xref: /linux/drivers/md/bcache/request.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20 
21 #include <trace/events/bcache.h>
22 
23 #define CUTOFF_CACHE_ADD	95
24 #define CUTOFF_CACHE_READA	90
25 
26 struct kmem_cache *bch_search_cache;
27 
28 static void bch_data_insert_start(struct closure *);
29 
30 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
31 {
32 	return BDEV_CACHE_MODE(&dc->sb);
33 }
34 
35 static bool verify(struct cached_dev *dc, struct bio *bio)
36 {
37 	return dc->verify;
38 }
39 
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42 	struct bio_vec bv;
43 	struct bvec_iter iter;
44 	uint64_t csum = 0;
45 
46 	bio_for_each_segment(bv, bio, iter) {
47 		void *d = kmap(bv.bv_page) + bv.bv_offset;
48 		csum = bch_crc64_update(csum, d, bv.bv_len);
49 		kunmap(bv.bv_page);
50 	}
51 
52 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
53 }
54 
55 /* Insert data into cache */
56 
57 static void bch_data_insert_keys(struct closure *cl)
58 {
59 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
60 	atomic_t *journal_ref = NULL;
61 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
62 	int ret;
63 
64 	/*
65 	 * If we're looping, might already be waiting on
66 	 * another journal write - can't wait on more than one journal write at
67 	 * a time
68 	 *
69 	 * XXX: this looks wrong
70 	 */
71 #if 0
72 	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
73 		closure_sync(&s->cl);
74 #endif
75 
76 	if (!op->replace)
77 		journal_ref = bch_journal(op->c, &op->insert_keys,
78 					  op->flush_journal ? cl : NULL);
79 
80 	ret = bch_btree_insert(op->c, &op->insert_keys,
81 			       journal_ref, replace_key);
82 	if (ret == -ESRCH) {
83 		op->replace_collision = true;
84 	} else if (ret) {
85 		op->status		= BLK_STS_RESOURCE;
86 		op->insert_data_done	= true;
87 	}
88 
89 	if (journal_ref)
90 		atomic_dec_bug(journal_ref);
91 
92 	if (!op->insert_data_done) {
93 		continue_at(cl, bch_data_insert_start, op->wq);
94 		return;
95 	}
96 
97 	bch_keylist_free(&op->insert_keys);
98 	closure_return(cl);
99 }
100 
101 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
102 			       struct cache_set *c)
103 {
104 	size_t oldsize = bch_keylist_nkeys(l);
105 	size_t newsize = oldsize + u64s;
106 
107 	/*
108 	 * The journalling code doesn't handle the case where the keys to insert
109 	 * is bigger than an empty write: If we just return -ENOMEM here,
110 	 * bio_insert() and bio_invalidate() will insert the keys created so far
111 	 * and finish the rest when the keylist is empty.
112 	 */
113 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
114 		return -ENOMEM;
115 
116 	return __bch_keylist_realloc(l, u64s);
117 }
118 
119 static void bch_data_invalidate(struct closure *cl)
120 {
121 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
122 	struct bio *bio = op->bio;
123 
124 	pr_debug("invalidating %i sectors from %llu",
125 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
126 
127 	while (bio_sectors(bio)) {
128 		unsigned sectors = min(bio_sectors(bio),
129 				       1U << (KEY_SIZE_BITS - 1));
130 
131 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
132 			goto out;
133 
134 		bio->bi_iter.bi_sector	+= sectors;
135 		bio->bi_iter.bi_size	-= sectors << 9;
136 
137 		bch_keylist_add(&op->insert_keys,
138 				&KEY(op->inode, bio->bi_iter.bi_sector, sectors));
139 	}
140 
141 	op->insert_data_done = true;
142 	bio_put(bio);
143 out:
144 	continue_at(cl, bch_data_insert_keys, op->wq);
145 }
146 
147 static void bch_data_insert_error(struct closure *cl)
148 {
149 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
150 
151 	/*
152 	 * Our data write just errored, which means we've got a bunch of keys to
153 	 * insert that point to data that wasn't succesfully written.
154 	 *
155 	 * We don't have to insert those keys but we still have to invalidate
156 	 * that region of the cache - so, if we just strip off all the pointers
157 	 * from the keys we'll accomplish just that.
158 	 */
159 
160 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
161 
162 	while (src != op->insert_keys.top) {
163 		struct bkey *n = bkey_next(src);
164 
165 		SET_KEY_PTRS(src, 0);
166 		memmove(dst, src, bkey_bytes(src));
167 
168 		dst = bkey_next(dst);
169 		src = n;
170 	}
171 
172 	op->insert_keys.top = dst;
173 
174 	bch_data_insert_keys(cl);
175 }
176 
177 static void bch_data_insert_endio(struct bio *bio)
178 {
179 	struct closure *cl = bio->bi_private;
180 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
181 
182 	if (bio->bi_status) {
183 		/* TODO: We could try to recover from this. */
184 		if (op->writeback)
185 			op->status = bio->bi_status;
186 		else if (!op->replace)
187 			set_closure_fn(cl, bch_data_insert_error, op->wq);
188 		else
189 			set_closure_fn(cl, NULL, NULL);
190 	}
191 
192 	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
193 }
194 
195 static void bch_data_insert_start(struct closure *cl)
196 {
197 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
198 	struct bio *bio = op->bio, *n;
199 
200 	if (op->bypass)
201 		return bch_data_invalidate(cl);
202 
203 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
204 		wake_up_gc(op->c);
205 
206 	/*
207 	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
208 	 * flush, it'll wait on the journal write.
209 	 */
210 	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
211 
212 	do {
213 		unsigned i;
214 		struct bkey *k;
215 		struct bio_set *split = op->c->bio_split;
216 
217 		/* 1 for the device pointer and 1 for the chksum */
218 		if (bch_keylist_realloc(&op->insert_keys,
219 					3 + (op->csum ? 1 : 0),
220 					op->c)) {
221 			continue_at(cl, bch_data_insert_keys, op->wq);
222 			return;
223 		}
224 
225 		k = op->insert_keys.top;
226 		bkey_init(k);
227 		SET_KEY_INODE(k, op->inode);
228 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
229 
230 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
231 				       op->write_point, op->write_prio,
232 				       op->writeback))
233 			goto err;
234 
235 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
236 
237 		n->bi_end_io	= bch_data_insert_endio;
238 		n->bi_private	= cl;
239 
240 		if (op->writeback) {
241 			SET_KEY_DIRTY(k, true);
242 
243 			for (i = 0; i < KEY_PTRS(k); i++)
244 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
245 					    GC_MARK_DIRTY);
246 		}
247 
248 		SET_KEY_CSUM(k, op->csum);
249 		if (KEY_CSUM(k))
250 			bio_csum(n, k);
251 
252 		trace_bcache_cache_insert(k);
253 		bch_keylist_push(&op->insert_keys);
254 
255 		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
256 		bch_submit_bbio(n, op->c, k, 0);
257 	} while (n != bio);
258 
259 	op->insert_data_done = true;
260 	continue_at(cl, bch_data_insert_keys, op->wq);
261 	return;
262 err:
263 	/* bch_alloc_sectors() blocks if s->writeback = true */
264 	BUG_ON(op->writeback);
265 
266 	/*
267 	 * But if it's not a writeback write we'd rather just bail out if
268 	 * there aren't any buckets ready to write to - it might take awhile and
269 	 * we might be starving btree writes for gc or something.
270 	 */
271 
272 	if (!op->replace) {
273 		/*
274 		 * Writethrough write: We can't complete the write until we've
275 		 * updated the index. But we don't want to delay the write while
276 		 * we wait for buckets to be freed up, so just invalidate the
277 		 * rest of the write.
278 		 */
279 		op->bypass = true;
280 		return bch_data_invalidate(cl);
281 	} else {
282 		/*
283 		 * From a cache miss, we can just insert the keys for the data
284 		 * we have written or bail out if we didn't do anything.
285 		 */
286 		op->insert_data_done = true;
287 		bio_put(bio);
288 
289 		if (!bch_keylist_empty(&op->insert_keys))
290 			continue_at(cl, bch_data_insert_keys, op->wq);
291 		else
292 			closure_return(cl);
293 	}
294 }
295 
296 /**
297  * bch_data_insert - stick some data in the cache
298  *
299  * This is the starting point for any data to end up in a cache device; it could
300  * be from a normal write, or a writeback write, or a write to a flash only
301  * volume - it's also used by the moving garbage collector to compact data in
302  * mostly empty buckets.
303  *
304  * It first writes the data to the cache, creating a list of keys to be inserted
305  * (if the data had to be fragmented there will be multiple keys); after the
306  * data is written it calls bch_journal, and after the keys have been added to
307  * the next journal write they're inserted into the btree.
308  *
309  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
310  * and op->inode is used for the key inode.
311  *
312  * If s->bypass is true, instead of inserting the data it invalidates the
313  * region of the cache represented by s->cache_bio and op->inode.
314  */
315 void bch_data_insert(struct closure *cl)
316 {
317 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
318 
319 	trace_bcache_write(op->c, op->inode, op->bio,
320 			   op->writeback, op->bypass);
321 
322 	bch_keylist_init(&op->insert_keys);
323 	bio_get(op->bio);
324 	bch_data_insert_start(cl);
325 }
326 
327 /* Congested? */
328 
329 unsigned bch_get_congested(struct cache_set *c)
330 {
331 	int i;
332 	long rand;
333 
334 	if (!c->congested_read_threshold_us &&
335 	    !c->congested_write_threshold_us)
336 		return 0;
337 
338 	i = (local_clock_us() - c->congested_last_us) / 1024;
339 	if (i < 0)
340 		return 0;
341 
342 	i += atomic_read(&c->congested);
343 	if (i >= 0)
344 		return 0;
345 
346 	i += CONGESTED_MAX;
347 
348 	if (i > 0)
349 		i = fract_exp_two(i, 6);
350 
351 	rand = get_random_int();
352 	i -= bitmap_weight(&rand, BITS_PER_LONG);
353 
354 	return i > 0 ? i : 1;
355 }
356 
357 static void add_sequential(struct task_struct *t)
358 {
359 	ewma_add(t->sequential_io_avg,
360 		 t->sequential_io, 8, 0);
361 
362 	t->sequential_io = 0;
363 }
364 
365 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
366 {
367 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
368 }
369 
370 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
371 {
372 	struct cache_set *c = dc->disk.c;
373 	unsigned mode = cache_mode(dc, bio);
374 	unsigned sectors, congested = bch_get_congested(c);
375 	struct task_struct *task = current;
376 	struct io *i;
377 
378 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
379 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
380 	    (bio_op(bio) == REQ_OP_DISCARD))
381 		goto skip;
382 
383 	if (mode == CACHE_MODE_NONE ||
384 	    (mode == CACHE_MODE_WRITEAROUND &&
385 	     op_is_write(bio_op(bio))))
386 		goto skip;
387 
388 	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
389 	    bio_sectors(bio) & (c->sb.block_size - 1)) {
390 		pr_debug("skipping unaligned io");
391 		goto skip;
392 	}
393 
394 	if (bypass_torture_test(dc)) {
395 		if ((get_random_int() & 3) == 3)
396 			goto skip;
397 		else
398 			goto rescale;
399 	}
400 
401 	if (!congested && !dc->sequential_cutoff)
402 		goto rescale;
403 
404 	spin_lock(&dc->io_lock);
405 
406 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
407 		if (i->last == bio->bi_iter.bi_sector &&
408 		    time_before(jiffies, i->jiffies))
409 			goto found;
410 
411 	i = list_first_entry(&dc->io_lru, struct io, lru);
412 
413 	add_sequential(task);
414 	i->sequential = 0;
415 found:
416 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
417 		i->sequential	+= bio->bi_iter.bi_size;
418 
419 	i->last			 = bio_end_sector(bio);
420 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
421 	task->sequential_io	 = i->sequential;
422 
423 	hlist_del(&i->hash);
424 	hlist_add_head(&i->hash, iohash(dc, i->last));
425 	list_move_tail(&i->lru, &dc->io_lru);
426 
427 	spin_unlock(&dc->io_lock);
428 
429 	sectors = max(task->sequential_io,
430 		      task->sequential_io_avg) >> 9;
431 
432 	if (dc->sequential_cutoff &&
433 	    sectors >= dc->sequential_cutoff >> 9) {
434 		trace_bcache_bypass_sequential(bio);
435 		goto skip;
436 	}
437 
438 	if (congested && sectors >= congested) {
439 		trace_bcache_bypass_congested(bio);
440 		goto skip;
441 	}
442 
443 rescale:
444 	bch_rescale_priorities(c, bio_sectors(bio));
445 	return false;
446 skip:
447 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
448 	return true;
449 }
450 
451 /* Cache lookup */
452 
453 struct search {
454 	/* Stack frame for bio_complete */
455 	struct closure		cl;
456 
457 	struct bbio		bio;
458 	struct bio		*orig_bio;
459 	struct bio		*cache_miss;
460 	struct bcache_device	*d;
461 
462 	unsigned		insert_bio_sectors;
463 	unsigned		recoverable:1;
464 	unsigned		write:1;
465 	unsigned		read_dirty_data:1;
466 
467 	unsigned long		start_time;
468 
469 	struct btree_op		op;
470 	struct data_insert_op	iop;
471 };
472 
473 static void bch_cache_read_endio(struct bio *bio)
474 {
475 	struct bbio *b = container_of(bio, struct bbio, bio);
476 	struct closure *cl = bio->bi_private;
477 	struct search *s = container_of(cl, struct search, cl);
478 
479 	/*
480 	 * If the bucket was reused while our bio was in flight, we might have
481 	 * read the wrong data. Set s->error but not error so it doesn't get
482 	 * counted against the cache device, but we'll still reread the data
483 	 * from the backing device.
484 	 */
485 
486 	if (bio->bi_status)
487 		s->iop.status = bio->bi_status;
488 	else if (!KEY_DIRTY(&b->key) &&
489 		 ptr_stale(s->iop.c, &b->key, 0)) {
490 		atomic_long_inc(&s->iop.c->cache_read_races);
491 		s->iop.status = BLK_STS_IOERR;
492 	}
493 
494 	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
495 }
496 
497 /*
498  * Read from a single key, handling the initial cache miss if the key starts in
499  * the middle of the bio
500  */
501 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
502 {
503 	struct search *s = container_of(op, struct search, op);
504 	struct bio *n, *bio = &s->bio.bio;
505 	struct bkey *bio_key;
506 	unsigned ptr;
507 
508 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
509 		return MAP_CONTINUE;
510 
511 	if (KEY_INODE(k) != s->iop.inode ||
512 	    KEY_START(k) > bio->bi_iter.bi_sector) {
513 		unsigned bio_sectors = bio_sectors(bio);
514 		unsigned sectors = KEY_INODE(k) == s->iop.inode
515 			? min_t(uint64_t, INT_MAX,
516 				KEY_START(k) - bio->bi_iter.bi_sector)
517 			: INT_MAX;
518 
519 		int ret = s->d->cache_miss(b, s, bio, sectors);
520 		if (ret != MAP_CONTINUE)
521 			return ret;
522 
523 		/* if this was a complete miss we shouldn't get here */
524 		BUG_ON(bio_sectors <= sectors);
525 	}
526 
527 	if (!KEY_SIZE(k))
528 		return MAP_CONTINUE;
529 
530 	/* XXX: figure out best pointer - for multiple cache devices */
531 	ptr = 0;
532 
533 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
534 
535 	if (KEY_DIRTY(k))
536 		s->read_dirty_data = true;
537 
538 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
539 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
540 			   GFP_NOIO, s->d->bio_split);
541 
542 	bio_key = &container_of(n, struct bbio, bio)->key;
543 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
544 
545 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
546 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
547 
548 	n->bi_end_io	= bch_cache_read_endio;
549 	n->bi_private	= &s->cl;
550 
551 	/*
552 	 * The bucket we're reading from might be reused while our bio
553 	 * is in flight, and we could then end up reading the wrong
554 	 * data.
555 	 *
556 	 * We guard against this by checking (in cache_read_endio()) if
557 	 * the pointer is stale again; if so, we treat it as an error
558 	 * and reread from the backing device (but we don't pass that
559 	 * error up anywhere).
560 	 */
561 
562 	__bch_submit_bbio(n, b->c);
563 	return n == bio ? MAP_DONE : MAP_CONTINUE;
564 }
565 
566 static void cache_lookup(struct closure *cl)
567 {
568 	struct search *s = container_of(cl, struct search, iop.cl);
569 	struct bio *bio = &s->bio.bio;
570 	int ret;
571 
572 	bch_btree_op_init(&s->op, -1);
573 
574 	ret = bch_btree_map_keys(&s->op, s->iop.c,
575 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
576 				 cache_lookup_fn, MAP_END_KEY);
577 	if (ret == -EAGAIN) {
578 		continue_at(cl, cache_lookup, bcache_wq);
579 		return;
580 	}
581 
582 	closure_return(cl);
583 }
584 
585 /* Common code for the make_request functions */
586 
587 static void request_endio(struct bio *bio)
588 {
589 	struct closure *cl = bio->bi_private;
590 
591 	if (bio->bi_status) {
592 		struct search *s = container_of(cl, struct search, cl);
593 		s->iop.status = bio->bi_status;
594 		/* Only cache read errors are recoverable */
595 		s->recoverable = false;
596 	}
597 
598 	bio_put(bio);
599 	closure_put(cl);
600 }
601 
602 static void bio_complete(struct search *s)
603 {
604 	if (s->orig_bio) {
605 		struct request_queue *q = s->orig_bio->bi_disk->queue;
606 		generic_end_io_acct(q, bio_data_dir(s->orig_bio),
607 				    &s->d->disk->part0, s->start_time);
608 
609 		trace_bcache_request_end(s->d, s->orig_bio);
610 		s->orig_bio->bi_status = s->iop.status;
611 		bio_endio(s->orig_bio);
612 		s->orig_bio = NULL;
613 	}
614 }
615 
616 static void do_bio_hook(struct search *s, struct bio *orig_bio)
617 {
618 	struct bio *bio = &s->bio.bio;
619 
620 	bio_init(bio, NULL, 0);
621 	__bio_clone_fast(bio, orig_bio);
622 	bio->bi_end_io		= request_endio;
623 	bio->bi_private		= &s->cl;
624 
625 	bio_cnt_set(bio, 3);
626 }
627 
628 static void search_free(struct closure *cl)
629 {
630 	struct search *s = container_of(cl, struct search, cl);
631 	bio_complete(s);
632 
633 	if (s->iop.bio)
634 		bio_put(s->iop.bio);
635 
636 	closure_debug_destroy(cl);
637 	mempool_free(s, s->d->c->search);
638 }
639 
640 static inline struct search *search_alloc(struct bio *bio,
641 					  struct bcache_device *d)
642 {
643 	struct search *s;
644 
645 	s = mempool_alloc(d->c->search, GFP_NOIO);
646 
647 	closure_init(&s->cl, NULL);
648 	do_bio_hook(s, bio);
649 
650 	s->orig_bio		= bio;
651 	s->cache_miss		= NULL;
652 	s->d			= d;
653 	s->recoverable		= 1;
654 	s->write		= op_is_write(bio_op(bio));
655 	s->read_dirty_data	= 0;
656 	s->start_time		= jiffies;
657 
658 	s->iop.c		= d->c;
659 	s->iop.bio		= NULL;
660 	s->iop.inode		= d->id;
661 	s->iop.write_point	= hash_long((unsigned long) current, 16);
662 	s->iop.write_prio	= 0;
663 	s->iop.status		= 0;
664 	s->iop.flags		= 0;
665 	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
666 	s->iop.wq		= bcache_wq;
667 
668 	return s;
669 }
670 
671 /* Cached devices */
672 
673 static void cached_dev_bio_complete(struct closure *cl)
674 {
675 	struct search *s = container_of(cl, struct search, cl);
676 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
677 
678 	search_free(cl);
679 	cached_dev_put(dc);
680 }
681 
682 /* Process reads */
683 
684 static void cached_dev_cache_miss_done(struct closure *cl)
685 {
686 	struct search *s = container_of(cl, struct search, cl);
687 
688 	if (s->iop.replace_collision)
689 		bch_mark_cache_miss_collision(s->iop.c, s->d);
690 
691 	if (s->iop.bio)
692 		bio_free_pages(s->iop.bio);
693 
694 	cached_dev_bio_complete(cl);
695 }
696 
697 static void cached_dev_read_error(struct closure *cl)
698 {
699 	struct search *s = container_of(cl, struct search, cl);
700 	struct bio *bio = &s->bio.bio;
701 
702 	if (s->recoverable) {
703 		/* Retry from the backing device: */
704 		trace_bcache_read_retry(s->orig_bio);
705 
706 		s->iop.status = 0;
707 		do_bio_hook(s, s->orig_bio);
708 
709 		/* XXX: invalidate cache */
710 
711 		closure_bio_submit(bio, cl);
712 	}
713 
714 	continue_at(cl, cached_dev_cache_miss_done, NULL);
715 }
716 
717 static void cached_dev_read_done(struct closure *cl)
718 {
719 	struct search *s = container_of(cl, struct search, cl);
720 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
721 
722 	/*
723 	 * We had a cache miss; cache_bio now contains data ready to be inserted
724 	 * into the cache.
725 	 *
726 	 * First, we copy the data we just read from cache_bio's bounce buffers
727 	 * to the buffers the original bio pointed to:
728 	 */
729 
730 	if (s->iop.bio) {
731 		bio_reset(s->iop.bio);
732 		s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
733 		bio_copy_dev(s->iop.bio, s->cache_miss);
734 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
735 		bch_bio_map(s->iop.bio, NULL);
736 
737 		bio_copy_data(s->cache_miss, s->iop.bio);
738 
739 		bio_put(s->cache_miss);
740 		s->cache_miss = NULL;
741 	}
742 
743 	if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
744 		bch_data_verify(dc, s->orig_bio);
745 
746 	bio_complete(s);
747 
748 	if (s->iop.bio &&
749 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
750 		BUG_ON(!s->iop.replace);
751 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
752 	}
753 
754 	continue_at(cl, cached_dev_cache_miss_done, NULL);
755 }
756 
757 static void cached_dev_read_done_bh(struct closure *cl)
758 {
759 	struct search *s = container_of(cl, struct search, cl);
760 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
761 
762 	bch_mark_cache_accounting(s->iop.c, s->d,
763 				  !s->cache_miss, s->iop.bypass);
764 	trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
765 
766 	if (s->iop.status)
767 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
768 	else if (s->iop.bio || verify(dc, &s->bio.bio))
769 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
770 	else
771 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
772 }
773 
774 static int cached_dev_cache_miss(struct btree *b, struct search *s,
775 				 struct bio *bio, unsigned sectors)
776 {
777 	int ret = MAP_CONTINUE;
778 	unsigned reada = 0;
779 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
780 	struct bio *miss, *cache_bio;
781 
782 	if (s->cache_miss || s->iop.bypass) {
783 		miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
784 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
785 		goto out_submit;
786 	}
787 
788 	if (!(bio->bi_opf & REQ_RAHEAD) &&
789 	    !(bio->bi_opf & REQ_META) &&
790 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
791 		reada = min_t(sector_t, dc->readahead >> 9,
792 			      get_capacity(bio->bi_disk) - bio_end_sector(bio));
793 
794 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
795 
796 	s->iop.replace_key = KEY(s->iop.inode,
797 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
798 				 s->insert_bio_sectors);
799 
800 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
801 	if (ret)
802 		return ret;
803 
804 	s->iop.replace = true;
805 
806 	miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
807 
808 	/* btree_search_recurse()'s btree iterator is no good anymore */
809 	ret = miss == bio ? MAP_DONE : -EINTR;
810 
811 	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
812 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
813 			dc->disk.bio_split);
814 	if (!cache_bio)
815 		goto out_submit;
816 
817 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
818 	bio_copy_dev(cache_bio, miss);
819 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
820 
821 	cache_bio->bi_end_io	= request_endio;
822 	cache_bio->bi_private	= &s->cl;
823 
824 	bch_bio_map(cache_bio, NULL);
825 	if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
826 		goto out_put;
827 
828 	if (reada)
829 		bch_mark_cache_readahead(s->iop.c, s->d);
830 
831 	s->cache_miss	= miss;
832 	s->iop.bio	= cache_bio;
833 	bio_get(cache_bio);
834 	closure_bio_submit(cache_bio, &s->cl);
835 
836 	return ret;
837 out_put:
838 	bio_put(cache_bio);
839 out_submit:
840 	miss->bi_end_io		= request_endio;
841 	miss->bi_private	= &s->cl;
842 	closure_bio_submit(miss, &s->cl);
843 	return ret;
844 }
845 
846 static void cached_dev_read(struct cached_dev *dc, struct search *s)
847 {
848 	struct closure *cl = &s->cl;
849 
850 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
851 	continue_at(cl, cached_dev_read_done_bh, NULL);
852 }
853 
854 /* Process writes */
855 
856 static void cached_dev_write_complete(struct closure *cl)
857 {
858 	struct search *s = container_of(cl, struct search, cl);
859 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
860 
861 	up_read_non_owner(&dc->writeback_lock);
862 	cached_dev_bio_complete(cl);
863 }
864 
865 static void cached_dev_write(struct cached_dev *dc, struct search *s)
866 {
867 	struct closure *cl = &s->cl;
868 	struct bio *bio = &s->bio.bio;
869 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
870 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
871 
872 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
873 
874 	down_read_non_owner(&dc->writeback_lock);
875 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
876 		/*
877 		 * We overlap with some dirty data undergoing background
878 		 * writeback, force this write to writeback
879 		 */
880 		s->iop.bypass = false;
881 		s->iop.writeback = true;
882 	}
883 
884 	/*
885 	 * Discards aren't _required_ to do anything, so skipping if
886 	 * check_overlapping returned true is ok
887 	 *
888 	 * But check_overlapping drops dirty keys for which io hasn't started,
889 	 * so we still want to call it.
890 	 */
891 	if (bio_op(bio) == REQ_OP_DISCARD)
892 		s->iop.bypass = true;
893 
894 	if (should_writeback(dc, s->orig_bio,
895 			     cache_mode(dc, bio),
896 			     s->iop.bypass)) {
897 		s->iop.bypass = false;
898 		s->iop.writeback = true;
899 	}
900 
901 	if (s->iop.bypass) {
902 		s->iop.bio = s->orig_bio;
903 		bio_get(s->iop.bio);
904 
905 		if ((bio_op(bio) != REQ_OP_DISCARD) ||
906 		    blk_queue_discard(bdev_get_queue(dc->bdev)))
907 			closure_bio_submit(bio, cl);
908 	} else if (s->iop.writeback) {
909 		bch_writeback_add(dc);
910 		s->iop.bio = bio;
911 
912 		if (bio->bi_opf & REQ_PREFLUSH) {
913 			/* Also need to send a flush to the backing device */
914 			struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
915 							     dc->disk.bio_split);
916 
917 			bio_copy_dev(flush, bio);
918 			flush->bi_end_io = request_endio;
919 			flush->bi_private = cl;
920 			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
921 
922 			closure_bio_submit(flush, cl);
923 		}
924 	} else {
925 		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
926 
927 		closure_bio_submit(bio, cl);
928 	}
929 
930 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
931 	continue_at(cl, cached_dev_write_complete, NULL);
932 }
933 
934 static void cached_dev_nodata(struct closure *cl)
935 {
936 	struct search *s = container_of(cl, struct search, cl);
937 	struct bio *bio = &s->bio.bio;
938 
939 	if (s->iop.flush_journal)
940 		bch_journal_meta(s->iop.c, cl);
941 
942 	/* If it's a flush, we send the flush to the backing device too */
943 	closure_bio_submit(bio, cl);
944 
945 	continue_at(cl, cached_dev_bio_complete, NULL);
946 }
947 
948 /* Cached devices - read & write stuff */
949 
950 static blk_qc_t cached_dev_make_request(struct request_queue *q,
951 					struct bio *bio)
952 {
953 	struct search *s;
954 	struct bcache_device *d = bio->bi_disk->private_data;
955 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
956 	int rw = bio_data_dir(bio);
957 
958 	generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
959 
960 	bio_set_dev(bio, dc->bdev);
961 	bio->bi_iter.bi_sector += dc->sb.data_offset;
962 
963 	if (cached_dev_get(dc)) {
964 		s = search_alloc(bio, d);
965 		trace_bcache_request_start(s->d, bio);
966 
967 		if (!bio->bi_iter.bi_size) {
968 			/*
969 			 * can't call bch_journal_meta from under
970 			 * generic_make_request
971 			 */
972 			continue_at_nobarrier(&s->cl,
973 					      cached_dev_nodata,
974 					      bcache_wq);
975 		} else {
976 			s->iop.bypass = check_should_bypass(dc, bio);
977 
978 			if (rw)
979 				cached_dev_write(dc, s);
980 			else
981 				cached_dev_read(dc, s);
982 		}
983 	} else {
984 		if ((bio_op(bio) == REQ_OP_DISCARD) &&
985 		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
986 			bio_endio(bio);
987 		else
988 			generic_make_request(bio);
989 	}
990 
991 	return BLK_QC_T_NONE;
992 }
993 
994 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
995 			    unsigned int cmd, unsigned long arg)
996 {
997 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
998 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
999 }
1000 
1001 static int cached_dev_congested(void *data, int bits)
1002 {
1003 	struct bcache_device *d = data;
1004 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1005 	struct request_queue *q = bdev_get_queue(dc->bdev);
1006 	int ret = 0;
1007 
1008 	if (bdi_congested(q->backing_dev_info, bits))
1009 		return 1;
1010 
1011 	if (cached_dev_get(dc)) {
1012 		unsigned i;
1013 		struct cache *ca;
1014 
1015 		for_each_cache(ca, d->c, i) {
1016 			q = bdev_get_queue(ca->bdev);
1017 			ret |= bdi_congested(q->backing_dev_info, bits);
1018 		}
1019 
1020 		cached_dev_put(dc);
1021 	}
1022 
1023 	return ret;
1024 }
1025 
1026 void bch_cached_dev_request_init(struct cached_dev *dc)
1027 {
1028 	struct gendisk *g = dc->disk.disk;
1029 
1030 	g->queue->make_request_fn		= cached_dev_make_request;
1031 	g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1032 	dc->disk.cache_miss			= cached_dev_cache_miss;
1033 	dc->disk.ioctl				= cached_dev_ioctl;
1034 }
1035 
1036 /* Flash backed devices */
1037 
1038 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1039 				struct bio *bio, unsigned sectors)
1040 {
1041 	unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1042 
1043 	swap(bio->bi_iter.bi_size, bytes);
1044 	zero_fill_bio(bio);
1045 	swap(bio->bi_iter.bi_size, bytes);
1046 
1047 	bio_advance(bio, bytes);
1048 
1049 	if (!bio->bi_iter.bi_size)
1050 		return MAP_DONE;
1051 
1052 	return MAP_CONTINUE;
1053 }
1054 
1055 static void flash_dev_nodata(struct closure *cl)
1056 {
1057 	struct search *s = container_of(cl, struct search, cl);
1058 
1059 	if (s->iop.flush_journal)
1060 		bch_journal_meta(s->iop.c, cl);
1061 
1062 	continue_at(cl, search_free, NULL);
1063 }
1064 
1065 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1066 					     struct bio *bio)
1067 {
1068 	struct search *s;
1069 	struct closure *cl;
1070 	struct bcache_device *d = bio->bi_disk->private_data;
1071 	int rw = bio_data_dir(bio);
1072 
1073 	generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1074 
1075 	s = search_alloc(bio, d);
1076 	cl = &s->cl;
1077 	bio = &s->bio.bio;
1078 
1079 	trace_bcache_request_start(s->d, bio);
1080 
1081 	if (!bio->bi_iter.bi_size) {
1082 		/*
1083 		 * can't call bch_journal_meta from under
1084 		 * generic_make_request
1085 		 */
1086 		continue_at_nobarrier(&s->cl,
1087 				      flash_dev_nodata,
1088 				      bcache_wq);
1089 		return BLK_QC_T_NONE;
1090 	} else if (rw) {
1091 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1092 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1093 					&KEY(d->id, bio_end_sector(bio), 0));
1094 
1095 		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1096 		s->iop.writeback	= true;
1097 		s->iop.bio		= bio;
1098 
1099 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1100 	} else {
1101 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1102 	}
1103 
1104 	continue_at(cl, search_free, NULL);
1105 	return BLK_QC_T_NONE;
1106 }
1107 
1108 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1109 			   unsigned int cmd, unsigned long arg)
1110 {
1111 	return -ENOTTY;
1112 }
1113 
1114 static int flash_dev_congested(void *data, int bits)
1115 {
1116 	struct bcache_device *d = data;
1117 	struct request_queue *q;
1118 	struct cache *ca;
1119 	unsigned i;
1120 	int ret = 0;
1121 
1122 	for_each_cache(ca, d->c, i) {
1123 		q = bdev_get_queue(ca->bdev);
1124 		ret |= bdi_congested(q->backing_dev_info, bits);
1125 	}
1126 
1127 	return ret;
1128 }
1129 
1130 void bch_flash_dev_request_init(struct bcache_device *d)
1131 {
1132 	struct gendisk *g = d->disk;
1133 
1134 	g->queue->make_request_fn		= flash_dev_make_request;
1135 	g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1136 	d->cache_miss				= flash_dev_cache_miss;
1137 	d->ioctl				= flash_dev_ioctl;
1138 }
1139 
1140 void bch_request_exit(void)
1141 {
1142 	if (bch_search_cache)
1143 		kmem_cache_destroy(bch_search_cache);
1144 }
1145 
1146 int __init bch_request_init(void)
1147 {
1148 	bch_search_cache = KMEM_CACHE(search, 0);
1149 	if (!bch_search_cache)
1150 		return -ENOMEM;
1151 
1152 	return 0;
1153 }
1154