void bch_request_exit(void) 1363 { 1364 if (bch_search_cache) 1365 kmem_cache_destroy(bch_search_cache); 1366 } 1367 1368 int __init bch_request_init(void) 1369 { 1370 bch_search_cache = KMEM_CACHE(search, 0); 1371 if (!bch_search_cache) 1372 return -ENOMEM; 1373 1374 return 0; 1375 } 1376