1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Main bcache entry point - handle a read or a write request and decide what to 4 * do with it; the make_request functions are called by the block layer. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "request.h" 14 #include "writeback.h" 15 16 #include <linux/module.h> 17 #include <linux/hash.h> 18 #include <linux/random.h> 19 #include <linux/backing-dev.h> 20 21 #include <trace/events/bcache.h> 22 23 #define CUTOFF_CACHE_ADD 95 24 #define CUTOFF_CACHE_READA 90 25 26 struct kmem_cache *bch_search_cache; 27 28 static void bch_data_insert_start(struct closure *cl); 29 30 static unsigned int cache_mode(struct cached_dev *dc) 31 { 32 return BDEV_CACHE_MODE(&dc->sb); 33 } 34 35 static bool verify(struct cached_dev *dc) 36 { 37 return dc->verify; 38 } 39 40 static void bio_csum(struct bio *bio, struct bkey *k) 41 { 42 struct bio_vec bv; 43 struct bvec_iter iter; 44 uint64_t csum = 0; 45 46 bio_for_each_segment(bv, bio, iter) { 47 void *d = kmap(bv.bv_page) + bv.bv_offset; 48 49 csum = bch_crc64_update(csum, d, bv.bv_len); 50 kunmap(bv.bv_page); 51 } 52 53 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 54 } 55 56 /* Insert data into cache */ 57 58 static void bch_data_insert_keys(struct closure *cl) 59 { 60 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 61 atomic_t *journal_ref = NULL; 62 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 63 int ret; 64 65 if (!op->replace) 66 journal_ref = bch_journal(op->c, &op->insert_keys, 67 op->flush_journal ? cl : NULL); 68 69 ret = bch_btree_insert(op->c, &op->insert_keys, 70 journal_ref, replace_key); 71 if (ret == -ESRCH) { 72 op->replace_collision = true; 73 } else if (ret) { 74 op->status = BLK_STS_RESOURCE; 75 op->insert_data_done = true; 76 } 77 78 if (journal_ref) 79 atomic_dec_bug(journal_ref); 80 81 if (!op->insert_data_done) { 82 continue_at(cl, bch_data_insert_start, op->wq); 83 return; 84 } 85 86 bch_keylist_free(&op->insert_keys); 87 closure_return(cl); 88 } 89 90 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s, 91 struct cache_set *c) 92 { 93 size_t oldsize = bch_keylist_nkeys(l); 94 size_t newsize = oldsize + u64s; 95 96 /* 97 * The journalling code doesn't handle the case where the keys to insert 98 * is bigger than an empty write: If we just return -ENOMEM here, 99 * bch_data_insert_keys() will insert the keys created so far 100 * and finish the rest when the keylist is empty. 101 */ 102 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 103 return -ENOMEM; 104 105 return __bch_keylist_realloc(l, u64s); 106 } 107 108 static void bch_data_invalidate(struct closure *cl) 109 { 110 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 111 struct bio *bio = op->bio; 112 113 pr_debug("invalidating %i sectors from %llu\n", 114 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 115 116 while (bio_sectors(bio)) { 117 unsigned int sectors = min(bio_sectors(bio), 118 1U << (KEY_SIZE_BITS - 1)); 119 120 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 121 goto out; 122 123 bio->bi_iter.bi_sector += sectors; 124 bio->bi_iter.bi_size -= sectors << 9; 125 126 bch_keylist_add(&op->insert_keys, 127 &KEY(op->inode, 128 bio->bi_iter.bi_sector, 129 sectors)); 130 } 131 132 op->insert_data_done = true; 133 /* get in bch_data_insert() */ 134 bio_put(bio); 135 out: 136 continue_at(cl, bch_data_insert_keys, op->wq); 137 } 138 139 static void bch_data_insert_error(struct closure *cl) 140 { 141 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 142 143 /* 144 * Our data write just errored, which means we've got a bunch of keys to 145 * insert that point to data that wasn't successfully written. 146 * 147 * We don't have to insert those keys but we still have to invalidate 148 * that region of the cache - so, if we just strip off all the pointers 149 * from the keys we'll accomplish just that. 150 */ 151 152 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 153 154 while (src != op->insert_keys.top) { 155 struct bkey *n = bkey_next(src); 156 157 SET_KEY_PTRS(src, 0); 158 memmove(dst, src, bkey_bytes(src)); 159 160 dst = bkey_next(dst); 161 src = n; 162 } 163 164 op->insert_keys.top = dst; 165 166 bch_data_insert_keys(cl); 167 } 168 169 static void bch_data_insert_endio(struct bio *bio) 170 { 171 struct closure *cl = bio->bi_private; 172 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 173 174 if (bio->bi_status) { 175 /* TODO: We could try to recover from this. */ 176 if (op->writeback) 177 op->status = bio->bi_status; 178 else if (!op->replace) 179 set_closure_fn(cl, bch_data_insert_error, op->wq); 180 else 181 set_closure_fn(cl, NULL, NULL); 182 } 183 184 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache"); 185 } 186 187 static void bch_data_insert_start(struct closure *cl) 188 { 189 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 190 struct bio *bio = op->bio, *n; 191 192 if (op->bypass) 193 return bch_data_invalidate(cl); 194 195 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) 196 wake_up_gc(op->c); 197 198 /* 199 * Journal writes are marked REQ_PREFLUSH; if the original write was a 200 * flush, it'll wait on the journal write. 201 */ 202 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); 203 204 do { 205 unsigned int i; 206 struct bkey *k; 207 struct bio_set *split = &op->c->bio_split; 208 209 /* 1 for the device pointer and 1 for the chksum */ 210 if (bch_keylist_realloc(&op->insert_keys, 211 3 + (op->csum ? 1 : 0), 212 op->c)) { 213 continue_at(cl, bch_data_insert_keys, op->wq); 214 return; 215 } 216 217 k = op->insert_keys.top; 218 bkey_init(k); 219 SET_KEY_INODE(k, op->inode); 220 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 221 222 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 223 op->write_point, op->write_prio, 224 op->writeback)) 225 goto err; 226 227 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 228 229 n->bi_end_io = bch_data_insert_endio; 230 n->bi_private = cl; 231 232 if (op->writeback) { 233 SET_KEY_DIRTY(k, true); 234 235 for (i = 0; i < KEY_PTRS(k); i++) 236 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 237 GC_MARK_DIRTY); 238 } 239 240 SET_KEY_CSUM(k, op->csum); 241 if (KEY_CSUM(k)) 242 bio_csum(n, k); 243 244 trace_bcache_cache_insert(k); 245 bch_keylist_push(&op->insert_keys); 246 247 bio_set_op_attrs(n, REQ_OP_WRITE, 0); 248 bch_submit_bbio(n, op->c, k, 0); 249 } while (n != bio); 250 251 op->insert_data_done = true; 252 continue_at(cl, bch_data_insert_keys, op->wq); 253 return; 254 err: 255 /* bch_alloc_sectors() blocks if s->writeback = true */ 256 BUG_ON(op->writeback); 257 258 /* 259 * But if it's not a writeback write we'd rather just bail out if 260 * there aren't any buckets ready to write to - it might take awhile and 261 * we might be starving btree writes for gc or something. 262 */ 263 264 if (!op->replace) { 265 /* 266 * Writethrough write: We can't complete the write until we've 267 * updated the index. But we don't want to delay the write while 268 * we wait for buckets to be freed up, so just invalidate the 269 * rest of the write. 270 */ 271 op->bypass = true; 272 return bch_data_invalidate(cl); 273 } else { 274 /* 275 * From a cache miss, we can just insert the keys for the data 276 * we have written or bail out if we didn't do anything. 277 */ 278 op->insert_data_done = true; 279 bio_put(bio); 280 281 if (!bch_keylist_empty(&op->insert_keys)) 282 continue_at(cl, bch_data_insert_keys, op->wq); 283 else 284 closure_return(cl); 285 } 286 } 287 288 /** 289 * bch_data_insert - stick some data in the cache 290 * @cl: closure pointer. 291 * 292 * This is the starting point for any data to end up in a cache device; it could 293 * be from a normal write, or a writeback write, or a write to a flash only 294 * volume - it's also used by the moving garbage collector to compact data in 295 * mostly empty buckets. 296 * 297 * It first writes the data to the cache, creating a list of keys to be inserted 298 * (if the data had to be fragmented there will be multiple keys); after the 299 * data is written it calls bch_journal, and after the keys have been added to 300 * the next journal write they're inserted into the btree. 301 * 302 * It inserts the data in op->bio; bi_sector is used for the key offset, 303 * and op->inode is used for the key inode. 304 * 305 * If op->bypass is true, instead of inserting the data it invalidates the 306 * region of the cache represented by op->bio and op->inode. 307 */ 308 void bch_data_insert(struct closure *cl) 309 { 310 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 311 312 trace_bcache_write(op->c, op->inode, op->bio, 313 op->writeback, op->bypass); 314 315 bch_keylist_init(&op->insert_keys); 316 bio_get(op->bio); 317 bch_data_insert_start(cl); 318 } 319 320 /* 321 * Congested? Return 0 (not congested) or the limit (in sectors) 322 * beyond which we should bypass the cache due to congestion. 323 */ 324 unsigned int bch_get_congested(const struct cache_set *c) 325 { 326 int i; 327 328 if (!c->congested_read_threshold_us && 329 !c->congested_write_threshold_us) 330 return 0; 331 332 i = (local_clock_us() - c->congested_last_us) / 1024; 333 if (i < 0) 334 return 0; 335 336 i += atomic_read(&c->congested); 337 if (i >= 0) 338 return 0; 339 340 i += CONGESTED_MAX; 341 342 if (i > 0) 343 i = fract_exp_two(i, 6); 344 345 i -= hweight32(get_random_u32()); 346 347 return i > 0 ? i : 1; 348 } 349 350 static void add_sequential(struct task_struct *t) 351 { 352 ewma_add(t->sequential_io_avg, 353 t->sequential_io, 8, 0); 354 355 t->sequential_io = 0; 356 } 357 358 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 359 { 360 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 361 } 362 363 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 364 { 365 struct cache_set *c = dc->disk.c; 366 unsigned int mode = cache_mode(dc); 367 unsigned int sectors, congested; 368 struct task_struct *task = current; 369 struct io *i; 370 371 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 372 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 373 (bio_op(bio) == REQ_OP_DISCARD)) 374 goto skip; 375 376 if (mode == CACHE_MODE_NONE || 377 (mode == CACHE_MODE_WRITEAROUND && 378 op_is_write(bio_op(bio)))) 379 goto skip; 380 381 /* 382 * If the bio is for read-ahead or background IO, bypass it or 383 * not depends on the following situations, 384 * - If the IO is for meta data, always cache it and no bypass 385 * - If the IO is not meta data, check dc->cache_reada_policy, 386 * BCH_CACHE_READA_ALL: cache it and not bypass 387 * BCH_CACHE_READA_META_ONLY: not cache it and bypass 388 * That is, read-ahead request for metadata always get cached 389 * (eg, for gfs2 or xfs). 390 */ 391 if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) { 392 if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) && 393 (dc->cache_readahead_policy != BCH_CACHE_READA_ALL)) 394 goto skip; 395 } 396 397 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 398 bio_sectors(bio) & (c->sb.block_size - 1)) { 399 pr_debug("skipping unaligned io\n"); 400 goto skip; 401 } 402 403 if (bypass_torture_test(dc)) { 404 if ((get_random_int() & 3) == 3) 405 goto skip; 406 else 407 goto rescale; 408 } 409 410 congested = bch_get_congested(c); 411 if (!congested && !dc->sequential_cutoff) 412 goto rescale; 413 414 spin_lock(&dc->io_lock); 415 416 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 417 if (i->last == bio->bi_iter.bi_sector && 418 time_before(jiffies, i->jiffies)) 419 goto found; 420 421 i = list_first_entry(&dc->io_lru, struct io, lru); 422 423 add_sequential(task); 424 i->sequential = 0; 425 found: 426 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 427 i->sequential += bio->bi_iter.bi_size; 428 429 i->last = bio_end_sector(bio); 430 i->jiffies = jiffies + msecs_to_jiffies(5000); 431 task->sequential_io = i->sequential; 432 433 hlist_del(&i->hash); 434 hlist_add_head(&i->hash, iohash(dc, i->last)); 435 list_move_tail(&i->lru, &dc->io_lru); 436 437 spin_unlock(&dc->io_lock); 438 439 sectors = max(task->sequential_io, 440 task->sequential_io_avg) >> 9; 441 442 if (dc->sequential_cutoff && 443 sectors >= dc->sequential_cutoff >> 9) { 444 trace_bcache_bypass_sequential(bio); 445 goto skip; 446 } 447 448 if (congested && sectors >= congested) { 449 trace_bcache_bypass_congested(bio); 450 goto skip; 451 } 452 453 rescale: 454 bch_rescale_priorities(c, bio_sectors(bio)); 455 return false; 456 skip: 457 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 458 return true; 459 } 460 461 /* Cache lookup */ 462 463 struct search { 464 /* Stack frame for bio_complete */ 465 struct closure cl; 466 467 struct bbio bio; 468 struct bio *orig_bio; 469 struct bio *cache_miss; 470 struct bcache_device *d; 471 472 unsigned int insert_bio_sectors; 473 unsigned int recoverable:1; 474 unsigned int write:1; 475 unsigned int read_dirty_data:1; 476 unsigned int cache_missed:1; 477 478 unsigned long start_time; 479 480 struct btree_op op; 481 struct data_insert_op iop; 482 }; 483 484 static void bch_cache_read_endio(struct bio *bio) 485 { 486 struct bbio *b = container_of(bio, struct bbio, bio); 487 struct closure *cl = bio->bi_private; 488 struct search *s = container_of(cl, struct search, cl); 489 490 /* 491 * If the bucket was reused while our bio was in flight, we might have 492 * read the wrong data. Set s->error but not error so it doesn't get 493 * counted against the cache device, but we'll still reread the data 494 * from the backing device. 495 */ 496 497 if (bio->bi_status) 498 s->iop.status = bio->bi_status; 499 else if (!KEY_DIRTY(&b->key) && 500 ptr_stale(s->iop.c, &b->key, 0)) { 501 atomic_long_inc(&s->iop.c->cache_read_races); 502 s->iop.status = BLK_STS_IOERR; 503 } 504 505 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache"); 506 } 507 508 /* 509 * Read from a single key, handling the initial cache miss if the key starts in 510 * the middle of the bio 511 */ 512 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 513 { 514 struct search *s = container_of(op, struct search, op); 515 struct bio *n, *bio = &s->bio.bio; 516 struct bkey *bio_key; 517 unsigned int ptr; 518 519 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 520 return MAP_CONTINUE; 521 522 if (KEY_INODE(k) != s->iop.inode || 523 KEY_START(k) > bio->bi_iter.bi_sector) { 524 unsigned int bio_sectors = bio_sectors(bio); 525 unsigned int sectors = KEY_INODE(k) == s->iop.inode 526 ? min_t(uint64_t, INT_MAX, 527 KEY_START(k) - bio->bi_iter.bi_sector) 528 : INT_MAX; 529 int ret = s->d->cache_miss(b, s, bio, sectors); 530 531 if (ret != MAP_CONTINUE) 532 return ret; 533 534 /* if this was a complete miss we shouldn't get here */ 535 BUG_ON(bio_sectors <= sectors); 536 } 537 538 if (!KEY_SIZE(k)) 539 return MAP_CONTINUE; 540 541 /* XXX: figure out best pointer - for multiple cache devices */ 542 ptr = 0; 543 544 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 545 546 if (KEY_DIRTY(k)) 547 s->read_dirty_data = true; 548 549 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 550 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 551 GFP_NOIO, &s->d->bio_split); 552 553 bio_key = &container_of(n, struct bbio, bio)->key; 554 bch_bkey_copy_single_ptr(bio_key, k, ptr); 555 556 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 557 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 558 559 n->bi_end_io = bch_cache_read_endio; 560 n->bi_private = &s->cl; 561 562 /* 563 * The bucket we're reading from might be reused while our bio 564 * is in flight, and we could then end up reading the wrong 565 * data. 566 * 567 * We guard against this by checking (in cache_read_endio()) if 568 * the pointer is stale again; if so, we treat it as an error 569 * and reread from the backing device (but we don't pass that 570 * error up anywhere). 571 */ 572 573 __bch_submit_bbio(n, b->c); 574 return n == bio ? MAP_DONE : MAP_CONTINUE; 575 } 576 577 static void cache_lookup(struct closure *cl) 578 { 579 struct search *s = container_of(cl, struct search, iop.cl); 580 struct bio *bio = &s->bio.bio; 581 struct cached_dev *dc; 582 int ret; 583 584 bch_btree_op_init(&s->op, -1); 585 586 ret = bch_btree_map_keys(&s->op, s->iop.c, 587 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 588 cache_lookup_fn, MAP_END_KEY); 589 if (ret == -EAGAIN) { 590 continue_at(cl, cache_lookup, bcache_wq); 591 return; 592 } 593 594 /* 595 * We might meet err when searching the btree, If that happens, we will 596 * get negative ret, in this scenario we should not recover data from 597 * backing device (when cache device is dirty) because we don't know 598 * whether bkeys the read request covered are all clean. 599 * 600 * And after that happened, s->iop.status is still its initial value 601 * before we submit s->bio.bio 602 */ 603 if (ret < 0) { 604 BUG_ON(ret == -EINTR); 605 if (s->d && s->d->c && 606 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) { 607 dc = container_of(s->d, struct cached_dev, disk); 608 if (dc && atomic_read(&dc->has_dirty)) 609 s->recoverable = false; 610 } 611 if (!s->iop.status) 612 s->iop.status = BLK_STS_IOERR; 613 } 614 615 closure_return(cl); 616 } 617 618 /* Common code for the make_request functions */ 619 620 static void request_endio(struct bio *bio) 621 { 622 struct closure *cl = bio->bi_private; 623 624 if (bio->bi_status) { 625 struct search *s = container_of(cl, struct search, cl); 626 627 s->iop.status = bio->bi_status; 628 /* Only cache read errors are recoverable */ 629 s->recoverable = false; 630 } 631 632 bio_put(bio); 633 closure_put(cl); 634 } 635 636 static void backing_request_endio(struct bio *bio) 637 { 638 struct closure *cl = bio->bi_private; 639 640 if (bio->bi_status) { 641 struct search *s = container_of(cl, struct search, cl); 642 struct cached_dev *dc = container_of(s->d, 643 struct cached_dev, disk); 644 /* 645 * If a bio has REQ_PREFLUSH for writeback mode, it is 646 * speically assembled in cached_dev_write() for a non-zero 647 * write request which has REQ_PREFLUSH. we don't set 648 * s->iop.status by this failure, the status will be decided 649 * by result of bch_data_insert() operation. 650 */ 651 if (unlikely(s->iop.writeback && 652 bio->bi_opf & REQ_PREFLUSH)) { 653 pr_err("Can't flush %s: returned bi_status %i\n", 654 dc->backing_dev_name, bio->bi_status); 655 } else { 656 /* set to orig_bio->bi_status in bio_complete() */ 657 s->iop.status = bio->bi_status; 658 } 659 s->recoverable = false; 660 /* should count I/O error for backing device here */ 661 bch_count_backing_io_errors(dc, bio); 662 } 663 664 bio_put(bio); 665 closure_put(cl); 666 } 667 668 static void bio_complete(struct search *s) 669 { 670 if (s->orig_bio) { 671 /* Count on bcache device */ 672 disk_end_io_acct(s->d->disk, bio_op(s->orig_bio), s->start_time); 673 674 trace_bcache_request_end(s->d, s->orig_bio); 675 s->orig_bio->bi_status = s->iop.status; 676 bio_endio(s->orig_bio); 677 s->orig_bio = NULL; 678 } 679 } 680 681 static void do_bio_hook(struct search *s, 682 struct bio *orig_bio, 683 bio_end_io_t *end_io_fn) 684 { 685 struct bio *bio = &s->bio.bio; 686 687 bio_init(bio, NULL, 0); 688 __bio_clone_fast(bio, orig_bio); 689 /* 690 * bi_end_io can be set separately somewhere else, e.g. the 691 * variants in, 692 * - cache_bio->bi_end_io from cached_dev_cache_miss() 693 * - n->bi_end_io from cache_lookup_fn() 694 */ 695 bio->bi_end_io = end_io_fn; 696 bio->bi_private = &s->cl; 697 698 bio_cnt_set(bio, 3); 699 } 700 701 static void search_free(struct closure *cl) 702 { 703 struct search *s = container_of(cl, struct search, cl); 704 705 atomic_dec(&s->iop.c->search_inflight); 706 707 if (s->iop.bio) 708 bio_put(s->iop.bio); 709 710 bio_complete(s); 711 closure_debug_destroy(cl); 712 mempool_free(s, &s->iop.c->search); 713 } 714 715 static inline struct search *search_alloc(struct bio *bio, 716 struct bcache_device *d) 717 { 718 struct search *s; 719 720 s = mempool_alloc(&d->c->search, GFP_NOIO); 721 722 closure_init(&s->cl, NULL); 723 do_bio_hook(s, bio, request_endio); 724 atomic_inc(&d->c->search_inflight); 725 726 s->orig_bio = bio; 727 s->cache_miss = NULL; 728 s->cache_missed = 0; 729 s->d = d; 730 s->recoverable = 1; 731 s->write = op_is_write(bio_op(bio)); 732 s->read_dirty_data = 0; 733 /* Count on the bcache device */ 734 s->start_time = disk_start_io_acct(d->disk, bio_sectors(bio), bio_op(bio)); 735 s->iop.c = d->c; 736 s->iop.bio = NULL; 737 s->iop.inode = d->id; 738 s->iop.write_point = hash_long((unsigned long) current, 16); 739 s->iop.write_prio = 0; 740 s->iop.status = 0; 741 s->iop.flags = 0; 742 s->iop.flush_journal = op_is_flush(bio->bi_opf); 743 s->iop.wq = bcache_wq; 744 745 return s; 746 } 747 748 /* Cached devices */ 749 750 static void cached_dev_bio_complete(struct closure *cl) 751 { 752 struct search *s = container_of(cl, struct search, cl); 753 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 754 755 cached_dev_put(dc); 756 search_free(cl); 757 } 758 759 /* Process reads */ 760 761 static void cached_dev_read_error_done(struct closure *cl) 762 { 763 struct search *s = container_of(cl, struct search, cl); 764 765 if (s->iop.replace_collision) 766 bch_mark_cache_miss_collision(s->iop.c, s->d); 767 768 if (s->iop.bio) 769 bio_free_pages(s->iop.bio); 770 771 cached_dev_bio_complete(cl); 772 } 773 774 static void cached_dev_read_error(struct closure *cl) 775 { 776 struct search *s = container_of(cl, struct search, cl); 777 struct bio *bio = &s->bio.bio; 778 779 /* 780 * If read request hit dirty data (s->read_dirty_data is true), 781 * then recovery a failed read request from cached device may 782 * get a stale data back. So read failure recovery is only 783 * permitted when read request hit clean data in cache device, 784 * or when cache read race happened. 785 */ 786 if (s->recoverable && !s->read_dirty_data) { 787 /* Retry from the backing device: */ 788 trace_bcache_read_retry(s->orig_bio); 789 790 s->iop.status = 0; 791 do_bio_hook(s, s->orig_bio, backing_request_endio); 792 793 /* XXX: invalidate cache */ 794 795 /* I/O request sent to backing device */ 796 closure_bio_submit(s->iop.c, bio, cl); 797 } 798 799 continue_at(cl, cached_dev_read_error_done, NULL); 800 } 801 802 static void cached_dev_cache_miss_done(struct closure *cl) 803 { 804 struct search *s = container_of(cl, struct search, cl); 805 struct bcache_device *d = s->d; 806 807 if (s->iop.replace_collision) 808 bch_mark_cache_miss_collision(s->iop.c, s->d); 809 810 if (s->iop.bio) 811 bio_free_pages(s->iop.bio); 812 813 cached_dev_bio_complete(cl); 814 closure_put(&d->cl); 815 } 816 817 static void cached_dev_read_done(struct closure *cl) 818 { 819 struct search *s = container_of(cl, struct search, cl); 820 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 821 822 /* 823 * We had a cache miss; cache_bio now contains data ready to be inserted 824 * into the cache. 825 * 826 * First, we copy the data we just read from cache_bio's bounce buffers 827 * to the buffers the original bio pointed to: 828 */ 829 830 if (s->iop.bio) { 831 bio_reset(s->iop.bio); 832 s->iop.bio->bi_iter.bi_sector = 833 s->cache_miss->bi_iter.bi_sector; 834 bio_copy_dev(s->iop.bio, s->cache_miss); 835 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 836 bch_bio_map(s->iop.bio, NULL); 837 838 bio_copy_data(s->cache_miss, s->iop.bio); 839 840 bio_put(s->cache_miss); 841 s->cache_miss = NULL; 842 } 843 844 if (verify(dc) && s->recoverable && !s->read_dirty_data) 845 bch_data_verify(dc, s->orig_bio); 846 847 closure_get(&dc->disk.cl); 848 bio_complete(s); 849 850 if (s->iop.bio && 851 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 852 BUG_ON(!s->iop.replace); 853 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 854 } 855 856 continue_at(cl, cached_dev_cache_miss_done, NULL); 857 } 858 859 static void cached_dev_read_done_bh(struct closure *cl) 860 { 861 struct search *s = container_of(cl, struct search, cl); 862 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 863 864 bch_mark_cache_accounting(s->iop.c, s->d, 865 !s->cache_missed, s->iop.bypass); 866 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass); 867 868 if (s->iop.status) 869 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 870 else if (s->iop.bio || verify(dc)) 871 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 872 else 873 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 874 } 875 876 static int cached_dev_cache_miss(struct btree *b, struct search *s, 877 struct bio *bio, unsigned int sectors) 878 { 879 int ret = MAP_CONTINUE; 880 unsigned int reada = 0; 881 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 882 struct bio *miss, *cache_bio; 883 884 s->cache_missed = 1; 885 886 if (s->cache_miss || s->iop.bypass) { 887 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 888 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 889 goto out_submit; 890 } 891 892 if (!(bio->bi_opf & REQ_RAHEAD) && 893 !(bio->bi_opf & (REQ_META|REQ_PRIO)) && 894 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 895 reada = min_t(sector_t, dc->readahead >> 9, 896 get_capacity(bio->bi_disk) - bio_end_sector(bio)); 897 898 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 899 900 s->iop.replace_key = KEY(s->iop.inode, 901 bio->bi_iter.bi_sector + s->insert_bio_sectors, 902 s->insert_bio_sectors); 903 904 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 905 if (ret) 906 return ret; 907 908 s->iop.replace = true; 909 910 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 911 912 /* btree_search_recurse()'s btree iterator is no good anymore */ 913 ret = miss == bio ? MAP_DONE : -EINTR; 914 915 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 916 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 917 &dc->disk.bio_split); 918 if (!cache_bio) 919 goto out_submit; 920 921 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 922 bio_copy_dev(cache_bio, miss); 923 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 924 925 cache_bio->bi_end_io = backing_request_endio; 926 cache_bio->bi_private = &s->cl; 927 928 bch_bio_map(cache_bio, NULL); 929 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 930 goto out_put; 931 932 if (reada) 933 bch_mark_cache_readahead(s->iop.c, s->d); 934 935 s->cache_miss = miss; 936 s->iop.bio = cache_bio; 937 bio_get(cache_bio); 938 /* I/O request sent to backing device */ 939 closure_bio_submit(s->iop.c, cache_bio, &s->cl); 940 941 return ret; 942 out_put: 943 bio_put(cache_bio); 944 out_submit: 945 miss->bi_end_io = backing_request_endio; 946 miss->bi_private = &s->cl; 947 /* I/O request sent to backing device */ 948 closure_bio_submit(s->iop.c, miss, &s->cl); 949 return ret; 950 } 951 952 static void cached_dev_read(struct cached_dev *dc, struct search *s) 953 { 954 struct closure *cl = &s->cl; 955 956 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 957 continue_at(cl, cached_dev_read_done_bh, NULL); 958 } 959 960 /* Process writes */ 961 962 static void cached_dev_write_complete(struct closure *cl) 963 { 964 struct search *s = container_of(cl, struct search, cl); 965 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 966 967 up_read_non_owner(&dc->writeback_lock); 968 cached_dev_bio_complete(cl); 969 } 970 971 static void cached_dev_write(struct cached_dev *dc, struct search *s) 972 { 973 struct closure *cl = &s->cl; 974 struct bio *bio = &s->bio.bio; 975 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 976 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 977 978 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 979 980 down_read_non_owner(&dc->writeback_lock); 981 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 982 /* 983 * We overlap with some dirty data undergoing background 984 * writeback, force this write to writeback 985 */ 986 s->iop.bypass = false; 987 s->iop.writeback = true; 988 } 989 990 /* 991 * Discards aren't _required_ to do anything, so skipping if 992 * check_overlapping returned true is ok 993 * 994 * But check_overlapping drops dirty keys for which io hasn't started, 995 * so we still want to call it. 996 */ 997 if (bio_op(bio) == REQ_OP_DISCARD) 998 s->iop.bypass = true; 999 1000 if (should_writeback(dc, s->orig_bio, 1001 cache_mode(dc), 1002 s->iop.bypass)) { 1003 s->iop.bypass = false; 1004 s->iop.writeback = true; 1005 } 1006 1007 if (s->iop.bypass) { 1008 s->iop.bio = s->orig_bio; 1009 bio_get(s->iop.bio); 1010 1011 if (bio_op(bio) == REQ_OP_DISCARD && 1012 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1013 goto insert_data; 1014 1015 /* I/O request sent to backing device */ 1016 bio->bi_end_io = backing_request_endio; 1017 closure_bio_submit(s->iop.c, bio, cl); 1018 1019 } else if (s->iop.writeback) { 1020 bch_writeback_add(dc); 1021 s->iop.bio = bio; 1022 1023 if (bio->bi_opf & REQ_PREFLUSH) { 1024 /* 1025 * Also need to send a flush to the backing 1026 * device. 1027 */ 1028 struct bio *flush; 1029 1030 flush = bio_alloc_bioset(GFP_NOIO, 0, 1031 &dc->disk.bio_split); 1032 if (!flush) { 1033 s->iop.status = BLK_STS_RESOURCE; 1034 goto insert_data; 1035 } 1036 bio_copy_dev(flush, bio); 1037 flush->bi_end_io = backing_request_endio; 1038 flush->bi_private = cl; 1039 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1040 /* I/O request sent to backing device */ 1041 closure_bio_submit(s->iop.c, flush, cl); 1042 } 1043 } else { 1044 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split); 1045 /* I/O request sent to backing device */ 1046 bio->bi_end_io = backing_request_endio; 1047 closure_bio_submit(s->iop.c, bio, cl); 1048 } 1049 1050 insert_data: 1051 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1052 continue_at(cl, cached_dev_write_complete, NULL); 1053 } 1054 1055 static void cached_dev_nodata(struct closure *cl) 1056 { 1057 struct search *s = container_of(cl, struct search, cl); 1058 struct bio *bio = &s->bio.bio; 1059 1060 if (s->iop.flush_journal) 1061 bch_journal_meta(s->iop.c, cl); 1062 1063 /* If it's a flush, we send the flush to the backing device too */ 1064 bio->bi_end_io = backing_request_endio; 1065 closure_bio_submit(s->iop.c, bio, cl); 1066 1067 continue_at(cl, cached_dev_bio_complete, NULL); 1068 } 1069 1070 struct detached_dev_io_private { 1071 struct bcache_device *d; 1072 unsigned long start_time; 1073 bio_end_io_t *bi_end_io; 1074 void *bi_private; 1075 }; 1076 1077 static void detached_dev_end_io(struct bio *bio) 1078 { 1079 struct detached_dev_io_private *ddip; 1080 1081 ddip = bio->bi_private; 1082 bio->bi_end_io = ddip->bi_end_io; 1083 bio->bi_private = ddip->bi_private; 1084 1085 /* Count on the bcache device */ 1086 disk_end_io_acct(ddip->d->disk, bio_op(bio), ddip->start_time); 1087 1088 if (bio->bi_status) { 1089 struct cached_dev *dc = container_of(ddip->d, 1090 struct cached_dev, disk); 1091 /* should count I/O error for backing device here */ 1092 bch_count_backing_io_errors(dc, bio); 1093 } 1094 1095 kfree(ddip); 1096 bio->bi_end_io(bio); 1097 } 1098 1099 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio) 1100 { 1101 struct detached_dev_io_private *ddip; 1102 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1103 1104 /* 1105 * no need to call closure_get(&dc->disk.cl), 1106 * because upper layer had already opened bcache device, 1107 * which would call closure_get(&dc->disk.cl) 1108 */ 1109 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO); 1110 ddip->d = d; 1111 /* Count on the bcache device */ 1112 ddip->start_time = disk_start_io_acct(d->disk, bio_sectors(bio), bio_op(bio)); 1113 ddip->bi_end_io = bio->bi_end_io; 1114 ddip->bi_private = bio->bi_private; 1115 bio->bi_end_io = detached_dev_end_io; 1116 bio->bi_private = ddip; 1117 1118 if ((bio_op(bio) == REQ_OP_DISCARD) && 1119 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1120 bio->bi_end_io(bio); 1121 else 1122 submit_bio_noacct(bio); 1123 } 1124 1125 static void quit_max_writeback_rate(struct cache_set *c, 1126 struct cached_dev *this_dc) 1127 { 1128 int i; 1129 struct bcache_device *d; 1130 struct cached_dev *dc; 1131 1132 /* 1133 * mutex bch_register_lock may compete with other parallel requesters, 1134 * or attach/detach operations on other backing device. Waiting to 1135 * the mutex lock may increase I/O request latency for seconds or more. 1136 * To avoid such situation, if mutext_trylock() failed, only writeback 1137 * rate of current cached device is set to 1, and __update_write_back() 1138 * will decide writeback rate of other cached devices (remember now 1139 * c->idle_counter is 0 already). 1140 */ 1141 if (mutex_trylock(&bch_register_lock)) { 1142 for (i = 0; i < c->devices_max_used; i++) { 1143 if (!c->devices[i]) 1144 continue; 1145 1146 if (UUID_FLASH_ONLY(&c->uuids[i])) 1147 continue; 1148 1149 d = c->devices[i]; 1150 dc = container_of(d, struct cached_dev, disk); 1151 /* 1152 * set writeback rate to default minimum value, 1153 * then let update_writeback_rate() to decide the 1154 * upcoming rate. 1155 */ 1156 atomic_long_set(&dc->writeback_rate.rate, 1); 1157 } 1158 mutex_unlock(&bch_register_lock); 1159 } else 1160 atomic_long_set(&this_dc->writeback_rate.rate, 1); 1161 } 1162 1163 /* Cached devices - read & write stuff */ 1164 1165 blk_qc_t cached_dev_submit_bio(struct bio *bio) 1166 { 1167 struct search *s; 1168 struct bcache_device *d = bio->bi_disk->private_data; 1169 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1170 int rw = bio_data_dir(bio); 1171 1172 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) || 1173 dc->io_disable)) { 1174 bio->bi_status = BLK_STS_IOERR; 1175 bio_endio(bio); 1176 return BLK_QC_T_NONE; 1177 } 1178 1179 if (likely(d->c)) { 1180 if (atomic_read(&d->c->idle_counter)) 1181 atomic_set(&d->c->idle_counter, 0); 1182 /* 1183 * If at_max_writeback_rate of cache set is true and new I/O 1184 * comes, quit max writeback rate of all cached devices 1185 * attached to this cache set, and set at_max_writeback_rate 1186 * to false. 1187 */ 1188 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) { 1189 atomic_set(&d->c->at_max_writeback_rate, 0); 1190 quit_max_writeback_rate(d->c, dc); 1191 } 1192 } 1193 1194 bio_set_dev(bio, dc->bdev); 1195 bio->bi_iter.bi_sector += dc->sb.data_offset; 1196 1197 if (cached_dev_get(dc)) { 1198 s = search_alloc(bio, d); 1199 trace_bcache_request_start(s->d, bio); 1200 1201 if (!bio->bi_iter.bi_size) { 1202 /* 1203 * can't call bch_journal_meta from under 1204 * submit_bio_noacct 1205 */ 1206 continue_at_nobarrier(&s->cl, 1207 cached_dev_nodata, 1208 bcache_wq); 1209 } else { 1210 s->iop.bypass = check_should_bypass(dc, bio); 1211 1212 if (rw) 1213 cached_dev_write(dc, s); 1214 else 1215 cached_dev_read(dc, s); 1216 } 1217 } else 1218 /* I/O request sent to backing device */ 1219 detached_dev_do_request(d, bio); 1220 1221 return BLK_QC_T_NONE; 1222 } 1223 1224 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 1225 unsigned int cmd, unsigned long arg) 1226 { 1227 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1228 1229 if (dc->io_disable) 1230 return -EIO; 1231 1232 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1233 } 1234 1235 void bch_cached_dev_request_init(struct cached_dev *dc) 1236 { 1237 dc->disk.cache_miss = cached_dev_cache_miss; 1238 dc->disk.ioctl = cached_dev_ioctl; 1239 } 1240 1241 /* Flash backed devices */ 1242 1243 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1244 struct bio *bio, unsigned int sectors) 1245 { 1246 unsigned int bytes = min(sectors, bio_sectors(bio)) << 9; 1247 1248 swap(bio->bi_iter.bi_size, bytes); 1249 zero_fill_bio(bio); 1250 swap(bio->bi_iter.bi_size, bytes); 1251 1252 bio_advance(bio, bytes); 1253 1254 if (!bio->bi_iter.bi_size) 1255 return MAP_DONE; 1256 1257 return MAP_CONTINUE; 1258 } 1259 1260 static void flash_dev_nodata(struct closure *cl) 1261 { 1262 struct search *s = container_of(cl, struct search, cl); 1263 1264 if (s->iop.flush_journal) 1265 bch_journal_meta(s->iop.c, cl); 1266 1267 continue_at(cl, search_free, NULL); 1268 } 1269 1270 blk_qc_t flash_dev_submit_bio(struct bio *bio) 1271 { 1272 struct search *s; 1273 struct closure *cl; 1274 struct bcache_device *d = bio->bi_disk->private_data; 1275 1276 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) { 1277 bio->bi_status = BLK_STS_IOERR; 1278 bio_endio(bio); 1279 return BLK_QC_T_NONE; 1280 } 1281 1282 s = search_alloc(bio, d); 1283 cl = &s->cl; 1284 bio = &s->bio.bio; 1285 1286 trace_bcache_request_start(s->d, bio); 1287 1288 if (!bio->bi_iter.bi_size) { 1289 /* 1290 * can't call bch_journal_meta from under submit_bio_noacct 1291 */ 1292 continue_at_nobarrier(&s->cl, 1293 flash_dev_nodata, 1294 bcache_wq); 1295 return BLK_QC_T_NONE; 1296 } else if (bio_data_dir(bio)) { 1297 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1298 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1299 &KEY(d->id, bio_end_sector(bio), 0)); 1300 1301 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0; 1302 s->iop.writeback = true; 1303 s->iop.bio = bio; 1304 1305 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1306 } else { 1307 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1308 } 1309 1310 continue_at(cl, search_free, NULL); 1311 return BLK_QC_T_NONE; 1312 } 1313 1314 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1315 unsigned int cmd, unsigned long arg) 1316 { 1317 return -ENOTTY; 1318 } 1319 1320 void bch_flash_dev_request_init(struct bcache_device *d) 1321 { 1322 d->cache_miss = flash_dev_cache_miss; 1323 d->ioctl = flash_dev_ioctl; 1324 } 1325 1326 void bch_request_exit(void) 1327 { 1328 kmem_cache_destroy(bch_search_cache); 1329 } 1330 1331 int __init bch_request_init(void) 1332 { 1333 bch_search_cache = KMEM_CACHE(search, 0); 1334 if (!bch_search_cache) 1335 return -ENOMEM; 1336 1337 return 0; 1338 } 1339