1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Main bcache entry point - handle a read or a write request and decide what to 4 * do with it; the make_request functions are called by the block layer. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "request.h" 14 #include "writeback.h" 15 16 #include <linux/module.h> 17 #include <linux/hash.h> 18 #include <linux/random.h> 19 #include <linux/backing-dev.h> 20 21 #include <trace/events/bcache.h> 22 23 #define CUTOFF_CACHE_ADD 95 24 #define CUTOFF_CACHE_READA 90 25 26 struct kmem_cache *bch_search_cache; 27 28 static void bch_data_insert_start(struct closure *); 29 30 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) 31 { 32 return BDEV_CACHE_MODE(&dc->sb); 33 } 34 35 static bool verify(struct cached_dev *dc, struct bio *bio) 36 { 37 return dc->verify; 38 } 39 40 static void bio_csum(struct bio *bio, struct bkey *k) 41 { 42 struct bio_vec bv; 43 struct bvec_iter iter; 44 uint64_t csum = 0; 45 46 bio_for_each_segment(bv, bio, iter) { 47 void *d = kmap(bv.bv_page) + bv.bv_offset; 48 csum = bch_crc64_update(csum, d, bv.bv_len); 49 kunmap(bv.bv_page); 50 } 51 52 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 53 } 54 55 /* Insert data into cache */ 56 57 static void bch_data_insert_keys(struct closure *cl) 58 { 59 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 60 atomic_t *journal_ref = NULL; 61 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 62 int ret; 63 64 /* 65 * If we're looping, might already be waiting on 66 * another journal write - can't wait on more than one journal write at 67 * a time 68 * 69 * XXX: this looks wrong 70 */ 71 #if 0 72 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) 73 closure_sync(&s->cl); 74 #endif 75 76 if (!op->replace) 77 journal_ref = bch_journal(op->c, &op->insert_keys, 78 op->flush_journal ? cl : NULL); 79 80 ret = bch_btree_insert(op->c, &op->insert_keys, 81 journal_ref, replace_key); 82 if (ret == -ESRCH) { 83 op->replace_collision = true; 84 } else if (ret) { 85 op->status = BLK_STS_RESOURCE; 86 op->insert_data_done = true; 87 } 88 89 if (journal_ref) 90 atomic_dec_bug(journal_ref); 91 92 if (!op->insert_data_done) { 93 continue_at(cl, bch_data_insert_start, op->wq); 94 return; 95 } 96 97 bch_keylist_free(&op->insert_keys); 98 closure_return(cl); 99 } 100 101 static int bch_keylist_realloc(struct keylist *l, unsigned u64s, 102 struct cache_set *c) 103 { 104 size_t oldsize = bch_keylist_nkeys(l); 105 size_t newsize = oldsize + u64s; 106 107 /* 108 * The journalling code doesn't handle the case where the keys to insert 109 * is bigger than an empty write: If we just return -ENOMEM here, 110 * bio_insert() and bio_invalidate() will insert the keys created so far 111 * and finish the rest when the keylist is empty. 112 */ 113 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 114 return -ENOMEM; 115 116 return __bch_keylist_realloc(l, u64s); 117 } 118 119 static void bch_data_invalidate(struct closure *cl) 120 { 121 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 122 struct bio *bio = op->bio; 123 124 pr_debug("invalidating %i sectors from %llu", 125 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 126 127 while (bio_sectors(bio)) { 128 unsigned sectors = min(bio_sectors(bio), 129 1U << (KEY_SIZE_BITS - 1)); 130 131 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 132 goto out; 133 134 bio->bi_iter.bi_sector += sectors; 135 bio->bi_iter.bi_size -= sectors << 9; 136 137 bch_keylist_add(&op->insert_keys, 138 &KEY(op->inode, bio->bi_iter.bi_sector, sectors)); 139 } 140 141 op->insert_data_done = true; 142 bio_put(bio); 143 out: 144 continue_at(cl, bch_data_insert_keys, op->wq); 145 } 146 147 static void bch_data_insert_error(struct closure *cl) 148 { 149 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 150 151 /* 152 * Our data write just errored, which means we've got a bunch of keys to 153 * insert that point to data that wasn't succesfully written. 154 * 155 * We don't have to insert those keys but we still have to invalidate 156 * that region of the cache - so, if we just strip off all the pointers 157 * from the keys we'll accomplish just that. 158 */ 159 160 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 161 162 while (src != op->insert_keys.top) { 163 struct bkey *n = bkey_next(src); 164 165 SET_KEY_PTRS(src, 0); 166 memmove(dst, src, bkey_bytes(src)); 167 168 dst = bkey_next(dst); 169 src = n; 170 } 171 172 op->insert_keys.top = dst; 173 174 bch_data_insert_keys(cl); 175 } 176 177 static void bch_data_insert_endio(struct bio *bio) 178 { 179 struct closure *cl = bio->bi_private; 180 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 181 182 if (bio->bi_status) { 183 /* TODO: We could try to recover from this. */ 184 if (op->writeback) 185 op->status = bio->bi_status; 186 else if (!op->replace) 187 set_closure_fn(cl, bch_data_insert_error, op->wq); 188 else 189 set_closure_fn(cl, NULL, NULL); 190 } 191 192 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache"); 193 } 194 195 static void bch_data_insert_start(struct closure *cl) 196 { 197 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 198 struct bio *bio = op->bio, *n; 199 200 if (op->bypass) 201 return bch_data_invalidate(cl); 202 203 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) 204 wake_up_gc(op->c); 205 206 /* 207 * Journal writes are marked REQ_PREFLUSH; if the original write was a 208 * flush, it'll wait on the journal write. 209 */ 210 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); 211 212 do { 213 unsigned i; 214 struct bkey *k; 215 struct bio_set *split = op->c->bio_split; 216 217 /* 1 for the device pointer and 1 for the chksum */ 218 if (bch_keylist_realloc(&op->insert_keys, 219 3 + (op->csum ? 1 : 0), 220 op->c)) { 221 continue_at(cl, bch_data_insert_keys, op->wq); 222 return; 223 } 224 225 k = op->insert_keys.top; 226 bkey_init(k); 227 SET_KEY_INODE(k, op->inode); 228 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 229 230 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 231 op->write_point, op->write_prio, 232 op->writeback)) 233 goto err; 234 235 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 236 237 n->bi_end_io = bch_data_insert_endio; 238 n->bi_private = cl; 239 240 if (op->writeback) { 241 SET_KEY_DIRTY(k, true); 242 243 for (i = 0; i < KEY_PTRS(k); i++) 244 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 245 GC_MARK_DIRTY); 246 } 247 248 SET_KEY_CSUM(k, op->csum); 249 if (KEY_CSUM(k)) 250 bio_csum(n, k); 251 252 trace_bcache_cache_insert(k); 253 bch_keylist_push(&op->insert_keys); 254 255 bio_set_op_attrs(n, REQ_OP_WRITE, 0); 256 bch_submit_bbio(n, op->c, k, 0); 257 } while (n != bio); 258 259 op->insert_data_done = true; 260 continue_at(cl, bch_data_insert_keys, op->wq); 261 return; 262 err: 263 /* bch_alloc_sectors() blocks if s->writeback = true */ 264 BUG_ON(op->writeback); 265 266 /* 267 * But if it's not a writeback write we'd rather just bail out if 268 * there aren't any buckets ready to write to - it might take awhile and 269 * we might be starving btree writes for gc or something. 270 */ 271 272 if (!op->replace) { 273 /* 274 * Writethrough write: We can't complete the write until we've 275 * updated the index. But we don't want to delay the write while 276 * we wait for buckets to be freed up, so just invalidate the 277 * rest of the write. 278 */ 279 op->bypass = true; 280 return bch_data_invalidate(cl); 281 } else { 282 /* 283 * From a cache miss, we can just insert the keys for the data 284 * we have written or bail out if we didn't do anything. 285 */ 286 op->insert_data_done = true; 287 bio_put(bio); 288 289 if (!bch_keylist_empty(&op->insert_keys)) 290 continue_at(cl, bch_data_insert_keys, op->wq); 291 else 292 closure_return(cl); 293 } 294 } 295 296 /** 297 * bch_data_insert - stick some data in the cache 298 * 299 * This is the starting point for any data to end up in a cache device; it could 300 * be from a normal write, or a writeback write, or a write to a flash only 301 * volume - it's also used by the moving garbage collector to compact data in 302 * mostly empty buckets. 303 * 304 * It first writes the data to the cache, creating a list of keys to be inserted 305 * (if the data had to be fragmented there will be multiple keys); after the 306 * data is written it calls bch_journal, and after the keys have been added to 307 * the next journal write they're inserted into the btree. 308 * 309 * It inserts the data in s->cache_bio; bi_sector is used for the key offset, 310 * and op->inode is used for the key inode. 311 * 312 * If s->bypass is true, instead of inserting the data it invalidates the 313 * region of the cache represented by s->cache_bio and op->inode. 314 */ 315 void bch_data_insert(struct closure *cl) 316 { 317 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 318 319 trace_bcache_write(op->c, op->inode, op->bio, 320 op->writeback, op->bypass); 321 322 bch_keylist_init(&op->insert_keys); 323 bio_get(op->bio); 324 bch_data_insert_start(cl); 325 } 326 327 /* Congested? */ 328 329 unsigned bch_get_congested(struct cache_set *c) 330 { 331 int i; 332 long rand; 333 334 if (!c->congested_read_threshold_us && 335 !c->congested_write_threshold_us) 336 return 0; 337 338 i = (local_clock_us() - c->congested_last_us) / 1024; 339 if (i < 0) 340 return 0; 341 342 i += atomic_read(&c->congested); 343 if (i >= 0) 344 return 0; 345 346 i += CONGESTED_MAX; 347 348 if (i > 0) 349 i = fract_exp_two(i, 6); 350 351 rand = get_random_int(); 352 i -= bitmap_weight(&rand, BITS_PER_LONG); 353 354 return i > 0 ? i : 1; 355 } 356 357 static void add_sequential(struct task_struct *t) 358 { 359 ewma_add(t->sequential_io_avg, 360 t->sequential_io, 8, 0); 361 362 t->sequential_io = 0; 363 } 364 365 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 366 { 367 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 368 } 369 370 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 371 { 372 struct cache_set *c = dc->disk.c; 373 unsigned mode = cache_mode(dc, bio); 374 unsigned sectors, congested = bch_get_congested(c); 375 struct task_struct *task = current; 376 struct io *i; 377 378 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 379 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 380 (bio_op(bio) == REQ_OP_DISCARD)) 381 goto skip; 382 383 if (mode == CACHE_MODE_NONE || 384 (mode == CACHE_MODE_WRITEAROUND && 385 op_is_write(bio_op(bio)))) 386 goto skip; 387 388 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 389 bio_sectors(bio) & (c->sb.block_size - 1)) { 390 pr_debug("skipping unaligned io"); 391 goto skip; 392 } 393 394 if (bypass_torture_test(dc)) { 395 if ((get_random_int() & 3) == 3) 396 goto skip; 397 else 398 goto rescale; 399 } 400 401 if (!congested && !dc->sequential_cutoff) 402 goto rescale; 403 404 spin_lock(&dc->io_lock); 405 406 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 407 if (i->last == bio->bi_iter.bi_sector && 408 time_before(jiffies, i->jiffies)) 409 goto found; 410 411 i = list_first_entry(&dc->io_lru, struct io, lru); 412 413 add_sequential(task); 414 i->sequential = 0; 415 found: 416 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 417 i->sequential += bio->bi_iter.bi_size; 418 419 i->last = bio_end_sector(bio); 420 i->jiffies = jiffies + msecs_to_jiffies(5000); 421 task->sequential_io = i->sequential; 422 423 hlist_del(&i->hash); 424 hlist_add_head(&i->hash, iohash(dc, i->last)); 425 list_move_tail(&i->lru, &dc->io_lru); 426 427 spin_unlock(&dc->io_lock); 428 429 sectors = max(task->sequential_io, 430 task->sequential_io_avg) >> 9; 431 432 if (dc->sequential_cutoff && 433 sectors >= dc->sequential_cutoff >> 9) { 434 trace_bcache_bypass_sequential(bio); 435 goto skip; 436 } 437 438 if (congested && sectors >= congested) { 439 trace_bcache_bypass_congested(bio); 440 goto skip; 441 } 442 443 rescale: 444 bch_rescale_priorities(c, bio_sectors(bio)); 445 return false; 446 skip: 447 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 448 return true; 449 } 450 451 /* Cache lookup */ 452 453 struct search { 454 /* Stack frame for bio_complete */ 455 struct closure cl; 456 457 struct bbio bio; 458 struct bio *orig_bio; 459 struct bio *cache_miss; 460 struct bcache_device *d; 461 462 unsigned insert_bio_sectors; 463 unsigned recoverable:1; 464 unsigned write:1; 465 unsigned read_dirty_data:1; 466 467 unsigned long start_time; 468 469 struct btree_op op; 470 struct data_insert_op iop; 471 }; 472 473 static void bch_cache_read_endio(struct bio *bio) 474 { 475 struct bbio *b = container_of(bio, struct bbio, bio); 476 struct closure *cl = bio->bi_private; 477 struct search *s = container_of(cl, struct search, cl); 478 479 /* 480 * If the bucket was reused while our bio was in flight, we might have 481 * read the wrong data. Set s->error but not error so it doesn't get 482 * counted against the cache device, but we'll still reread the data 483 * from the backing device. 484 */ 485 486 if (bio->bi_status) 487 s->iop.status = bio->bi_status; 488 else if (!KEY_DIRTY(&b->key) && 489 ptr_stale(s->iop.c, &b->key, 0)) { 490 atomic_long_inc(&s->iop.c->cache_read_races); 491 s->iop.status = BLK_STS_IOERR; 492 } 493 494 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache"); 495 } 496 497 /* 498 * Read from a single key, handling the initial cache miss if the key starts in 499 * the middle of the bio 500 */ 501 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 502 { 503 struct search *s = container_of(op, struct search, op); 504 struct bio *n, *bio = &s->bio.bio; 505 struct bkey *bio_key; 506 unsigned ptr; 507 508 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 509 return MAP_CONTINUE; 510 511 if (KEY_INODE(k) != s->iop.inode || 512 KEY_START(k) > bio->bi_iter.bi_sector) { 513 unsigned bio_sectors = bio_sectors(bio); 514 unsigned sectors = KEY_INODE(k) == s->iop.inode 515 ? min_t(uint64_t, INT_MAX, 516 KEY_START(k) - bio->bi_iter.bi_sector) 517 : INT_MAX; 518 519 int ret = s->d->cache_miss(b, s, bio, sectors); 520 if (ret != MAP_CONTINUE) 521 return ret; 522 523 /* if this was a complete miss we shouldn't get here */ 524 BUG_ON(bio_sectors <= sectors); 525 } 526 527 if (!KEY_SIZE(k)) 528 return MAP_CONTINUE; 529 530 /* XXX: figure out best pointer - for multiple cache devices */ 531 ptr = 0; 532 533 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 534 535 if (KEY_DIRTY(k)) 536 s->read_dirty_data = true; 537 538 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 539 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 540 GFP_NOIO, s->d->bio_split); 541 542 bio_key = &container_of(n, struct bbio, bio)->key; 543 bch_bkey_copy_single_ptr(bio_key, k, ptr); 544 545 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 546 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 547 548 n->bi_end_io = bch_cache_read_endio; 549 n->bi_private = &s->cl; 550 551 /* 552 * The bucket we're reading from might be reused while our bio 553 * is in flight, and we could then end up reading the wrong 554 * data. 555 * 556 * We guard against this by checking (in cache_read_endio()) if 557 * the pointer is stale again; if so, we treat it as an error 558 * and reread from the backing device (but we don't pass that 559 * error up anywhere). 560 */ 561 562 __bch_submit_bbio(n, b->c); 563 return n == bio ? MAP_DONE : MAP_CONTINUE; 564 } 565 566 static void cache_lookup(struct closure *cl) 567 { 568 struct search *s = container_of(cl, struct search, iop.cl); 569 struct bio *bio = &s->bio.bio; 570 int ret; 571 572 bch_btree_op_init(&s->op, -1); 573 574 ret = bch_btree_map_keys(&s->op, s->iop.c, 575 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 576 cache_lookup_fn, MAP_END_KEY); 577 if (ret == -EAGAIN) { 578 continue_at(cl, cache_lookup, bcache_wq); 579 return; 580 } 581 582 closure_return(cl); 583 } 584 585 /* Common code for the make_request functions */ 586 587 static void request_endio(struct bio *bio) 588 { 589 struct closure *cl = bio->bi_private; 590 591 if (bio->bi_status) { 592 struct search *s = container_of(cl, struct search, cl); 593 s->iop.status = bio->bi_status; 594 /* Only cache read errors are recoverable */ 595 s->recoverable = false; 596 } 597 598 bio_put(bio); 599 closure_put(cl); 600 } 601 602 static void bio_complete(struct search *s) 603 { 604 if (s->orig_bio) { 605 struct request_queue *q = s->orig_bio->bi_disk->queue; 606 generic_end_io_acct(q, bio_data_dir(s->orig_bio), 607 &s->d->disk->part0, s->start_time); 608 609 trace_bcache_request_end(s->d, s->orig_bio); 610 s->orig_bio->bi_status = s->iop.status; 611 bio_endio(s->orig_bio); 612 s->orig_bio = NULL; 613 } 614 } 615 616 static void do_bio_hook(struct search *s, struct bio *orig_bio) 617 { 618 struct bio *bio = &s->bio.bio; 619 620 bio_init(bio, NULL, 0); 621 __bio_clone_fast(bio, orig_bio); 622 bio->bi_end_io = request_endio; 623 bio->bi_private = &s->cl; 624 625 bio_cnt_set(bio, 3); 626 } 627 628 static void search_free(struct closure *cl) 629 { 630 struct search *s = container_of(cl, struct search, cl); 631 bio_complete(s); 632 633 if (s->iop.bio) 634 bio_put(s->iop.bio); 635 636 closure_debug_destroy(cl); 637 mempool_free(s, s->d->c->search); 638 } 639 640 static inline struct search *search_alloc(struct bio *bio, 641 struct bcache_device *d) 642 { 643 struct search *s; 644 645 s = mempool_alloc(d->c->search, GFP_NOIO); 646 647 closure_init(&s->cl, NULL); 648 do_bio_hook(s, bio); 649 650 s->orig_bio = bio; 651 s->cache_miss = NULL; 652 s->d = d; 653 s->recoverable = 1; 654 s->write = op_is_write(bio_op(bio)); 655 s->read_dirty_data = 0; 656 s->start_time = jiffies; 657 658 s->iop.c = d->c; 659 s->iop.bio = NULL; 660 s->iop.inode = d->id; 661 s->iop.write_point = hash_long((unsigned long) current, 16); 662 s->iop.write_prio = 0; 663 s->iop.status = 0; 664 s->iop.flags = 0; 665 s->iop.flush_journal = op_is_flush(bio->bi_opf); 666 s->iop.wq = bcache_wq; 667 668 return s; 669 } 670 671 /* Cached devices */ 672 673 static void cached_dev_bio_complete(struct closure *cl) 674 { 675 struct search *s = container_of(cl, struct search, cl); 676 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 677 678 search_free(cl); 679 cached_dev_put(dc); 680 } 681 682 /* Process reads */ 683 684 static void cached_dev_cache_miss_done(struct closure *cl) 685 { 686 struct search *s = container_of(cl, struct search, cl); 687 688 if (s->iop.replace_collision) 689 bch_mark_cache_miss_collision(s->iop.c, s->d); 690 691 if (s->iop.bio) 692 bio_free_pages(s->iop.bio); 693 694 cached_dev_bio_complete(cl); 695 } 696 697 static void cached_dev_read_error(struct closure *cl) 698 { 699 struct search *s = container_of(cl, struct search, cl); 700 struct bio *bio = &s->bio.bio; 701 702 if (s->recoverable) { 703 /* Retry from the backing device: */ 704 trace_bcache_read_retry(s->orig_bio); 705 706 s->iop.status = 0; 707 do_bio_hook(s, s->orig_bio); 708 709 /* XXX: invalidate cache */ 710 711 closure_bio_submit(bio, cl); 712 } 713 714 continue_at(cl, cached_dev_cache_miss_done, NULL); 715 } 716 717 static void cached_dev_read_done(struct closure *cl) 718 { 719 struct search *s = container_of(cl, struct search, cl); 720 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 721 722 /* 723 * We had a cache miss; cache_bio now contains data ready to be inserted 724 * into the cache. 725 * 726 * First, we copy the data we just read from cache_bio's bounce buffers 727 * to the buffers the original bio pointed to: 728 */ 729 730 if (s->iop.bio) { 731 bio_reset(s->iop.bio); 732 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector; 733 bio_copy_dev(s->iop.bio, s->cache_miss); 734 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 735 bch_bio_map(s->iop.bio, NULL); 736 737 bio_copy_data(s->cache_miss, s->iop.bio); 738 739 bio_put(s->cache_miss); 740 s->cache_miss = NULL; 741 } 742 743 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data) 744 bch_data_verify(dc, s->orig_bio); 745 746 bio_complete(s); 747 748 if (s->iop.bio && 749 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 750 BUG_ON(!s->iop.replace); 751 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 752 } 753 754 continue_at(cl, cached_dev_cache_miss_done, NULL); 755 } 756 757 static void cached_dev_read_done_bh(struct closure *cl) 758 { 759 struct search *s = container_of(cl, struct search, cl); 760 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 761 762 bch_mark_cache_accounting(s->iop.c, s->d, 763 !s->cache_miss, s->iop.bypass); 764 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass); 765 766 if (s->iop.status) 767 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 768 else if (s->iop.bio || verify(dc, &s->bio.bio)) 769 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 770 else 771 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 772 } 773 774 static int cached_dev_cache_miss(struct btree *b, struct search *s, 775 struct bio *bio, unsigned sectors) 776 { 777 int ret = MAP_CONTINUE; 778 unsigned reada = 0; 779 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 780 struct bio *miss, *cache_bio; 781 782 if (s->cache_miss || s->iop.bypass) { 783 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 784 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 785 goto out_submit; 786 } 787 788 if (!(bio->bi_opf & REQ_RAHEAD) && 789 !(bio->bi_opf & REQ_META) && 790 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 791 reada = min_t(sector_t, dc->readahead >> 9, 792 get_capacity(bio->bi_disk) - bio_end_sector(bio)); 793 794 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 795 796 s->iop.replace_key = KEY(s->iop.inode, 797 bio->bi_iter.bi_sector + s->insert_bio_sectors, 798 s->insert_bio_sectors); 799 800 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 801 if (ret) 802 return ret; 803 804 s->iop.replace = true; 805 806 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 807 808 /* btree_search_recurse()'s btree iterator is no good anymore */ 809 ret = miss == bio ? MAP_DONE : -EINTR; 810 811 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 812 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 813 dc->disk.bio_split); 814 if (!cache_bio) 815 goto out_submit; 816 817 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 818 bio_copy_dev(cache_bio, miss); 819 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 820 821 cache_bio->bi_end_io = request_endio; 822 cache_bio->bi_private = &s->cl; 823 824 bch_bio_map(cache_bio, NULL); 825 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 826 goto out_put; 827 828 if (reada) 829 bch_mark_cache_readahead(s->iop.c, s->d); 830 831 s->cache_miss = miss; 832 s->iop.bio = cache_bio; 833 bio_get(cache_bio); 834 closure_bio_submit(cache_bio, &s->cl); 835 836 return ret; 837 out_put: 838 bio_put(cache_bio); 839 out_submit: 840 miss->bi_end_io = request_endio; 841 miss->bi_private = &s->cl; 842 closure_bio_submit(miss, &s->cl); 843 return ret; 844 } 845 846 static void cached_dev_read(struct cached_dev *dc, struct search *s) 847 { 848 struct closure *cl = &s->cl; 849 850 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 851 continue_at(cl, cached_dev_read_done_bh, NULL); 852 } 853 854 /* Process writes */ 855 856 static void cached_dev_write_complete(struct closure *cl) 857 { 858 struct search *s = container_of(cl, struct search, cl); 859 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 860 861 up_read_non_owner(&dc->writeback_lock); 862 cached_dev_bio_complete(cl); 863 } 864 865 static void cached_dev_write(struct cached_dev *dc, struct search *s) 866 { 867 struct closure *cl = &s->cl; 868 struct bio *bio = &s->bio.bio; 869 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 870 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 871 872 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 873 874 down_read_non_owner(&dc->writeback_lock); 875 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 876 /* 877 * We overlap with some dirty data undergoing background 878 * writeback, force this write to writeback 879 */ 880 s->iop.bypass = false; 881 s->iop.writeback = true; 882 } 883 884 /* 885 * Discards aren't _required_ to do anything, so skipping if 886 * check_overlapping returned true is ok 887 * 888 * But check_overlapping drops dirty keys for which io hasn't started, 889 * so we still want to call it. 890 */ 891 if (bio_op(bio) == REQ_OP_DISCARD) 892 s->iop.bypass = true; 893 894 if (should_writeback(dc, s->orig_bio, 895 cache_mode(dc, bio), 896 s->iop.bypass)) { 897 s->iop.bypass = false; 898 s->iop.writeback = true; 899 } 900 901 if (s->iop.bypass) { 902 s->iop.bio = s->orig_bio; 903 bio_get(s->iop.bio); 904 905 if ((bio_op(bio) != REQ_OP_DISCARD) || 906 blk_queue_discard(bdev_get_queue(dc->bdev))) 907 closure_bio_submit(bio, cl); 908 } else if (s->iop.writeback) { 909 bch_writeback_add(dc); 910 s->iop.bio = bio; 911 912 if (bio->bi_opf & REQ_PREFLUSH) { 913 /* Also need to send a flush to the backing device */ 914 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0, 915 dc->disk.bio_split); 916 917 bio_copy_dev(flush, bio); 918 flush->bi_end_io = request_endio; 919 flush->bi_private = cl; 920 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 921 922 closure_bio_submit(flush, cl); 923 } 924 } else { 925 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split); 926 927 closure_bio_submit(bio, cl); 928 } 929 930 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 931 continue_at(cl, cached_dev_write_complete, NULL); 932 } 933 934 static void cached_dev_nodata(struct closure *cl) 935 { 936 struct search *s = container_of(cl, struct search, cl); 937 struct bio *bio = &s->bio.bio; 938 939 if (s->iop.flush_journal) 940 bch_journal_meta(s->iop.c, cl); 941 942 /* If it's a flush, we send the flush to the backing device too */ 943 closure_bio_submit(bio, cl); 944 945 continue_at(cl, cached_dev_bio_complete, NULL); 946 } 947 948 /* Cached devices - read & write stuff */ 949 950 static blk_qc_t cached_dev_make_request(struct request_queue *q, 951 struct bio *bio) 952 { 953 struct search *s; 954 struct bcache_device *d = bio->bi_disk->private_data; 955 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 956 int rw = bio_data_dir(bio); 957 958 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0); 959 960 bio_set_dev(bio, dc->bdev); 961 bio->bi_iter.bi_sector += dc->sb.data_offset; 962 963 if (cached_dev_get(dc)) { 964 s = search_alloc(bio, d); 965 trace_bcache_request_start(s->d, bio); 966 967 if (!bio->bi_iter.bi_size) { 968 /* 969 * can't call bch_journal_meta from under 970 * generic_make_request 971 */ 972 continue_at_nobarrier(&s->cl, 973 cached_dev_nodata, 974 bcache_wq); 975 } else { 976 s->iop.bypass = check_should_bypass(dc, bio); 977 978 if (rw) 979 cached_dev_write(dc, s); 980 else 981 cached_dev_read(dc, s); 982 } 983 } else { 984 if ((bio_op(bio) == REQ_OP_DISCARD) && 985 !blk_queue_discard(bdev_get_queue(dc->bdev))) 986 bio_endio(bio); 987 else 988 generic_make_request(bio); 989 } 990 991 return BLK_QC_T_NONE; 992 } 993 994 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 995 unsigned int cmd, unsigned long arg) 996 { 997 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 998 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 999 } 1000 1001 static int cached_dev_congested(void *data, int bits) 1002 { 1003 struct bcache_device *d = data; 1004 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1005 struct request_queue *q = bdev_get_queue(dc->bdev); 1006 int ret = 0; 1007 1008 if (bdi_congested(q->backing_dev_info, bits)) 1009 return 1; 1010 1011 if (cached_dev_get(dc)) { 1012 unsigned i; 1013 struct cache *ca; 1014 1015 for_each_cache(ca, d->c, i) { 1016 q = bdev_get_queue(ca->bdev); 1017 ret |= bdi_congested(q->backing_dev_info, bits); 1018 } 1019 1020 cached_dev_put(dc); 1021 } 1022 1023 return ret; 1024 } 1025 1026 void bch_cached_dev_request_init(struct cached_dev *dc) 1027 { 1028 struct gendisk *g = dc->disk.disk; 1029 1030 g->queue->make_request_fn = cached_dev_make_request; 1031 g->queue->backing_dev_info->congested_fn = cached_dev_congested; 1032 dc->disk.cache_miss = cached_dev_cache_miss; 1033 dc->disk.ioctl = cached_dev_ioctl; 1034 } 1035 1036 /* Flash backed devices */ 1037 1038 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1039 struct bio *bio, unsigned sectors) 1040 { 1041 unsigned bytes = min(sectors, bio_sectors(bio)) << 9; 1042 1043 swap(bio->bi_iter.bi_size, bytes); 1044 zero_fill_bio(bio); 1045 swap(bio->bi_iter.bi_size, bytes); 1046 1047 bio_advance(bio, bytes); 1048 1049 if (!bio->bi_iter.bi_size) 1050 return MAP_DONE; 1051 1052 return MAP_CONTINUE; 1053 } 1054 1055 static void flash_dev_nodata(struct closure *cl) 1056 { 1057 struct search *s = container_of(cl, struct search, cl); 1058 1059 if (s->iop.flush_journal) 1060 bch_journal_meta(s->iop.c, cl); 1061 1062 continue_at(cl, search_free, NULL); 1063 } 1064 1065 static blk_qc_t flash_dev_make_request(struct request_queue *q, 1066 struct bio *bio) 1067 { 1068 struct search *s; 1069 struct closure *cl; 1070 struct bcache_device *d = bio->bi_disk->private_data; 1071 int rw = bio_data_dir(bio); 1072 1073 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0); 1074 1075 s = search_alloc(bio, d); 1076 cl = &s->cl; 1077 bio = &s->bio.bio; 1078 1079 trace_bcache_request_start(s->d, bio); 1080 1081 if (!bio->bi_iter.bi_size) { 1082 /* 1083 * can't call bch_journal_meta from under 1084 * generic_make_request 1085 */ 1086 continue_at_nobarrier(&s->cl, 1087 flash_dev_nodata, 1088 bcache_wq); 1089 return BLK_QC_T_NONE; 1090 } else if (rw) { 1091 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1092 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1093 &KEY(d->id, bio_end_sector(bio), 0)); 1094 1095 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0; 1096 s->iop.writeback = true; 1097 s->iop.bio = bio; 1098 1099 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1100 } else { 1101 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1102 } 1103 1104 continue_at(cl, search_free, NULL); 1105 return BLK_QC_T_NONE; 1106 } 1107 1108 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1109 unsigned int cmd, unsigned long arg) 1110 { 1111 return -ENOTTY; 1112 } 1113 1114 static int flash_dev_congested(void *data, int bits) 1115 { 1116 struct bcache_device *d = data; 1117 struct request_queue *q; 1118 struct cache *ca; 1119 unsigned i; 1120 int ret = 0; 1121 1122 for_each_cache(ca, d->c, i) { 1123 q = bdev_get_queue(ca->bdev); 1124 ret |= bdi_congested(q->backing_dev_info, bits); 1125 } 1126 1127 return ret; 1128 } 1129 1130 void bch_flash_dev_request_init(struct bcache_device *d) 1131 { 1132 struct gendisk *g = d->disk; 1133 1134 g->queue->make_request_fn = flash_dev_make_request; 1135 g->queue->backing_dev_info->congested_fn = flash_dev_congested; 1136 d->cache_miss = flash_dev_cache_miss; 1137 d->ioctl = flash_dev_ioctl; 1138 } 1139 1140 void bch_request_exit(void) 1141 { 1142 if (bch_search_cache) 1143 kmem_cache_destroy(bch_search_cache); 1144 } 1145 1146 int __init bch_request_init(void) 1147 { 1148 bch_search_cache = KMEM_CACHE(search, 0); 1149 if (!bch_search_cache) 1150 return -ENOMEM; 1151 1152 return 0; 1153 } 1154