1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Main bcache entry point - handle a read or a write request and decide what to 4 * do with it; the make_request functions are called by the block layer. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "request.h" 14 #include "writeback.h" 15 16 #include <linux/module.h> 17 #include <linux/hash.h> 18 #include <linux/random.h> 19 #include <linux/backing-dev.h> 20 21 #include <trace/events/bcache.h> 22 23 #define CUTOFF_CACHE_ADD 95 24 #define CUTOFF_CACHE_READA 90 25 26 struct kmem_cache *bch_search_cache; 27 28 static void bch_data_insert_start(struct closure *cl); 29 30 static unsigned int cache_mode(struct cached_dev *dc) 31 { 32 return BDEV_CACHE_MODE(&dc->sb); 33 } 34 35 static bool verify(struct cached_dev *dc) 36 { 37 return dc->verify; 38 } 39 40 static void bio_csum(struct bio *bio, struct bkey *k) 41 { 42 struct bio_vec bv; 43 struct bvec_iter iter; 44 uint64_t csum = 0; 45 46 bio_for_each_segment(bv, bio, iter) { 47 void *d = kmap(bv.bv_page) + bv.bv_offset; 48 49 csum = bch_crc64_update(csum, d, bv.bv_len); 50 kunmap(bv.bv_page); 51 } 52 53 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 54 } 55 56 /* Insert data into cache */ 57 58 static void bch_data_insert_keys(struct closure *cl) 59 { 60 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 61 atomic_t *journal_ref = NULL; 62 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 63 int ret; 64 65 /* 66 * If we're looping, might already be waiting on 67 * another journal write - can't wait on more than one journal write at 68 * a time 69 * 70 * XXX: this looks wrong 71 */ 72 #if 0 73 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) 74 closure_sync(&s->cl); 75 #endif 76 77 if (!op->replace) 78 journal_ref = bch_journal(op->c, &op->insert_keys, 79 op->flush_journal ? cl : NULL); 80 81 ret = bch_btree_insert(op->c, &op->insert_keys, 82 journal_ref, replace_key); 83 if (ret == -ESRCH) { 84 op->replace_collision = true; 85 } else if (ret) { 86 op->status = BLK_STS_RESOURCE; 87 op->insert_data_done = true; 88 } 89 90 if (journal_ref) 91 atomic_dec_bug(journal_ref); 92 93 if (!op->insert_data_done) { 94 continue_at(cl, bch_data_insert_start, op->wq); 95 return; 96 } 97 98 bch_keylist_free(&op->insert_keys); 99 closure_return(cl); 100 } 101 102 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s, 103 struct cache_set *c) 104 { 105 size_t oldsize = bch_keylist_nkeys(l); 106 size_t newsize = oldsize + u64s; 107 108 /* 109 * The journalling code doesn't handle the case where the keys to insert 110 * is bigger than an empty write: If we just return -ENOMEM here, 111 * bch_data_insert_keys() will insert the keys created so far 112 * and finish the rest when the keylist is empty. 113 */ 114 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 115 return -ENOMEM; 116 117 return __bch_keylist_realloc(l, u64s); 118 } 119 120 static void bch_data_invalidate(struct closure *cl) 121 { 122 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 123 struct bio *bio = op->bio; 124 125 pr_debug("invalidating %i sectors from %llu", 126 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 127 128 while (bio_sectors(bio)) { 129 unsigned int sectors = min(bio_sectors(bio), 130 1U << (KEY_SIZE_BITS - 1)); 131 132 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 133 goto out; 134 135 bio->bi_iter.bi_sector += sectors; 136 bio->bi_iter.bi_size -= sectors << 9; 137 138 bch_keylist_add(&op->insert_keys, 139 &KEY(op->inode, 140 bio->bi_iter.bi_sector, 141 sectors)); 142 } 143 144 op->insert_data_done = true; 145 /* get in bch_data_insert() */ 146 bio_put(bio); 147 out: 148 continue_at(cl, bch_data_insert_keys, op->wq); 149 } 150 151 static void bch_data_insert_error(struct closure *cl) 152 { 153 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 154 155 /* 156 * Our data write just errored, which means we've got a bunch of keys to 157 * insert that point to data that wasn't successfully written. 158 * 159 * We don't have to insert those keys but we still have to invalidate 160 * that region of the cache - so, if we just strip off all the pointers 161 * from the keys we'll accomplish just that. 162 */ 163 164 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 165 166 while (src != op->insert_keys.top) { 167 struct bkey *n = bkey_next(src); 168 169 SET_KEY_PTRS(src, 0); 170 memmove(dst, src, bkey_bytes(src)); 171 172 dst = bkey_next(dst); 173 src = n; 174 } 175 176 op->insert_keys.top = dst; 177 178 bch_data_insert_keys(cl); 179 } 180 181 static void bch_data_insert_endio(struct bio *bio) 182 { 183 struct closure *cl = bio->bi_private; 184 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 185 186 if (bio->bi_status) { 187 /* TODO: We could try to recover from this. */ 188 if (op->writeback) 189 op->status = bio->bi_status; 190 else if (!op->replace) 191 set_closure_fn(cl, bch_data_insert_error, op->wq); 192 else 193 set_closure_fn(cl, NULL, NULL); 194 } 195 196 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache"); 197 } 198 199 static void bch_data_insert_start(struct closure *cl) 200 { 201 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 202 struct bio *bio = op->bio, *n; 203 204 if (op->bypass) 205 return bch_data_invalidate(cl); 206 207 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) 208 wake_up_gc(op->c); 209 210 /* 211 * Journal writes are marked REQ_PREFLUSH; if the original write was a 212 * flush, it'll wait on the journal write. 213 */ 214 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); 215 216 do { 217 unsigned int i; 218 struct bkey *k; 219 struct bio_set *split = &op->c->bio_split; 220 221 /* 1 for the device pointer and 1 for the chksum */ 222 if (bch_keylist_realloc(&op->insert_keys, 223 3 + (op->csum ? 1 : 0), 224 op->c)) { 225 continue_at(cl, bch_data_insert_keys, op->wq); 226 return; 227 } 228 229 k = op->insert_keys.top; 230 bkey_init(k); 231 SET_KEY_INODE(k, op->inode); 232 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 233 234 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 235 op->write_point, op->write_prio, 236 op->writeback)) 237 goto err; 238 239 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 240 241 n->bi_end_io = bch_data_insert_endio; 242 n->bi_private = cl; 243 244 if (op->writeback) { 245 SET_KEY_DIRTY(k, true); 246 247 for (i = 0; i < KEY_PTRS(k); i++) 248 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 249 GC_MARK_DIRTY); 250 } 251 252 SET_KEY_CSUM(k, op->csum); 253 if (KEY_CSUM(k)) 254 bio_csum(n, k); 255 256 trace_bcache_cache_insert(k); 257 bch_keylist_push(&op->insert_keys); 258 259 bio_set_op_attrs(n, REQ_OP_WRITE, 0); 260 bch_submit_bbio(n, op->c, k, 0); 261 } while (n != bio); 262 263 op->insert_data_done = true; 264 continue_at(cl, bch_data_insert_keys, op->wq); 265 return; 266 err: 267 /* bch_alloc_sectors() blocks if s->writeback = true */ 268 BUG_ON(op->writeback); 269 270 /* 271 * But if it's not a writeback write we'd rather just bail out if 272 * there aren't any buckets ready to write to - it might take awhile and 273 * we might be starving btree writes for gc or something. 274 */ 275 276 if (!op->replace) { 277 /* 278 * Writethrough write: We can't complete the write until we've 279 * updated the index. But we don't want to delay the write while 280 * we wait for buckets to be freed up, so just invalidate the 281 * rest of the write. 282 */ 283 op->bypass = true; 284 return bch_data_invalidate(cl); 285 } else { 286 /* 287 * From a cache miss, we can just insert the keys for the data 288 * we have written or bail out if we didn't do anything. 289 */ 290 op->insert_data_done = true; 291 bio_put(bio); 292 293 if (!bch_keylist_empty(&op->insert_keys)) 294 continue_at(cl, bch_data_insert_keys, op->wq); 295 else 296 closure_return(cl); 297 } 298 } 299 300 /** 301 * bch_data_insert - stick some data in the cache 302 * @cl: closure pointer. 303 * 304 * This is the starting point for any data to end up in a cache device; it could 305 * be from a normal write, or a writeback write, or a write to a flash only 306 * volume - it's also used by the moving garbage collector to compact data in 307 * mostly empty buckets. 308 * 309 * It first writes the data to the cache, creating a list of keys to be inserted 310 * (if the data had to be fragmented there will be multiple keys); after the 311 * data is written it calls bch_journal, and after the keys have been added to 312 * the next journal write they're inserted into the btree. 313 * 314 * It inserts the data in op->bio; bi_sector is used for the key offset, 315 * and op->inode is used for the key inode. 316 * 317 * If op->bypass is true, instead of inserting the data it invalidates the 318 * region of the cache represented by op->bio and op->inode. 319 */ 320 void bch_data_insert(struct closure *cl) 321 { 322 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 323 324 trace_bcache_write(op->c, op->inode, op->bio, 325 op->writeback, op->bypass); 326 327 bch_keylist_init(&op->insert_keys); 328 bio_get(op->bio); 329 bch_data_insert_start(cl); 330 } 331 332 /* 333 * Congested? Return 0 (not congested) or the limit (in sectors) 334 * beyond which we should bypass the cache due to congestion. 335 */ 336 unsigned int bch_get_congested(const struct cache_set *c) 337 { 338 int i; 339 340 if (!c->congested_read_threshold_us && 341 !c->congested_write_threshold_us) 342 return 0; 343 344 i = (local_clock_us() - c->congested_last_us) / 1024; 345 if (i < 0) 346 return 0; 347 348 i += atomic_read(&c->congested); 349 if (i >= 0) 350 return 0; 351 352 i += CONGESTED_MAX; 353 354 if (i > 0) 355 i = fract_exp_two(i, 6); 356 357 i -= hweight32(get_random_u32()); 358 359 return i > 0 ? i : 1; 360 } 361 362 static void add_sequential(struct task_struct *t) 363 { 364 ewma_add(t->sequential_io_avg, 365 t->sequential_io, 8, 0); 366 367 t->sequential_io = 0; 368 } 369 370 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 371 { 372 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 373 } 374 375 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 376 { 377 struct cache_set *c = dc->disk.c; 378 unsigned int mode = cache_mode(dc); 379 unsigned int sectors, congested; 380 struct task_struct *task = current; 381 struct io *i; 382 383 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 384 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 385 (bio_op(bio) == REQ_OP_DISCARD)) 386 goto skip; 387 388 if (mode == CACHE_MODE_NONE || 389 (mode == CACHE_MODE_WRITEAROUND && 390 op_is_write(bio_op(bio)))) 391 goto skip; 392 393 /* 394 * Flag for bypass if the IO is for read-ahead or background, 395 * unless the read-ahead request is for metadata 396 * (eg, for gfs2 or xfs). 397 */ 398 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) && 399 !(bio->bi_opf & (REQ_META|REQ_PRIO))) 400 goto skip; 401 402 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 403 bio_sectors(bio) & (c->sb.block_size - 1)) { 404 pr_debug("skipping unaligned io"); 405 goto skip; 406 } 407 408 if (bypass_torture_test(dc)) { 409 if ((get_random_int() & 3) == 3) 410 goto skip; 411 else 412 goto rescale; 413 } 414 415 congested = bch_get_congested(c); 416 if (!congested && !dc->sequential_cutoff) 417 goto rescale; 418 419 spin_lock(&dc->io_lock); 420 421 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 422 if (i->last == bio->bi_iter.bi_sector && 423 time_before(jiffies, i->jiffies)) 424 goto found; 425 426 i = list_first_entry(&dc->io_lru, struct io, lru); 427 428 add_sequential(task); 429 i->sequential = 0; 430 found: 431 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 432 i->sequential += bio->bi_iter.bi_size; 433 434 i->last = bio_end_sector(bio); 435 i->jiffies = jiffies + msecs_to_jiffies(5000); 436 task->sequential_io = i->sequential; 437 438 hlist_del(&i->hash); 439 hlist_add_head(&i->hash, iohash(dc, i->last)); 440 list_move_tail(&i->lru, &dc->io_lru); 441 442 spin_unlock(&dc->io_lock); 443 444 sectors = max(task->sequential_io, 445 task->sequential_io_avg) >> 9; 446 447 if (dc->sequential_cutoff && 448 sectors >= dc->sequential_cutoff >> 9) { 449 trace_bcache_bypass_sequential(bio); 450 goto skip; 451 } 452 453 if (congested && sectors >= congested) { 454 trace_bcache_bypass_congested(bio); 455 goto skip; 456 } 457 458 rescale: 459 bch_rescale_priorities(c, bio_sectors(bio)); 460 return false; 461 skip: 462 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 463 return true; 464 } 465 466 /* Cache lookup */ 467 468 struct search { 469 /* Stack frame for bio_complete */ 470 struct closure cl; 471 472 struct bbio bio; 473 struct bio *orig_bio; 474 struct bio *cache_miss; 475 struct bcache_device *d; 476 477 unsigned int insert_bio_sectors; 478 unsigned int recoverable:1; 479 unsigned int write:1; 480 unsigned int read_dirty_data:1; 481 unsigned int cache_missed:1; 482 483 unsigned long start_time; 484 485 struct btree_op op; 486 struct data_insert_op iop; 487 }; 488 489 static void bch_cache_read_endio(struct bio *bio) 490 { 491 struct bbio *b = container_of(bio, struct bbio, bio); 492 struct closure *cl = bio->bi_private; 493 struct search *s = container_of(cl, struct search, cl); 494 495 /* 496 * If the bucket was reused while our bio was in flight, we might have 497 * read the wrong data. Set s->error but not error so it doesn't get 498 * counted against the cache device, but we'll still reread the data 499 * from the backing device. 500 */ 501 502 if (bio->bi_status) 503 s->iop.status = bio->bi_status; 504 else if (!KEY_DIRTY(&b->key) && 505 ptr_stale(s->iop.c, &b->key, 0)) { 506 atomic_long_inc(&s->iop.c->cache_read_races); 507 s->iop.status = BLK_STS_IOERR; 508 } 509 510 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache"); 511 } 512 513 /* 514 * Read from a single key, handling the initial cache miss if the key starts in 515 * the middle of the bio 516 */ 517 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 518 { 519 struct search *s = container_of(op, struct search, op); 520 struct bio *n, *bio = &s->bio.bio; 521 struct bkey *bio_key; 522 unsigned int ptr; 523 524 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 525 return MAP_CONTINUE; 526 527 if (KEY_INODE(k) != s->iop.inode || 528 KEY_START(k) > bio->bi_iter.bi_sector) { 529 unsigned int bio_sectors = bio_sectors(bio); 530 unsigned int sectors = KEY_INODE(k) == s->iop.inode 531 ? min_t(uint64_t, INT_MAX, 532 KEY_START(k) - bio->bi_iter.bi_sector) 533 : INT_MAX; 534 int ret = s->d->cache_miss(b, s, bio, sectors); 535 536 if (ret != MAP_CONTINUE) 537 return ret; 538 539 /* if this was a complete miss we shouldn't get here */ 540 BUG_ON(bio_sectors <= sectors); 541 } 542 543 if (!KEY_SIZE(k)) 544 return MAP_CONTINUE; 545 546 /* XXX: figure out best pointer - for multiple cache devices */ 547 ptr = 0; 548 549 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 550 551 if (KEY_DIRTY(k)) 552 s->read_dirty_data = true; 553 554 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 555 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 556 GFP_NOIO, &s->d->bio_split); 557 558 bio_key = &container_of(n, struct bbio, bio)->key; 559 bch_bkey_copy_single_ptr(bio_key, k, ptr); 560 561 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 562 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 563 564 n->bi_end_io = bch_cache_read_endio; 565 n->bi_private = &s->cl; 566 567 /* 568 * The bucket we're reading from might be reused while our bio 569 * is in flight, and we could then end up reading the wrong 570 * data. 571 * 572 * We guard against this by checking (in cache_read_endio()) if 573 * the pointer is stale again; if so, we treat it as an error 574 * and reread from the backing device (but we don't pass that 575 * error up anywhere). 576 */ 577 578 __bch_submit_bbio(n, b->c); 579 return n == bio ? MAP_DONE : MAP_CONTINUE; 580 } 581 582 static void cache_lookup(struct closure *cl) 583 { 584 struct search *s = container_of(cl, struct search, iop.cl); 585 struct bio *bio = &s->bio.bio; 586 struct cached_dev *dc; 587 int ret; 588 589 bch_btree_op_init(&s->op, -1); 590 591 ret = bch_btree_map_keys(&s->op, s->iop.c, 592 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 593 cache_lookup_fn, MAP_END_KEY); 594 if (ret == -EAGAIN) { 595 continue_at(cl, cache_lookup, bcache_wq); 596 return; 597 } 598 599 /* 600 * We might meet err when searching the btree, If that happens, we will 601 * get negative ret, in this scenario we should not recover data from 602 * backing device (when cache device is dirty) because we don't know 603 * whether bkeys the read request covered are all clean. 604 * 605 * And after that happened, s->iop.status is still its initial value 606 * before we submit s->bio.bio 607 */ 608 if (ret < 0) { 609 BUG_ON(ret == -EINTR); 610 if (s->d && s->d->c && 611 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) { 612 dc = container_of(s->d, struct cached_dev, disk); 613 if (dc && atomic_read(&dc->has_dirty)) 614 s->recoverable = false; 615 } 616 if (!s->iop.status) 617 s->iop.status = BLK_STS_IOERR; 618 } 619 620 closure_return(cl); 621 } 622 623 /* Common code for the make_request functions */ 624 625 static void request_endio(struct bio *bio) 626 { 627 struct closure *cl = bio->bi_private; 628 629 if (bio->bi_status) { 630 struct search *s = container_of(cl, struct search, cl); 631 632 s->iop.status = bio->bi_status; 633 /* Only cache read errors are recoverable */ 634 s->recoverable = false; 635 } 636 637 bio_put(bio); 638 closure_put(cl); 639 } 640 641 static void backing_request_endio(struct bio *bio) 642 { 643 struct closure *cl = bio->bi_private; 644 645 if (bio->bi_status) { 646 struct search *s = container_of(cl, struct search, cl); 647 struct cached_dev *dc = container_of(s->d, 648 struct cached_dev, disk); 649 /* 650 * If a bio has REQ_PREFLUSH for writeback mode, it is 651 * speically assembled in cached_dev_write() for a non-zero 652 * write request which has REQ_PREFLUSH. we don't set 653 * s->iop.status by this failure, the status will be decided 654 * by result of bch_data_insert() operation. 655 */ 656 if (unlikely(s->iop.writeback && 657 bio->bi_opf & REQ_PREFLUSH)) { 658 pr_err("Can't flush %s: returned bi_status %i", 659 dc->backing_dev_name, bio->bi_status); 660 } else { 661 /* set to orig_bio->bi_status in bio_complete() */ 662 s->iop.status = bio->bi_status; 663 } 664 s->recoverable = false; 665 /* should count I/O error for backing device here */ 666 bch_count_backing_io_errors(dc, bio); 667 } 668 669 bio_put(bio); 670 closure_put(cl); 671 } 672 673 static void bio_complete(struct search *s) 674 { 675 if (s->orig_bio) { 676 generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio), 677 &s->d->disk->part0, s->start_time); 678 679 trace_bcache_request_end(s->d, s->orig_bio); 680 s->orig_bio->bi_status = s->iop.status; 681 bio_endio(s->orig_bio); 682 s->orig_bio = NULL; 683 } 684 } 685 686 static void do_bio_hook(struct search *s, 687 struct bio *orig_bio, 688 bio_end_io_t *end_io_fn) 689 { 690 struct bio *bio = &s->bio.bio; 691 692 bio_init(bio, NULL, 0); 693 __bio_clone_fast(bio, orig_bio); 694 /* 695 * bi_end_io can be set separately somewhere else, e.g. the 696 * variants in, 697 * - cache_bio->bi_end_io from cached_dev_cache_miss() 698 * - n->bi_end_io from cache_lookup_fn() 699 */ 700 bio->bi_end_io = end_io_fn; 701 bio->bi_private = &s->cl; 702 703 bio_cnt_set(bio, 3); 704 } 705 706 static void search_free(struct closure *cl) 707 { 708 struct search *s = container_of(cl, struct search, cl); 709 710 atomic_dec(&s->iop.c->search_inflight); 711 712 if (s->iop.bio) 713 bio_put(s->iop.bio); 714 715 bio_complete(s); 716 closure_debug_destroy(cl); 717 mempool_free(s, &s->iop.c->search); 718 } 719 720 static inline struct search *search_alloc(struct bio *bio, 721 struct bcache_device *d) 722 { 723 struct search *s; 724 725 s = mempool_alloc(&d->c->search, GFP_NOIO); 726 727 closure_init(&s->cl, NULL); 728 do_bio_hook(s, bio, request_endio); 729 atomic_inc(&d->c->search_inflight); 730 731 s->orig_bio = bio; 732 s->cache_miss = NULL; 733 s->cache_missed = 0; 734 s->d = d; 735 s->recoverable = 1; 736 s->write = op_is_write(bio_op(bio)); 737 s->read_dirty_data = 0; 738 s->start_time = jiffies; 739 740 s->iop.c = d->c; 741 s->iop.bio = NULL; 742 s->iop.inode = d->id; 743 s->iop.write_point = hash_long((unsigned long) current, 16); 744 s->iop.write_prio = 0; 745 s->iop.status = 0; 746 s->iop.flags = 0; 747 s->iop.flush_journal = op_is_flush(bio->bi_opf); 748 s->iop.wq = bcache_wq; 749 750 return s; 751 } 752 753 /* Cached devices */ 754 755 static void cached_dev_bio_complete(struct closure *cl) 756 { 757 struct search *s = container_of(cl, struct search, cl); 758 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 759 760 cached_dev_put(dc); 761 search_free(cl); 762 } 763 764 /* Process reads */ 765 766 static void cached_dev_read_error_done(struct closure *cl) 767 { 768 struct search *s = container_of(cl, struct search, cl); 769 770 if (s->iop.replace_collision) 771 bch_mark_cache_miss_collision(s->iop.c, s->d); 772 773 if (s->iop.bio) 774 bio_free_pages(s->iop.bio); 775 776 cached_dev_bio_complete(cl); 777 } 778 779 static void cached_dev_read_error(struct closure *cl) 780 { 781 struct search *s = container_of(cl, struct search, cl); 782 struct bio *bio = &s->bio.bio; 783 784 /* 785 * If read request hit dirty data (s->read_dirty_data is true), 786 * then recovery a failed read request from cached device may 787 * get a stale data back. So read failure recovery is only 788 * permitted when read request hit clean data in cache device, 789 * or when cache read race happened. 790 */ 791 if (s->recoverable && !s->read_dirty_data) { 792 /* Retry from the backing device: */ 793 trace_bcache_read_retry(s->orig_bio); 794 795 s->iop.status = 0; 796 do_bio_hook(s, s->orig_bio, backing_request_endio); 797 798 /* XXX: invalidate cache */ 799 800 /* I/O request sent to backing device */ 801 closure_bio_submit(s->iop.c, bio, cl); 802 } 803 804 continue_at(cl, cached_dev_read_error_done, NULL); 805 } 806 807 static void cached_dev_cache_miss_done(struct closure *cl) 808 { 809 struct search *s = container_of(cl, struct search, cl); 810 struct bcache_device *d = s->d; 811 812 if (s->iop.replace_collision) 813 bch_mark_cache_miss_collision(s->iop.c, s->d); 814 815 if (s->iop.bio) 816 bio_free_pages(s->iop.bio); 817 818 cached_dev_bio_complete(cl); 819 closure_put(&d->cl); 820 } 821 822 static void cached_dev_read_done(struct closure *cl) 823 { 824 struct search *s = container_of(cl, struct search, cl); 825 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 826 827 /* 828 * We had a cache miss; cache_bio now contains data ready to be inserted 829 * into the cache. 830 * 831 * First, we copy the data we just read from cache_bio's bounce buffers 832 * to the buffers the original bio pointed to: 833 */ 834 835 if (s->iop.bio) { 836 bio_reset(s->iop.bio); 837 s->iop.bio->bi_iter.bi_sector = 838 s->cache_miss->bi_iter.bi_sector; 839 bio_copy_dev(s->iop.bio, s->cache_miss); 840 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 841 bch_bio_map(s->iop.bio, NULL); 842 843 bio_copy_data(s->cache_miss, s->iop.bio); 844 845 bio_put(s->cache_miss); 846 s->cache_miss = NULL; 847 } 848 849 if (verify(dc) && s->recoverable && !s->read_dirty_data) 850 bch_data_verify(dc, s->orig_bio); 851 852 closure_get(&dc->disk.cl); 853 bio_complete(s); 854 855 if (s->iop.bio && 856 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 857 BUG_ON(!s->iop.replace); 858 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 859 } 860 861 continue_at(cl, cached_dev_cache_miss_done, NULL); 862 } 863 864 static void cached_dev_read_done_bh(struct closure *cl) 865 { 866 struct search *s = container_of(cl, struct search, cl); 867 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 868 869 bch_mark_cache_accounting(s->iop.c, s->d, 870 !s->cache_missed, s->iop.bypass); 871 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass); 872 873 if (s->iop.status) 874 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 875 else if (s->iop.bio || verify(dc)) 876 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 877 else 878 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 879 } 880 881 static int cached_dev_cache_miss(struct btree *b, struct search *s, 882 struct bio *bio, unsigned int sectors) 883 { 884 int ret = MAP_CONTINUE; 885 unsigned int reada = 0; 886 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 887 struct bio *miss, *cache_bio; 888 889 s->cache_missed = 1; 890 891 if (s->cache_miss || s->iop.bypass) { 892 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 893 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 894 goto out_submit; 895 } 896 897 if (!(bio->bi_opf & REQ_RAHEAD) && 898 !(bio->bi_opf & (REQ_META|REQ_PRIO)) && 899 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 900 reada = min_t(sector_t, dc->readahead >> 9, 901 get_capacity(bio->bi_disk) - bio_end_sector(bio)); 902 903 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 904 905 s->iop.replace_key = KEY(s->iop.inode, 906 bio->bi_iter.bi_sector + s->insert_bio_sectors, 907 s->insert_bio_sectors); 908 909 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 910 if (ret) 911 return ret; 912 913 s->iop.replace = true; 914 915 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 916 917 /* btree_search_recurse()'s btree iterator is no good anymore */ 918 ret = miss == bio ? MAP_DONE : -EINTR; 919 920 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 921 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 922 &dc->disk.bio_split); 923 if (!cache_bio) 924 goto out_submit; 925 926 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 927 bio_copy_dev(cache_bio, miss); 928 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 929 930 cache_bio->bi_end_io = backing_request_endio; 931 cache_bio->bi_private = &s->cl; 932 933 bch_bio_map(cache_bio, NULL); 934 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 935 goto out_put; 936 937 if (reada) 938 bch_mark_cache_readahead(s->iop.c, s->d); 939 940 s->cache_miss = miss; 941 s->iop.bio = cache_bio; 942 bio_get(cache_bio); 943 /* I/O request sent to backing device */ 944 closure_bio_submit(s->iop.c, cache_bio, &s->cl); 945 946 return ret; 947 out_put: 948 bio_put(cache_bio); 949 out_submit: 950 miss->bi_end_io = backing_request_endio; 951 miss->bi_private = &s->cl; 952 /* I/O request sent to backing device */ 953 closure_bio_submit(s->iop.c, miss, &s->cl); 954 return ret; 955 } 956 957 static void cached_dev_read(struct cached_dev *dc, struct search *s) 958 { 959 struct closure *cl = &s->cl; 960 961 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 962 continue_at(cl, cached_dev_read_done_bh, NULL); 963 } 964 965 /* Process writes */ 966 967 static void cached_dev_write_complete(struct closure *cl) 968 { 969 struct search *s = container_of(cl, struct search, cl); 970 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 971 972 up_read_non_owner(&dc->writeback_lock); 973 cached_dev_bio_complete(cl); 974 } 975 976 static void cached_dev_write(struct cached_dev *dc, struct search *s) 977 { 978 struct closure *cl = &s->cl; 979 struct bio *bio = &s->bio.bio; 980 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 981 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 982 983 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 984 985 down_read_non_owner(&dc->writeback_lock); 986 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 987 /* 988 * We overlap with some dirty data undergoing background 989 * writeback, force this write to writeback 990 */ 991 s->iop.bypass = false; 992 s->iop.writeback = true; 993 } 994 995 /* 996 * Discards aren't _required_ to do anything, so skipping if 997 * check_overlapping returned true is ok 998 * 999 * But check_overlapping drops dirty keys for which io hasn't started, 1000 * so we still want to call it. 1001 */ 1002 if (bio_op(bio) == REQ_OP_DISCARD) 1003 s->iop.bypass = true; 1004 1005 if (should_writeback(dc, s->orig_bio, 1006 cache_mode(dc), 1007 s->iop.bypass)) { 1008 s->iop.bypass = false; 1009 s->iop.writeback = true; 1010 } 1011 1012 if (s->iop.bypass) { 1013 s->iop.bio = s->orig_bio; 1014 bio_get(s->iop.bio); 1015 1016 if (bio_op(bio) == REQ_OP_DISCARD && 1017 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1018 goto insert_data; 1019 1020 /* I/O request sent to backing device */ 1021 bio->bi_end_io = backing_request_endio; 1022 closure_bio_submit(s->iop.c, bio, cl); 1023 1024 } else if (s->iop.writeback) { 1025 bch_writeback_add(dc); 1026 s->iop.bio = bio; 1027 1028 if (bio->bi_opf & REQ_PREFLUSH) { 1029 /* 1030 * Also need to send a flush to the backing 1031 * device. 1032 */ 1033 struct bio *flush; 1034 1035 flush = bio_alloc_bioset(GFP_NOIO, 0, 1036 &dc->disk.bio_split); 1037 if (!flush) { 1038 s->iop.status = BLK_STS_RESOURCE; 1039 goto insert_data; 1040 } 1041 bio_copy_dev(flush, bio); 1042 flush->bi_end_io = backing_request_endio; 1043 flush->bi_private = cl; 1044 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1045 /* I/O request sent to backing device */ 1046 closure_bio_submit(s->iop.c, flush, cl); 1047 } 1048 } else { 1049 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split); 1050 /* I/O request sent to backing device */ 1051 bio->bi_end_io = backing_request_endio; 1052 closure_bio_submit(s->iop.c, bio, cl); 1053 } 1054 1055 insert_data: 1056 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1057 continue_at(cl, cached_dev_write_complete, NULL); 1058 } 1059 1060 static void cached_dev_nodata(struct closure *cl) 1061 { 1062 struct search *s = container_of(cl, struct search, cl); 1063 struct bio *bio = &s->bio.bio; 1064 1065 if (s->iop.flush_journal) 1066 bch_journal_meta(s->iop.c, cl); 1067 1068 /* If it's a flush, we send the flush to the backing device too */ 1069 bio->bi_end_io = backing_request_endio; 1070 closure_bio_submit(s->iop.c, bio, cl); 1071 1072 continue_at(cl, cached_dev_bio_complete, NULL); 1073 } 1074 1075 struct detached_dev_io_private { 1076 struct bcache_device *d; 1077 unsigned long start_time; 1078 bio_end_io_t *bi_end_io; 1079 void *bi_private; 1080 }; 1081 1082 static void detached_dev_end_io(struct bio *bio) 1083 { 1084 struct detached_dev_io_private *ddip; 1085 1086 ddip = bio->bi_private; 1087 bio->bi_end_io = ddip->bi_end_io; 1088 bio->bi_private = ddip->bi_private; 1089 1090 generic_end_io_acct(ddip->d->disk->queue, bio_op(bio), 1091 &ddip->d->disk->part0, ddip->start_time); 1092 1093 if (bio->bi_status) { 1094 struct cached_dev *dc = container_of(ddip->d, 1095 struct cached_dev, disk); 1096 /* should count I/O error for backing device here */ 1097 bch_count_backing_io_errors(dc, bio); 1098 } 1099 1100 kfree(ddip); 1101 bio->bi_end_io(bio); 1102 } 1103 1104 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio) 1105 { 1106 struct detached_dev_io_private *ddip; 1107 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1108 1109 /* 1110 * no need to call closure_get(&dc->disk.cl), 1111 * because upper layer had already opened bcache device, 1112 * which would call closure_get(&dc->disk.cl) 1113 */ 1114 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO); 1115 ddip->d = d; 1116 ddip->start_time = jiffies; 1117 ddip->bi_end_io = bio->bi_end_io; 1118 ddip->bi_private = bio->bi_private; 1119 bio->bi_end_io = detached_dev_end_io; 1120 bio->bi_private = ddip; 1121 1122 if ((bio_op(bio) == REQ_OP_DISCARD) && 1123 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1124 bio->bi_end_io(bio); 1125 else 1126 generic_make_request(bio); 1127 } 1128 1129 static void quit_max_writeback_rate(struct cache_set *c, 1130 struct cached_dev *this_dc) 1131 { 1132 int i; 1133 struct bcache_device *d; 1134 struct cached_dev *dc; 1135 1136 /* 1137 * mutex bch_register_lock may compete with other parallel requesters, 1138 * or attach/detach operations on other backing device. Waiting to 1139 * the mutex lock may increase I/O request latency for seconds or more. 1140 * To avoid such situation, if mutext_trylock() failed, only writeback 1141 * rate of current cached device is set to 1, and __update_write_back() 1142 * will decide writeback rate of other cached devices (remember now 1143 * c->idle_counter is 0 already). 1144 */ 1145 if (mutex_trylock(&bch_register_lock)) { 1146 for (i = 0; i < c->devices_max_used; i++) { 1147 if (!c->devices[i]) 1148 continue; 1149 1150 if (UUID_FLASH_ONLY(&c->uuids[i])) 1151 continue; 1152 1153 d = c->devices[i]; 1154 dc = container_of(d, struct cached_dev, disk); 1155 /* 1156 * set writeback rate to default minimum value, 1157 * then let update_writeback_rate() to decide the 1158 * upcoming rate. 1159 */ 1160 atomic_long_set(&dc->writeback_rate.rate, 1); 1161 } 1162 mutex_unlock(&bch_register_lock); 1163 } else 1164 atomic_long_set(&this_dc->writeback_rate.rate, 1); 1165 } 1166 1167 /* Cached devices - read & write stuff */ 1168 1169 static blk_qc_t cached_dev_make_request(struct request_queue *q, 1170 struct bio *bio) 1171 { 1172 struct search *s; 1173 struct bcache_device *d = bio->bi_disk->private_data; 1174 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1175 int rw = bio_data_dir(bio); 1176 1177 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) || 1178 dc->io_disable)) { 1179 bio->bi_status = BLK_STS_IOERR; 1180 bio_endio(bio); 1181 return BLK_QC_T_NONE; 1182 } 1183 1184 if (likely(d->c)) { 1185 if (atomic_read(&d->c->idle_counter)) 1186 atomic_set(&d->c->idle_counter, 0); 1187 /* 1188 * If at_max_writeback_rate of cache set is true and new I/O 1189 * comes, quit max writeback rate of all cached devices 1190 * attached to this cache set, and set at_max_writeback_rate 1191 * to false. 1192 */ 1193 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) { 1194 atomic_set(&d->c->at_max_writeback_rate, 0); 1195 quit_max_writeback_rate(d->c, dc); 1196 } 1197 } 1198 1199 generic_start_io_acct(q, 1200 bio_op(bio), 1201 bio_sectors(bio), 1202 &d->disk->part0); 1203 1204 bio_set_dev(bio, dc->bdev); 1205 bio->bi_iter.bi_sector += dc->sb.data_offset; 1206 1207 if (cached_dev_get(dc)) { 1208 s = search_alloc(bio, d); 1209 trace_bcache_request_start(s->d, bio); 1210 1211 if (!bio->bi_iter.bi_size) { 1212 /* 1213 * can't call bch_journal_meta from under 1214 * generic_make_request 1215 */ 1216 continue_at_nobarrier(&s->cl, 1217 cached_dev_nodata, 1218 bcache_wq); 1219 } else { 1220 s->iop.bypass = check_should_bypass(dc, bio); 1221 1222 if (rw) 1223 cached_dev_write(dc, s); 1224 else 1225 cached_dev_read(dc, s); 1226 } 1227 } else 1228 /* I/O request sent to backing device */ 1229 detached_dev_do_request(d, bio); 1230 1231 return BLK_QC_T_NONE; 1232 } 1233 1234 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 1235 unsigned int cmd, unsigned long arg) 1236 { 1237 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1238 1239 if (dc->io_disable) 1240 return -EIO; 1241 1242 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1243 } 1244 1245 static int cached_dev_congested(void *data, int bits) 1246 { 1247 struct bcache_device *d = data; 1248 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1249 struct request_queue *q = bdev_get_queue(dc->bdev); 1250 int ret = 0; 1251 1252 if (bdi_congested(q->backing_dev_info, bits)) 1253 return 1; 1254 1255 if (cached_dev_get(dc)) { 1256 unsigned int i; 1257 struct cache *ca; 1258 1259 for_each_cache(ca, d->c, i) { 1260 q = bdev_get_queue(ca->bdev); 1261 ret |= bdi_congested(q->backing_dev_info, bits); 1262 } 1263 1264 cached_dev_put(dc); 1265 } 1266 1267 return ret; 1268 } 1269 1270 void bch_cached_dev_request_init(struct cached_dev *dc) 1271 { 1272 struct gendisk *g = dc->disk.disk; 1273 1274 g->queue->make_request_fn = cached_dev_make_request; 1275 g->queue->backing_dev_info->congested_fn = cached_dev_congested; 1276 dc->disk.cache_miss = cached_dev_cache_miss; 1277 dc->disk.ioctl = cached_dev_ioctl; 1278 } 1279 1280 /* Flash backed devices */ 1281 1282 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1283 struct bio *bio, unsigned int sectors) 1284 { 1285 unsigned int bytes = min(sectors, bio_sectors(bio)) << 9; 1286 1287 swap(bio->bi_iter.bi_size, bytes); 1288 zero_fill_bio(bio); 1289 swap(bio->bi_iter.bi_size, bytes); 1290 1291 bio_advance(bio, bytes); 1292 1293 if (!bio->bi_iter.bi_size) 1294 return MAP_DONE; 1295 1296 return MAP_CONTINUE; 1297 } 1298 1299 static void flash_dev_nodata(struct closure *cl) 1300 { 1301 struct search *s = container_of(cl, struct search, cl); 1302 1303 if (s->iop.flush_journal) 1304 bch_journal_meta(s->iop.c, cl); 1305 1306 continue_at(cl, search_free, NULL); 1307 } 1308 1309 static blk_qc_t flash_dev_make_request(struct request_queue *q, 1310 struct bio *bio) 1311 { 1312 struct search *s; 1313 struct closure *cl; 1314 struct bcache_device *d = bio->bi_disk->private_data; 1315 1316 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) { 1317 bio->bi_status = BLK_STS_IOERR; 1318 bio_endio(bio); 1319 return BLK_QC_T_NONE; 1320 } 1321 1322 generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0); 1323 1324 s = search_alloc(bio, d); 1325 cl = &s->cl; 1326 bio = &s->bio.bio; 1327 1328 trace_bcache_request_start(s->d, bio); 1329 1330 if (!bio->bi_iter.bi_size) { 1331 /* 1332 * can't call bch_journal_meta from under 1333 * generic_make_request 1334 */ 1335 continue_at_nobarrier(&s->cl, 1336 flash_dev_nodata, 1337 bcache_wq); 1338 return BLK_QC_T_NONE; 1339 } else if (bio_data_dir(bio)) { 1340 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1341 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1342 &KEY(d->id, bio_end_sector(bio), 0)); 1343 1344 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0; 1345 s->iop.writeback = true; 1346 s->iop.bio = bio; 1347 1348 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1349 } else { 1350 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1351 } 1352 1353 continue_at(cl, search_free, NULL); 1354 return BLK_QC_T_NONE; 1355 } 1356 1357 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1358 unsigned int cmd, unsigned long arg) 1359 { 1360 return -ENOTTY; 1361 } 1362 1363 static int flash_dev_congested(void *data, int bits) 1364 { 1365 struct bcache_device *d = data; 1366 struct request_queue *q; 1367 struct cache *ca; 1368 unsigned int i; 1369 int ret = 0; 1370 1371 for_each_cache(ca, d->c, i) { 1372 q = bdev_get_queue(ca->bdev); 1373 ret |= bdi_congested(q->backing_dev_info, bits); 1374 } 1375 1376 return ret; 1377 } 1378 1379 void bch_flash_dev_request_init(struct bcache_device *d) 1380 { 1381 struct gendisk *g = d->disk; 1382 1383 g->queue->make_request_fn = flash_dev_make_request; 1384 g->queue->backing_dev_info->congested_fn = flash_dev_congested; 1385 d->cache_miss = flash_dev_cache_miss; 1386 d->ioctl = flash_dev_ioctl; 1387 } 1388 1389 void bch_request_exit(void) 1390 { 1391 kmem_cache_destroy(bch_search_cache); 1392 } 1393 1394 int __init bch_request_init(void) 1395 { 1396 bch_search_cache = KMEM_CACHE(search, 0); 1397 if (!bch_search_cache) 1398 return -ENOMEM; 1399 1400 return 0; 1401 } 1402